src/share/vm/gc_implementation/parallelScavenge/psScavenge.cpp

Mon, 27 May 2013 12:58:42 +0200

author
stefank
date
Mon, 27 May 2013 12:58:42 +0200
changeset 5196
8dbc025ff709
parent 5194
eda078b01c65
child 5202
47bdfb3d010f
permissions
-rw-r--r--

8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Summary: Combine the calls to StringTable::unlink and StringTable::oops_do in Parallel Scavenge.
Reviewed-by: pliden, coleenp

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    35 #include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
    36 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    37 #include "gc_implementation/shared/isGCActiveMark.hpp"
    38 #include "gc_implementation/shared/spaceDecorator.hpp"
    39 #include "gc_interface/gcCause.hpp"
    40 #include "memory/collectorPolicy.hpp"
    41 #include "memory/gcLocker.inline.hpp"
    42 #include "memory/referencePolicy.hpp"
    43 #include "memory/referenceProcessor.hpp"
    44 #include "memory/resourceArea.hpp"
    45 #include "oops/oop.inline.hpp"
    46 #include "oops/oop.psgc.inline.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/handles.inline.hpp"
    50 #include "runtime/threadCritical.hpp"
    51 #include "runtime/vmThread.hpp"
    52 #include "runtime/vm_operations.hpp"
    53 #include "services/memoryService.hpp"
    54 #include "utilities/stack.inline.hpp"
    57 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
    58 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
    59 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
    60 CardTableExtension*        PSScavenge::_card_table = NULL;
    61 bool                       PSScavenge::_survivor_overflow = false;
    62 uint                       PSScavenge::_tenuring_threshold = 0;
    63 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
    64 elapsedTimer               PSScavenge::_accumulated_time;
    65 Stack<markOop, mtGC>       PSScavenge::_preserved_mark_stack;
    66 Stack<oop, mtGC>           PSScavenge::_preserved_oop_stack;
    67 CollectorCounters*         PSScavenge::_counters = NULL;
    68 bool                       PSScavenge::_promotion_failed = false;
    70 // Define before use
    71 class PSIsAliveClosure: public BoolObjectClosure {
    72 public:
    73   bool do_object_b(oop p) {
    74     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
    75   }
    76 };
    78 PSIsAliveClosure PSScavenge::_is_alive_closure;
    80 class PSKeepAliveClosure: public OopClosure {
    81 protected:
    82   MutableSpace* _to_space;
    83   PSPromotionManager* _promotion_manager;
    85 public:
    86   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
    87     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    88     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    89     _to_space = heap->young_gen()->to_space();
    91     assert(_promotion_manager != NULL, "Sanity");
    92   }
    94   template <class T> void do_oop_work(T* p) {
    95     assert (!oopDesc::is_null(*p), "expected non-null ref");
    96     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
    97             "expected an oop while scanning weak refs");
    99     // Weak refs may be visited more than once.
