src/share/vm/opto/callnode.hpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 3969
1d7922586cf6
child 4313
beebba0acc11
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/type.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Optimization - Graph Style
    39 class Chaitin;
    40 class NamedCounter;
    41 class MultiNode;
    42 class  SafePointNode;
    43 class   CallNode;
    44 class     CallJavaNode;
    45 class       CallStaticJavaNode;
    46 class       CallDynamicJavaNode;
    47 class     CallRuntimeNode;
    48 class       CallLeafNode;
    49 class         CallLeafNoFPNode;
    50 class     AllocateNode;
    51 class       AllocateArrayNode;
    52 class     LockNode;
    53 class     UnlockNode;
    54 class JVMState;
    55 class OopMap;
    56 class State;
    57 class StartNode;
    58 class MachCallNode;
    59 class FastLockNode;
    61 //------------------------------StartNode--------------------------------------
    62 // The method start node
    63 class StartNode : public MultiNode {
    64   virtual uint cmp( const Node &n ) const;
    65   virtual uint size_of() const; // Size is bigger
    66 public:
    67   const TypeTuple *_domain;
    68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    69     init_class_id(Class_Start);
    70     init_req(0,this);
    71     init_req(1,root);
    72   }
    73   virtual int Opcode() const;
    74   virtual bool pinned() const { return true; };
    75   virtual const Type *bottom_type() const;
    76   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    77   virtual const Type *Value( PhaseTransform *phase ) const;
    78   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    79   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    80   virtual const RegMask &in_RegMask(uint) const;
    81   virtual Node *match( const ProjNode *proj, const Matcher *m );
    82   virtual uint ideal_reg() const { return 0; }
    83 #ifndef PRODUCT
    84   virtual void  dump_spec(outputStream *st) const;
    85 #endif
    86 };
    88 //------------------------------StartOSRNode-----------------------------------
    89 // The method start node for on stack replacement code
    90 class StartOSRNode : public StartNode {
    91 public:
    92   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    93   virtual int   Opcode() const;
    94   static  const TypeTuple *osr_domain();
    95 };
    98 //------------------------------ParmNode---------------------------------------
    99 // Incoming parameters
   100 class ParmNode : public ProjNode {
   101   static const char * const names[TypeFunc::Parms+1];
   102 public:
   103   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   104     init_class_id(Class_Parm);
   105   }
   106   virtual int Opcode() const;
   107   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   108   virtual uint ideal_reg() const;
   109 #ifndef PRODUCT
   110   virtual void dump_spec(outputStream *st) const;
   111 #endif
   112 };
   115 //------------------------------ReturnNode-------------------------------------
   116 // Return from subroutine node
   117 class ReturnNode : public Node {
   118 public:
   119   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   120   virtual int Opcode() const;
   121   virtual bool  is_CFG() const { return true; }
   122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   123   virtual bool depends_only_on_test() const { return false; }
   124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   125   virtual const Type *Value( PhaseTransform *phase ) const;
   126   virtual uint ideal_reg() const { return NotAMachineReg; }
   127   virtual uint match_edge(uint idx) const;
   128 #ifndef PRODUCT
   129   virtual void dump_req() const;
   130 #endif
   131 };
   134 //------------------------------RethrowNode------------------------------------
   135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   136 // ends the current basic block like a ReturnNode.  Restores registers and
   137 // unwinds stack.  Rethrow happens in the caller's method.
