src/share/vm/adlc/output_c.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4115
e626685e9f6c
child 4161
d336b3173277
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // output_c.cpp - Class CPP file output routines for architecture definition
    27 #include "adlc.hpp"
    29 // Utilities to characterize effect statements
    30 static bool is_def(int usedef) {
    31   switch(usedef) {
    32   case Component::DEF:
    33   case Component::USE_DEF: return true; break;
    34   }
    35   return false;
    36 }
    38 static bool is_use(int usedef) {
    39   switch(usedef) {
    40   case Component::USE:
    41   case Component::USE_DEF:
    42   case Component::USE_KILL: return true; break;
    43   }
    44   return false;
    45 }
    47 static bool is_kill(int usedef) {
    48   switch(usedef) {
    49   case Component::KILL:
    50   case Component::USE_KILL: return true; break;
    51   }
    52   return false;
    53 }
    55 // Define  an array containing the machine register names, strings.
    56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
    57   if (registers) {
    58     fprintf(fp,"\n");
    59     fprintf(fp,"// An array of character pointers to machine register names.\n");
    60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
    62     // Output the register name for each register in the allocation classes
    63     RegDef *reg_def = NULL;
    64     RegDef *next = NULL;
    65     registers->reset_RegDefs();
    66     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
    67       next = registers->iter_RegDefs();
    68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    69       fprintf(fp,"  \"%s\"%s\n",
    70                  reg_def->_regname, comma );
    71     }
    73     // Finish defining enumeration
    74     fprintf(fp,"};\n");
    76     fprintf(fp,"\n");
    77     fprintf(fp,"// An array of character pointers to machine register names.\n");
    78     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    79     reg_def = NULL;
    80     next = NULL;
    81     registers->reset_RegDefs();
    82     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
    83       next = registers->iter_RegDefs();
    84       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    85       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma );
    86     }
    87     // Finish defining array
    88     fprintf(fp,"\t};\n");
    89     fprintf(fp,"\n");
    91     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
    93   }
    94 }
    96 // Define an array containing the machine register encoding values
    97 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
    98   if (registers) {
    99     fprintf(fp,"\n");
   100     fprintf(fp,"// An array of the machine register encode values\n");
   101     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
   103     // Output the register encoding for each register in the allocation classes
   104     RegDef *reg_def = NULL;
   105     RegDef *next    = NULL;
   106     registers->reset_RegDefs();
   107     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
   108       next = registers->iter_RegDefs();
   109       const char* register_encode = reg_def->register_encode();
   110       const char *comma = (next != NULL) ? "," : " // no trailing comma";
   111       int encval;
   112       if (!ADLParser::is_int_token(register_encode, encval)) {
   113         fprintf(fp,"  %s%s  // %s\n",
   114                 register_encode, comma, reg_def->_regname );
   115       } else {
   116         // Output known constants in hex char format (backward compatibility).
   117         assert(encval < 256, "Exceeded supported width for register encoding");
   118         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n",
   119                 encval,          comma, reg_def->_regname );
   120       }
   121     }
   122     // Finish defining enumeration
   123     fprintf(fp,"};\n");
   125   } // Done defining array
   126 }
   128 // Output an enumeration of register class names
   129 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
   130   if (registers) {
   131     // Output an enumeration of register class names
   132     fprintf(fp,"\n");
   133     fprintf(fp,"// Enumeration of register class names\n");
   134     fprintf(fp, "enum machRegisterClass {\n");
   135     registers->_rclasses.reset();
   136     for( const char *class_name = NULL;
   137          (class_name = registers->_rclasses.iter()) != NULL; ) {
   138       fprintf(fp,"  %s,\n", toUpper( class_name ));
   139     }
   140     // Finish defining enumeration
   141     fprintf(fp, "  _last_Mach_Reg_Class\n");
   142     fprintf(fp, "};\n");
   143   }
   144 }
   146 // Declare an enumeration of user-defined register classes
   147 // and a list of register masks, one for each class.
   148 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
   149   const char  *rc_name;
   151   if( _register ) {
   152     // Build enumeration of user-defined register classes.
   153     defineRegClassEnum(fp_hpp, _register);
   155     // Generate a list of register masks, one for each class.
   156     fprintf(fp_hpp,"\n");
   157     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
   158     _register->_rclasses.reset();
   159     for( rc_name = NULL;
   160          (rc_name = _register->_rclasses.iter()) != NULL; ) {
   161       const char *prefix    = "";
   162       RegClass   *reg_class = _register->getRegClass(rc_name);
   163       assert( reg_class, "Using an undefined register class");
   165       if (reg_class->_user_defined == NULL) {
   166         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix, toUpper( rc_name ) );
   167         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, toUpper( rc_name ), prefix, toUpper( rc_name ));
   168       } else {
   169         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, toUpper( rc_name ), reg_class->_user_defined);
   170       }
   172       if( reg_class->_stack_or_reg ) {
   173         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
   174         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) );
   175         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, toUpper( rc_name ), prefix, toUpper( rc_name ) );
   176       }
   177     }
   178   }
   179 }
   181 // Generate an enumeration of user-defined register classes
   182 // and a list of register masks, one for each class.
   183 void ArchDesc::build_register_masks(FILE *fp_cpp) {
   184   const char  *rc_name;
   186   if( _register ) {
   187     // Generate a list of register masks, one for each class.
   188     fprintf(fp_cpp,"\n");
   189     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
   190     _register->_rclasses.reset();
   191     for( rc_name = NULL;
   192          (rc_name = _register->_rclasses.iter()) != NULL; ) {
   193       const char *prefix    = "";
   194       RegClass   *reg_class = _register->getRegClass(rc_name);
   195       assert( reg_class, "Using an undefined register class");
   197       if (reg_class->_user_defined != NULL) continue;
   199       int len = RegisterForm::RegMask_Size();
   200       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, toUpper( rc_name ) );
   201       { int i;
   202         for( i = 0; i < len-1; i++ )
   203           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false));
   204         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false));
   205       }
   207       if( reg_class->_stack_or_reg ) {
   208         int i;
   209         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) );
   210         for( i = 0; i < len-1; i++ )
   211           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true));
   212         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true));
   213       }
   214     }
   215   }
   216 }
   218 // Compute an index for an array in the pipeline_reads_NNN arrays
   219 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
   220 {
   221   int templen = 1;
   222   int paramcount = 0;
   223   const char *paramname;
   225   if (pipeclass->_parameters.count() == 0)
   226     return -1;
   228   pipeclass->_parameters.reset();
   229   paramname = pipeclass->_parameters.iter();
   230   const PipeClassOperandForm *pipeopnd =
   231     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   232   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   233     pipeclass->_parameters.reset();
   235   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   236     const PipeClassOperandForm *tmppipeopnd =
   237         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   239     if (tmppipeopnd)
   240       templen += 10 + (int)strlen(tmppipeopnd->_stage);
   241     else
   242       templen += 19;
   244     paramcount++;
   245   }
   247   // See if the count is zero
   248   if (paramcount == 0) {
   249     return -1;
   250   }
   252   char *operand_stages = new char [templen];
   253   operand_stages[0] = 0;
   254   int i = 0;
   255   templen = 0;
   257   pipeclass->_parameters.reset();
   258   paramname = pipeclass->_parameters.iter();
   259   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   260   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   261     pipeclass->_parameters.reset();
   263   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   264     const PipeClassOperandForm *tmppipeopnd =
   265         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   266     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
   267       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
   268       (++i < paramcount ? ',' : ' ') );
   269   }
   271   // See if the same string is in the table
   272   int ndx = pipeline_reads.index(operand_stages);
   274   // No, add it to the table
   275   if (ndx < 0) {
   276     pipeline_reads.addName(operand_stages);
   277     ndx = pipeline_reads.index(operand_stages);
   279     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
   280       ndx+1, paramcount, operand_stages);
   281   }
   282   else
   283     delete [] operand_stages;
   285   return (ndx);
   286 }
   288 // Compute an index for an array in the pipeline_res_stages_NNN arrays
   289 static int pipeline_res_stages_initializer(
   290   FILE *fp_cpp,
   291   PipelineForm *pipeline,
   292   NameList &pipeline_res_stages,
   293   PipeClassForm *pipeclass)
   294 {
   295   const PipeClassResourceForm *piperesource;
   296   int * res_stages = new int [pipeline->_rescount];
   297   int i;
   299   for (i = 0; i < pipeline->_rescount; i++)
   300      res_stages[i] = 0;
   302   for (pipeclass->_resUsage.reset();
   303        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   304     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   305     for (i = 0; i < pipeline->_rescount; i++)
   306       if ((1 << i) & used_mask) {
   307         int stage = pipeline->_stages.index(piperesource->_stage);
   308         if (res_stages[i] < stage+1)
   309           res_stages[i] = stage+1;
   310       }
   311   }
   313   // Compute the length needed for the resource list
   314   int commentlen = 0;
   315   int max_stage = 0;
   316   for (i = 0; i < pipeline->_rescount; i++) {
   317     if (res_stages[i] == 0) {
   318       if (max_stage < 9)
   319         max_stage = 9;
   320     }
   321     else {
   322       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
   323       if (max_stage < stagelen)
   324         max_stage = stagelen;
   325     }
   327     commentlen += (int)strlen(pipeline->_reslist.name(i));
   328   }
   330   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
   332   // Allocate space for the resource list
   333   char * resource_stages = new char [templen];
   335   templen = 0;
   336   for (i = 0; i < pipeline->_rescount; i++) {
   337     const char * const resname =
   338       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
   340     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
   341       resname, max_stage - (int)strlen(resname) + 1,
   342       (i < pipeline->_rescount-1) ? "," : "",
   343       pipeline->_reslist.name(i));
   344   }
   346   // See if the same string is in the table
   347   int ndx = pipeline_res_stages.index(resource_stages);
   349   // No, add it to the table
   350   if (ndx < 0) {
   351     pipeline_res_stages.addName(resource_stages);
   352     ndx = pipeline_res_stages.index(resource_stages);
   354     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
   355       ndx+1, pipeline->_rescount, resource_stages);
   356   }
   357   else
   358     delete [] resource_stages;
   360   delete [] res_stages;
   362   return (ndx);
   363 }
   365 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
   366 static int pipeline_res_cycles_initializer(
   367   FILE *fp_cpp,
   368   PipelineForm *pipeline,
   369   NameList &pipeline_res_cycles,
   370   PipeClassForm *pipeclass)
   371 {
   372   const PipeClassResourceForm *piperesource;
   373   int * res_cycles = new int [pipeline->_rescount];
   374   int i;
   376   for (i = 0; i < pipeline->_rescount; i++)
   377      res_cycles[i] = 0;
   379   for (pipeclass->_resUsage.reset();
   380        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   381     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   382     for (i = 0; i < pipeline->_rescount; i++)
   383       if ((1 << i) & used_mask) {
   384         int cycles = piperesource->_cycles;
   385         if (res_cycles[i] < cycles)
   386           res_cycles[i] = cycles;
   387       }
   388   }
   390   // Pre-compute the string length
   391   int templen;
   392   int cyclelen = 0, commentlen = 0;
   393   int max_cycles = 0;
   394   char temp[32];
   396   for (i = 0; i < pipeline->_rescount; i++) {
   397     if (max_cycles < res_cycles[i])
   398       max_cycles = res_cycles[i];
   399     templen = sprintf(temp, "%d", res_cycles[i]);
   400     if (cyclelen < templen)
   401       cyclelen = templen;
   402     commentlen += (int)strlen(pipeline->_reslist.name(i));
   403   }
   405   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
   407   // Allocate space for the resource list
   408   char * resource_cycles = new char [templen];
   410   templen = 0;
   412   for (i = 0; i < pipeline->_rescount; i++) {
   413     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
   414       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
   415   }
   417   // See if the same string is in the table
   418   int ndx = pipeline_res_cycles.index(resource_cycles);
   420   // No, add it to the table
   421   if (ndx < 0) {
   422     pipeline_res_cycles.addName(resource_cycles);
   423     ndx = pipeline_res_cycles.index(resource_cycles);
   425     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
   426       ndx+1, pipeline->_rescount, resource_cycles);
   427   }
   428   else
   429     delete [] resource_cycles;
   431   delete [] res_cycles;
   433   return (ndx);
   434 }
   436 //typedef unsigned long long uint64_t;
   438 // Compute an index for an array in the pipeline_res_mask_NNN arrays
   439 static int pipeline_res_mask_initializer(
   440   FILE *fp_cpp,
   441   PipelineForm *pipeline,
   442   NameList &pipeline_res_mask,
   443   NameList &pipeline_res_args,
   444   PipeClassForm *pipeclass)
   445 {
   446   const PipeClassResourceForm *piperesource;
   447   const uint rescount      = pipeline->_rescount;
   448   const uint maxcycleused  = pipeline->_maxcycleused;
   449   const uint cyclemasksize = (maxcycleused + 31) >> 5;
   451   int i, j;
   452   int element_count = 0;
   453   uint *res_mask = new uint [cyclemasksize];
   454   uint resources_used             = 0;
   455   uint resources_used_exclusively = 0;
   457   for (pipeclass->_resUsage.reset();
   458        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; )
   459     element_count++;
   461   // Pre-compute the string length
   462   int templen;
   463   int commentlen = 0;
   464   int max_cycles = 0;
   466   int cyclelen = ((maxcycleused + 3) >> 2);
   467   int masklen = (rescount + 3) >> 2;
   469   int cycledigit = 0;
   470   for (i = maxcycleused; i > 0; i /= 10)
   471     cycledigit++;
   473   int maskdigit = 0;
   474   for (i = rescount; i > 0; i /= 10)
   475     maskdigit++;
   477   static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
   478   static const char * pipeline_use_element    = "Pipeline_Use_Element";
   480   templen = 1 +
   481     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
   482      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
   484   // Allocate space for the resource list
   485   char * resource_mask = new char [templen];
   486   char * last_comma = NULL;
   488   templen = 0;
   490   for (pipeclass->_resUsage.reset();
   491        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   492     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   494     if (!used_mask)
   495       fprintf(stderr, "*** used_mask is 0 ***\n");
   497     resources_used |= used_mask;
   499     uint lb, ub;
   501     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
   502     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
   504     if (lb == ub)
   505       resources_used_exclusively |= used_mask;
   507     int formatlen =
   508       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
   509         pipeline_use_element,
   510         masklen, used_mask,
   511         cycledigit, lb, cycledigit, ub,
   512         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
   513         pipeline_use_cycle_mask);
   515     templen += formatlen;
   517     memset(res_mask, 0, cyclemasksize * sizeof(uint));
   519     int cycles = piperesource->_cycles;
   520     uint stage          = pipeline->_stages.index(piperesource->_stage);
   521     uint upper_limit    = stage+cycles-1;
   522     uint lower_limit    = stage-1;
   523     uint upper_idx      = upper_limit >> 5;
   524     uint lower_idx      = lower_limit >> 5;
   525     uint upper_position = upper_limit & 0x1f;
   526     uint lower_position = lower_limit & 0x1f;
   528     uint mask = (((uint)1) << upper_position) - 1;
   530     while ( upper_idx > lower_idx ) {
   531       res_mask[upper_idx--] |= mask;
   532       mask = (uint)-1;
   533     }
   535     mask -= (((uint)1) << lower_position) - 1;
   536     res_mask[upper_idx] |= mask;
   538     for (j = cyclemasksize-1; j >= 0; j--) {
   539       formatlen =
   540         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
   541       templen += formatlen;
   542     }
   544     resource_mask[templen++] = ')';
   545     resource_mask[templen++] = ')';
   546     last_comma = &resource_mask[templen];
   547     resource_mask[templen++] = ',';
   548     resource_mask[templen++] = '\n';
   549   }
   551   resource_mask[templen] = 0;
   552   if (last_comma)
   553     last_comma[0] = ' ';
   555   // See if the same string is in the table
   556   int ndx = pipeline_res_mask.index(resource_mask);
   558   // No, add it to the table
   559   if (ndx < 0) {
   560     pipeline_res_mask.addName(resource_mask);
   561     ndx = pipeline_res_mask.index(resource_mask);
   563     if (strlen(resource_mask) > 0)
   564       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
   565         ndx+1, element_count, resource_mask);
   567     char * args = new char [9 + 2*masklen + maskdigit];
   569     sprintf(args, "0x%0*x, 0x%0*x, %*d",
   570       masklen, resources_used,
   571       masklen, resources_used_exclusively,
   572       maskdigit, element_count);
   574     pipeline_res_args.addName(args);
   575   }
   576   else
   577     delete [] resource_mask;
   579   delete [] res_mask;
   580 //delete [] res_masks;
   582   return (ndx);
   583 }
   585 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
   586   const char *classname;
   587   const char *resourcename;
   588   int resourcenamelen = 0;
   589   NameList pipeline_reads;
   590   NameList pipeline_res_stages;
   591   NameList pipeline_res_cycles;
   592   NameList pipeline_res_masks;
   593   NameList pipeline_res_args;
   594   const int default_latency = 1;
   595   const int non_operand_latency = 0;
   596   const int node_latency = 0;
   598   if (!_pipeline) {
   599     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
   600     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   601     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
   602     fprintf(fp_cpp, "}\n");
   603     return;
   604   }
   606   fprintf(fp_cpp, "\n");
   607   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
   608   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   609   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
   610   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
   611   fprintf(fp_cpp, "    \"undefined\"");
   613   for (int s = 0; s < _pipeline->_stagecnt; s++)
   614     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
   616   fprintf(fp_cpp, "\n  };\n\n");
   617   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
   618     _pipeline->_stagecnt);
   619   fprintf(fp_cpp, "}\n");
   620   fprintf(fp_cpp, "#endif\n\n");
   622   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
   623   fprintf(fp_cpp, "  // See if the functional units overlap\n");
   624 #if 0
   625   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   626   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   627   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
   628   fprintf(fp_cpp, "  }\n");
   629   fprintf(fp_cpp, "#endif\n\n");
   630 #endif
   631   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
   632   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
   633 #if 0
   634   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   635   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   636   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
   637   fprintf(fp_cpp, "  }\n");