   100     if (PSScavenge::should_scavenge(p, _to_space)) {
   101       PSScavenge::copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(_promotion_manager, p);
   102     }
   103   }
   104   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
   105   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
   106 };
   108 class PSEvacuateFollowersClosure: public VoidClosure {
   109  private:
   110   PSPromotionManager* _promotion_manager;
   111  public:
   112   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
   114   virtual void do_void() {
   115     assert(_promotion_manager != NULL, "Sanity");
   116     _promotion_manager->drain_stacks(true);
   117     guarantee(_promotion_manager->stacks_empty(),
   118               "stacks should be empty at this point");
   119   }
   120 };
   122 class PSPromotionFailedClosure : public ObjectClosure {
   123   virtual void do_object(oop obj) {
   124     if (obj->is_forwarded()) {
   125       obj->init_mark();
   126     }
   127   }
   128 };
   130 class PSRefProcTaskProxy: public GCTask {
   131   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   132   ProcessTask & _rp_task;
   133   uint          _work_id;
   134 public:
   135   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
   136     : _rp_task(rp_task),
   137       _work_id(work_id)
   138   { }
   140 private:
   141   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
   142   virtual void do_it(GCTaskManager* manager, uint which);
   143 };
   145 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
   146 {
   147   PSPromotionManager* promotion_manager =
   148     PSPromotionManager::gc_thread_promotion_manager(which);
   149   assert(promotion_manager != NULL, "sanity check");
   150   PSKeepAliveClosure keep_alive(promotion_manager);
   151   PSEvacuateFollowersClosure evac_followers(promotion_manager);
   152   PSIsAliveClosure is_alive;
   153   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
   154 }
   156 class PSRefEnqueueTaskProxy: public GCTask {
   157   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   158   EnqueueTask& _enq_task;
   159   uint         _work_id;
   161 public:
   162   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
   163     : _enq_task(enq_task),
   164       _work_id(work_id)
   165   { }
   167   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
   168   virtual void do_it(GCTaskManager* manager, uint which)
   169   {
   170     _enq_task.work(_work_id);
   171   }
   172 };
   174 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   175   virtual void execute(ProcessTask& task);
   176   virtual void execute(EnqueueTask& task);
   177 };
   179 void PSRefProcTaskExecutor::execute(ProcessTask& task)
   180 {
   181   GCTaskQueue* q = GCTaskQueue::create();
   182   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
   183   for(uint i=0; i < manager->active_workers(); i++) {
   184     q->enqueue(new PSRefProcTaskProxy(task, i));
   185   }
   186   ParallelTaskTerminator terminator(manager->active_workers(),
   187                  (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
   188   if (task.marks_oops_alive() && manager->active_workers() > 1) {
   189     for (uint j = 0; j < manager->active_workers(); j++) {
   190       q->enqueue(new StealTask(&terminator));
   191     }
   192   }
   193   manager->execute_and_wait(q);
   194 }
   197 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
   198 {
   199   GCTaskQueue* q = GCTaskQueue::create();
   200   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
   201   for(uint i=0; i < manager->active_workers(); i++) {
   202     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
   203   }
   204   manager->execute_and_wait(q);
   205 }
   207 // This method contains all heap specific policy for invoking scavenge.
   208 // PSScavenge::invoke_no_policy() will do nothing but attempt to
   209 // scavenge. It will not clean up after failed promotions, bail out if
   210 // we've exceeded policy time limits, or any other special behavior.
   211 // All such policy should be placed here.
   212 //
   213 // Note that this method should only be called from the vm_thread while
   214 // at a safepoint!
   215 bool PSScavenge::invoke() {
   216   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   217   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   218   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   220   ParallelScavengeHeap* const heap = (ParallelScavengeHeap*)Universe::heap();
   221   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   223   PSAdaptiveSizePolicy* policy = heap->size_policy();
   224   IsGCActiveMark mark;
   226   const bool scavenge_done = PSScavenge::invoke_no_policy();
   227   const bool need_full_gc = !scavenge_done ||
   228     policy->should_full_GC(heap->old_gen()->free_in_bytes());
   229   bool full_gc_done = false;
   231   if (UsePerfData) {
   232     PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
   233     const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped;
   234     counters->update_full_follows_scavenge(ffs_val);
   235   }
   237   if (need_full_gc) {
   238     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
   239     CollectorPolicy* cp = heap->collector_policy();
   240     const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
   242     if (UseParallelOldGC) {
   243       full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs);
   244     } else {
   245       full_gc_done = PSMarkSweep::invoke_no_policy(clear_all_softrefs);
   246     }
   247   }
   249   return full_gc_done;
   250 }
   252 // This method contains no policy. You should probably
   253 // be calling invoke() instead.