   138 class RethrowNode : public Node {
   139  public:
   140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   141   virtual int Opcode() const;
   142   virtual bool  is_CFG() const { return true; }
   143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   144   virtual bool depends_only_on_test() const { return false; }
   145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   146   virtual const Type *Value( PhaseTransform *phase ) const;
   147   virtual uint match_edge(uint idx) const;
   148   virtual uint ideal_reg() const { return NotAMachineReg; }
   149 #ifndef PRODUCT
   150   virtual void dump_req() const;
   151 #endif
   152 };
   155 //------------------------------TailCallNode-----------------------------------
   156 // Pop stack frame and jump indirect
   157 class TailCallNode : public ReturnNode {
   158 public:
   159   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   160     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   161     init_req(TypeFunc::Parms, target);
   162     init_req(TypeFunc::Parms+1, moop);
   163   }
   165   virtual int Opcode() const;
   166   virtual uint match_edge(uint idx) const;
   167 };
   169 //------------------------------TailJumpNode-----------------------------------
   170 // Pop stack frame and jump indirect
   171 class TailJumpNode : public ReturnNode {
   172 public:
   173   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   174     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   175     init_req(TypeFunc::Parms, target);
   176     init_req(TypeFunc::Parms+1, ex_oop);
   177   }
   179   virtual int Opcode() const;
   180   virtual uint match_edge(uint idx) const;
   181 };
   183 //-------------------------------JVMState-------------------------------------
   184 // A linked list of JVMState nodes captures the whole interpreter state,
   185 // plus GC roots, for all active calls at some call site in this compilation
   186 // unit.  (If there is no inlining, then the list has exactly one link.)
   187 // This provides a way to map the optimized program back into the interpreter,
   188 // or to let the GC mark the stack.
   189 class JVMState : public ResourceObj {
   190   friend class VMStructs;
   191 public:
   192   typedef enum {
   193     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   194     Reexecute_False     =  0, // false       -- do not reexecute
   195     Reexecute_True      =  1  // true        -- reexecute the bytecode
   196   } ReexecuteState; //Reexecute State
   198 private:
   199   JVMState*         _caller;    // List pointer for forming scope chains
   200   uint              _depth;     // One more than caller depth, or one.
   201   uint              _locoff;    // Offset to locals in input edge mapping
   202   uint              _stkoff;    // Offset to stack in input edge mapping
   203   uint              _monoff;    // Offset to monitors in input edge mapping
   204   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   205   uint              _endoff;    // Offset to end of input edge mapping
   206   uint              _sp;        // Jave Expression Stack Pointer for this state
   207   int               _bci;       // Byte Code Index of this JVM point
   208   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   209   ciMethod*         _method;    // Method Pointer
   210   SafePointNode*    _map;       // Map node associated with this scope
   211 public:
   212   friend class Compile;
   213   friend class PreserveReexecuteState;
   215   // Because JVMState objects live over the entire lifetime of the
   216   // Compile object, they are allocated into the comp_arena, which
   217   // does not get resource marked or reset during the compile process
   218   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   219   void operator delete( void * ) { } // fast deallocation
   221   // Create a new JVMState, ready for abstract interpretation.
   222   JVMState(ciMethod* method, JVMState* caller);
   223   JVMState(int stack_size);  // root state; has a null method
   225   // Access functions for the JVM
   226   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
   227   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
   228   uint              locoff() const { return _locoff; }
   229   uint              stkoff() const { return _stkoff; }
   230   uint              argoff() const { return _stkoff + _sp; }
   231   uint              monoff() const { return _monoff; }
   232   uint              scloff() const { return _scloff; }
   233   uint              endoff() const { return _endoff; }
   234   uint              oopoff() const { return debug_end(); }
   236   int            loc_size() const { return stkoff() - locoff(); }
   237   int            stk_size() const { return monoff() - stkoff(); }
   238   int            arg_size() const { return monoff() - argoff(); }
   239   int            mon_size() const { return scloff() - monoff(); }
   240   int            scl_size() const { return endoff() - scloff(); }
   242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
   243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
   244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
   245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
   247   uint                      sp() const { return _sp; }
   248   int                      bci() const { return _bci; }
   249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   251   bool              has_method() const { return _method != NULL; }
   252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   253   JVMState*             caller() const { return _caller; }
   254   SafePointNode*           map() const { return _map; }
   255   uint                   depth() const { return _depth; }
   256   uint             debug_start() const; // returns locoff of root caller
   257   uint               debug_end() const; // returns endoff of self
   258   uint              debug_size() const {
   259     return loc_size() + sp() + mon_size() + scl_size();
   260   }
   261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   263   // Returns the JVM state at the desired depth (1 == root).