   638   fprintf(fp_cpp, "#endif\n\n");
   639 #endif
   640   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
   641   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
   642   fprintf(fp_cpp, "    if (predUse->multiple())\n");
   643   fprintf(fp_cpp, "      continue;\n\n");
   644   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
   645   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
   646   fprintf(fp_cpp, "      if (currUse->multiple())\n");
   647   fprintf(fp_cpp, "        continue;\n\n");
   648   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
   649   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
   650   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
   651   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
   652   fprintf(fp_cpp, "          y <<= 1;\n");
   653   fprintf(fp_cpp, "      }\n");
   654   fprintf(fp_cpp, "    }\n");
   655   fprintf(fp_cpp, "  }\n\n");
   656   fprintf(fp_cpp, "  // There is the potential for overlap\n");
   657   fprintf(fp_cpp, "  return (start);\n");
   658   fprintf(fp_cpp, "}\n\n");
   659   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
   660   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
   661   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
   662   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
   663   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   664   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   665   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   666   fprintf(fp_cpp, "      uint min_delay = %d;\n",
   667     _pipeline->_maxcycleused+1);
   668   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   669   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   670   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   671   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
   672   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   673   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   674   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   675   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
   676   fprintf(fp_cpp, "            y <<= 1;\n");
   677   fprintf(fp_cpp, "        }\n");
   678   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
   679   fprintf(fp_cpp, "      }\n");
   680   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
   681   fprintf(fp_cpp, "    }\n");
   682   fprintf(fp_cpp, "    else {\n");
   683   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   684   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   685   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   686   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   687   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   688   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
   689   fprintf(fp_cpp, "            y <<= 1;\n");
   690   fprintf(fp_cpp, "        }\n");
   691   fprintf(fp_cpp, "      }\n");
   692   fprintf(fp_cpp, "    }\n");
   693   fprintf(fp_cpp, "  }\n\n");
   694   fprintf(fp_cpp, "  return (delay);\n");
   695   fprintf(fp_cpp, "}\n\n");
   696   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
   697   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   698   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   699   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   700   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   701   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   702   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   703   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
   704   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
   705   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
   706   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
   707   fprintf(fp_cpp, "          break;\n");
   708   fprintf(fp_cpp, "        }\n");
   709   fprintf(fp_cpp, "      }\n");
   710   fprintf(fp_cpp, "    }\n");
   711   fprintf(fp_cpp, "    else {\n");
   712   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   713   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   714   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
   715   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
   716   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
   717   fprintf(fp_cpp, "      }\n");
   718   fprintf(fp_cpp, "    }\n");
   719   fprintf(fp_cpp, "  }\n");
   720   fprintf(fp_cpp, "}\n\n");
   722   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
   723   fprintf(fp_cpp, "  int const default_latency = 1;\n");
   724   fprintf(fp_cpp, "\n");
   725 #if 0
   726   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   727   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   728   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
   729   fprintf(fp_cpp, "  }\n");
   730   fprintf(fp_cpp, "#endif\n\n");
   731 #endif
   732   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
   733   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
   734   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
   735   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
   736   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
   737   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
   738   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
   739 #if 0
   740   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   741   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   742   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
   743   fprintf(fp_cpp, "  }\n");
   744   fprintf(fp_cpp, "#endif\n\n");
   745 #endif
   746   fprintf(fp_cpp, "\n");
   747   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
   748   fprintf(fp_cpp, "    return (default_latency);\n");
   749   fprintf(fp_cpp, "\n");
   750   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
   751   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
   752 #if 0
   753   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   754   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   755   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
   756   fprintf(fp_cpp, "  }\n");
   757   fprintf(fp_cpp, "#endif\n\n");
   758 #endif
   759   fprintf(fp_cpp, "  return (delta);\n");
   760   fprintf(fp_cpp, "}\n\n");
   762   if (!_pipeline)
   763     /* Do Nothing */;
   765   else if (_pipeline->_maxcycleused <=
   766 #ifdef SPARC
   767     64
   768 #else
   769     32
   770 #endif
   771       ) {
   772     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   773     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
   774     fprintf(fp_cpp, "}\n\n");
   775     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   776     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
   777     fprintf(fp_cpp, "}\n\n");
   778   }
   779   else {
   780     uint l;
   781     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   782     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   783     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   784     for (l = 1; l <= masklen; l++)
   785       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
   786     fprintf(fp_cpp, ");\n");
   787     fprintf(fp_cpp, "}\n\n");
   788     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   789     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   790     for (l = 1; l <= masklen; l++)
   791       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
   792     fprintf(fp_cpp, ");\n");
   793     fprintf(fp_cpp, "}\n\n");
   794     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
   795     for (l = 1; l <= masklen; l++)
   796       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
   797     fprintf(fp_cpp, "\n}\n\n");
   798   }
   800   /* Get the length of all the resource names */
   801   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
   802        (resourcename = _pipeline->_reslist.iter()) != NULL;
   803        resourcenamelen += (int)strlen(resourcename));
   805   // Create the pipeline class description
   807   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   808   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   810   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
   811   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
   812     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
   813     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   814     for (int i2 = masklen-1; i2 >= 0; i2--)
   815       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
   816     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
   817   }
   818   fprintf(fp_cpp, "};\n\n");
   820   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
   821     _pipeline->_rescount);
   823   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
   824     fprintf(fp_cpp, "\n");
   825     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
   826     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
   827     int maxWriteStage = -1;
   828     int maxMoreInstrs = 0;
   829     int paramcount = 0;
   830     int i = 0;
   831     const char *paramname;
   832     int resource_count = (_pipeline->_rescount + 3) >> 2;
   834     // Scan the operands, looking for last output stage and number of inputs
   835     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
   836       const PipeClassOperandForm *pipeopnd =
   837           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   838       if (pipeopnd) {
   839         if (pipeopnd->_iswrite) {
   840            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
   841            int moreinsts = pipeopnd->_more_instrs;
   842           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
   843             maxWriteStage = stagenum;
   844             maxMoreInstrs = moreinsts;
   845           }
   846         }
   847       }
   849       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
   850         paramcount++;
   851     }
   853     // Create the list of stages for the operands that are read
   854     // Note that we will build a NameList to reduce the number of copies
   856     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
   858     int pipeline_res_stages_index = pipeline_res_stages_initializer(
   859       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
   861     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
   862       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
   864     int pipeline_res_mask_index = pipeline_res_mask_initializer(
   865       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
   867 #if 0
   868     // Process the Resources
   869     const PipeClassResourceForm *piperesource;
   871     unsigned resources_used = 0;
   872     unsigned exclusive_resources_used = 0;
   873     unsigned resource_groups = 0;
   874     for (pipeclass->_resUsage.reset();
   875          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   876       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   877       if (used_mask)
   878         resource_groups++;
   879       resources_used |= used_mask;
   880       if ((used_mask & (used_mask-1)) == 0)
   881         exclusive_resources_used |= used_mask;
   882     }
   884     if (resource_groups > 0) {
   885       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
   886         pipeclass->_num, resource_groups);
   887       for (pipeclass->_resUsage.reset(), i = 1;
   888            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
   889            i++ ) {
   890         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   891         if (used_mask) {
   892           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
   893         }
   894       }
   895       fprintf(fp_cpp, "};\n\n");
   896     }
   897 #endif
   899     // Create the pipeline class description
   900     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
   901       pipeclass->_num);
   902     if (maxWriteStage < 0)
   903       fprintf(fp_cpp, "(uint)stage_undefined");
   904     else if (maxMoreInstrs == 0)
   905       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
   906     else
   907       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
   908     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
   909       paramcount,
   910       pipeclass->hasFixedLatency() ? "true" : "false",
   911       pipeclass->fixedLatency(),
   912       pipeclass->InstructionCount(),
   913       pipeclass->hasBranchDelay() ? "true" : "false",
   914       pipeclass->hasMultipleBundles() ? "true" : "false",
   915       pipeclass->forceSerialization() ? "true" : "false",
   916       pipeclass->mayHaveNoCode() ? "true" : "false" );
   917     if (paramcount > 0) {
   918       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
   919         pipeline_reads_index+1);
   920     }
   921     else
   922       fprintf(fp_cpp, " NULL,");
   923     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
   924       pipeline_res_stages_index+1);
   925     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
   926       pipeline_res_cycles_index+1);
   927     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
   928       pipeline_res_args.name(pipeline_res_mask_index));
   929     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
   930       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
   931         pipeline_res_mask_index+1);
   932     else
   933       fprintf(fp_cpp, "NULL");
   934     fprintf(fp_cpp, "));\n");
   935   }
   937   // Generate the Node::latency method if _pipeline defined
   938   fprintf(fp_cpp, "\n");
   939   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
   940   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
   941   if (_pipeline) {
   942 #if 0
   943     fprintf(fp_cpp, "#ifndef PRODUCT\n");
   944     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
   945     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
   946     fprintf(fp_cpp, " }\n");
   947     fprintf(fp_cpp, "#endif\n");
   948 #endif
   949     fprintf(fp_cpp, "  uint j;\n");
   950     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
   951     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
   952     fprintf(fp_cpp, "  // verify input is not null\n");
   953     fprintf(fp_cpp, "  Node *pred = in(i);\n");
   954     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
   955       non_operand_latency);
   956     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
   957     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
   958     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
   959     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
   960     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
   961     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
   962     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
   963     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
   964       node_latency);
   965     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
   966     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
   967     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
   968       non_operand_latency);
   969     fprintf(fp_cpp, "  // determine which operand this is in\n");
   970     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
   971     fprintf(fp_cpp, "  int delta = %d;\n\n",
   972       non_operand_latency);
   973     fprintf(fp_cpp, "  uint k;\n");
   974     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
   975     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
   976     fprintf(fp_cpp, "    if (i < j)\n");
   977     fprintf(fp_cpp, "      break;\n");
   978     fprintf(fp_cpp, "  }\n");
   979     fprintf(fp_cpp, "  if (k < n)\n");
   980     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
   981     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
   982   }
   983   else {
   984     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   985     fprintf(fp_cpp, "  return %d;\n",
   986       non_operand_latency);
   987   }
   988   fprintf(fp_cpp, "}\n\n");
   990   // Output the list of nop nodes
   991   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
   992   const char *nop;
   993   int nopcnt = 0;
   994   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
   996   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
   997   int i = 0;
   998   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
   999     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
  1001   fprintf(fp_cpp, "};\n\n");
  1002   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  1003   fprintf(fp_cpp, "void Bundle::dump() const {\n");
  1004   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
  1005   fprintf(fp_cpp, "    \"\",\n");
  1006   fprintf(fp_cpp, "    \"use nop delay\",\n");
  1007   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
  1008   fprintf(fp_cpp, "    \"use conditional delay\",\n");
  1009   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
  1010   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
  1011   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
  1012   fprintf(fp_cpp, "  };\n\n");
  1014   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
  1015   for (i = 0; i < _pipeline->_rescount; i++)
  1016     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
  1017   fprintf(fp_cpp, "};\n\n");
  1019   // See if the same string is in the table
  1020   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
  1021   fprintf(fp_cpp, "  if (_flags) {\n");
  1022   fprintf(fp_cpp, "    tty->print(\"%%s\", bundle_flags[_flags]);\n");
  1023   fprintf(fp_cpp, "    needs_comma = true;\n");
  1024   fprintf(fp_cpp, "  };\n");
  1025   fprintf(fp_cpp, "  if (instr_count()) {\n");
  1026   fprintf(fp_cpp, "    tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  1027   fprintf(fp_cpp, "    needs_comma = true;\n");
  1028   fprintf(fp_cpp, "  };\n");
  1029   fprintf(fp_cpp, "  uint r = resources_used();\n");
  1030   fprintf(fp_cpp, "  if (r) {\n");
  1031   fprintf(fp_cpp, "    tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  1032   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  1033   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  1034   fprintf(fp_cpp, "        tty->print(\" %%s\", resource_names[i]);\n");
  1035   fprintf(fp_cpp, "    needs_comma = true;\n");
  1036   fprintf(fp_cpp, "  };\n");
  1037   fprintf(fp_cpp, "  tty->print(\"\\n\");\n");
  1038   fprintf(fp_cpp, "}\n");
  1039   fprintf(fp_cpp, "#endif\n");
  1042 // ---------------------------------------------------------------------------
  1043 //------------------------------Utilities to build Instruction Classes--------
  1044 // ---------------------------------------------------------------------------
  1046 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  1047   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
  1048           node, regMask);
  1051 // Scan the peepmatch and output a test for each instruction
  1052 static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1053   int         parent        = -1;
  1054   int         inst_position = 0;
  1055   const char* inst_name     = NULL;
  1056   int         input         = 0;
  1057   fprintf(fp, "      // Check instruction sub-tree\n");
  1058   pmatch->reset();
  1059   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1060        inst_name != NULL;
  1061        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1062     // If this is not a placeholder
  1063     if( ! pmatch->is_placeholder() ) {
  1064       // Define temporaries 'inst#', based on parent and parent's input index
  1065       if( parent != -1 ) {                // root was initialized
  1066         fprintf(fp, "  inst%d = inst%d->in(%d);\n",
  1067                 inst_position, parent, input);
  1070       // When not the root
  1071       // Test we have the correct instruction by comparing the rule
  1072       if( parent != -1 ) {
  1073         fprintf(fp, "  matches = matches &&  ( inst%d->rule() == %s_rule );",
  1074                 inst_position, inst_name);
  1076     } else {
  1077       // Check that user did not try to constrain a placeholder
  1078       assert( ! pconstraint->constrains_instruction(inst_position),
  1079               "fatal(): Can not constrain a placeholder instruction");
  1084 static void print_block_index(FILE *fp, int inst_position) {
  1085   assert( inst_position >= 0, "Instruction number less than zero");
  1086   fprintf(fp, "block_index");
  1087   if( inst_position != 0 ) {
  1088     fprintf(fp, " - %d", inst_position);
  1092 // Scan the peepmatch and output a test for each instruction
  1093 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1094   int         parent        = -1;
  1095   int         inst_position = 0;
  1096   const char* inst_name     = NULL;
  1097   int         input         = 0;
  1098   fprintf(fp, "  // Check instruction sub-tree\n");
  1099   pmatch->reset();
  1100   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1101        inst_name != NULL;
  1102        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1103     // If this is not a placeholder
  1104     if( ! pmatch->is_placeholder() ) {
  1105       // Define temporaries 'inst#', based on parent and parent's input index
  1106       if( parent != -1 ) {                // root was initialized
  1107         fprintf(fp, "  // Identify previous instruction if inside this block\n");
  1108         fprintf(fp, "  if( ");
  1109         print_block_index(fp, inst_position);
  1110         fprintf(fp, " > 0 ) {\n    Node *n = block->_nodes.at(");
  1111         print_block_index(fp, inst_position);
  1112         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
  1113         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
  1116       // When not the root
  1117       // Test we have the correct instruction by comparing the rule.