   254 bool PSScavenge::invoke_no_policy() {
   255   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   256   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   258   assert(_preserved_mark_stack.is_empty(), "should be empty");
   259   assert(_preserved_oop_stack.is_empty(), "should be empty");
   261   TimeStamp scavenge_entry;
   262   TimeStamp scavenge_midpoint;
   263   TimeStamp scavenge_exit;
   265   scavenge_entry.update();
   267   if (GC_locker::check_active_before_gc()) {
   268     return false;
   269   }
   271   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   272   GCCause::Cause gc_cause = heap->gc_cause();
   273   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   275   // Check for potential problems.
   276   if (!should_attempt_scavenge()) {
   277     return false;
   278   }
   280   bool promotion_failure_occurred = false;
   282   PSYoungGen* young_gen = heap->young_gen();
   283   PSOldGen* old_gen = heap->old_gen();
   284   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   285   heap->increment_total_collections();
   287   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   289   if ((gc_cause != GCCause::_java_lang_system_gc) ||
   290        UseAdaptiveSizePolicyWithSystemGC) {
   291     // Gather the feedback data for eden occupancy.
   292     young_gen->eden_space()->accumulate_statistics();
   293   }
   295   if (ZapUnusedHeapArea) {
   296     // Save information needed to minimize mangling
   297     heap->record_gen_tops_before_GC();
   298   }
   300   heap->print_heap_before_gc();
   302   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
   303   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
   305   size_t prev_used = heap->used();
   306   assert(promotion_failed() == false, "Sanity");
   308   // Fill in TLABs
   309   heap->accumulate_statistics_all_tlabs();
   310   heap->ensure_parsability(true);  // retire TLABs
   312   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   313     HandleMark hm;  // Discard invalid handles created during verification
   314     Universe::verify(" VerifyBeforeGC:");
   315   }
   317   {
   318     ResourceMark rm;
   319     HandleMark hm;
   321     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   322     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   323     TraceTime t1(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
   324     TraceCollectorStats tcs(counters());
   325     TraceMemoryManagerStats tms(false /* not full GC */,gc_cause);
   327     if (TraceGen0Time) accumulated_time()->start();
   329     // Let the size policy know we're starting
   330     size_policy->minor_collection_begin();
   332     // Verify the object start arrays.
   333     if (VerifyObjectStartArray &&
   334         VerifyBeforeGC) {
   335       old_gen->verify_object_start_array();
   336     }
   338     // Verify no unmarked old->young roots
   339     if (VerifyRememberedSets) {
   340       CardTableExtension::verify_all_young_refs_imprecise();
   341     }
   343     if (!ScavengeWithObjectsInToSpace) {
   344       assert(young_gen->to_space()->is_empty(),
   345              "Attempt to scavenge with live objects in to_space");
   346       young_gen->to_space()->clear(SpaceDecorator::Mangle);
   347     } else if (ZapUnusedHeapArea) {
   348       young_gen->to_space()->mangle_unused_area();
   349     }
   350     save_to_space_top_before_gc();
   352     COMPILER2_PRESENT(DerivedPointerTable::clear());
   354     reference_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   355     reference_processor()->setup_policy(false);
   357     // We track how much was promoted to the next generation for
   358     // the AdaptiveSizePolicy.
   359     size_t old_gen_used_before = old_gen->used_in_bytes();
   361     // For PrintGCDetails
   362     size_t young_gen_used_before = young_gen->used_in_bytes();
   364     // Reset our survivor overflow.
   365     set_survivor_overflow(false);
   367     // We need to save the old top values before
   368     // creating the promotion_manager. We pass the top
   369     // values to the card_table, to prevent it from
   370     // straying into the promotion labs.
   371     HeapWord* old_top = old_gen->object_space()->top();
   373     // Release all previously held resources
   374     gc_task_manager()->release_all_resources();
   376     // Set the number of GC threads to be used in this collection
   377     gc_task_manager()->set_active_gang();
   378     gc_task_manager()->task_idle_workers();
   379     // Get the active number of workers here and use that value
   380     // throughout the methods.