   264   JVMState* of_depth(int d) const;
   266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   267   bool same_calls_as(const JVMState* that) const;
   269   // Monitors (monitors are stored as (boxNode, objNode) pairs
   270   enum { logMonitorEdges = 1 };
   271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   275   bool is_monitor_box(uint off)    const {
   276     assert(is_mon(off), "should be called only for monitor edge");
   277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   278   }
   279   bool is_monitor_use(uint off)    const { return (is_mon(off)
   280                                                    && is_monitor_box(off))
   281                                              || (caller() && caller()->is_monitor_use(off)); }
   283   // Initialization functions for the JVM
   284   void              set_locoff(uint off) { _locoff = off; }
   285   void              set_stkoff(uint off) { _stkoff = off; }
   286   void              set_monoff(uint off) { _monoff = off; }
   287   void              set_scloff(uint off) { _scloff = off; }
   288   void              set_endoff(uint off) { _endoff = off; }
   289   void              set_offsets(uint off) {
   290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   291   }
   292   void              set_map(SafePointNode *map) { _map = map; }
   293   void              set_sp(uint sp) { _sp = sp; }
   294                     // _reexecute is initialized to "undefined" for a new bci
   295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   298   // Miscellaneous utility functions
   299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   302 #ifndef PRODUCT
   303   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   304   void      dump_spec(outputStream *st) const;
   305   void      dump_on(outputStream* st) const;
   306   void      dump() const {
   307     dump_on(tty);
   308   }
   309 #endif
   310 };
   312 //------------------------------SafePointNode----------------------------------
   313 // A SafePointNode is a subclass of a MultiNode for convenience (and
   314 // potential code sharing) only - conceptually it is independent of
   315 // the Node semantics.
   316 class SafePointNode : public MultiNode {
   317   virtual uint           cmp( const Node &n ) const;
   318   virtual uint           size_of() const;       // Size is bigger
   320 public:
   321   SafePointNode(uint edges, JVMState* jvms,
   322                 // A plain safepoint advertises no memory effects (NULL):
   323                 const TypePtr* adr_type = NULL)
   324     : MultiNode( edges ),
   325       _jvms(jvms),
   326       _oop_map(NULL),
   327       _adr_type(adr_type)
   328   {
   329     init_class_id(Class_SafePoint);
   330   }
   332   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   333   JVMState* const _jvms;      // Pointer to list of JVM State objects
   334   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   336   // Many calls take *all* of memory as input,
   337   // but some produce a limited subset of that memory as output.
   338   // The adr_type reports the call's behavior as a store, not a load.
   340   virtual JVMState* jvms() const { return _jvms; }
   341   void set_jvms(JVMState* s) {
   342     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   343   }
   344   OopMap *oop_map() const { return _oop_map; }
   345   void set_oop_map(OopMap *om) { _oop_map = om; }
   347   // Functionality from old debug nodes which has changed
   348   Node *local(JVMState* jvms, uint idx) const {
   349     assert(verify_jvms(jvms), "jvms must match");
   350     return in(jvms->locoff() + idx);
   351   }
   352   Node *stack(JVMState* jvms, uint idx) const {
   353     assert(verify_jvms(jvms), "jvms must match");
   354     return in(jvms->stkoff() + idx);
   355   }
   356   Node *argument(JVMState* jvms, uint idx) const {
   357     assert(verify_jvms(jvms), "jvms must match");
   358     return in(jvms->argoff() + idx);
   359   }
   360   Node *monitor_box(JVMState* jvms, uint idx) const {
   361     assert(verify_jvms(jvms), "jvms must match");
   362     return in(jvms->monitor_box_offset(idx));
   363   }
   364   Node *monitor_obj(JVMState* jvms, uint idx) const {
   365     assert(verify_jvms(jvms), "jvms must match");
   366     return in(jvms->monitor_obj_offset(idx));
   367   }
   369   void  set_local(JVMState* jvms, uint idx, Node *c);
   371   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   372     assert(verify_jvms(jvms), "jvms must match");
   373     set_req(jvms->stkoff() + idx, c);
   374   }
   375   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   376     assert(verify_jvms(jvms), "jvms must match");
   377     set_req(jvms->argoff() + idx, c);
   378   }
   379   void ensure_stack(JVMState* jvms, uint stk_size) {