  1118       if( parent != -1 ) {
  1119         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
  1120                 inst_position, inst_position, inst_name);
  1122     } else {
  1123       // Check that user did not try to constrain a placeholder
  1124       assert( ! pconstraint->constrains_instruction(inst_position),
  1125               "fatal(): Can not constrain a placeholder instruction");
  1130 // Build mapping for register indices, num_edges to input
  1131 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  1132   int         parent        = -1;
  1133   int         inst_position = 0;
  1134   const char* inst_name     = NULL;
  1135   int         input         = 0;
  1136   fprintf(fp, "      // Build map to register info\n");
  1137   pmatch->reset();
  1138   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1139        inst_name != NULL;
  1140        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1141     // If this is not a placeholder
  1142     if( ! pmatch->is_placeholder() ) {
  1143       // Define temporaries 'inst#', based on self's inst_position
  1144       InstructForm *inst = globals[inst_name]->is_instruction();
  1145       if( inst != NULL ) {
  1146         char inst_prefix[]  = "instXXXX_";
  1147         sprintf(inst_prefix, "inst%d_",   inst_position);
  1148         char receiver[]     = "instXXXX->";
  1149         sprintf(receiver,    "inst%d->", inst_position);
  1150         inst->index_temps( fp, globals, inst_prefix, receiver );
  1156 // Generate tests for the constraints
  1157 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1158   fprintf(fp, "\n");
  1159   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
  1161   // Build mapping from num_edges to local variables
  1162   build_instruction_index_mapping( fp, globals, pmatch );
  1164   // Build constraint tests
  1165   if( pconstraint != NULL ) {
  1166     fprintf(fp, "      matches = matches &&");
  1167     bool   first_constraint = true;
  1168     while( pconstraint != NULL ) {
  1169       // indentation and connecting '&&'
  1170       const char *indentation = "      ";
  1171       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
  1173       // Only have '==' relation implemented
  1174       if( strcmp(pconstraint->_relation,"==") != 0 ) {
  1175         assert( false, "Unimplemented()" );
  1178       // LEFT
  1179       int left_index       = pconstraint->_left_inst;
  1180       const char *left_op  = pconstraint->_left_op;
  1181       // Access info on the instructions whose operands are compared
  1182       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
  1183       assert( inst_left, "Parser should guaranty this is an instruction");
  1184       int left_op_base  = inst_left->oper_input_base(globals);
  1185       // Access info on the operands being compared
  1186       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
  1187       if( left_op_index == -1 ) {
  1188         left_op_index = inst_left->operand_position(left_op, Component::DEF);
  1189         if( left_op_index == -1 ) {
  1190           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
  1193       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
  1194       ComponentList components_left = inst_left->_components;
  1195       const char *left_comp_type = components_left.at(left_op_index)->_type;
  1196       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
  1197       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
  1200       // RIGHT
  1201       int right_op_index = -1;
  1202       int right_index      = pconstraint->_right_inst;
  1203       const char *right_op = pconstraint->_right_op;
  1204       if( right_index != -1 ) { // Match operand
  1205         // Access info on the instructions whose operands are compared
  1206         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
  1207         assert( inst_right, "Parser should guaranty this is an instruction");
  1208         int right_op_base = inst_right->oper_input_base(globals);
  1209         // Access info on the operands being compared
  1210         right_op_index = inst_right->operand_position(right_op, Component::USE);
  1211         if( right_op_index == -1 ) {
  1212           right_op_index = inst_right->operand_position(right_op, Component::DEF);
  1213           if( right_op_index == -1 ) {
  1214             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
  1217         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1218         ComponentList components_right = inst_right->_components;
  1219         const char *right_comp_type = components_right.at(right_op_index)->_type;
  1220         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1221         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
  1222         assert( right_interface_type == left_interface_type, "Both must be same interface");
  1224       } else {                  // Else match register
  1225         // assert( false, "should be a register" );
  1228       //
  1229       // Check for equivalence
  1230       //
  1231       // fprintf(fp, "phase->eqv( ");
  1232       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
  1233       //         left_index,  left_op_base,  left_op_index,  left_op,
  1234       //         right_index, right_op_base, right_op_index, right_op );
  1235       // fprintf(fp, ")");
  1236       //
  1237       switch( left_interface_type ) {
  1238       case Form::register_interface: {
  1239         // Check that they are allocated to the same register
  1240         // Need parameter for index position if not result operand
  1241         char left_reg_index[] = ",instXXXX_idxXXXX";
  1242         if( left_op_index != 0 ) {
  1243           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
  1244           // Must have index into operands
  1245           sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index);
  1246         } else {
  1247           strcpy(left_reg_index, "");
  1249         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
  1250                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
  1251         fprintf(fp, " == ");
  1253         if( right_index != -1 ) {
  1254           char right_reg_index[18] = ",instXXXX_idxXXXX";
  1255           if( right_op_index != 0 ) {
  1256             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
  1257             // Must have index into operands
  1258             sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index);
  1259           } else {
  1260             strcpy(right_reg_index, "");
  1262           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
  1263                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
  1264         } else {
  1265           fprintf(fp, "%s_enc", right_op );
  1267         fprintf(fp,")");
  1268         break;
  1270       case Form::constant_interface: {
  1271         // Compare the '->constant()' values
  1272         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
  1273                 left_index,  left_op_index,  left_index, left_op );
  1274         fprintf(fp, " == ");
  1275         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
  1276                 right_index, right_op, right_index, right_op_index );
  1277         break;
  1279       case Form::memory_interface: {
  1280         // Compare 'base', 'index', 'scale', and 'disp'
  1281         // base
  1282         fprintf(fp, "( \n");
  1283         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
  1284           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1285         fprintf(fp, " == ");
  1286         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
  1287                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1288         // index
  1289         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
  1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1291         fprintf(fp, " == ");
  1292         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
  1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1294         // scale
  1295         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
  1296                 left_index,  left_op_index,  left_index, left_op );
  1297         fprintf(fp, " == ");
  1298         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
  1299                 right_index, right_op, right_index, right_op_index );
  1300         // disp
  1301         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
  1302                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1303         fprintf(fp, " == ");
  1304         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
  1305                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1306         fprintf(fp, ") \n");
  1307         break;
  1309       case Form::conditional_interface: {
  1310         // Compare the condition code being tested
  1311         assert( false, "Unimplemented()" );
  1312         break;
  1314       default: {
  1315         assert( false, "ShouldNotReachHere()" );
  1316         break;
  1320       // Advance to next constraint
  1321       pconstraint = pconstraint->next();
  1322       first_constraint = false;
  1325     fprintf(fp, ";\n");
  1329 // // EXPERIMENTAL -- TEMPORARY code
  1330 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
  1331 //   int op_index = instr->operand_position(op_name, Component::USE);
  1332 //   if( op_index == -1 ) {
  1333 //     op_index = instr->operand_position(op_name, Component::DEF);
  1334 //     if( op_index == -1 ) {
  1335 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
  1336 //     }
  1337 //   }
  1338 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1339 //
  1340 //   ComponentList components_right = instr->_components;
  1341 //   char *right_comp_type = components_right.at(op_index)->_type;
  1342 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1343 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
  1344 //
  1345 //   return;
  1346 // }
  1348 // Construct the new sub-tree
  1349 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  1350   fprintf(fp, "      // IF instructions and constraints matched\n");
  1351   fprintf(fp, "      if( matches ) {\n");
  1352   fprintf(fp, "        // generate the new sub-tree\n");
  1353   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  1354   if( preplace != NULL ) {
  1355     // Get the root of the new sub-tree
  1356     const char *root_inst = NULL;
  1357     preplace->next_instruction(root_inst);
  1358     InstructForm *root_form = globals[root_inst]->is_instruction();
  1359     assert( root_form != NULL, "Replacement instruction was not previously defined");
  1360     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
  1362     int         inst_num;
  1363     const char *op_name;
  1364     int         opnds_index = 0;            // define result operand
  1365     // Then install the use-operands for the new sub-tree
  1366     // preplace->reset();             // reset breaks iteration
  1367     for( preplace->next_operand( inst_num, op_name );
  1368          op_name != NULL;
  1369          preplace->next_operand( inst_num, op_name ) ) {
  1370       InstructForm *inst_form;
  1371       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
  1372       assert( inst_form, "Parser should guaranty this is an instruction");
  1373       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
  1374       if( inst_op_num == NameList::Not_in_list )
  1375         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
  1376       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
  1377       // find the name of the OperandForm from the local name
  1378       const Form *form   = inst_form->_localNames[op_name];
  1379       OperandForm  *op_form = form->is_operand();
  1380       if( opnds_index == 0 ) {
  1381         // Initial setup of new instruction
  1382         fprintf(fp, "        // ----- Initial setup -----\n");
  1383         //
  1384         // Add control edge for this node
  1385         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
  1386         // Add unmatched edges from root of match tree
  1387         int op_base = root_form->oper_input_base(globals);
  1388         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
  1389           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
  1390                                           inst_num, unmatched_edge);
  1392         // If new instruction captures bottom type
  1393         if( root_form->captures_bottom_type(globals) ) {
  1394           // Get bottom type from instruction whose result we are replacing
  1395           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
  1397         // Define result register and result operand
  1398         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
  1399         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
  1400         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
  1401         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
  1402         fprintf(fp, "        // ----- Done with initial setup -----\n");
  1403       } else {
  1404         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
  1405           // Do not have ideal edges for constants after matching
  1406           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
  1407                   inst_op_num, inst_num, inst_op_num,
  1408                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
  1409           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
  1410                   inst_num, inst_op_num );
  1411         } else {
  1412           fprintf(fp, "        // no ideal edge for constants after matching\n");
  1414         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
  1415                 opnds_index, inst_num, inst_op_num );
  1417       ++opnds_index;
  1419   }else {
  1420     // Replacing subtree with empty-tree
  1421     assert( false, "ShouldNotReachHere();");
  1424   // Return the new sub-tree
  1425   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  1426   fprintf(fp, "        return root;  // return new root;\n");
  1427   fprintf(fp, "      }\n");
  1431 // Define the Peephole method for an instruction node
  1432 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  1433   // Generate Peephole function header
  1434   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  1435   fprintf(fp, "  bool  matches = true;\n");
  1437   // Identify the maximum instruction position,
  1438   // generate temporaries that hold current instruction
  1439   //
  1440   //   MachNode  *inst0 = NULL;
  1441   //   ...
  1442   //   MachNode  *instMAX = NULL;
  1443   //
  1444   int max_position = 0;
  1445   Peephole *peep;
  1446   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1447     PeepMatch *pmatch = peep->match();
  1448     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
  1449     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  1451   for( int i = 0; i <= max_position; ++i ) {
  1452     if( i == 0 ) {
  1453       fprintf(fp, "  MachNode *inst0 = this;\n");
  1454     } else {
  1455       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
  1459   // For each peephole rule in architecture description
  1460   //   Construct a test for the desired instruction sub-tree
  1461   //   then check the constraints
  1462   //   If these match, Generate the new subtree
  1463   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1464     int         peephole_number = peep->peephole_number();
  1465     PeepMatch      *pmatch      = peep->match();
  1466     PeepConstraint *pconstraint = peep->constraints();
  1467     PeepReplace    *preplace    = peep->replacement();
  1469     // Root of this peephole is the current MachNode
  1470     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
  1471             "root of PeepMatch does not match instruction");
  1473     // Make each peephole rule individually selectable
  1474     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
  1475     fprintf(fp, "    matches = true;\n");
  1476     // Scan the peepmatch and output a test for each instruction
  1477     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
  1479     // Check constraints and build replacement inside scope
  1480     fprintf(fp, "    // If instruction subtree matches\n");
  1481     fprintf(fp, "    if( matches ) {\n");
  1483     // Generate tests for the constraints
  1484     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
  1486     // Construct the new sub-tree
  1487     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
  1489     // End of scope for this peephole's constraints
  1490     fprintf(fp, "    }\n");
  1491     // Closing brace '}' to make each peephole rule individually selectable
  1492     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
  1493     fprintf(fp, "\n");
  1496   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  1497   fprintf(fp, "}\n");
  1498   fprintf(fp, "\n");
  1501 // Define the Expand method for an instruction node
  1502 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  1503   unsigned      cnt  = 0;          // Count nodes we have expand into
  1504   unsigned      i;
  1506   // Generate Expand function header
  1507   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
  1508   fprintf(fp, "  Compile* C = Compile::current();\n");
  1509   // Generate expand code
  1510   if( node->expands() ) {
  1511     const char   *opid;
  1512     int           new_pos, exp_pos;
  1513     const char   *new_id   = NULL;
  1514     const Form   *frm      = NULL;
  1515     InstructForm *new_inst = NULL;
  1516     OperandForm  *new_oper = NULL;
  1517     unsigned      numo     = node->num_opnds() +
  1518                                 node->_exprule->_newopers.count();
  1520     // If necessary, generate any operands created in expand rule
  1521     if (node->_exprule->_newopers.count()) {
  1522       for(node->_exprule->_newopers.reset();
  1523           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
  1524         frm = node->_localNames[new_id];
  1525         assert(frm, "Invalid entry in new operands list of expand rule");
  1526         new_oper = frm->is_operand();
  1527         char *tmp = (char *)node->_exprule->_newopconst[new_id];
  1528         if (tmp == NULL) {
  1529           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
  1530                   cnt, new_oper->_ident);
  1532         else {
  1533           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
  1534                   cnt, new_oper->_ident, tmp);
  1538     cnt = 0;
  1539     // Generate the temps to use for DAG building
  1540     for(i = 0; i < numo; i++) {
  1541       if (i < node->num_opnds()) {
  1542         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
  1544       else {
  1545         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
  1548     // Build mapping from num_edges to local variables
  1549     fprintf(fp,"  unsigned num0 = 0;\n");
  1550     for( i = 1; i < node->num_opnds(); i++ ) {
  1551       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1554     // Build a mapping from operand index to input edges
  1555     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1557     // The order in which the memory input is added to a node is very
  1558     // strange.  Store nodes get a memory input before Expand is
  1559     // called and other nodes get it afterwards or before depending on
  1560     // match order so oper_input_base is wrong during expansion.  This
  1561     // code adjusts it so that expansion will work correctly.
  1562     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
  1563     if (has_memory_edge) {
  1564       fprintf(fp,"  if (mem == (Node*)1) {\n");
  1565       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
  1566       fprintf(fp,"  }\n");
  1569     for( i = 0; i < node->num_opnds(); i++ ) {
  1570       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1571               i+1,i,i);
  1574     // Declare variable to hold root of expansion
  1575     fprintf(fp,"  MachNode *result = NULL;\n");
  1577     // Iterate over the instructions 'node' expands into
  1578     ExpandRule  *expand       = node->_exprule;
  1579     NameAndList *expand_instr = NULL;
  1580     for(expand->reset_instructions();
  1581         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
  1582       new_id = expand_instr->name();
  1584       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
  1585       if (expand_instruction->has_temps()) {
  1586         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
  1587                              node->_ident, new_id);
  1590       // Build the node for the instruction
  1591       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
  1592       // Add control edge for this node
  1593       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
  1594       // Build the operand for the value this node defines.
  1595       Form *form = (Form*)_globalNames[new_id];
  1596       assert( form, "'new_id' must be a defined form name");
  1597       // Grab the InstructForm for the new instruction
  1598       new_inst = form->is_instruction();
  1599       assert( new_inst, "'new_id' must be an instruction name");
  1600       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
  1601         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
  1602         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
  1605       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
  1606         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
  1609       // Fill in the bottom_type where requested
  1610       if (node->captures_bottom_type(_globalNames) &&
  1611           new_inst->captures_bottom_type(_globalNames)) {
  1612         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
  1615       const char *resultOper = new_inst->reduce_result();
  1616       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
  1617               cnt, machOperEnum(resultOper));
  1619       // get the formal operand NameList
  1620       NameList *formal_lst = &new_inst->_parameters;
  1621       formal_lst->reset();
  1623       // Handle any memory operand
  1624       int memory_operand = new_inst->memory_operand(_globalNames);
  1625       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1626         int node_mem_op = node->memory_operand(_globalNames);
  1627         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
  1628                 "expand rule member needs memory but top-level inst doesn't have any" );
  1629         if (has_memory_edge) {
  1630           // Copy memory edge
  1631           fprintf(fp,"  if (mem != (Node*)1) {\n");
  1632           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
  1633           fprintf(fp,"  }\n");
  1637       // Iterate over the new instruction's operands
  1638       int prev_pos = -1;
  1639       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1640         // Use 'parameter' at current position in list of new instruction's formals
  1641         // instead of 'opid' when looking up info internal to new_inst
  1642         const char *parameter = formal_lst->iter();
  1643         // Check for an operand which is created in the expand rule
  1644         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
  1645           new_pos = new_inst->operand_position(parameter,Component::USE);
  1646           exp_pos += node->num_opnds();
  1647           // If there is no use of the created operand, just skip it
  1648           if (new_pos != -1) {
  1649             //Copy the operand from the original made above
  1650             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
  1651                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
  1652             // Check for who defines this operand & add edge if needed
  1653             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
  1654             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1657         else {
  1658           // Use operand name to get an index into instruction component list
  1659           // ins = (InstructForm *) _globalNames[new_id];
  1660           exp_pos = node->operand_position_format(opid);
  1661           assert(exp_pos != -1, "Bad expand rule");
  1662           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
  1663             // For the add_req calls below to work correctly they need
  1664             // to added in the same order that a match would add them.