   381     uint active_workers = gc_task_manager()->active_workers();
   382     heap->set_par_threads(active_workers);
   384     PSPromotionManager::pre_scavenge();
   386     // We'll use the promotion manager again later.
   387     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
   388     {
   389       // TraceTime("Roots");
   390       ParallelScavengeHeap::ParStrongRootsScope psrs;
   392       GCTaskQueue* q = GCTaskQueue::create();
   394       if (!old_gen->object_space()->is_empty()) {
   395         // There are only old-to-young pointers if there are objects
   396         // in the old gen.
   397         uint stripe_total = active_workers;
   398         for(uint i=0; i < stripe_total; i++) {
   399           q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
   400         }
   401       }
   403       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
   404       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
   405       // We scan the thread roots in parallel
   406       Threads::create_thread_roots_tasks(q);
   407       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
   408       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
   409       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
   410       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
   411       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::class_loader_data));
   412       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
   413       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
   415       ParallelTaskTerminator terminator(
   416         active_workers,
   417                   (TaskQueueSetSuper*) promotion_manager->stack_array_depth());
   418       if (active_workers > 1) {
   419         for (uint j = 0; j < active_workers; j++) {
   420           q->enqueue(new StealTask(&terminator));
   421         }
   422       }
   424       gc_task_manager()->execute_and_wait(q);
   425     }
   427     scavenge_midpoint.update();
   429     // Process reference objects discovered during scavenge
   430     {
   431       reference_processor()->setup_policy(false); // not always_clear
   432       reference_processor()->set_active_mt_degree(active_workers);
   433       PSKeepAliveClosure keep_alive(promotion_manager);
   434       PSEvacuateFollowersClosure evac_followers(promotion_manager);
   435       if (reference_processor()->processing_is_mt()) {
   436         PSRefProcTaskExecutor task_executor;
   437         reference_processor()->process_discovered_references(
   438           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
   439       } else {
   440         reference_processor()->process_discovered_references(
   441           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
   442       }
   443     }
   445     // Enqueue reference objects discovered during scavenge.
   446     if (reference_processor()->processing_is_mt()) {
   447       PSRefProcTaskExecutor task_executor;
   448       reference_processor()->enqueue_discovered_references(&task_executor);
   449     } else {
   450       reference_processor()->enqueue_discovered_references(NULL);
   451     }
   453     // Unlink any dead interned Strings and process the remaining live ones.
   454     PSScavengeRootsClosure root_closure(promotion_manager);
   455     StringTable::unlink_or_oops_do(&_is_alive_closure, &root_closure);
   457     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
   458     PSPromotionManager::post_scavenge();
   460     promotion_failure_occurred = promotion_failed();
   461     if (promotion_failure_occurred) {
   462       clean_up_failed_promotion();
   463       if (PrintGC) {
   464         gclog_or_tty->print("--");
   465       }
   466     }
   468     // Let the size policy know we're done.  Note that we count promotion
   469     // failure cleanup time as part of the collection (otherwise, we're
   470     // implicitly saying it's mutator time).
   471     size_policy->minor_collection_end(gc_cause);
   473     if (!promotion_failure_occurred) {
   474       // Swap the survivor spaces.
   477       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
   478       young_gen->from_space()->clear(SpaceDecorator::Mangle);
   479       young_gen->swap_spaces();
   481       size_t survived = young_gen->from_space()->used_in_bytes();
   482       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
   483       size_policy->update_averages(_survivor_overflow, survived, promoted);
   485       // A successful scavenge should restart the GC time limit count which is
   486       // for full GC's.