   380     assert(verify_jvms(jvms), "jvms must match");
   381     int grow_by = (int)stk_size - (int)jvms->stk_size();
   382     if (grow_by > 0)  grow_stack(jvms, grow_by);
   383   }
   384   void grow_stack(JVMState* jvms, uint grow_by);
   385   // Handle monitor stack
   386   void push_monitor( const FastLockNode *lock );
   387   void pop_monitor ();
   388   Node *peek_monitor_box() const;
   389   Node *peek_monitor_obj() const;
   391   // Access functions for the JVM
   392   Node *control  () const { return in(TypeFunc::Control  ); }
   393   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   394   Node *memory   () const { return in(TypeFunc::Memory   ); }
   395   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   396   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   398   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   399   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   400   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   402   MergeMemNode* merged_memory() const {
   403     return in(TypeFunc::Memory)->as_MergeMem();
   404   }
   406   // The parser marks useless maps as dead when it's done with them:
   407   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   409   // Exception states bubbling out of subgraphs such as inlined calls
   410   // are recorded here.  (There might be more than one, hence the "next".)
   411   // This feature is used only for safepoints which serve as "maps"
   412   // for JVM states during parsing, intrinsic expansion, etc.
   413   SafePointNode*         next_exception() const;
   414   void               set_next_exception(SafePointNode* n);
   415   bool                   has_exceptions() const { return next_exception() != NULL; }
   417   // Standard Node stuff
   418   virtual int            Opcode() const;
   419   virtual bool           pinned() const { return true; }
   420   virtual const Type    *Value( PhaseTransform *phase ) const;
   421   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   422   virtual const TypePtr *adr_type() const { return _adr_type; }
   423   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   424   virtual Node          *Identity( PhaseTransform *phase );
   425   virtual uint           ideal_reg() const { return 0; }
   426   virtual const RegMask &in_RegMask(uint) const;
   427   virtual const RegMask &out_RegMask() const;
   428   virtual uint           match_edge(uint idx) const;
   430   static  bool           needs_polling_address_input();
   432 #ifndef PRODUCT
   433   virtual void              dump_spec(outputStream *st) const;
   434 #endif
   435 };
   437 //------------------------------SafePointScalarObjectNode----------------------
   438 // A SafePointScalarObjectNode represents the state of a scalarized object
   439 // at a safepoint.
   441 class SafePointScalarObjectNode: public TypeNode {
   442   uint _first_index; // First input edge index of a SafePoint node where
   443                      // states of the scalarized object fields are collected.
   444   uint _n_fields;    // Number of non-static fields of the scalarized object.
   445   DEBUG_ONLY(AllocateNode* _alloc;)
   447   virtual uint hash() const ; // { return NO_HASH; }
   448   virtual uint cmp( const Node &n ) const;
   450 public:
   451   SafePointScalarObjectNode(const TypeOopPtr* tp,
   452 #ifdef ASSERT
   453                             AllocateNode* alloc,
   454 #endif
   455                             uint first_index, uint n_fields);
   456   virtual int Opcode() const;
   457   virtual uint           ideal_reg() const;
   458   virtual const RegMask &in_RegMask(uint) const;
   459   virtual const RegMask &out_RegMask() const;
   460   virtual uint           match_edge(uint idx) const;
   462   uint first_index() const { return _first_index; }
   463   uint n_fields()    const { return _n_fields; }
   465 #ifdef ASSERT
   466   AllocateNode* alloc() const { return _alloc; }
   467 #endif
   469   virtual uint size_of() const { return sizeof(*this); }
   471   // Assumes that "this" is an argument to a safepoint node "s", and that
   472   // "new_call" is being created to correspond to "s".  But the difference
   473   // between the start index of the jvmstates of "new_call" and "s" is
   474   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   475   // corresponds appropriately to "this" in "new_call".  Assumes that
   476   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   477   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   478   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   480 #ifndef PRODUCT
   481   virtual void              dump_spec(outputStream *st) const;
   482 #endif
   483 };
   486 // Simple container for the outgoing projections of a call.  Useful
   487 // for serious surgery on calls.