  1665             // This means that they would need to be in the order of
  1666             // the components list instead of the formal parameters.
  1667             // This is a sort of hidden invariant that previously
  1668             // wasn't checked and could lead to incorrectly
  1669             // constructed nodes.
  1670             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
  1671                        node->_ident, new_inst->_ident);
  1673           prev_pos = exp_pos;
  1675           new_pos = new_inst->operand_position(parameter,Component::USE);
  1676           if (new_pos != -1) {
  1677             // Copy the operand from the ExpandNode to the new node
  1678             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1679                     cnt, new_pos, exp_pos, opid);
  1680             // For each operand add appropriate input edges by looking at tmp's
  1681             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
  1682             // Grab corresponding edges from ExpandNode and insert them here
  1683             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
  1684             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
  1685             fprintf(fp,"    }\n");
  1686             fprintf(fp,"  }\n");
  1687             // This value is generated by one of the new instructions
  1688             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1692         // Update the DAG tmp's for values defined by this instruction
  1693         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
  1694         Effect *eform = (Effect *)new_inst->_effects[parameter];
  1695         // If this operand is a definition in either an effects rule
  1696         // or a match rule
  1697         if((eform) && (is_def(eform->_use_def))) {
  1698           // Update the temp associated with this operand
  1699           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1701         else if( new_def_pos != -1 ) {
  1702           // Instruction defines a value but user did not declare it
  1703           // in the 'effect' clause
  1704           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1706       } // done iterating over a new instruction's operands
  1708       // Invoke Expand() for the newly created instruction.
  1709       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
  1710       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
  1711     } // done iterating over new instructions
  1712     fprintf(fp,"\n");
  1713   } // done generating expand rule
  1715   // Generate projections for instruction's additional DEFs and KILLs
  1716   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
  1717     // Get string representing the MachNode that projections point at
  1718     const char *machNode = "this";
  1719     // Generate the projections
  1720     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
  1722     // Examine each component to see if it is a DEF or KILL
  1723     node->_components.reset();
  1724     // Skip the first component, if already handled as (SET dst (...))
  1725     Component *comp = NULL;
  1726     // For kills, the choice of projection numbers is arbitrary
  1727     int proj_no = 1;
  1728     bool declared_def  = false;
  1729     bool declared_kill = false;
  1731     while( (comp = node->_components.iter()) != NULL ) {
  1732       // Lookup register class associated with operand type
  1733       Form        *form = (Form*)_globalNames[comp->_type];
  1734       assert( form, "component type must be a defined form");
  1735       OperandForm *op   = form->is_operand();
  1737       if (comp->is(Component::TEMP)) {
  1738         fprintf(fp, "  // TEMP %s\n", comp->_name);
  1739         if (!declared_def) {
  1740           // Define the variable "def" to hold new MachProjNodes
  1741           fprintf(fp, "  MachTempNode *def;\n");
  1742           declared_def = true;
  1744         if (op && op->_interface && op->_interface->is_RegInterface()) {
  1745           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
  1746                   machOperEnum(op->_ident));
  1747           fprintf(fp,"  add_req(def);\n");
  1748           // The operand for TEMP is already constructed during
  1749           // this mach node construction, see buildMachNode().
  1750           //
  1751           // int idx  = node->operand_position_format(comp->_name);
  1752           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
  1753           //         idx, machOperEnum(op->_ident));
  1754         } else {
  1755           assert(false, "can't have temps which aren't registers");
  1757       } else if (comp->isa(Component::KILL)) {
  1758         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
  1760         if (!declared_kill) {
  1761           // Define the variable "kill" to hold new MachProjNodes
  1762           fprintf(fp, "  MachProjNode *kill;\n");
  1763           declared_kill = true;
  1766         assert( op, "Support additional KILLS for base operands");
  1767         const char *regmask    = reg_mask(*op);
  1768         const char *ideal_type = op->ideal_type(_globalNames, _register);
  1770         if (!op->is_bound_register()) {
  1771           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
  1772                      node->_ident, comp->_type, comp->_name);
  1775         fprintf(fp,"  kill = ");
  1776         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
  1777                 machNode, proj_no++, regmask, ideal_type);
  1778         fprintf(fp,"  proj_list.push(kill);\n");
  1783   if( !node->expands() && node->_matrule != NULL ) {
  1784     // Remove duplicated operands and inputs which use the same name.
  1785     // Seach through match operands for the same name usage.
  1786     uint cur_num_opnds = node->num_opnds();
  1787     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
  1788       Component *comp = NULL;
  1789       // Build mapping from num_edges to local variables
  1790       fprintf(fp,"  unsigned num0 = 0;\n");
  1791       for( i = 1; i < cur_num_opnds; i++ ) {
  1792         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1794       // Build a mapping from operand index to input edges
  1795       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1796       for( i = 0; i < cur_num_opnds; i++ ) {
  1797         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1798                 i+1,i,i);
  1801       uint new_num_opnds = 1;
  1802       node->_components.reset();
  1803       // Skip first unique operands.
  1804       for( i = 1; i < cur_num_opnds; i++ ) {
  1805         comp = node->_components.iter();
  1806         if( (int)i != node->unique_opnds_idx(i) ) {
  1807           break;
  1809         new_num_opnds++;
  1811       // Replace not unique operands with next unique operands.
  1812       for( ; i < cur_num_opnds; i++ ) {
  1813         comp = node->_components.iter();
  1814         int j = node->unique_opnds_idx(i);
  1815         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
  1816         if( j != node->unique_opnds_idx(j) ) {
  1817           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1818                   new_num_opnds, i, comp->_name);
  1819           // delete not unique edges here
  1820           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
  1821           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
  1822           fprintf(fp,"  }\n");
  1823           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
  1824           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
  1825           new_num_opnds++;
  1828       // delete the rest of edges
  1829       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
  1830       fprintf(fp,"    del_req(i);\n");
  1831       fprintf(fp,"  }\n");
  1832       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
  1833       assert(new_num_opnds == node->num_unique_opnds(), "what?");
  1837   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
  1838   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
  1839   if (node->is_mach_constant()) {
  1840     fprintf(fp,"  add_req(C->mach_constant_base_node());\n");
  1843   fprintf(fp,"\n");
  1844   if( node->expands() ) {
  1845     fprintf(fp,"  return result;\n");
  1846   } else {
  1847     fprintf(fp,"  return this;\n");
  1849   fprintf(fp,"}\n");
  1850   fprintf(fp,"\n");
  1854 //------------------------------Emit Routines----------------------------------
  1855 // Special classes and routines for defining node emit routines which output
  1856 // target specific instruction object encodings.
  1857 // Define the ___Node::emit() routine
  1858 //
  1859 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1860 // (2)   // ...  encoding defined by user
  1861 // (3)
  1862 // (4) }
  1863 //
  1865 class DefineEmitState {
  1866 private:
  1867   enum reloc_format { RELOC_NONE        = -1,
  1868                       RELOC_IMMEDIATE   =  0,
  1869                       RELOC_DISP        =  1,
  1870                       RELOC_CALL_DISP   =  2 };
  1871   enum literal_status{ LITERAL_NOT_SEEN  = 0,
  1872                        LITERAL_SEEN      = 1,
  1873                        LITERAL_ACCESSED  = 2,
  1874                        LITERAL_OUTPUT    = 3 };
  1875   // Temporaries that describe current operand
  1876   bool          _cleared;
  1877   OpClassForm  *_opclass;
  1878   OperandForm  *_operand;
  1879   int           _operand_idx;
  1880   const char   *_local_name;
  1881   const char   *_operand_name;
  1882   bool          _doing_disp;
  1883   bool          _doing_constant;
  1884   Form::DataType _constant_type;
  1885   DefineEmitState::literal_status _constant_status;
  1886   DefineEmitState::literal_status _reg_status;
  1887   bool          _doing_emit8;
  1888   bool          _doing_emit_d32;
  1889   bool          _doing_emit_d16;
  1890   bool          _doing_emit_hi;
  1891   bool          _doing_emit_lo;
  1892   bool          _may_reloc;
  1893   reloc_format  _reloc_form;
  1894   const char *  _reloc_type;
  1895   bool          _processing_noninput;
  1897   NameList      _strings_to_emit;
  1899   // Stable state, set by constructor
  1900   ArchDesc     &_AD;
  1901   FILE         *_fp;
  1902   EncClass     &_encoding;
  1903   InsEncode    &_ins_encode;
  1904   InstructForm &_inst;
  1906 public:
  1907   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
  1908                   InsEncode &ins_encode, InstructForm &inst)
  1909     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
  1910       clear();
  1913   void clear() {
  1914     _cleared       = true;
  1915     _opclass       = NULL;
  1916     _operand       = NULL;
  1917     _operand_idx   = 0;
  1918     _local_name    = "";
  1919     _operand_name  = "";
  1920     _doing_disp    = false;
  1921     _doing_constant= false;
  1922     _constant_type = Form::none;
  1923     _constant_status = LITERAL_NOT_SEEN;
  1924     _reg_status      = LITERAL_NOT_SEEN;
  1925     _doing_emit8   = false;
  1926     _doing_emit_d32= false;
  1927     _doing_emit_d16= false;
  1928     _doing_emit_hi = false;
  1929     _doing_emit_lo = false;
  1930     _may_reloc     = false;
  1931     _reloc_form    = RELOC_NONE;
  1932     _reloc_type    = AdlcVMDeps::none_reloc_type();
  1933     _strings_to_emit.clear();
  1936   // Track necessary state when identifying a replacement variable
  1937   void update_state(const char *rep_var) {
  1938     // A replacement variable or one of its subfields
  1939     // Obtain replacement variable from list
  1940     if ( (*rep_var) != '$' ) {
  1941       // A replacement variable, '$' prefix
  1942       // check_rep_var( rep_var );
  1943       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  1944         // No state needed.
  1945         assert( _opclass == NULL,
  1946                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
  1948       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
  1949                (strcmp(rep_var, "constantoffset")    == 0) ||
  1950                (strcmp(rep_var, "constantaddress")   == 0)) {
  1951         if (!_inst.is_mach_constant()) {
  1952           _AD.syntax_err(_encoding._linenum,
  1953                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode).\n",
  1954                          rep_var, _encoding._name);
  1957       else {
  1958         // Lookup its position in parameter list
  1959         int   param_no  = _encoding.rep_var_index(rep_var);
  1960         if ( param_no == -1 ) {
  1961           _AD.syntax_err( _encoding._linenum,
  1962                           "Replacement variable %s not found in enc_class %s.\n",
  1963                           rep_var, _encoding._name);
  1966         // Lookup the corresponding ins_encode parameter
  1967         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  1968         if (inst_rep_var == NULL) {
  1969           _AD.syntax_err( _ins_encode._linenum,
  1970                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
  1971                           rep_var, _encoding._name, _inst._ident);
  1974         // Check if instruction's actual parameter is a local name in the instruction
  1975         const Form  *local     = _inst._localNames[inst_rep_var];
  1976         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  1977         // Note: assert removed to allow constant and symbolic parameters
  1978         // assert( opc, "replacement variable was not found in local names");
  1979         // Lookup the index position iff the replacement variable is a localName
  1980         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  1982         if ( idx != -1 ) {
  1983           // This is a local in the instruction
  1984           // Update local state info.
  1985           _opclass        = opc;
  1986           _operand_idx    = idx;
  1987           _local_name     = rep_var;
  1988           _operand_name   = inst_rep_var;
  1990           // !!!!!
  1991           // Do not support consecutive operands.
  1992           assert( _operand == NULL, "Unimplemented()");
  1993           _operand = opc->is_operand();
  1995         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  1996           // Instruction provided a constant expression
  1997           // Check later that encoding specifies $$$constant to resolve as constant
  1998           _constant_status   = LITERAL_SEEN;
  2000         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2001           // Instruction provided an opcode: "primary", "secondary", "tertiary"
  2002           // Check later that encoding specifies $$$constant to resolve as constant
  2003           _constant_status   = LITERAL_SEEN;
  2005         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2006           // Instruction provided a literal register name for this parameter
  2007           // Check that encoding specifies $$$reg to resolve.as register.
  2008           _reg_status        = LITERAL_SEEN;
  2010         else {
  2011           // Check for unimplemented functionality before hard failure
  2012           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2013           assert( false, "ShouldNotReachHere()");
  2015       } // done checking which operand this is.
  2016     } else {
  2017       //
  2018       // A subfield variable, '$$' prefix
  2019       // Check for fields that may require relocation information.
  2020       // Then check that literal register parameters are accessed with 'reg' or 'constant'
  2021       //
  2022       if ( strcmp(rep_var,"$disp") == 0 ) {
  2023         _doing_disp = true;
  2024         assert( _opclass, "Must use operand or operand class before '$disp'");
  2025         if( _operand == NULL ) {
  2026           // Only have an operand class, generate run-time check for relocation
  2027           _may_reloc    = true;
  2028           _reloc_form   = RELOC_DISP;
  2029           _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2030         } else {
  2031           // Do precise check on operand: is it a ConP or not
  2032           //
  2033           // Check interface for value of displacement
  2034           assert( ( _operand->_interface != NULL ),
  2035                   "$disp can only follow memory interface operand");
  2036           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
  2037           assert( mem_interface != NULL,
  2038                   "$disp can only follow memory interface operand");
  2039           const char *disp = mem_interface->_disp;
  2041           if( disp != NULL && (*disp == '$') ) {
  2042             // MemInterface::disp contains a replacement variable,
  2043             // Check if this matches a ConP
  2044             //
  2045             // Lookup replacement variable, in operand's component list
  2046             const char *rep_var_name = disp + 1; // Skip '$'
  2047             const Component *comp = _operand->_components.search(rep_var_name);
  2048             assert( comp != NULL,"Replacement variable not found in components");
  2049             const char      *type = comp->_type;
  2050             // Lookup operand form for replacement variable's type
  2051             const Form *form = _AD.globalNames()[type];
  2052             assert( form != NULL, "Replacement variable's type not found");
  2053             OperandForm *op = form->is_operand();
  2054             assert( op, "Attempting to emit a non-register or non-constant");
  2055             // Check if this is a constant
  2056             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
  2057               // Check which constant this name maps to: _c0, _c1, ..., _cn
  2058               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
  2059               // assert( idx != -1, "Constant component not found in operand");
  2060               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
  2061               if ( dtype == Form::idealP ) {
  2062                 _may_reloc    = true;
  2063                 // No longer true that idealP is always an oop
  2064                 _reloc_form   = RELOC_DISP;
  2065                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2069             else if( _operand->is_user_name_for_sReg() != Form::none ) {
  2070               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
  2071               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
  2072               _may_reloc   = false;
  2073             } else {
  2074               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
  2077         } // finished with precise check of operand for relocation.
  2078       } // finished with subfield variable
  2079       else if ( strcmp(rep_var,"$constant") == 0 ) {
  2080         _doing_constant = true;
  2081         if ( _constant_status == LITERAL_NOT_SEEN ) {
  2082           // Check operand for type of constant
  2083           assert( _operand, "Must use operand before '$$constant'");
  2084           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
  2085           _constant_type = dtype;
  2086           if ( dtype == Form::idealP ) {
  2087             _may_reloc    = true;
  2088             // No longer true that idealP is always an oop
  2089             // // _must_reloc   = true;
  2090             _reloc_form   = RELOC_IMMEDIATE;
  2091             _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2092           } else {
  2093             // No relocation information needed
  2095         } else {
  2096           // User-provided literals may not require relocation information !!!!!
  2097           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
  2100       else if ( strcmp(rep_var,"$label") == 0 ) {
  2101         // Calls containing labels require relocation
  2102         if ( _inst.is_ideal_call() )  {
  2103           _may_reloc    = true;
  2104           // !!!!! !!!!!
  2105           _reloc_type   = AdlcVMDeps::none_reloc_type();
  2109       // literal register parameter must be accessed as a 'reg' field.
  2110       if ( _reg_status != LITERAL_NOT_SEEN ) {
  2111         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
  2112         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
  2113           _reg_status  = LITERAL_ACCESSED;
  2114         } else {
  2115           assert( false, "invalid access to literal register parameter");
  2118       // literal constant parameters must be accessed as a 'constant' field
  2119       if ( _constant_status != LITERAL_NOT_SEEN ) {
  2120         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
  2121         if( strcmp(rep_var,"$constant") == 0 ) {
  2122           _constant_status  = LITERAL_ACCESSED;
  2123         } else {
  2124           assert( false, "invalid access to literal constant parameter");
  2127     } // end replacement and/or subfield
  2131   void add_rep_var(const char *rep_var) {
  2132     // Handle subfield and replacement variables.
  2133     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
  2134       // Check for emit prefix, '$$emit32'
  2135       assert( _cleared, "Can not nest $$$emit32");
  2136       if ( strcmp(rep_var,"$$emit32") == 0 ) {
  2137         _doing_emit_d32 = true;
  2139       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
  2140         _doing_emit_d16 = true;
  2142       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
  2143         _doing_emit_hi  = true;
  2145       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
  2146         _doing_emit_lo  = true;
  2148       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
  2149         _doing_emit8    = true;
  2151       else {
  2152         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
  2153         assert( false, "fatal();");
  2156     else {
  2157       // Update state for replacement variables
  2158       update_state( rep_var );
  2159       _strings_to_emit.addName(rep_var);
  2161     _cleared  = false;
  2164   void emit_replacement() {
  2165     // A replacement variable or one of its subfields
  2166     // Obtain replacement variable from list
  2167     // const char *ec_rep_var = encoding->_rep_vars.iter();
  2168     const char *rep_var;
  2169     _strings_to_emit.reset();
  2170     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
  2172       if ( (*rep_var) == '$' ) {
  2173         // A subfield variable, '$$' prefix
  2174         emit_field( rep_var );
  2175       } else {
  2176         if (_strings_to_emit.peek() != NULL &&
  2177             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
  2178           fprintf(_fp, "Address::make_raw(");
  2180           emit_rep_var( rep_var );
  2181           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
  2183           _reg_status = LITERAL_ACCESSED;
  2184           emit_rep_var( rep_var );
  2185           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
  2187           _reg_status = LITERAL_ACCESSED;
  2188           emit_rep_var( rep_var );
  2189           fprintf(_fp,"->scale(), ");
  2191           _reg_status = LITERAL_ACCESSED;
  2192           emit_rep_var( rep_var );
  2193           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2194           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2195             fprintf(_fp,"->disp(ra_,this,0), ");
  2196           } else {
  2197             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
  2200           _reg_status = LITERAL_ACCESSED;
  2201           emit_rep_var( rep_var );
  2202           fprintf(_fp,"->disp_reloc())");
  2204           // skip trailing $Address
  2205           _strings_to_emit.iter();
  2206         } else {
  2207           // A replacement variable, '$' prefix
  2208           const char* next = _strings_to_emit.peek();
  2209           const char* next2 = _strings_to_emit.peek(2);
  2210           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
  2211               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
  2212             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
  2213             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
  2214             fprintf(_fp, "as_Register(");
  2215             // emit the operand reference
  2216             emit_rep_var( rep_var );
  2217             rep_var = _strings_to_emit.iter();
  2218             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
  2219             // handle base or index
  2220             emit_field(rep_var);
  2221             rep_var = _strings_to_emit.iter();
  2222             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
  2223             // close up the parens
  2224             fprintf(_fp, ")");
  2225           } else {
  2226             emit_rep_var( rep_var );
  2229       } // end replacement and/or subfield
  2233   void emit_reloc_type(const char* type) {
  2234     fprintf(_fp, "%s", type)
  2239   void emit() {
  2240     //
  2241     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
  2242     //
  2243     // Emit the function name when generating an emit function
  2244     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
  2245       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
  2246       // In general, relocatable isn't known at compiler compile time.
  2247       // Check results of prior scan
  2248       if ( ! _may_reloc ) {
  2249         // Definitely don't need relocation information
  2250         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
  2251         emit_replacement(); fprintf(_fp, ")");
  2253       else {
  2254         // Emit RUNTIME CHECK to see if value needs relocation info
  2255         // If emitting a relocatable address, use 'emit_d32_reloc'
  2256         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
  2257         assert( (_doing_disp || _doing_constant)
  2258                 && !(_doing_disp && _doing_constant),
  2259                 "Must be emitting either a displacement or a constant");
  2260         fprintf(_fp,"\n");
  2261         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
  2262                 _operand_idx, disp_constant);
  2263         fprintf(_fp,"  ");
  2264         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
  2265         emit_replacement();             fprintf(_fp,", ");
  2266         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
  2267                 _operand_idx, disp_constant);
  2268         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
  2269         fprintf(_fp,"\n");
  2270         fprintf(_fp,"} else {\n");
  2271         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
  2272         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
  2275     else if ( _doing_emit_d16 ) {
  2276       // Relocation of 16-bit values is not supported
  2277       fprintf(_fp,"emit_d16(cbuf, ");
  2278       emit_replacement(); fprintf(_fp, ")");
  2279       // No relocation done for 16-bit values
  2281     else if ( _doing_emit8 ) {
  2282       // Relocation of 8-bit values is not supported
  2283       fprintf(_fp,"emit_d8(cbuf, ");
  2284       emit_replacement(); fprintf(_fp, ")");
  2285       // No relocation done for 8-bit values
  2287     else {
  2288       // Not an emit# command, just output the replacement string.
  2289       emit_replacement();
  2292     // Get ready for next state collection.
  2293     clear();
  2296 private:
  2298   // recognizes names which represent MacroAssembler register types
  2299   // and return the conversion function to build them from OptoReg
  2300   const char* reg_conversion(const char* rep_var) {
  2301     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
  2302     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
  2303 #if defined(IA32) || defined(AMD64)
  2304     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
  2305 #endif
  2306     return NULL;
  2309   void emit_field(const char *rep_var) {
  2310     const char* reg_convert = reg_conversion(rep_var);
  2312     // A subfield variable, '$$subfield'
  2313     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
  2314       // $reg form or the $Register MacroAssembler type conversions
  2315       assert( _operand_idx != -1,
  2316               "Must use this subfield after operand");
  2317       if( _reg_status == LITERAL_NOT_SEEN ) {
  2318         if (_processing_noninput) {
  2319           const Form  *local     = _inst._localNames[_operand_name];
  2320           OperandForm *oper      = local->is_operand();
  2321           const RegDef* first = oper->get_RegClass()->find_first_elem();
  2322           if (reg_convert != NULL) {
  2323             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
  2324           } else {
  2325             fprintf(_fp, "%s_enc", first->_regname);
  2327         } else {
  2328           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
  2329           // Add parameter for index position, if not result operand
  2330           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
  2331           fprintf(_fp,")");
  2333       } else {
  2334         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
  2335         // Register literal has already been sent to output file, nothing more needed
  2338     else if ( strcmp(rep_var,"$base") == 0 ) {
  2339       assert( _operand_idx != -1,
  2340               "Must use this subfield after operand");
  2341       assert( ! _may_reloc, "UnImplemented()");
  2342       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
  2344     else if ( strcmp(rep_var,"$index") == 0 ) {
  2345       assert( _operand_idx != -1,
  2346               "Must use this subfield after operand");
  2347       assert( ! _may_reloc, "UnImplemented()");
  2348       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
  2350     else if ( strcmp(rep_var,"$scale") == 0 ) {
  2351       assert( ! _may_reloc, "UnImplemented()");
  2352       fprintf(_fp,"->scale()");
  2354     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
  2355       assert( ! _may_reloc, "UnImplemented()");
  2356       fprintf(_fp,"->ccode()");
  2358     else if ( strcmp(rep_var,"$constant") == 0 ) {
  2359       if( _constant_status == LITERAL_NOT_SEEN ) {
  2360         if ( _constant_type == Form::idealD ) {
  2361           fprintf(_fp,"->constantD()");
  2362         } else if ( _constant_type == Form::idealF ) {
  2363           fprintf(_fp,"->constantF()");
  2364         } else if ( _constant_type == Form::idealL ) {
  2365           fprintf(_fp,"->constantL()");
  2366         } else {
  2367           fprintf(_fp,"->constant()");
  2369       } else {
  2370         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
  2371         // Cosntant literal has already been sent to output file, nothing more needed
  2374     else if ( strcmp(rep_var,"$disp") == 0 ) {
  2375       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2376       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2377         fprintf(_fp,"->disp(ra_,this,0)");
  2378       } else {
  2379         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
  2382     else if ( strcmp(rep_var,"$label") == 0 ) {
  2383       fprintf(_fp,"->label()");
  2385     else if ( strcmp(rep_var,"$method") == 0 ) {
  2386       fprintf(_fp,"->method()");
  2388     else {
  2389       printf("emit_field: %s\n",rep_var);
  2390       assert( false, "UnImplemented()");
  2395   void emit_rep_var(const char *rep_var) {
  2396     _processing_noninput = false;
  2397     // A replacement variable, originally '$'
  2398     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  2399       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
  2400         // Missing opcode
  2401         _AD.syntax_err( _inst._linenum,
  2402                         "Missing $%s opcode definition in %s, used by encoding %s\n",
  2403                         rep_var, _inst._ident, _encoding._name);
  2406     else if (strcmp(rep_var, "constanttablebase") == 0) {
  2407       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
  2409     else if (strcmp(rep_var, "constantoffset") == 0) {
  2410       fprintf(_fp, "constant_offset()");
  2412     else if (strcmp(rep_var, "constantaddress") == 0) {
  2413       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
  2415     else {
  2416       // Lookup its position in parameter list
  2417       int   param_no  = _encoding.rep_var_index(rep_var);
  2418       if ( param_no == -1 ) {
  2419         _AD.syntax_err( _encoding._linenum,
  2420                         "Replacement variable %s not found in enc_class %s.\n",
  2421                         rep_var, _encoding._name);
  2423       // Lookup the corresponding ins_encode parameter
  2424       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  2426       // Check if instruction's actual parameter is a local name in the instruction
  2427       const Form  *local     = _inst._localNames[inst_rep_var];
  2428       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  2429       // Note: assert removed to allow constant and symbolic parameters
  2430       // assert( opc, "replacement variable was not found in local names");
  2431       // Lookup the index position iff the replacement variable is a localName
  2432       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  2433       if( idx != -1 ) {
  2434         if (_inst.is_noninput_operand(idx)) {
  2435           // This operand isn't a normal input so printing it is done
  2436           // specially.
  2437           _processing_noninput = true;
  2438         } else {
  2439           // Output the emit code for this operand
  2440           fprintf(_fp,"opnd_array(%d)",idx);
  2442         assert( _operand == opc->is_operand(),
  2443                 "Previous emit $operand does not match current");
  2445       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2446         // else check if it is a constant expression
  2447         // Removed following assert to allow primitive C types as arguments to encodings
  2448         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2449         fprintf(_fp,"(%s)", inst_rep_var);
  2450         _constant_status = LITERAL_OUTPUT;
  2452       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2453         // else check if "primary", "secondary", "tertiary"
  2454         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2455         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
  2456           // Missing opcode
  2457           _AD.syntax_err( _inst._linenum,
  2458                           "Missing $%s opcode definition in %s\n",
  2459                           rep_var, _inst._ident);
  2462         _constant_status = LITERAL_OUTPUT;
  2464       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2465         // Instruction provided a literal register name for this parameter
  2466         // Check that encoding specifies $$$reg to resolve.as register.
  2467         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
  2468         fprintf(_fp,"(%s_enc)", inst_rep_var);
  2469         _reg_status = LITERAL_OUTPUT;
  2471       else {
  2472         // Check for unimplemented functionality before hard failure
  2473         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2474         assert( false, "ShouldNotReachHere()");
  2476       // all done
  2480 };  // end class DefineEmitState
  2483 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
  2485   //(1)
  2486   // Output instruction's emit prototype
  2487   fprintf(fp,"uint  %sNode::size(PhaseRegAlloc *ra_) const {\n",
  2488           inst._ident);
  2490   fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
  2492   //(2)
  2493   // Print the size
  2494   fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
  2496   // (3) and (4)
  2497   fprintf(fp,"}\n");
  2500 // defineEmit -----------------------------------------------------------------
  2501 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
  2502   InsEncode* encode = inst._insencode;
  2504   // (1)
  2505   // Output instruction's emit prototype
  2506   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
  2508   // If user did not define an encode section,
  2509   // provide stub that does not generate any machine code.
  2510   if( (_encode == NULL) || (encode == NULL) ) {
  2511     fprintf(fp, "  // User did not define an encode section.\n");
  2512     fprintf(fp, "}\n");
  2513     return;
  2516   // Save current instruction's starting address (helps with relocation).
  2517   fprintf(fp, "  cbuf.set_insts_mark();\n");
  2519   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
  2520   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
  2521     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
  2524   // Output each operand's offset into the array of registers.
  2525   inst.index_temps(fp, _globalNames);
  2527   // Output this instruction's encodings
  2528   const char *ec_name;
  2529   bool        user_defined = false;
  2530   encode->reset();
  2531   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2532     fprintf(fp, "  {\n");
  2533     // Output user-defined encoding
  2534     user_defined           = true;
  2536     const char *ec_code    = NULL;
  2537     const char *ec_rep_var = NULL;
  2538     EncClass   *encoding   = _encode->encClass(ec_name);
  2539     if (encoding == NULL) {
  2540       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2541       abort();
  2544     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2545       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2546                            inst._ident, encode->current_encoding_num_args(),
  2547                            ec_name, encoding->num_args());
  2550     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2551     encoding->_code.reset();
  2552     encoding->_rep_vars.reset();
  2553     // Process list of user-defined strings,
  2554     // and occurrences of replacement variables.
  2555     // Replacement Vars are pushed into a list and then output
  2556     while ((ec_code = encoding->_code.iter()) != NULL) {
  2557       if (!encoding->_code.is_signal(ec_code)) {
  2558         // Emit pending code
  2559         pending.emit();
  2560         pending.clear();
  2561         // Emit this code section
  2562         fprintf(fp, "%s", ec_code);
  2563       } else {
  2564         // A replacement variable or one of its subfields
  2565         // Obtain replacement variable from list
  2566         ec_rep_var  = encoding->_rep_vars.iter();
  2567         pending.add_rep_var(ec_rep_var);
  2570     // Emit pending code
  2571     pending.emit();
  2572     pending.clear();
  2573     fprintf(fp, "  }\n");
  2574   } // end while instruction's encodings
  2576   // Check if user stated which encoding to user
  2577   if ( user_defined == false ) {
  2578     fprintf(fp, "  // User did not define which encode class to use.\n");
  2581   // (3) and (4)
  2582   fprintf(fp, "}\n");
  2585 // defineEvalConstant ---------------------------------------------------------
  2586 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
  2587   InsEncode* encode = inst._constant;
  2589   // (1)
  2590   // Output instruction's emit prototype
  2591   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
  2593   // For ideal jump nodes, add a jump-table entry.
  2594   if (inst.is_ideal_jump()) {
  2595     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
  2598   // If user did not define an encode section,
  2599   // provide stub that does not generate any machine code.
  2600   if ((_encode == NULL) || (encode == NULL)) {
  2601     fprintf(fp, "  // User did not define an encode section.\n");
  2602     fprintf(fp, "}\n");
  2603     return;
  2606   // Output this instruction's encodings
  2607   const char *ec_name;
  2608   bool        user_defined = false;
  2609   encode->reset();
  2610   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2611     fprintf(fp, "  {\n");
  2612     // Output user-defined encoding
  2613     user_defined           = true;
  2615     const char *ec_code    = NULL;
  2616     const char *ec_rep_var = NULL;
  2617     EncClass   *encoding   = _encode->encClass(ec_name);
  2618     if (encoding == NULL) {
  2619       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2620       abort();
  2623     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2624       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2625                            inst._ident, encode->current_encoding_num_args(),
  2626                            ec_name, encoding->num_args());
  2629     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2630     encoding->_code.reset();
  2631     encoding->_rep_vars.reset();
  2632     // Process list of user-defined strings,
  2633     // and occurrences of replacement variables.
  2634     // Replacement Vars are pushed into a list and then output
  2635     while ((ec_code = encoding->_code.iter()) != NULL) {
  2636       if (!encoding->_code.is_signal(ec_code)) {
  2637         // Emit pending code
  2638         pending.emit();
  2639         pending.clear();
  2640         // Emit this code section
  2641         fprintf(fp, "%s", ec_code);
  2642       } else {
  2643         // A replacement variable or one of its subfields
  2644         // Obtain replacement variable from list
  2645         ec_rep_var  = encoding->_rep_vars.iter();
  2646         pending.add_rep_var(ec_rep_var);
  2649     // Emit pending code
  2650     pending.emit();
  2651     pending.clear();
  2652     fprintf(fp, "  }\n");
  2653   } // end while instruction's encodings
  2655   // Check if user stated which encoding to user
  2656   if (user_defined == false) {
  2657     fprintf(fp, "  // User did not define which encode class to use.\n");
  2660   // (3) and (4)
  2661   fprintf(fp, "}\n");
  2664 // ---------------------------------------------------------------------------
  2665 //--------Utilities to build MachOper and MachNode derived Classes------------
  2666 // ---------------------------------------------------------------------------
  2668 //------------------------------Utilities to build Operand Classes------------
  2669 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  2670   uint num_edges = oper.num_edges(globals);
  2671   if( num_edges != 0 ) {
  2672     // Method header
  2673     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
  2674             oper._ident);
  2676     // Assert that the index is in range.
  2677     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
  2678             num_edges);
  2680     // Figure out if all RegMasks are the same.
  2681     const char* first_reg_class = oper.in_reg_class(0, globals);
  2682     bool all_same = true;
  2683     assert(first_reg_class != NULL, "did not find register mask");
  2685     for (uint index = 1; all_same && index < num_edges; index++) {
  2686       const char* some_reg_class = oper.in_reg_class(index, globals);
  2687       assert(some_reg_class != NULL, "did not find register mask");
  2688       if (strcmp(first_reg_class, some_reg_class) != 0) {
  2689         all_same = false;
  2693     if (all_same) {
  2694       // Return the sole RegMask.
  2695       if (strcmp(first_reg_class, "stack_slots") == 0) {
  2696         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
  2697       } else {
  2698         fprintf(fp,"  return &%s_mask();\n", toUpper(first_reg_class));
  2700     } else {
  2701       // Build a switch statement to return the desired mask.
  2702       fprintf(fp,"  switch (index) {\n");
  2704       for (uint index = 0; index < num_edges; index++) {
  2705         const char *reg_class = oper.in_reg_class(index, globals);
  2706         assert(reg_class != NULL, "did not find register mask");
  2707         if( !strcmp(reg_class, "stack_slots") ) {
  2708           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
  2709         } else {
  2710           fprintf(fp, "  case %d: return &%s_mask();\n", index, toUpper(reg_class));
  2713       fprintf(fp,"  }\n");
  2714       fprintf(fp,"  ShouldNotReachHere();\n");
  2715       fprintf(fp,"  return NULL;\n");
  2718     // Method close
  2719     fprintf(fp, "}\n\n");
  2723 // generate code to create a clone for a class derived from MachOper
  2724 //
  2725 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
  2726 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
  2727 // (2)  }
  2728 //
  2729 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  2730   fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper._ident);
  2731   // Check for constants that need to be copied over
  2732   const int  num_consts    = oper.num_consts(globalNames);
  2733   const bool is_ideal_bool = oper.is_ideal_bool();
  2734   if( (num_consts > 0) ) {
  2735     fprintf(fp,"  return  new (C) %sOper(", oper._ident);
  2736     // generate parameters for constants
  2737     int i = 0;
  2738     fprintf(fp,"_c%d", i);
  2739     for( i = 1; i < num_consts; ++i) {
  2740       fprintf(fp,", _c%d", i);
  2742     // finish line (1)
  2743     fprintf(fp,");\n");
  2745   else {
  2746     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
  2747     fprintf(fp,"  return  new (C) %sOper();\n", oper._ident);
  2749   // finish method
  2750   fprintf(fp,"}\n");
  2753 static void define_hash(FILE *fp, char *operand) {
  2754   fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand);
  2757 static void define_cmp(FILE *fp, char *operand) {
  2758   fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand);
  2762 // Helper functions for bug 4796752, abstracted with minimal modification
  2763 // from define_oper_interface()
  2764 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  2765   OperandForm *op = NULL;
  2766   // Check for replacement variable
  2767   if( *encoding == '$' ) {
  2768     // Replacement variable
  2769     const char *rep_var = encoding + 1;
  2770     // Lookup replacement variable, rep_var, in operand's component list
  2771     const Component *comp = oper._components.search(rep_var);
  2772     assert( comp != NULL, "Replacement variable not found in components");
  2773     // Lookup operand form for replacement variable's type
  2774     const char      *type = comp->_type;
  2775     Form            *form = (Form*)globals[type];
  2776     assert( form != NULL, "Replacement variable's type not found");
  2777     op = form->is_operand();
  2778     assert( op, "Attempting to emit a non-register or non-constant");
  2781   return op;
  2784 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  2785   int idx = -1;
  2786   // Check for replacement variable
  2787   if( *encoding == '$' ) {
  2788     // Replacement variable
  2789     const char *rep_var = encoding + 1;
  2790     // Lookup replacement variable, rep_var, in operand's component list
  2791     const Component *comp = oper._components.search(rep_var);
  2792     assert( comp != NULL, "Replacement variable not found in components");
  2793     // Lookup operand form for replacement variable's type
  2794     const char      *type = comp->_type;
  2795     Form            *form = (Form*)globals[type];
  2796     assert( form != NULL, "Replacement variable's type not found");
  2797     OperandForm *op = form->is_operand();
  2798     assert( op, "Attempting to emit a non-register or non-constant");
  2799     // Check that this is a constant and find constant's index:
  2800     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2801       idx  = oper.constant_position(globals, comp);
  2805   return idx;
  2808 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2809   bool is_regI = false;
  2811   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2812   if( op != NULL ) {
  2813     // Check that this is a register
  2814     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2815       // Register
  2816       const char* ideal  = op->ideal_type(globals);
  2817       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
  2821   return is_regI;
  2824 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2825   bool is_conP = false;
  2827   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2828   if( op != NULL ) {
  2829     // Check that this is a constant pointer
  2830     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2831       // Constant
  2832       Form::DataType dtype = op->is_base_constant(globals);
  2833       is_conP = (dtype == Form::idealP);
  2837   return is_conP;
  2841 // Define a MachOper interface methods
  2842 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
  2843                                      const char *name, const char *encoding) {
  2844   bool emit_position = false;
  2845   int position = -1;
  2847   fprintf(fp,"  virtual int            %s", name);
  2848   // Generate access method for base, index, scale, disp, ...
  2849   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
  2850     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2851     emit_position = true;
  2852   } else if ( (strcmp(name,"disp") == 0) ) {
  2853     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2854   } else {
  2855     fprintf(fp,"() const { ");
  2858   // Check for hexadecimal value OR replacement variable
  2859   if( *encoding == '$' ) {
  2860     // Replacement variable
  2861     const char *rep_var = encoding + 1;
  2862     fprintf(fp,"// Replacement variable: %s\n", encoding+1);
  2863     // Lookup replacement variable, rep_var, in operand's component list
  2864     const Component *comp = oper._components.search(rep_var);
  2865     assert( comp != NULL, "Replacement variable not found in components");
  2866     // Lookup operand form for replacement variable's type
  2867     const char      *type = comp->_type;
  2868     Form            *form = (Form*)globals[type];
  2869     assert( form != NULL, "Replacement variable's type not found");
  2870     OperandForm *op = form->is_operand();
  2871     assert( op, "Attempting to emit a non-register or non-constant");
  2872     // Check that this is a register or a constant and generate code:
  2873     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2874       // Register
  2875       int idx_offset = oper.register_position( globals, rep_var);
  2876       position = idx_offset;
  2877       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
  2878       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
  2879       fprintf(fp,"));\n");
  2880     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
  2881       // StackSlot for an sReg comes either from input node or from self, when idx==0
  2882       fprintf(fp,"    if( idx != 0 ) {\n");
  2883       fprintf(fp,"      // Access register number for input operand\n");
  2884       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  2885       fprintf(fp,"    }\n");
  2886       fprintf(fp,"    // Access register number from myself\n");
  2887       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
  2888     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2889       // Constant
  2890       // Check which constant this name maps to: _c0, _c1, ..., _cn
  2891       const int idx = oper.constant_position(globals, comp);
  2892       assert( idx != -1, "Constant component not found in operand");
  2893       // Output code for this constant, type dependent.
  2894       fprintf(fp,"    return (int)" );
  2895       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
  2896       fprintf(fp,";\n");
  2897     } else {
  2898       assert( false, "Attempting to emit a non-register or non-constant");
  2901   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
  2902     // Hex value
  2903     fprintf(fp,"return %s;", encoding);
  2904   } else {
  2905     assert( false, "Do not support octal or decimal encode constants");
  2907   fprintf(fp,"  }\n");
  2909   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
  2910     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
  2911     MemInterface *mem_interface = oper._interface->is_MemInterface();
  2912     const char *base = mem_interface->_base;
  2913     const char *disp = mem_interface->_disp;
  2914     if( emit_position && (strcmp(name,"base") == 0)
  2915         && base != NULL && is_regI(base, oper, globals)
  2916         && disp != NULL && is_conP(disp, oper, globals) ) {
  2917       // Found a memory access using a constant pointer for a displacement
  2918       // and a base register containing an integer offset.
  2919       // In this case the base and disp are reversed with respect to what
  2920       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
  2921       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
  2922       // to correctly compute the access type for alias analysis.
  2923       //
  2924       // See BugId 4796752, operand indOffset32X in i486.ad
  2925       int idx = rep_var_to_constant_index(disp, oper, globals);
  2926       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
  2931 //
  2932 // Construct the method to copy _idx, inputs and operands to new node.
  2933 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  2934   fprintf(fp_cpp, "\n");
  2935   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  2936   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  2937   if( !used ) {
  2938     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
  2939     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
  2940     fprintf(fp_cpp, "}\n");
  2941   } else {
  2942     // New node must use same node index for access through allocator's tables
  2943     fprintf(fp_cpp, "  // New node must use same node index\n");
  2944     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
  2945     // Copy machine-independent inputs
  2946     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
  2947     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
  2948     fprintf(fp_cpp, "    node->add_req(in(j));\n");
  2949     fprintf(fp_cpp, "  }\n");
  2950     // Copy machine operands to new MachNode
  2951     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
  2952     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
  2953     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
  2954     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
  2955     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
  2956     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
  2957     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
  2958     fprintf(fp_cpp, "  }\n");
  2959     fprintf(fp_cpp, "}\n");
  2961   fprintf(fp_cpp, "\n");
  2964 //------------------------------defineClasses----------------------------------
  2965 // Define members of MachNode and MachOper classes based on
  2966 // operand and instruction lists
  2967 void ArchDesc::defineClasses(FILE *fp) {
  2969   // Define the contents of an array containing the machine register names
  2970   defineRegNames(fp, _register);
  2971   // Define an array containing the machine register encoding values
  2972   defineRegEncodes(fp, _register);
  2973   // Generate an enumeration of user-defined register classes
  2974   // and a list of register masks, one for each class.
  2975   // Only define the RegMask value objects in the expand file.
  2976   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  2977   declare_register_masks(_HPP_file._fp);
  2978   // build_register_masks(fp);
  2979   build_register_masks(_CPP_EXPAND_file._fp);
  2980   // Define the pipe_classes
  2981   build_pipe_classes(_CPP_PIPELINE_file._fp);
  2983   // Generate Machine Classes for each operand defined in AD file
  2984   fprintf(fp,"\n");
  2985   fprintf(fp,"\n");
  2986   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  2987   // Iterate through all operands
  2988   _operands.reset();
  2989   OperandForm *oper;
  2990   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
  2991     // Ensure this is a machine-world instruction
  2992     if ( oper->ideal_only() ) continue;
  2993     // !!!!!
  2994     // The declaration of labelOper is in machine-independent file: machnode
  2995     if ( strcmp(oper->_ident,"label") == 0 ) {
  2996       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  2998       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  2999       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
  3000       fprintf(fp,"}\n");
  3002       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3003               oper->_ident, machOperEnum(oper->_ident));
  3004       // // Currently all XXXOper::Hash() methods are identical (990820)
  3005       // define_hash(fp, oper->_ident);
  3006       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3007       // define_cmp(fp, oper->_ident);
  3008       fprintf(fp,"\n");
  3010       continue;
  3013     // The declaration of methodOper is in machine-independent file: machnode
  3014     if ( strcmp(oper->_ident,"method") == 0 ) {
  3015       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3017       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3018       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
  3019       fprintf(fp,"}\n");
  3021       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3022               oper->_ident, machOperEnum(oper->_ident));
  3023       // // Currently all XXXOper::Hash() methods are identical (990820)
  3024       // define_hash(fp, oper->_ident);
  3025       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3026       // define_cmp(fp, oper->_ident);
  3027       fprintf(fp,"\n");
  3029       continue;
  3032     defineIn_RegMask(fp, _globalNames, *oper);
  3033     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
  3034     // // Currently all XXXOper::Hash() methods are identical (990820)
  3035     // define_hash(fp, oper->_ident);
  3036     // // Currently all XXXOper::Cmp() methods are identical (990820)
  3037     // define_cmp(fp, oper->_ident);
  3039     // side-call to generate output that used to be in the header file:
  3040     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
  3041     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
  3046   // Generate Machine Classes for each instruction defined in AD file
  3047   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  3048   // Output the definitions for out_RegMask() // & kill_RegMask()
  3049   _instructions.reset();
  3050   InstructForm *instr;
  3051   MachNodeForm *machnode;
  3052   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3053     // Ensure this is a machine-world instruction
  3054     if ( instr->ideal_only() ) continue;
  3056     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  3059   bool used = false;
  3060   // Output the definitions for expand rules & peephole rules
  3061   _instructions.reset();
  3062   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3063     // Ensure this is a machine-world instruction
  3064     if ( instr->ideal_only() ) continue;
  3065     // If there are multiple defs/kills, or an explicit expand rule, build rule
  3066     if( instr->expands() || instr->needs_projections() ||
  3067         instr->has_temps() ||
  3068         instr->is_mach_constant() ||
  3069         instr->_matrule != NULL &&
  3070         instr->num_opnds() != instr->num_unique_opnds() )
  3071       defineExpand(_CPP_EXPAND_file._fp, instr);
  3072     // If there is an explicit peephole rule, build it
  3073     if ( instr->peepholes() )
  3074       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
  3076     // Output code to convert to the cisc version, if applicable
  3077     used |= instr->define_cisc_version(*this, fp);
  3079     // Output code to convert to the short branch version, if applicable
  3080     used |= instr->define_short_branch_methods(*this, fp);
  3083   // Construct the method called by cisc_version() to copy inputs and operands.
  3084   define_fill_new_machnode(used, fp);
  3086   // Output the definitions for labels
  3087   _instructions.reset();
  3088   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3089     // Ensure this is a machine-world instruction
  3090     if ( instr->ideal_only() ) continue;
  3092     // Access the fields for operand Label
  3093     int label_position = instr->label_position();
  3094     if( label_position != -1 ) {
  3095       // Set the label
  3096       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
  3097       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3098               label_position );
  3099       fprintf(fp,"  oper->_label     = label;\n");
  3100       fprintf(fp,"  oper->_block_num = block_num;\n");
  3101       fprintf(fp,"}\n");
  3102       // Save the label
  3103       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
  3104       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3105               label_position );
  3106       fprintf(fp,"  *label = oper->_label;\n");
  3107       fprintf(fp,"  *block_num = oper->_block_num;\n");
  3108       fprintf(fp,"}\n");
  3112   // Output the definitions for methods
  3113   _instructions.reset();
  3114   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3115     // Ensure this is a machine-world instruction
  3116     if ( instr->ideal_only() ) continue;
  3118     // Access the fields for operand Label
  3119     int method_position = instr->method_position();
  3120     if( method_position != -1 ) {
  3121       // Access the method's address
  3122       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
  3123       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
  3124               method_position );
  3125       fprintf(fp,"}\n");
  3126       fprintf(fp,"\n");
  3130   // Define this instruction's number of relocation entries, base is '0'
  3131   _instructions.reset();
  3132   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3133     // Output the definition for number of relocation entries
  3134     uint reloc_size = instr->reloc(_globalNames);
  3135     if ( reloc_size != 0 ) {
  3136       fprintf(fp,"int  %sNode::reloc()   const {\n", instr->_ident);
  3137       fprintf(fp,  "  return  %d;\n", reloc_size );
  3138       fprintf(fp,"}\n");
  3139       fprintf(fp,"\n");
  3142   fprintf(fp,"\n");
  3144   // Output the definitions for code generation
  3145   //
  3146   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  3147   //   // ...  encoding defined by user
  3148   //   return ptr;
  3149   // }
  3150   //
  3151   _instructions.reset();
  3152   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3153     // Ensure this is a machine-world instruction
  3154     if ( instr->ideal_only() ) continue;
  3156     if (instr->_insencode)         defineEmit        (fp, *instr);
  3157     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
  3158     if (instr->_size)              defineSize        (fp, *instr);
  3160     // side-call to generate output that used to be in the header file:
  3161     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
  3162     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  3165   // Output the definitions for alias analysis
  3166   _instructions.reset();
  3167   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3168     // Ensure this is a machine-world instruction
  3169     if ( instr->ideal_only() ) continue;
  3171     // Analyze machine instructions that either USE or DEF memory.
  3172     int memory_operand = instr->memory_operand(_globalNames);
  3173     // Some guys kill all of memory
  3174     if ( instr->is_wide_memory_kill(_globalNames) ) {
  3175       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  3178     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  3179       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  3180         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
  3181         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
  3182       } else {
  3183         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  3188   // Get the length of the longest identifier
  3189   int max_ident_len = 0;
  3190   _instructions.reset();
  3192   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3193     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3194       int ident_len = (int)strlen(instr->_ident);
  3195       if( max_ident_len < ident_len )
  3196         max_ident_len = ident_len;
  3200   // Emit specifically for Node(s)
  3201   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3202     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3203   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
  3204     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3205   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3207   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3208     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  3209   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
  3210     max_ident_len, "MachNode");
  3211   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3213   // Output the definitions for machine node specific pipeline data
  3214   _machnodes.reset();
  3216   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
  3217     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3218       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  3221   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3223   // Output the definitions for instruction pipeline static data references
  3224   _instructions.reset();
  3226   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3227     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3228       fprintf(_CPP_PIPELINE_file._fp, "\n");
  3229       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
  3230         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3231       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3232         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3238 // -------------------------------- maps ------------------------------------
  3240 // Information needed to generate the ReduceOp mapping for the DFA
  3241 class OutputReduceOp : public OutputMap {
  3242 public:
  3243   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3244     : OutputMap(hpp, cpp, globals, AD) {};
  3246   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  3247   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  3248   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3249                        OutputMap::closing();
  3251   void map(OpClassForm &opc)  {
  3252     const char *reduce = opc._ident;
  3253     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3254     else          fprintf(_cpp, "  0");
  3256   void map(OperandForm &oper) {
  3257     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
  3258     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
  3259     // operand stackSlot does not have a match rule, but produces a stackSlot
  3260     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
  3261     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3262     else          fprintf(_cpp, "  0");
  3264   void map(InstructForm &inst) {
  3265     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
  3266     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3267     else          fprintf(_cpp, "  0");
  3269   void map(char         *reduce) {
  3270     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3271     else          fprintf(_cpp, "  0");
  3273 };
  3275 // Information needed to generate the LeftOp mapping for the DFA
  3276 class OutputLeftOp : public OutputMap {
  3277 public:
  3278   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3279     : OutputMap(hpp, cpp, globals, AD) {};
  3281   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  3282   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  3283   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3284                        OutputMap::closing();
  3286   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3287   void map(OperandForm &oper) {
  3288     const char *reduce = oper.reduce_left(_globals);
  3289     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3290     else          fprintf(_cpp, "  0");
  3292   void map(char        *name) {
  3293     const char *reduce = _AD.reduceLeft(name);
  3294     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3295     else          fprintf(_cpp, "  0");
  3297   void map(InstructForm &inst) {
  3298     const char *reduce = inst.reduce_left(_globals);
  3299     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3300     else          fprintf(_cpp, "  0");
  3302 };
  3305 // Information needed to generate the RightOp mapping for the DFA
  3306 class OutputRightOp : public OutputMap {
  3307 public:
  3308   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3309     : OutputMap(hpp, cpp, globals, AD) {};
  3311   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  3312   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  3313   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3314                        OutputMap::closing();
  3316   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3317   void map(OperandForm &oper) {
  3318     const char *reduce = oper.reduce_right(_globals);
  3319     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3320     else          fprintf(_cpp, "  0");
  3322   void map(char        *name) {
  3323     const char *reduce = _AD.reduceRight(name);
  3324     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3325     else          fprintf(_cpp, "  0");
  3327   void map(InstructForm &inst) {
  3328     const char *reduce = inst.reduce_right(_globals);
  3329     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3330     else          fprintf(_cpp, "  0");
  3332 };
  3335 // Information needed to generate the Rule names for the DFA
  3336 class OutputRuleName : public OutputMap {
  3337 public:
  3338   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3339     : OutputMap(hpp, cpp, globals, AD) {};
  3341   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  3342   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  3343   void closing()     { fprintf(_cpp, "  \"no trailing comma\"\n");
  3344                        OutputMap::closing();
  3346   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  3347   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  3348   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  3349   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
  3350 };
  3353 // Information needed to generate the swallowed mapping for the DFA
  3354 class OutputSwallowed : public OutputMap {
  3355 public:
  3356   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3357     : OutputMap(hpp, cpp, globals, AD) {};
  3359   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  3360   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  3361   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3362                        OutputMap::closing();
  3364   void map(OperandForm &oper) { // Generate the entry for this opcode
  3365     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
  3366     fprintf(_cpp, "  %s", swallowed);
  3368   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  3369   void map(char        *name) { fprintf(_cpp, "  false"); }
  3370   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
  3371 };
  3374 // Information needed to generate the decision array for instruction chain rule
  3375 class OutputInstChainRule : public OutputMap {
  3376 public:
  3377   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3378     : OutputMap(hpp, cpp, globals, AD) {};
  3380   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  3381   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  3382   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3383                        OutputMap::closing();
  3385   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  3386   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  3387   void map(char        *name)  { fprintf(_cpp, "  false"); }
  3388   void map(InstructForm &inst) { // Check for simple chain rule
  3389     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
  3390     fprintf(_cpp, "  %s", chain);
  3392 };
  3395 //---------------------------build_map------------------------------------
  3396 // Build  mapping from enumeration for densely packed operands
  3397 // TO result and child types.
  3398 void ArchDesc::build_map(OutputMap &map) {
  3399   FILE         *fp_hpp = map.decl_file();
  3400   FILE         *fp_cpp = map.def_file();
  3401   int           idx    = 0;
  3402   OperandForm  *op;
  3403   OpClassForm  *opc;
  3404   InstructForm *inst;
  3406   // Construct this mapping
  3407   map.declaration();
  3408   fprintf(fp_cpp,"\n");
  3409   map.definition();
  3411   // Output the mapping for operands
  3412   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  3413   _operands.reset();
  3414   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
  3415     // Ensure this is a machine-world instruction
  3416     if ( op->ideal_only() )  continue;
  3418     // Generate the entry for this opcode
  3419     map.map(*op);    fprintf(fp_cpp, ", // %d\n", idx);
  3420     ++idx;
  3421   };
  3422   fprintf(fp_cpp, "  // last operand\n");
  3424   // Place all user-defined operand classes into the mapping
  3425   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  3426   _opclass.reset();
  3427   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  3428     map.map(*opc);    fprintf(fp_cpp, ", // %d\n", idx);
  3429     ++idx;
  3430   };
  3431   fprintf(fp_cpp, "  // last operand class\n");
  3433   // Place all internally defined operands into the mapping
  3434   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  3435   _internalOpNames.reset();
  3436   char *name = NULL;
  3437   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
  3438     map.map(name);    fprintf(fp_cpp, ", // %d\n", idx);
  3439     ++idx;
  3440   };
  3441   fprintf(fp_cpp, "  // last internally defined operand\n");
  3443   // Place all user-defined instructions into the mapping
  3444   if( map.do_instructions() ) {
  3445     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
  3446     // Output all simple instruction chain rules first
  3447     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
  3449       _instructions.reset();
  3450       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3451         // Ensure this is a machine-world instruction
  3452         if ( inst->ideal_only() )  continue;
  3453         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3454         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3456         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3457         ++idx;
  3458       };
  3459       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
  3460       _instructions.reset();
  3461       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3462         // Ensure this is a machine-world instruction
  3463         if ( inst->ideal_only() )  continue;
  3464         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3465         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3467         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3468         ++idx;
  3469       };
  3470       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
  3472     // Output all instructions that are NOT simple chain rules
  3474       _instructions.reset();
  3475       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3476         // Ensure this is a machine-world instruction
  3477         if ( inst->ideal_only() )  continue;
  3478         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3479         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3481         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3482         ++idx;
  3483       };
  3484       map.record_position(OutputMap::END_REMATERIALIZE, idx );
  3485       _instructions.reset();
  3486       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3487         // Ensure this is a machine-world instruction
  3488         if ( inst->ideal_only() )  continue;
  3489         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3490         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3492         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3493         ++idx;
  3494       };
  3496     fprintf(fp_cpp, "  // last instruction\n");
  3497     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  3499   // Finish defining table
  3500   map.closing();
  3501 };
  3504 // Helper function for buildReduceMaps
  3505 char reg_save_policy(const char *calling_convention) {
  3506   char callconv;
  3508   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  3509   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  3510   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  3511   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  3512   else                                         callconv = 'Z';
  3514   return callconv;
  3517 //---------------------------generate_assertion_checks-------------------
  3518 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  3519   fprintf(fp_cpp, "\n");
  3521   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  3522   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  3523   globalDefs().print_asserts(fp_cpp);
  3524   fprintf(fp_cpp, "}\n");
  3525   fprintf(fp_cpp, "#endif\n");
  3526   fprintf(fp_cpp, "\n");
  3529 //---------------------------addSourceBlocks-----------------------------
  3530 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  3531   if (_source.count() > 0)
  3532     _source.output(fp_cpp);
  3534   generate_adlc_verification(fp_cpp);
  3536 //---------------------------addHeaderBlocks-----------------------------
  3537 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  3538   if (_header.count() > 0)
  3539     _header.output(fp_hpp);
  3541 //-------------------------addPreHeaderBlocks----------------------------
  3542 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  3543   // Output #defines from definition block
  3544   globalDefs().print_defines(fp_hpp);
  3546   if (_pre_header.count() > 0)
  3547     _pre_header.output(fp_hpp);
  3550 //---------------------------buildReduceMaps-----------------------------
  3551 // Build  mapping from enumeration for densely packed operands
  3552 // TO result and child types.
  3553 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  3554   RegDef       *rdef;
  3555   RegDef       *next;
  3557   // The emit bodies currently require functions defined in the source block.
  3559   // Build external declarations for mappings
  3560   fprintf(fp_hpp, "\n");
  3561   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  3562   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  3563   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  3564   fprintf(fp_hpp, "\n");
  3566   // Construct Save-Policy array
  3567   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  3568   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  3569   _register->reset_RegDefs();
  3570   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3571     next              = _register->iter_RegDefs();
  3572     char policy       = reg_save_policy(rdef->_callconv);
  3573     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3574     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
  3576   fprintf(fp_cpp, "};\n\n");
  3578   // Construct Native Save-Policy array
  3579   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  3580   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  3581   _register->reset_RegDefs();
  3582   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3583     next        = _register->iter_RegDefs();
  3584     char policy = reg_save_policy(rdef->_c_conv);
  3585     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3586     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
  3588   fprintf(fp_cpp, "};\n\n");
  3590   // Construct Register Save Type array
  3591   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  3592   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  3593   _register->reset_RegDefs();
  3594   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3595     next = _register->iter_RegDefs();
  3596     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3597     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  3599   fprintf(fp_cpp, "};\n\n");
  3601   // Construct the table for reduceOp
  3602   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  3603   build_map(output_reduce_op);
  3604   // Construct the table for leftOp
  3605   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  3606   build_map(output_left_op);
  3607   // Construct the table for rightOp
  3608   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  3609   build_map(output_right_op);
  3610   // Construct the table of rule names
  3611   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  3612   build_map(output_rule_name);
  3613   // Construct the boolean table for subsumed operands
  3614   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  3615   build_map(output_swallowed);
  3616   // // // Preserve in case we decide to use this table instead of another
  3617   //// Construct the boolean table for instruction chain rules
  3618   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  3619   //build_map(output_inst_chain);
  3624 //---------------------------buildMachOperGenerator---------------------------
  3626 // Recurse through match tree, building path through corresponding state tree,
  3627 // Until we reach the constant we are looking for.
  3628 static void path_to_constant(FILE *fp, FormDict &globals,
  3629                              MatchNode *mnode, uint idx) {
  3630   if ( ! mnode) return;
  3632   unsigned    position = 0;
  3633   const char *result   = NULL;
  3634   const char *name     = NULL;
  3635   const char *optype   = NULL;
  3637   // Base Case: access constant in ideal node linked to current state node
  3638   // Each type of constant has its own access function
  3639   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
  3640        && mnode->base_operand(position, globals, result, name, optype) ) {
  3641     if (         strcmp(optype,"ConI") == 0 ) {
  3642       fprintf(fp, "_leaf->get_int()");
  3643     } else if ( (strcmp(optype,"ConP") == 0) ) {
  3644       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
  3645     } else if ( (strcmp(optype,"ConN") == 0) ) {
  3646       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
  3647     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
  3648       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
  3649     } else if ( (strcmp(optype,"ConF") == 0) ) {
  3650       fprintf(fp, "_leaf->getf()");
  3651     } else if ( (strcmp(optype,"ConD") == 0) ) {
  3652       fprintf(fp, "_leaf->getd()");
  3653     } else if ( (strcmp(optype,"ConL") == 0) ) {
  3654       fprintf(fp, "_leaf->get_long()");
  3655     } else if ( (strcmp(optype,"Con")==0) ) {
  3656       // !!!!! - Update if adding a machine-independent constant type
  3657       fprintf(fp, "_leaf->get_int()");
  3658       assert( false, "Unsupported constant type, pointer or indefinite");
  3659     } else if ( (strcmp(optype,"Bool") == 0) ) {
  3660       fprintf(fp, "_leaf->as_Bool()->_test._test");
  3661     } else {
  3662       assert( false, "Unsupported constant type");
  3664     return;
  3667   // If constant is in left child, build path and recurse
  3668   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  3669   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  3670   if ( (mnode->_lChild) && (lConsts > idx) ) {
  3671     fprintf(fp, "_kids[0]->");
  3672     path_to_constant(fp, globals, mnode->_lChild, idx);
  3673     return;
  3675   // If constant is in right child, build path and recurse
  3676   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
  3677     idx = idx - lConsts;
  3678     fprintf(fp, "_kids[1]->");
  3679     path_to_constant(fp, globals, mnode->_rChild, idx);
  3680     return;
  3682   assert( false, "ShouldNotReachHere()");
  3685 // Generate code that is executed when generating a specific Machine Operand
  3686 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
  3687                             OperandForm &op) {
  3688   const char *opName         = op._ident;
  3689   const char *opEnumName     = AD.machOperEnum(opName);
  3690   uint        num_consts     = op.num_consts(globalNames);
  3692   // Generate the case statement for this opcode
  3693   fprintf(fp, "  case %s:", opEnumName);
  3694   fprintf(fp, "\n    return new (C) %sOper(", opName);
  3695   // Access parameters for constructor from the stat object
  3696   //
  3697   // Build access to condition code value
  3698   if ( (num_consts > 0) ) {
  3699     uint i = 0;
  3700     path_to_constant(fp, globalNames, op._matrule, i);
  3701     for ( i = 1; i < num_consts; ++i ) {
  3702       fprintf(fp, ", ");
  3703       path_to_constant(fp, globalNames, op._matrule, i);
  3706   fprintf(fp, " );\n");
  3710 // Build switch to invoke "new" MachNode or MachOper
  3711 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  3712   int idx = 0;
  3714   // Build switch to invoke 'new' for a specific MachOper
  3715   fprintf(fp_cpp, "\n");
  3716   fprintf(fp_cpp, "\n");
  3717   fprintf(fp_cpp,
  3718           "//------------------------- MachOper Generator ---------------\n");
  3719   fprintf(fp_cpp,
  3720           "// A switch statement on the dense-packed user-defined type system\n"
  3721           "// that invokes 'new' on the corresponding class constructor.\n");
  3722   fprintf(fp_cpp, "\n");
  3723   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  3724   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3725   fprintf(fp_cpp, "{\n");
  3726   fprintf(fp_cpp, "\n");
  3727   fprintf(fp_cpp, "  switch(opcode) {\n");
  3729   // Place all user-defined operands into the mapping
  3730   _operands.reset();
  3731   int  opIndex = 0;
  3732   OperandForm *op;
  3733   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
  3734     // Ensure this is a machine-world instruction
  3735     if ( op->ideal_only() )  continue;
  3737     genMachOperCase(fp_cpp, _globalNames, *this, *op);
  3738   };
  3740   // Do not iterate over operand classes for the  operand generator!!!