   487       size_policy->reset_gc_overhead_limit_count();
   488       if (UseAdaptiveSizePolicy) {
   489         // Calculate the new survivor size and tenuring threshold
   491         if (PrintAdaptiveSizePolicy) {
   492           gclog_or_tty->print("AdaptiveSizeStart: ");
   493           gclog_or_tty->stamp();
   494           gclog_or_tty->print_cr(" collection: %d ",
   495                          heap->total_collections());
   497           if (Verbose) {
   498             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
   499               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
   500           }
   501         }
   504         if (UsePerfData) {
   505           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   506           counters->update_old_eden_size(
   507             size_policy->calculated_eden_size_in_bytes());
   508           counters->update_old_promo_size(
   509             size_policy->calculated_promo_size_in_bytes());
   510           counters->update_old_capacity(old_gen->capacity_in_bytes());
   511           counters->update_young_capacity(young_gen->capacity_in_bytes());
   512           counters->update_survived(survived);
   513           counters->update_promoted(promoted);
   514           counters->update_survivor_overflowed(_survivor_overflow);
   515         }
   517         size_t survivor_limit =
   518           size_policy->max_survivor_size(young_gen->max_size());
   519         _tenuring_threshold =
   520           size_policy->compute_survivor_space_size_and_threshold(
   521                                                            _survivor_overflow,
   522                                                            _tenuring_threshold,
   523                                                            survivor_limit);
   525        if (PrintTenuringDistribution) {
   526          gclog_or_tty->cr();
   527          gclog_or_tty->print_cr("Desired survivor size " SIZE_FORMAT " bytes, new threshold %u (max %u)",
   528                                 size_policy->calculated_survivor_size_in_bytes(),
   529                                 _tenuring_threshold, MaxTenuringThreshold);
   530        }
   532         if (UsePerfData) {
   533           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   534           counters->update_tenuring_threshold(_tenuring_threshold);
   535           counters->update_survivor_size_counters();
   536         }
   538         // Do call at minor collections?
   539         // Don't check if the size_policy is ready at this
   540         // level.  Let the size_policy check that internally.
   541         if (UseAdaptiveSizePolicy &&
   542             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
   543             ((gc_cause != GCCause::_java_lang_system_gc) ||
   544               UseAdaptiveSizePolicyWithSystemGC)) {
   546           // Calculate optimial free space amounts
   547           assert(young_gen->max_size() >
   548             young_gen->from_space()->capacity_in_bytes() +
   549             young_gen->to_space()->capacity_in_bytes(),
   550             "Sizes of space in young gen are out-of-bounds");
   552           size_t young_live = young_gen->used_in_bytes();
   553           size_t eden_live = young_gen->eden_space()->used_in_bytes();
   554           size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
   555           size_t max_old_gen_size = old_gen->max_gen_size();
   556           size_t max_eden_size = young_gen->max_size() -
   557             young_gen->from_space()->capacity_in_bytes() -
   558             young_gen->to_space()->capacity_in_bytes();
   560           // Used for diagnostics
   561           size_policy->clear_generation_free_space_flags();
   563           size_policy->compute_eden_space_size(young_live,
   564                                                eden_live,
   565                                                cur_eden,
   566                                                max_eden_size,
   567                                                false /* not full gc*/);
   569           size_policy->check_gc_overhead_limit(young_live,
   570                                                eden_live,
   571                                                max_old_gen_size,
   572                                                max_eden_size,
   573                                                false /* not full gc*/,
   574                                                gc_cause,
   575                                                heap->collector_policy());
   577           size_policy->decay_supplemental_growth(false /* not full gc*/);
   578         }
   579         // Resize the young generation at every collection
   580         // even if new sizes have not been calculated.  This is
   581         // to allow resizes that may have been inhibited by the
   582         // relative location of the "to" and "from" spaces.
   584         // Resizing the old gen at minor collects can cause increases
   585         // that don't feed back to the generation sizing policy until
   586         // a major collection.  Don't resize the old gen here.
   588         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
   589                         size_policy->calculated_survivor_size_in_bytes());
   591         if (PrintAdaptiveSizePolicy) {
   592           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   593                          heap->total_collections());
   594         }
   595       }
   597       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
   598       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
   599       // Also update() will case adaptive NUMA chunk resizing.
   600       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
   601       young_gen->eden_space()->update();
   603       heap->gc_policy_counters()->update_counters();
   605       heap->resize_all_tlabs();
   607       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
   608     }
   610     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   612     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
   614     CodeCache::prune_scavenge_root_nmethods();
   616     // Re-verify object start arrays
   617     if (VerifyObjectStartArray &&
   618         VerifyAfterGC) {
   619       old_gen->verify_object_start_array();
   620     }
   622     // Verify all old -> young cards are now precise
   623     if (VerifyRememberedSets) {
   624       // Precise verification will give false positives. Until this is fixed,
   625       // use imprecise verification.
   626       // CardTableExtension::verify_all_young_refs_precise();
   627       CardTableExtension::verify_all_young_refs_imprecise();
   628     }
   630     if (TraceGen0Time) accumulated_time()->stop();
   632     if (PrintGC) {
   633       if (PrintGCDetails) {
   634         // Don't print a GC timestamp here.  This is after the GC so
   635         // would be confusing.
   636         young_gen->print_used_change(young_gen_used_before);
   637       }
   638       heap->print_heap_change(prev_used);
   639     }
   641     // Track memory usage and detect low memory
   642     MemoryService::track_memory_usage();
   643     heap->update_counters();
   645     gc_task_manager()->release_idle_workers();
   646   }
   648   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   649     HandleMark hm;  // Discard invalid handles created during verification
   650     Universe::verify(" VerifyAfterGC:");
   651   }
   653   heap->print_heap_after_gc();
   655   if (ZapUnusedHeapArea) {
   656     young_gen->eden_space()->check_mangled_unused_area_complete();
   657     young_gen->from_space()->check_mangled_unused_area_complete();
   658     young_gen->to_space()->check_mangled_unused_area_complete();
   659   }
   661   scavenge_exit.update();
   663   if (PrintGCTaskTimeStamps) {
   664     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
   665                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
   666                   scavenge_exit.ticks());
   667     gc_task_manager()->print_task_time_stamps();
   668   }
   670 #ifdef TRACESPINNING
   671   ParallelTaskTerminator::print_termination_counts();
   672 #endif
   674   return !promotion_failure_occurred;
   675 }
   677 // This method iterates over all objects in the young generation,
   678 // unforwarding markOops. It then restores any preserved mark oops,
   679 // and clears the _preserved_mark_stack.
   680 void PSScavenge::clean_up_failed_promotion() {
   681   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   682   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   683   assert(promotion_failed(), "Sanity");
   685   PSYoungGen* young_gen = heap->young_gen();
   687   {
   688     ResourceMark rm;
   690     // Unforward all pointers in the young gen.
   691     PSPromotionFailedClosure unforward_closure;
   692     young_gen->object_iterate(&unforward_closure);
   694     if (PrintGC && Verbose) {
   695       gclog_or_tty->print_cr("Restoring %d marks", _preserved_oop_stack.size());
   696     }
   698     // Restore any saved marks.
   699     while (!_preserved_oop_stack.is_empty()) {
   700       oop obj      = _preserved_oop_stack.pop();
   701       markOop mark = _preserved_mark_stack.pop();
   702       obj->set_mark(mark);
   703     }
   705     // Clear the preserved mark and oop stack caches.
   706     _preserved_mark_stack.clear(true);
   707     _preserved_oop_stack.clear(true);
   708     _promotion_failed = false;
   709   }
   711   // Reset the PromotionFailureALot counters.
   712   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   713 }
   715 // This method is called whenever an attempt to promote an object
   716 // fails. Some markOops will need preservation, some will not. Note
   717 // that the entire eden is traversed after a failed promotion, with
   718 // all forwarded headers replaced by the default markOop. This means
   719 // it is not neccessary to preserve most markOops.
   720 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
   721   _promotion_failed = true;
   722   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
   723     // Should use per-worker private stakcs hetre rather than
   724     // locking a common pair of stacks.
   725     ThreadCritical tc;
   726     _preserved_oop_stack.push(obj);
   727     _preserved_mark_stack.push(obj_mark);
   728   }
   729 }
   731 bool PSScavenge::should_attempt_scavenge() {
   732   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   733   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   734   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   736   if (UsePerfData) {
   737     counters->update_scavenge_skipped(not_skipped);
   738   }
   740   PSYoungGen* young_gen = heap->young_gen();
   741   PSOldGen* old_gen = heap->old_gen();
   743   if (!ScavengeWithObjectsInToSpace) {
   744     // Do not attempt to promote unless to_space is empty
   745     if (!young_gen->to_space()->is_empty()) {
   746       _consecutive_skipped_scavenges++;
   747       if (UsePerfData) {
   748         counters->update_scavenge_skipped(to_space_not_empty);
   749       }
   750       return false;
   751     }
   752   }
   754   // Test to see if the scavenge will likely fail.
   755   PSAdaptiveSizePolicy* policy = heap->size_policy();
   757   // A similar test is done in the policy's should_full_GC().  If this is
   758   // changed, decide if that test should also be changed.
   759   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
   760   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
   761   bool result = promotion_estimate < old_gen->free_in_bytes();
   763   if (PrintGCDetails && Verbose) {
   764     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
   765     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   766       " padded_average_promoted " SIZE_FORMAT
   767       " free in old gen " SIZE_FORMAT,
   768       (size_t) policy->average_promoted_in_bytes(),
   769       (size_t) policy->padded_average_promoted_in_bytes(),
   770       old_gen->free_in_bytes());
   771     if (young_gen->used_in_bytes() <
   772         (size_t) policy->padded_average_promoted_in_bytes()) {
   773       gclog_or_tty->print_cr(" padded_promoted_average is greater"
   774         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
   775     }
   776   }
   778   if (result) {
   779     _consecutive_skipped_scavenges = 0;
   780   } else {
   781     _consecutive_skipped_scavenges++;
   782     if (UsePerfData) {
   783       counters->update_scavenge_skipped(promoted_too_large);
   784     }
   785   }
   786   return result;
   787 }
   789   // Used to add tasks
   790 GCTaskManager* const PSScavenge::gc_task_manager() {
   791   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
   792    "shouldn't return NULL");
   793   return ParallelScavengeHeap::gc_task_manager();
   794 }
   796 void PSScavenge::initialize() {
   797   // Arguments must have been parsed
   799   if (AlwaysTenure) {
   800     _tenuring_threshold = 0;
   801   } else if (NeverTenure) {
   802     _tenuring_threshold = markOopDesc::max_age + 1;
   803   } else {
   804     // We want to smooth out our startup times for the AdaptiveSizePolicy
   805     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
   806                                                     MaxTenuringThreshold;
   807   }
   809   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   810   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   812   PSYoungGen* young_gen = heap->young_gen();
   813   PSOldGen* old_gen = heap->old_gen();
   815   // Set boundary between young_gen and old_gen
   816   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
   817          "old above young");
   818   _young_generation_boundary = young_gen->eden_space()->bottom();
   820   // Initialize ref handling object for scavenging.
   821   MemRegion mr = young_gen->reserved();
   823   _ref_processor =
   824     new ReferenceProcessor(mr,                         // span
   825                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   826                            (int) ParallelGCThreads,    // mt processing degree
   827                            true,                       // mt discovery
   828                            (int) ParallelGCThreads,    // mt discovery degree
   829                            true,                       // atomic_discovery
   830                            NULL,                       // header provides liveness info
   831                            false);                     // next field updates do not need write barrier
   833   // Cache the cardtable
   834   BarrierSet* bs = Universe::heap()->barrier_set();
   835   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   836   _card_table = (CardTableExtension*)bs;
   838   _counters = new CollectorCounters("PSScavenge", 0);
   839 }

mercurial