   488 class CallProjections : public StackObj {
   489 public:
   490   Node* fallthrough_proj;
   491   Node* fallthrough_catchproj;
   492   Node* fallthrough_memproj;
   493   Node* fallthrough_ioproj;
   494   Node* catchall_catchproj;
   495   Node* catchall_memproj;
   496   Node* catchall_ioproj;
   497   Node* resproj;
   498   Node* exobj;
   499 };
   502 //------------------------------CallNode---------------------------------------
   503 // Call nodes now subsume the function of debug nodes at callsites, so they
   504 // contain the functionality of a full scope chain of debug nodes.
   505 class CallNode : public SafePointNode {
   506   friend class VMStructs;
   507 public:
   508   const TypeFunc *_tf;        // Function type
   509   address      _entry_point;  // Address of method being called
   510   float        _cnt;          // Estimate of number of times called
   512   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   513     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   514       _tf(tf),
   515       _entry_point(addr),
   516       _cnt(COUNT_UNKNOWN)
   517   {
   518     init_class_id(Class_Call);
   519   }
   521   const TypeFunc* tf()        const { return _tf; }
   522   const address entry_point() const { return _entry_point; }
   523   const float   cnt()         const { return _cnt; }
   525   void set_tf(const TypeFunc* tf) { _tf = tf; }
   526   void set_entry_point(address p) { _entry_point = p; }
   527   void set_cnt(float c)           { _cnt = c; }
   529   virtual const Type *bottom_type() const;
   530   virtual const Type *Value( PhaseTransform *phase ) const;
   531   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   532   virtual uint        cmp( const Node &n ) const;
   533   virtual uint        size_of() const = 0;
   534   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   535   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   536   virtual uint        ideal_reg() const { return NotAMachineReg; }
   537   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   538   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   539   virtual bool        guaranteed_safepoint()  { return true; }
   540   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   541   // the node the JVMState must be cloned.
   542   virtual void        clone_jvms() { }   // default is not to clone
   544   // Returns true if the call may modify n
   545   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
   546   // Does this node have a use of n other than in debug information?
   547   bool                has_non_debug_use(Node *n);
   548   // Returns the unique CheckCastPP of a call
   549   // or result projection is there are several CheckCastPP
   550   // or returns NULL if there is no one.
   551   Node *result_cast();
   552   // Does this node returns pointer?
   553   bool returns_pointer() const {
   554     const TypeTuple *r = tf()->range();
   555     return (r->cnt() > TypeFunc::Parms &&
   556             r->field_at(TypeFunc::Parms)->isa_ptr());
   557   }
   559   // Collect all the interesting edges from a call for use in
   560   // replacing the call by something else.  Used by macro expansion
   561   // and the late inlining support.
   562   void extract_projections(CallProjections* projs, bool separate_io_proj);
   564   virtual uint match_edge(uint idx) const;
   566 #ifndef PRODUCT
   567   virtual void        dump_req()  const;
   568   virtual void        dump_spec(outputStream *st) const;
   569 #endif
   570 };
   573 //------------------------------CallJavaNode-----------------------------------
   574 // Make a static or dynamic subroutine call node using Java calling
   575 // convention.  (The "Java" calling convention is the compiler's calling
   576 // convention, as opposed to the interpreter's or that of native C.)