  3742   // Place all internal operands into the mapping
  3743   _internalOpNames.reset();
  3744   const char *iopn;
  3745   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
  3746     const char *opEnumName = machOperEnum(iopn);
  3747     // Generate the case statement for this opcode
  3748     fprintf(fp_cpp, "  case %s:", opEnumName);
  3749     fprintf(fp_cpp, "    return NULL;\n");
  3750   };
  3752   // Generate the default case for switch(opcode)
  3753   fprintf(fp_cpp, "  \n");
  3754   fprintf(fp_cpp, "  default:\n");
  3755   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  3756   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3757   fprintf(fp_cpp, "    break;\n");
  3758   fprintf(fp_cpp, "  }\n");
  3760   // Generate the closing for method Matcher::MachOperGenerator
  3761   fprintf(fp_cpp, "  return NULL;\n");
  3762   fprintf(fp_cpp, "};\n");
  3766 //---------------------------buildMachNode-------------------------------------
  3767 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
  3768 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  3769   const char *opType  = NULL;
  3770   const char *opClass = inst->_ident;
  3772   // Create the MachNode object
  3773   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
  3775   if ( (inst->num_post_match_opnds() != 0) ) {
  3776     // Instruction that contains operands which are not in match rule.
  3777     //
  3778     // Check if the first post-match component may be an interesting def
  3779     bool           dont_care = false;
  3780     ComponentList &comp_list = inst->_components;
  3781     Component     *comp      = NULL;
  3782     comp_list.reset();
  3783     if ( comp_list.match_iter() != NULL )    dont_care = true;
  3785     // Insert operands that are not in match-rule.
  3786     // Only insert a DEF if the do_care flag is set
  3787     comp_list.reset();
  3788     while ( comp = comp_list.post_match_iter() ) {
  3789       // Check if we don't care about DEFs or KILLs that are not USEs
  3790       if ( dont_care && (! comp->isa(Component::USE)) ) {
  3791         continue;
  3793       dont_care = true;
  3794       // For each operand not in the match rule, call MachOperGenerator
  3795       // with the enum for the opcode that needs to be built.
  3796       ComponentList clist = inst->_components;
  3797       int         index  = clist.operand_position(comp->_name, comp->_usedef);
  3798       const char *opcode = machOperEnum(comp->_type);
  3799       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
  3800       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
  3803   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
  3804     // An instruction that chains from a constant!
  3805     // In this case, we need to subsume the constant into the node
  3806     // at operand position, oper_input_base().
  3807     //
  3808     // Fill in the constant
  3809     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
  3810             inst->oper_input_base(_globalNames));
  3811     // #####
  3812     // Check for multiple constants and then fill them in.
  3813     // Just like MachOperGenerator
  3814     const char *opName = inst->_matrule->_rChild->_opType;
  3815     fprintf(fp_cpp, "new (C) %sOper(", opName);
  3816     // Grab operand form
  3817     OperandForm *op = (_globalNames[opName])->is_operand();
  3818     // Look up the number of constants
  3819     uint num_consts = op->num_consts(_globalNames);
  3820     if ( (num_consts > 0) ) {
  3821       uint i = 0;
  3822       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3823       for ( i = 1; i < num_consts; ++i ) {
  3824         fprintf(fp_cpp, ", ");
  3825         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3828     fprintf(fp_cpp, " );\n");
  3829     // #####
  3832   // Fill in the bottom_type where requested
  3833   if ( inst->captures_bottom_type(_globalNames) ) {
  3834     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  3836   if( inst->is_ideal_if() ) {
  3837     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
  3838     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  3840   if( inst->is_ideal_fastlock() ) {
  3841     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  3846 //---------------------------declare_cisc_version------------------------------
  3847 // Build CISC version of this instruction
  3848 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  3849   if( AD.can_cisc_spill() ) {
  3850     InstructForm *inst_cisc = cisc_spill_alternate();
  3851     if (inst_cisc != NULL) {
  3852       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
  3853       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
  3854       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
  3855       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
  3860 //---------------------------define_cisc_version-------------------------------
  3861 // Build CISC version of this instruction
  3862 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  3863   InstructForm *inst_cisc = this->cisc_spill_alternate();
  3864   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
  3865     const char   *name      = inst_cisc->_ident;
  3866     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
  3867     OperandForm *cisc_oper = AD.cisc_spill_operand();
  3868     assert( cisc_oper != NULL, "insanity check");
  3869     const char *cisc_oper_name  = cisc_oper->_ident;
  3870     assert( cisc_oper_name != NULL, "insanity check");
  3871     //
  3872     // Set the correct reg_mask_or_stack for the cisc operand
  3873     fprintf(fp_cpp, "\n");
  3874     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
  3875     // Lookup the correct reg_mask_or_stack
  3876     const char *reg_mask_name = cisc_reg_mask_name();
  3877     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
  3878     fprintf(fp_cpp, "}\n");
  3879     //
  3880     // Construct CISC version of this instruction
  3881     fprintf(fp_cpp, "\n");
  3882     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
  3883     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
  3884     // Create the MachNode object
  3885     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  3886     // Fill in the bottom_type where requested
  3887     if ( this->captures_bottom_type(AD.globalNames()) ) {
  3888       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  3891     uint cur_num_opnds = num_opnds();
  3892     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
  3893       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
  3896     fprintf(fp_cpp, "\n");
  3897     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  3898     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  3899     // Construct operand to access [stack_pointer + offset]
  3900     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
  3901     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
  3902     fprintf(fp_cpp, "\n");
  3904     // Return result and exit scope
  3905     fprintf(fp_cpp, "  return node;\n");
  3906     fprintf(fp_cpp, "}\n");
  3907     fprintf(fp_cpp, "\n");
  3908     return true;
  3910   return false;
  3913 //---------------------------declare_short_branch_methods----------------------
  3914 // Build prototypes for short branch methods
  3915 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  3916   if (has_short_branch_form()) {
  3917     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  3921 //---------------------------define_short_branch_methods-----------------------
  3922 // Build definitions for short branch methods
  3923 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
  3924   if (has_short_branch_form()) {
  3925     InstructForm *short_branch = short_branch_form();
  3926     const char   *name         = short_branch->_ident;
  3928     // Construct short_branch_version() method.
  3929     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
  3930     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
  3931     // Create the MachNode object
  3932     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  3933     if( is_ideal_if() ) {
  3934       fprintf(fp_cpp, "  node->_prob = _prob;\n");
  3935       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
  3937     // Fill in the bottom_type where requested
  3938     if ( this->captures_bottom_type(AD.globalNames()) ) {
  3939       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  3942     fprintf(fp_cpp, "\n");
  3943     // Short branch version must use same node index for access
  3944     // through allocator's tables
  3945     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  3946     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  3948     // Return result and exit scope
  3949     fprintf(fp_cpp, "  return node;\n");
  3950     fprintf(fp_cpp, "}\n");
  3951     fprintf(fp_cpp,"\n");
  3952     return true;
  3954   return false;
  3958 //---------------------------buildMachNodeGenerator----------------------------
  3959 // Build switch to invoke appropriate "new" MachNode for an opcode
  3960 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
  3962   // Build switch to invoke 'new' for a specific MachNode
  3963   fprintf(fp_cpp, "\n");
  3964   fprintf(fp_cpp, "\n");
  3965   fprintf(fp_cpp,
  3966           "//------------------------- MachNode Generator ---------------\n");
  3967   fprintf(fp_cpp,
  3968           "// A switch statement on the dense-packed user-defined type system\n"
  3969           "// that invokes 'new' on the corresponding class constructor.\n");
  3970   fprintf(fp_cpp, "\n");
  3971   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  3972   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3973   fprintf(fp_cpp, "{\n");
  3974   fprintf(fp_cpp, "  switch(opcode) {\n");
  3976   // Provide constructor for all user-defined instructions
  3977   _instructions.reset();
  3978   int  opIndex = operandFormCount();
  3979   InstructForm *inst;
  3980   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3981     // Ensure that matrule is defined.
  3982     if ( inst->_matrule == NULL ) continue;
  3984     int         opcode  = opIndex++;
  3985     const char *opClass = inst->_ident;
  3986     char       *opType  = NULL;
  3988     // Generate the case statement for this instruction
  3989     fprintf(fp_cpp, "  case %s_rule:", opClass);
  3991     // Start local scope
  3992     fprintf(fp_cpp, "  {\n");
  3993     // Generate code to construct the new MachNode
  3994     buildMachNode(fp_cpp, inst, "     ");
  3995     // Return result and exit scope
  3996     fprintf(fp_cpp, "      return node;\n");
  3997     fprintf(fp_cpp, "    }\n");
  4000   // Generate the default case for switch(opcode)
  4001   fprintf(fp_cpp, "  \n");
  4002   fprintf(fp_cpp, "  default:\n");
  4003   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  4004   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  4005   fprintf(fp_cpp, "    break;\n");
  4006   fprintf(fp_cpp, "  };\n");
  4008   // Generate the closing for method Matcher::MachNodeGenerator
  4009   fprintf(fp_cpp, "  return NULL;\n");
  4010   fprintf(fp_cpp, "}\n");
  4014 //---------------------------buildInstructMatchCheck--------------------------
  4015 // Output the method to Matcher which checks whether or not a specific
  4016 // instruction has a matching rule for the host architecture.
  4017 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  4018   fprintf(fp_cpp, "\n\n");
  4019   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  4020   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  4021   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  4022   fprintf(fp_cpp, "}\n\n");
  4024   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  4025   int i;
  4026   for (i = 0; i < _last_opcode - 1; i++) {
  4027     fprintf(fp_cpp, "    %-5s,  // %s\n",
  4028             _has_match_rule[i] ? "true" : "false",
  4029             NodeClassNames[i]);
  4031   fprintf(fp_cpp, "    %-5s   // %s\n",
  4032           _has_match_rule[i] ? "true" : "false",
  4033           NodeClassNames[i]);
  4034   fprintf(fp_cpp, "};\n");
  4037 //---------------------------buildFrameMethods---------------------------------
  4038 // Output the methods to Matcher which specify frame behavior
  4039 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  4040   fprintf(fp_cpp,"\n\n");
  4041   // Stack Direction
  4042   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
  4043           _frame->_direction ? "true" : "false");
  4044   // Sync Stack Slots
  4045   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
  4046           _frame->_sync_stack_slots);
  4047   // Java Stack Alignment
  4048   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
  4049           _frame->_alignment);
  4050   // Java Return Address Location
  4051   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  4052   if (_frame->_return_addr_loc) {
  4053     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4054             _frame->_return_addr);
  4056   else {
  4057     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
  4058             _frame->_return_addr);
  4060   // Java Stack Slot Preservation
  4061   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  4062   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  4063   // Top Of Stack Slot Preservation, for both Java and C
  4064   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  4065   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  4066   // varargs C out slots killed
  4067   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  4068   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  4069   // Java Argument Position
  4070   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  4071   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  4072   fprintf(fp_cpp,"}\n\n");
  4073   // Native Argument Position
  4074   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  4075   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  4076   fprintf(fp_cpp,"}\n\n");
  4077   // Java Return Value Location
  4078   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
  4079   fprintf(fp_cpp,"%s\n", _frame->_return_value);
  4080   fprintf(fp_cpp,"}\n\n");
  4081   // Native Return Value Location
  4082   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
  4083   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  4084   fprintf(fp_cpp,"}\n\n");
  4086   // Inline Cache Register, mask definition, and encoding
  4087   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  4088   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4089           _frame->_inline_cache_reg);
  4090   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  4091   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
  4093   // Interpreter's Method Oop Register, mask definition, and encoding
  4094   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  4095   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4096           _frame->_interpreter_method_oop_reg);
  4097   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  4098   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
  4100   // Interpreter's Frame Pointer Register, mask definition, and encoding
  4101   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  4102   if (_frame->_interpreter_frame_pointer_reg == NULL)
  4103     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  4104   else
  4105     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4106             _frame->_interpreter_frame_pointer_reg);
  4108   // Frame Pointer definition
  4109   /* CNC - I can not contemplate having a different frame pointer between
  4110      Java and native code; makes my head hurt to think about it.
  4111   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  4112   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4113           _frame->_frame_pointer);
  4114   */
  4115   // (Native) Frame Pointer definition
  4116   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  4117   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4118           _frame->_frame_pointer);
  4120   // Number of callee-save + always-save registers for calling convention
  4121   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  4122   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  4123   RegDef *rdef;
  4124   int nof_saved_registers = 0;
  4125   _register->reset_RegDefs();
  4126   while( (rdef = _register->iter_RegDefs()) != NULL ) {
  4127     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
  4128       ++nof_saved_registers;
  4130   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  4131   fprintf(fp_cpp, "};\n\n");
  4137 static int PrintAdlcCisc = 0;
  4138 //---------------------------identify_cisc_spilling----------------------------
  4139 // Get info for the CISC_oracle and MachNode::cisc_version()
  4140 void ArchDesc::identify_cisc_spill_instructions() {
  4142   // Find the user-defined operand for cisc-spilling
  4143   if( _frame->_cisc_spilling_operand_name != NULL ) {
  4144     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
  4145     OperandForm *oper = form ? form->is_operand() : NULL;
  4146     // Verify the user's suggestion
  4147     if( oper != NULL ) {
  4148       // Ensure that match field is defined.
  4149       if ( oper->_matrule != NULL )  {
  4150         MatchRule &mrule = *oper->_matrule;
  4151         if( strcmp(mrule._opType,"AddP") == 0 ) {
  4152           MatchNode *left = mrule._lChild;
  4153           MatchNode *right= mrule._rChild;
  4154           if( left != NULL && right != NULL ) {
  4155             const Form *left_op  = _globalNames[left->_opType]->is_operand();
  4156             const Form *right_op = _globalNames[right->_opType]->is_operand();
  4157             if(  (left_op != NULL && right_op != NULL)
  4158               && (left_op->interface_type(_globalNames) == Form::register_interface)
  4159               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
  4160               // Successfully verified operand
  4161               set_cisc_spill_operand( oper );
  4162               if( _cisc_spill_debug ) {
  4163                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
  4172   if( cisc_spill_operand() != NULL ) {
  4173     // N^2 comparison of instructions looking for a cisc-spilling version
  4174     _instructions.reset();
  4175     InstructForm *instr;
  4176     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  4177       // Ensure that match field is defined.
  4178       if ( instr->_matrule == NULL )  continue;
  4180       MatchRule &mrule = *instr->_matrule;
  4181       Predicate *pred  =  instr->build_predicate();
  4183       // Grab the machine type of the operand
  4184       const char *rootOp = instr->_ident;
  4185       mrule._machType    = rootOp;
  4187       // Find result type for match
  4188       const char *result = instr->reduce_result();
  4190       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
  4191       bool  found_cisc_alternate = false;
  4192       _instructions.reset2();
  4193       InstructForm *instr2;
  4194       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
  4195         // Ensure that match field is defined.
  4196         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
  4197         if ( instr2->_matrule != NULL
  4198             && (instr != instr2 )                // Skip self
  4199             && (instr2->reduce_result() != NULL) // want same result
  4200             && (strcmp(result, instr2->reduce_result()) == 0)) {
  4201           MatchRule &mrule2 = *instr2->_matrule;
  4202           Predicate *pred2  =  instr2->build_predicate();
  4203           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
  4210 //---------------------------build_cisc_spilling-------------------------------
  4211 // Get info for the CISC_oracle and MachNode::cisc_version()
  4212 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  4213   // Output the table for cisc spilling
  4214   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  4215   _instructions.reset();
  4216   InstructForm *inst = NULL;
  4217   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4218     // Ensure this is a machine-world instruction
  4219     if ( inst->ideal_only() )  continue;
  4220     const char *inst_name = inst->_ident;
  4221     int   operand   = inst->cisc_spill_operand();
  4222     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
  4223       InstructForm *inst2 = inst->cisc_spill_alternate();
  4224       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
  4227   fprintf(fp_cpp, "\n\n");
  4230 //---------------------------identify_short_branches----------------------------
  4231 // Get info for our short branch replacement oracle.
  4232 void ArchDesc::identify_short_branches() {
  4233   // Walk over all instructions, checking to see if they match a short
  4234   // branching alternate.
  4235   _instructions.reset();
  4236   InstructForm *instr;
  4237   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4238     // The instruction must have a match rule.
  4239     if (instr->_matrule != NULL &&
  4240         instr->is_short_branch()) {
  4242       _instructions.reset2();
  4243       InstructForm *instr2;
  4244       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
  4245         instr2->check_branch_variant(*this, instr);
  4252 //---------------------------identify_unique_operands---------------------------
  4253 // Identify unique operands.
  4254 void ArchDesc::identify_unique_operands() {
  4255   // Walk over all instructions.
  4256   _instructions.reset();
  4257   InstructForm *instr;
  4258   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4259     // Ensure this is a machine-world instruction
  4260     if (!instr->ideal_only()) {
  4261       instr->set_unique_opnds();

mercurial