   577 class CallJavaNode : public CallNode {
   578   friend class VMStructs;
   579 protected:
   580   virtual uint cmp( const Node &n ) const;
   581   virtual uint size_of() const; // Size is bigger
   583   bool    _optimized_virtual;
   584   bool    _method_handle_invoke;
   585   ciMethod* _method;            // Method being direct called
   586 public:
   587   const int       _bci;         // Byte Code Index of call byte code
   588   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   589     : CallNode(tf, addr, TypePtr::BOTTOM),
   590       _method(method), _bci(bci),
   591       _optimized_virtual(false),
   592       _method_handle_invoke(false)
   593   {
   594     init_class_id(Class_CallJava);
   595   }
   597   virtual int   Opcode() const;
   598   ciMethod* method() const                { return _method; }
   599   void  set_method(ciMethod *m)           { _method = m; }
   600   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   601   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   602   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   603   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   605 #ifndef PRODUCT
   606   virtual void  dump_spec(outputStream *st) const;
   607 #endif
   608 };
   610 //------------------------------CallStaticJavaNode-----------------------------
   611 // Make a direct subroutine call using Java calling convention (for static
   612 // calls and optimized virtual calls, plus calls to wrappers for run-time
   613 // routines); generates static stub.
   614 class CallStaticJavaNode : public CallJavaNode {
   615   virtual uint cmp( const Node &n ) const;
   616   virtual uint size_of() const; // Size is bigger
   617 public:
   618   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   619     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   620     init_class_id(Class_CallStaticJava);
   621   }
   622   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   623                      const TypePtr* adr_type)
   624     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   625     init_class_id(Class_CallStaticJava);
   626     // This node calls a runtime stub, which often has narrow memory effects.
   627     _adr_type = adr_type;
   628   }
   629   const char *_name;            // Runtime wrapper name
   631   // If this is an uncommon trap, return the request code, else zero.
   632   int uncommon_trap_request() const;
   633   static int extract_uncommon_trap_request(const Node* call);
   635   virtual int         Opcode() const;
   636 #ifndef PRODUCT
   637   virtual void        dump_spec(outputStream *st) const;
   638 #endif
   639 };
   641 //------------------------------CallDynamicJavaNode----------------------------
   642 // Make a dispatched call using Java calling convention.
   643 class CallDynamicJavaNode : public CallJavaNode {
   644   virtual uint cmp( const Node &n ) const;
   645   virtual uint size_of() const; // Size is bigger
   646 public:
   647   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   648     init_class_id(Class_CallDynamicJava);
   649   }
   651   int _vtable_index;
   652   virtual int   Opcode() const;
   653 #ifndef PRODUCT
   654   virtual void  dump_spec(outputStream *st) const;
   655 #endif
   656 };
   658 //------------------------------CallRuntimeNode--------------------------------
   659 // Make a direct subroutine call node into compiled C++ code.
   660 class CallRuntimeNode : public CallNode {
   661   virtual uint cmp( const Node &n ) const;
   662   virtual uint size_of() const; // Size is bigger
   663 public:
   664   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   665                   const TypePtr* adr_type)
   666     : CallNode(tf, addr, adr_type),
   667       _name(name)
   668   {
   669     init_class_id(Class_CallRuntime);
   670   }
   672   const char *_name;            // Printable name, if _method is NULL
   673   virtual int   Opcode() const;
   674   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   676 #ifndef PRODUCT
   677   virtual void  dump_spec(outputStream *st) const;
   678 #endif
   679 };
   681 //------------------------------CallLeafNode-----------------------------------
   682 // Make a direct subroutine call node into compiled C++ code, without
   683 // safepoints
   684 class CallLeafNode : public CallRuntimeNode {
   685 public:
   686   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   687                const TypePtr* adr_type)
   688     : CallRuntimeNode(tf, addr, name, adr_type)
   689   {
   690     init_class_id(Class_CallLeaf);
   691   }
   692   virtual int   Opcode() const;
   693   virtual bool        guaranteed_safepoint()  { return false; }
   694 #ifndef PRODUCT
   695   virtual void  dump_spec(outputStream *st) const;
   696 #endif
   697 };
   699 //------------------------------CallLeafNoFPNode-------------------------------
   700 // CallLeafNode, not using floating point or using it in the same manner as
   701 // the generated code
   702 class CallLeafNoFPNode : public CallLeafNode {
   703 public:
   704   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   705                    const TypePtr* adr_type)
   706     : CallLeafNode(tf, addr, name, adr_type)
   707   {
   708   }
   709   virtual int   Opcode() const;
   710 };
   713 //------------------------------Allocate---------------------------------------
   714 // High-level memory allocation
   715 //
   716 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   717 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   718 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   719 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   720 //  order to differentiate the uses of the projection on the normal control path from
   721 //  those on the exception return path.
   722 //
   723 class AllocateNode : public CallNode {
   724 public:
   725   enum {
   726     // Output:
   727     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   728     // Inputs:
   729     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   730     KlassNode,                        // type (maybe dynamic) of the obj.
   731     InitialTest,                      // slow-path test (may be constant)
   732     ALength,                          // array length (or TOP if none)
   733     ParmLimit
   734   };
   736   static const TypeFunc* alloc_type() {
   737     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   738     fields[AllocSize]   = TypeInt::POS;
   739     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   740     fields[InitialTest] = TypeInt::BOOL;
   741     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   743     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   745     // create result type (range)
   746     fields = TypeTuple::fields(1);
   747     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   749     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   751     return TypeFunc::make(domain, range);
   752   }
   754   bool _is_scalar_replaceable;  // Result of Escape Analysis
   756   virtual uint size_of() const; // Size is bigger
   757   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   758                Node *size, Node *klass_node, Node *initial_test);
   759   // Expansion modifies the JVMState, so we need to clone it
   760   virtual void  clone_jvms() {
   761     set_jvms(jvms()->clone_deep(Compile::current()));
   762   }
   763   virtual int Opcode() const;
   764   virtual uint ideal_reg() const { return Op_RegP; }
   765   virtual bool        guaranteed_safepoint()  { return false; }
   767   // allocations do not modify their arguments
   768   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
   770   // Pattern-match a possible usage of AllocateNode.
   771   // Return null if no allocation is recognized.
   772   // The operand is the pointer produced by the (possible) allocation.
   773   // It must be a projection of the Allocate or its subsequent CastPP.
   774   // (Note:  This function is defined in file graphKit.cpp, near
   775   // GraphKit::new_instance/new_array, whose output it recognizes.)
   776   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   777   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   779   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   780   // an offset, which is reported back to the caller.
   781   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   782   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   783                                         intptr_t& offset);
   785   // Dig the klass operand out of a (possible) allocation site.
   786   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   787     AllocateNode* allo = Ideal_allocation(ptr, phase);
   788     return (allo == NULL) ? NULL : allo->in(KlassNode);
   789   }
   791   // Conservatively small estimate of offset of first non-header byte.
   792   int minimum_header_size() {
   793     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   794                                 instanceOopDesc::base_offset_in_bytes();
   795   }
   797   // Return the corresponding initialization barrier (or null if none).
   798   // Walks out edges to find it...
   799   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   800   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   801   InitializeNode* initialization();
   803   // Return the corresponding storestore barrier (or null if none).
   804   // Walks out edges to find it...
   805   MemBarStoreStoreNode* storestore();
   807   // Convenience for initialization->maybe_set_complete(phase)
   808   bool maybe_set_complete(PhaseGVN* phase);
   809 };
   811 //------------------------------AllocateArray---------------------------------
   812 //
   813 // High-level array allocation
   814 //
   815 class AllocateArrayNode : public AllocateNode {
   816 public:
   817   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   818                     Node* size, Node* klass_node, Node* initial_test,
   819                     Node* count_val
   820                     )
   821     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   822                    initial_test)
   823   {
   824     init_class_id(Class_AllocateArray);
   825     set_req(AllocateNode::ALength,        count_val);
   826   }
   827   virtual int Opcode() const;
   828   virtual uint size_of() const; // Size is bigger
   829   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   831   // Dig the length operand out of a array allocation site.
   832   Node* Ideal_length() {
   833     return in(AllocateNode::ALength);
   834   }
   836   // Dig the length operand out of a array allocation site and narrow the
   837   // type with a CastII, if necesssary
   838   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   840   // Pattern-match a possible usage of AllocateArrayNode.
   841   // Return null if no allocation is recognized.
   842   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   843     AllocateNode* allo = Ideal_allocation(ptr, phase);
   844     return (allo == NULL || !allo->is_AllocateArray())
   845            ? NULL : allo->as_AllocateArray();
   846   }
   847 };
   849 //------------------------------AbstractLockNode-----------------------------------
   850 class AbstractLockNode: public CallNode {
   851 private:
   852   enum {
   853     Regular = 0,  // Normal lock
   854     NonEscObj,    // Lock is used for non escaping object
   855     Coarsened,    // Lock was coarsened
   856     Nested        // Nested lock
   857   } _kind;
   858 #ifndef PRODUCT
   859   NamedCounter* _counter;
   860 #endif
   862 protected:
   863   // helper functions for lock elimination
   864   //
   866   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   867                             GrowableArray<AbstractLockNode*> &lock_ops);
   868   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   869                                        GrowableArray<AbstractLockNode*> &lock_ops);
   870   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   871                                GrowableArray<AbstractLockNode*> &lock_ops);
   872   LockNode *find_matching_lock(UnlockNode* unlock);
   874   // Update the counter to indicate that this lock was eliminated.
   875   void set_eliminated_lock_counter() PRODUCT_RETURN;
   877 public:
   878   AbstractLockNode(const TypeFunc *tf)
   879     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   880       _kind(Regular)
   881   {
   882 #ifndef PRODUCT
   883     _counter = NULL;
   884 #endif
   885   }
   886   virtual int Opcode() const = 0;
   887   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   888   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   889   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   890   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
   892   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   894   virtual uint size_of() const { return sizeof(*this); }
   896   bool is_eliminated()  const { return (_kind != Regular); }
   897   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
   898   bool is_coarsened()   const { return (_kind == Coarsened); }
   899   bool is_nested()      const { return (_kind == Nested); }
   901   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
   902   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
   903   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
   905   // locking does not modify its arguments
   906   virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
   908 #ifndef PRODUCT
   909   void create_lock_counter(JVMState* s);
   910   NamedCounter* counter() const { return _counter; }
   911 #endif
   912 };
   914 //------------------------------Lock---------------------------------------
   915 // High-level lock operation
   916 //
   917 // This is a subclass of CallNode because it is a macro node which gets expanded
   918 // into a code sequence containing a call.  This node takes 3 "parameters":
   919 //    0  -  object to lock
   920 //    1 -   a BoxLockNode
   921 //    2 -   a FastLockNode
   922 //
   923 class LockNode : public AbstractLockNode {
   924 public:
   926   static const TypeFunc *lock_type() {
   927     // create input type (domain)
   928     const Type **fields = TypeTuple::fields(3);
   929     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   930     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   931     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   932     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   934     // create result type (range)
   935     fields = TypeTuple::fields(0);
   937     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   939     return TypeFunc::make(domain,range);
   940   }
   942   virtual int Opcode() const;
   943   virtual uint size_of() const; // Size is bigger
   944   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   945     init_class_id(Class_Lock);
   946     init_flags(Flag_is_macro);
   947     C->add_macro_node(this);
   948   }
   949   virtual bool        guaranteed_safepoint()  { return false; }
   951   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   952   // Expansion modifies the JVMState, so we need to clone it
   953   virtual void  clone_jvms() {
   954     set_jvms(jvms()->clone_deep(Compile::current()));
   955   }
   957   bool is_nested_lock_region(); // Is this Lock nested?
   958 };
   960 //------------------------------Unlock---------------------------------------
   961 // High-level unlock operation
   962 class UnlockNode : public AbstractLockNode {
   963 public:
   964   virtual int Opcode() const;
   965   virtual uint size_of() const; // Size is bigger
   966   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   967     init_class_id(Class_Unlock);
   968     init_flags(Flag_is_macro);
   969     C->add_macro_node(this);
   970   }
   971   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   972   // unlock is never a safepoint
   973   virtual bool        guaranteed_safepoint()  { return false; }
   974 };
   976 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial