src/share/vm/opto/loopTransform.cpp

Fri, 20 Jun 2008 11:10:05 -0700

author
kvn
date
Fri, 20 Jun 2008 11:10:05 -0700
changeset 651
8d191a7697e2
parent 548
ba764ed4b6f2
child 670
9c2ecc2ffb12
permissions
-rw-r--r--

6715633: when matching a memory node the adr_type should not change
Summary: verify the adr_type of a mach node was not changed
Reviewed-by: rasbold, never

     1 /*
     2  * Copyright 2000-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_loopTransform.cpp.incl"
    28 //------------------------------is_loop_exit-----------------------------------
    29 // Given an IfNode, return the loop-exiting projection or NULL if both
    30 // arms remain in the loop.
    31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    32   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    33   PhaseIdealLoop *phase = _phase;
    34   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    35   // we need loop unswitching instead of peeling.
    36   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    37     return iff->raw_out(0);
    38   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    39     return iff->raw_out(1);
    40   return NULL;
    41 }
    44 //=============================================================================
    47 //------------------------------record_for_igvn----------------------------
    48 // Put loop body on igvn work list
    49 void IdealLoopTree::record_for_igvn() {
    50   for( uint i = 0; i < _body.size(); i++ ) {
    51     Node *n = _body.at(i);
    52     _phase->_igvn._worklist.push(n);
    53   }
    54 }
    56 //------------------------------compute_profile_trip_cnt----------------------------
    57 // Compute loop trip count from profile data as
    58 //    (backedge_count + loop_exit_count) / loop_exit_count
    59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
    60   if (!_head->is_CountedLoop()) {
    61     return;
    62   }
    63   CountedLoopNode* head = _head->as_CountedLoop();
    64   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    65     return; // Already computed
    66   }
    67   float trip_cnt = (float)max_jint; // default is big
    69   Node* back = head->in(LoopNode::LoopBackControl);
    70   while (back != head) {
    71     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    72         back->in(0) &&
    73         back->in(0)->is_If() &&
    74         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
    75         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
    76       break;
    77     }
    78     back = phase->idom(back);
    79   }
    80   if (back != head) {
    81     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    82            back->in(0), "if-projection exists");
    83     IfNode* back_if = back->in(0)->as_If();
    84     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
    86     // Now compute a loop exit count
    87     float loop_exit_cnt = 0.0f;
    88     for( uint i = 0; i < _body.size(); i++ ) {
    89       Node *n = _body[i];
    90       if( n->is_If() ) {
    91         IfNode *iff = n->as_If();
    92         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
    93           Node *exit = is_loop_exit(iff);
    94           if( exit ) {
    95             float exit_prob = iff->_prob;
    96             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
    97             if (exit_prob > PROB_MIN) {
    98               float exit_cnt = iff->_fcnt * exit_prob;
    99               loop_exit_cnt += exit_cnt;
   100             }
   101           }
   102         }
   103       }
   104     }
   105     if (loop_exit_cnt > 0.0f) {
   106       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   107     } else {
   108       // No exit count so use
   109       trip_cnt = loop_back_cnt;
   110     }
   111   }
   112 #ifndef PRODUCT
   113   if (TraceProfileTripCount) {
   114     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   115   }
   116 #endif
   117   head->set_profile_trip_cnt(trip_cnt);
   118 }
   120 //---------------------is_invariant_addition-----------------------------
   121 // Return nonzero index of invariant operand for an Add or Sub
   122 // of (nonconstant) invariant and variant values. Helper for reassoicate_invariants.
   123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   124   int op = n->Opcode();
   125   if (op == Op_AddI || op == Op_SubI) {
   126     bool in1_invar = this->is_invariant(n->in(1));
   127     bool in2_invar = this->is_invariant(n->in(2));
   128     if (in1_invar && !in2_invar) return 1;
   129     if (!in1_invar && in2_invar) return 2;
   130   }
   131   return 0;
   132 }
   134 //---------------------reassociate_add_sub-----------------------------
   135 // Reassociate invariant add and subtract expressions:
   136 //
   137 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   138 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   139 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   140 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   141 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   142 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   143 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   144 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   145 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   146 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   147 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   148 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   149 //
   150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   151   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   152   if (is_invariant(n1)) return NULL;
   153   int inv1_idx = is_invariant_addition(n1, phase);
   154   if (!inv1_idx) return NULL;
   155   // Don't mess with add of constant (igvn moves them to expression tree root.)
   156   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   157   Node* inv1 = n1->in(inv1_idx);
   158   Node* n2 = n1->in(3 - inv1_idx);
   159   int inv2_idx = is_invariant_addition(n2, phase);
   160   if (!inv2_idx) return NULL;
   161   Node* x    = n2->in(3 - inv2_idx);
   162   Node* inv2 = n2->in(inv2_idx);
   164   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   165   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   166   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   167   if (n1->is_Sub() && inv1_idx == 1) {
   168     neg_x    = !neg_x;
   169     neg_inv2 = !neg_inv2;
   170   }
   171   Node* inv1_c = phase->get_ctrl(inv1);
   172   Node* inv2_c = phase->get_ctrl(inv2);
   173   Node* n_inv1;
   174   if (neg_inv1) {
   175     Node *zero = phase->_igvn.intcon(0);
   176     phase->set_ctrl(zero, phase->C->root());
   177     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   178     phase->register_new_node(n_inv1, inv1_c);
   179   } else {
   180     n_inv1 = inv1;
   181   }
   182   Node* inv;
   183   if (neg_inv2) {
   184     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   185   } else {
   186     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   187   }
   188   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   190   Node* addx;
   191   if (neg_x) {
   192     addx = new (phase->C, 3) SubINode(inv, x);
   193   } else {
   194     addx = new (phase->C, 3) AddINode(x, inv);
   195   }
   196   phase->register_new_node(addx, phase->get_ctrl(x));
   197   phase->_igvn.hash_delete(n1);
   198   phase->_igvn.subsume_node(n1, addx);
   199   return addx;
   200 }
   202 //---------------------reassociate_invariants-----------------------------
   203 // Reassociate invariant expressions:
   204 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   205   for (int i = _body.size() - 1; i >= 0; i--) {
   206     Node *n = _body.at(i);
   207     for (int j = 0; j < 5; j++) {
   208       Node* nn = reassociate_add_sub(n, phase);
   209       if (nn == NULL) break;
   210       n = nn; // again
   211     };
   212   }
   213 }
   215 //------------------------------policy_peeling---------------------------------
   216 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   217 // make some loop-invariant test (usually a null-check) happen before the loop.
   218 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   219   Node *test = ((IdealLoopTree*)this)->tail();
   220   int  body_size = ((IdealLoopTree*)this)->_body.size();
   221   int  uniq      = phase->C->unique();
   222   // Peeling does loop cloning which can result in O(N^2) node construction
   223   if( body_size > 255 /* Prevent overflow for large body_size */
   224       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   225     return false;           // too large to safely clone
   226   }
   227   while( test != _head ) {      // Scan till run off top of loop
   228     if( test->is_If() ) {       // Test?
   229       Node *ctrl = phase->get_ctrl(test->in(1));
   230       if (ctrl->is_top())
   231         return false;           // Found dead test on live IF?  No peeling!
   232       // Standard IF only has one input value to check for loop invariance
   233       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   234       // Condition is not a member of this loop?
   235       if( !is_member(phase->get_loop(ctrl)) &&
   236           is_loop_exit(test) )
   237         return true;            // Found reason to peel!
   238     }
   239     // Walk up dominators to loop _head looking for test which is
   240     // executed on every path thru loop.
   241     test = phase->idom(test);
   242   }
   243   return false;
   244 }
   246 //------------------------------peeled_dom_test_elim---------------------------
   247 // If we got the effect of peeling, either by actually peeling or by making
   248 // a pre-loop which must execute at least once, we can remove all
   249 // loop-invariant dominated tests in the main body.
   250 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   251   bool progress = true;
   252   while( progress ) {
   253     progress = false;           // Reset for next iteration
   254     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   255     Node *test = prev->in(0);
   256     while( test != loop->_head ) { // Scan till run off top of loop
   258       int p_op = prev->Opcode();
   259       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   260           test->is_If() &&      // Test?
   261           !test->in(1)->is_Con() && // And not already obvious?
   262           // Condition is not a member of this loop?
   263           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   264         // Walk loop body looking for instances of this test
   265         for( uint i = 0; i < loop->_body.size(); i++ ) {
   266           Node *n = loop->_body.at(i);
   267           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   268             // IfNode was dominated by version in peeled loop body
   269             progress = true;
   270             dominated_by( old_new[prev->_idx], n );
   271           }
   272         }
   273       }
   274       prev = test;
   275       test = idom(test);
   276     } // End of scan tests in loop
   278   } // End of while( progress )
   279 }
   281 //------------------------------do_peeling-------------------------------------
   282 // Peel the first iteration of the given loop.
   283 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   284 //         The pre-loop illegally has 2 control users (old & new loops).
   285 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   286 //         Do this by making the old-loop fall-in edges act as if they came
   287 //         around the loopback from the prior iteration (follow the old-loop
   288 //         backedges) and then map to the new peeled iteration.  This leaves
   289 //         the pre-loop with only 1 user (the new peeled iteration), but the
   290 //         peeled-loop backedge has 2 users.
   291 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   292 //         extra backedge user.
   293 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   295   C->set_major_progress();
   296   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   297   // 'pre' loop from the main and the 'pre' can no longer have it's
   298   // iterations adjusted.  Therefore, we need to declare this loop as
   299   // no longer a 'main' loop; it will need new pre and post loops before
   300   // we can do further RCE.
   301   Node *h = loop->_head;
   302   if( h->is_CountedLoop() ) {
   303     CountedLoopNode *cl = h->as_CountedLoop();
   304     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   305     cl->set_trip_count(cl->trip_count() - 1);
   306     if( cl->is_main_loop() ) {
   307       cl->set_normal_loop();
   308 #ifndef PRODUCT
   309       if( PrintOpto && VerifyLoopOptimizations ) {
   310         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   311         loop->dump_head();
   312       }
   313 #endif
   314     }
   315   }
   317   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   318   //         The pre-loop illegally has 2 control users (old & new loops).
   319   clone_loop( loop, old_new, dom_depth(loop->_head) );
   322   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   323   //         Do this by making the old-loop fall-in edges act as if they came
   324   //         around the loopback from the prior iteration (follow the old-loop
   325   //         backedges) and then map to the new peeled iteration.  This leaves
   326   //         the pre-loop with only 1 user (the new peeled iteration), but the
   327   //         peeled-loop backedge has 2 users.
   328   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
   329     Node* old = loop->_head->fast_out(j);
   330     if( old->in(0) == loop->_head && old->req() == 3 &&
   331         (old->is_Loop() || old->is_Phi()) ) {
   332       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   333       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
   334         // Then loop body backedge value remains the same.
   335         new_exit_value = old->in(LoopNode::LoopBackControl);
   336       _igvn.hash_delete(old);
   337       old->set_req(LoopNode::EntryControl, new_exit_value);
   338     }
   339   }
   342   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   343   //         extra backedge user.
   344   Node *nnn = old_new[loop->_head->_idx];
   345   _igvn.hash_delete(nnn);
   346   nnn->set_req(LoopNode::LoopBackControl, C->top());
   347   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
   348     Node* use = nnn->fast_out(j2);
   349     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
   350       _igvn.hash_delete(use);
   351       use->set_req(LoopNode::LoopBackControl, C->top());
   352     }
   353   }
   356   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   357   int dd = dom_depth(loop->_head);
   358   set_idom(loop->_head, loop->_head->in(1), dd);
   359   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   360     Node *old = loop->_body.at(j3);
   361     Node *nnn = old_new[old->_idx];
   362     if (!has_ctrl(nnn))
   363       set_idom(nnn, idom(nnn), dd-1);
   364     // While we're at it, remove any SafePoints from the peeled code
   365     if( old->Opcode() == Op_SafePoint ) {
   366       Node *nnn = old_new[old->_idx];
   367       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   368     }
   369   }
   371   // Now force out all loop-invariant dominating tests.  The optimizer
   372   // finds some, but we _know_ they are all useless.
   373   peeled_dom_test_elim(loop,old_new);
   375   loop->record_for_igvn();
   376 }
   378 //------------------------------policy_maximally_unroll------------------------
   379 // Return exact loop trip count, or 0 if not maximally unrolling
   380 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   381   CountedLoopNode *cl = _head->as_CountedLoop();
   382   assert( cl->is_normal_loop(), "" );
   384   Node *init_n = cl->init_trip();
   385   Node *limit_n = cl->limit();
   387   // Non-constant bounds
   388   if( init_n   == NULL || !init_n->is_Con()  ||
   389       limit_n  == NULL || !limit_n->is_Con() ||
   390       // protect against stride not being a constant
   391       !cl->stride_is_con() ) {
   392     return false;
   393   }
   394   int init   = init_n->get_int();
   395   int limit  = limit_n->get_int();
   396   int span   = limit - init;
   397   int stride = cl->stride_con();
   399   if (init >= limit || stride > span) {
   400     // return a false (no maximally unroll) and the regular unroll/peel
   401     // route will make a small mess which CCP will fold away.
   402     return false;
   403   }
   404   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
   405   assert( (int)trip_count*stride == span, "must divide evenly" );
   407   // Real policy: if we maximally unroll, does it get too big?
   408   // Allow the unrolled mess to get larger than standard loop
   409   // size.  After all, it will no longer be a loop.
   410   uint body_size    = _body.size();
   411   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   412   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   413   cl->set_trip_count(trip_count);
   414   if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
   415     uint new_body_size = body_size * trip_count;
   416     if (new_body_size <= unroll_limit &&
   417         body_size == new_body_size / trip_count &&
   418         // Unrolling can result in a large amount of node construction
   419         new_body_size < MaxNodeLimit - phase->C->unique()) {
   420       return true;    // maximally unroll
   421     }
   422   }
   424   return false;               // Do not maximally unroll
   425 }
   428 //------------------------------policy_unroll----------------------------------
   429 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   430 // the loop is a CountedLoop and the body is small enough.
   431 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   433   CountedLoopNode *cl = _head->as_CountedLoop();
   434   assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
   436   // protect against stride not being a constant
   437   if( !cl->stride_is_con() ) return false;
   439   // protect against over-unrolling
   440   if( cl->trip_count() <= 1 ) return false;
   442   int future_unroll_ct = cl->unrolled_count() * 2;
   444   // Don't unroll if the next round of unrolling would push us
   445   // over the expected trip count of the loop.  One is subtracted
   446   // from the expected trip count because the pre-loop normally
   447   // executes 1 iteration.
   448   if (UnrollLimitForProfileCheck > 0 &&
   449       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   450       future_unroll_ct        > UnrollLimitForProfileCheck &&
   451       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   452     return false;
   453   }
   455   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   456   //   the residual iterations are more than 10% of the trip count
   457   //   and rounds of "unroll,optimize" are not making significant progress
   458   //   Progress defined as current size less than 20% larger than previous size.
   459   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   460       future_unroll_ct > LoopUnrollMin &&
   461       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   462       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   463     return false;
   464   }
   466   Node *init_n = cl->init_trip();
   467   Node *limit_n = cl->limit();
   468   // Non-constant bounds.
   469   // Protect against over-unrolling when init or/and limit are not constant
   470   // (so that trip_count's init value is maxint) but iv range is known.
   471   if( init_n   == NULL || !init_n->is_Con()  ||
   472       limit_n  == NULL || !limit_n->is_Con() ) {
   473     Node* phi = cl->phi();
   474     if( phi != NULL ) {
   475       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   476       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   477       int next_stride = cl->stride_con() * 2; // stride after this unroll
   478       if( next_stride > 0 ) {
   479         if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   480             iv_type->_lo + next_stride >  iv_type->_hi ) {
   481           return false;  // over-unrolling
   482         }
   483       } else if( next_stride < 0 ) {
   484         if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   485             iv_type->_hi + next_stride <  iv_type->_lo ) {
   486           return false;  // over-unrolling
   487         }
   488       }
   489     }
   490   }
   492   // Adjust body_size to determine if we unroll or not
   493   uint body_size = _body.size();
   494   // Key test to unroll CaffeineMark's Logic test
   495   int xors_in_loop = 0;
   496   // Also count ModL, DivL and MulL which expand mightly
   497   for( uint k = 0; k < _body.size(); k++ ) {
   498     switch( _body.at(k)->Opcode() ) {
   499     case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   500     case Op_ModL: body_size += 30; break;
   501     case Op_DivL: body_size += 30; break;
   502     case Op_MulL: body_size += 10; break;
   503     }
   504   }
   506   // Check for being too big
   507   if( body_size > (uint)LoopUnrollLimit ) {
   508     if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   509     // Normal case: loop too big
   510     return false;
   511   }
   513   // Check for stride being a small enough constant
   514   if( abs(cl->stride_con()) > (1<<3) ) return false;
   516   // Unroll once!  (Each trip will soon do double iterations)
   517   return true;
   518 }
   520 //------------------------------policy_align-----------------------------------
   521 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   522 // expression that does the alignment.  Note that only one array base can be
   523 // aligned in a loop (unless the VM guarentees mutual alignment).  Note that
   524 // if we vectorize short memory ops into longer memory ops, we may want to
   525 // increase alignment.
   526 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   527   return false;
   528 }
   530 //------------------------------policy_range_check-----------------------------
   531 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   532 // Actually we do iteration-splitting, a more powerful form of RCE.
   533 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   534   if( !RangeCheckElimination ) return false;
   536   CountedLoopNode *cl = _head->as_CountedLoop();
   537   // If we unrolled with no intention of doing RCE and we later
   538   // changed our minds, we got no pre-loop.  Either we need to
   539   // make a new pre-loop, or we gotta disallow RCE.
   540   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   541   Node *trip_counter = cl->phi();
   543   // Check loop body for tests of trip-counter plus loop-invariant vs
   544   // loop-invariant.
   545   for( uint i = 0; i < _body.size(); i++ ) {
   546     Node *iff = _body[i];
   547     if( iff->Opcode() == Op_If ) { // Test?
   549       // Comparing trip+off vs limit
   550       Node *bol = iff->in(1);
   551       if( bol->req() != 2 ) continue; // dead constant test
   552       Node *cmp = bol->in(1);
   554       Node *rc_exp = cmp->in(1);
   555       Node *limit = cmp->in(2);
   557       Node *limit_c = phase->get_ctrl(limit);
   558       if( limit_c == phase->C->top() )
   559         return false;           // Found dead test on live IF?  No RCE!
   560       if( is_member(phase->get_loop(limit_c) ) ) {
   561         // Compare might have operands swapped; commute them
   562         rc_exp = cmp->in(2);
   563         limit  = cmp->in(1);
   564         limit_c = phase->get_ctrl(limit);
   565         if( is_member(phase->get_loop(limit_c) ) )
   566           continue;             // Both inputs are loop varying; cannot RCE
   567       }
   569       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   570         continue;
   571       }
   572       // Yeah!  Found a test like 'trip+off vs limit'
   573       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   574       // we need loop unswitching instead of iteration splitting.
   575       if( is_loop_exit(iff) )
   576         return true;            // Found reason to split iterations
   577     } // End of is IF
   578   }
   580   return false;
   581 }
   583 //------------------------------policy_peel_only-------------------------------
   584 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   585 // for unrolling loops with NO array accesses.
   586 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   588   for( uint i = 0; i < _body.size(); i++ )
   589     if( _body[i]->is_Mem() )
   590       return false;
   592   // No memory accesses at all!
   593   return true;
   594 }
   596 //------------------------------clone_up_backedge_goo--------------------------
   597 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   598 // version of n in preheader_ctrl block and return that, otherwise return n.
   599 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   600   if( get_ctrl(n) != back_ctrl ) return n;
   602   Node *x = NULL;               // If required, a clone of 'n'
   603   // Check for 'n' being pinned in the backedge.
   604   if( n->in(0) && n->in(0) == back_ctrl ) {
   605     x = n->clone();             // Clone a copy of 'n' to preheader
   606     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   607   }
   609   // Recursive fixup any other input edges into x.
   610   // If there are no changes we can just return 'n', otherwise
   611   // we need to clone a private copy and change it.
   612   for( uint i = 1; i < n->req(); i++ ) {
   613     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   614     if( g != n->in(i) ) {
   615       if( !x )
   616         x = n->clone();
   617       x->set_req(i, g);
   618     }
   619   }
   620   if( x ) {                     // x can legally float to pre-header location
   621     register_new_node( x, preheader_ctrl );
   622     return x;
   623   } else {                      // raise n to cover LCA of uses
   624     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   625   }
   626   return n;
   627 }
   629 //------------------------------insert_pre_post_loops--------------------------
   630 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   631 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   632 // alignment.  Useful to unroll loops that do no array accesses.
   633 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   635   C->set_major_progress();
   637   // Find common pieces of the loop being guarded with pre & post loops
   638   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   639   assert( main_head->is_normal_loop(), "" );
   640   CountedLoopEndNode *main_end = main_head->loopexit();
   641   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   642   uint dd_main_head = dom_depth(main_head);
   643   uint max = main_head->outcnt();
   645   Node *pre_header= main_head->in(LoopNode::EntryControl);
   646   Node *init      = main_head->init_trip();
   647   Node *incr      = main_end ->incr();
   648   Node *limit     = main_end ->limit();
   649   Node *stride    = main_end ->stride();
   650   Node *cmp       = main_end ->cmp_node();
   651   BoolTest::mask b_test = main_end->test_trip();
   653   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   654   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   655   if( bol->outcnt() != 1 ) {
   656     bol = bol->clone();
   657     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   658     _igvn.hash_delete(main_end);
   659     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   660   }
   661   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   662   if( cmp->outcnt() != 1 ) {
   663     cmp = cmp->clone();
   664     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   665     _igvn.hash_delete(bol);
   666     bol->set_req(1, cmp);
   667   }
   669   //------------------------------
   670   // Step A: Create Post-Loop.
   671   Node* main_exit = main_end->proj_out(false);
   672   assert( main_exit->Opcode() == Op_IfFalse, "" );
   673   int dd_main_exit = dom_depth(main_exit);
   675   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   676   // loop pre-header illegally has 2 control users (old & new loops).
   677   clone_loop( loop, old_new, dd_main_exit );
   678   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   679   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   680   post_head->set_post_loop(main_head);
   682   // Build the main-loop normal exit.
   683   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   684   _igvn.register_new_node_with_optimizer( new_main_exit );
   685   set_idom(new_main_exit, main_end, dd_main_exit );
   686   set_loop(new_main_exit, loop->_parent);
   688   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   689   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   690   // (the main-loop trip-counter exit value) because we will be changing
   691   // the exit value (via unrolling) so we cannot constant-fold away the zero
   692   // trip guard until all unrolling is done.
   693   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   694   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   695   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   696   register_new_node( zer_opaq, new_main_exit );
   697   register_new_node( zer_cmp , new_main_exit );
   698   register_new_node( zer_bol , new_main_exit );
   700   // Build the IfNode
   701   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   702   _igvn.register_new_node_with_optimizer( zer_iff );
   703   set_idom(zer_iff, new_main_exit, dd_main_exit);
   704   set_loop(zer_iff, loop->_parent);
   706   // Plug in the false-path, taken if we need to skip post-loop
   707   _igvn.hash_delete( main_exit );
   708   main_exit->set_req(0, zer_iff);
   709   _igvn._worklist.push(main_exit);
   710   set_idom(main_exit, zer_iff, dd_main_exit);
   711   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   712   // Make the true-path, must enter the post loop
   713   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   714   _igvn.register_new_node_with_optimizer( zer_taken );
   715   set_idom(zer_taken, zer_iff, dd_main_exit);
   716   set_loop(zer_taken, loop->_parent);
   717   // Plug in the true path
   718   _igvn.hash_delete( post_head );
   719   post_head->set_req(LoopNode::EntryControl, zer_taken);
   720   set_idom(post_head, zer_taken, dd_main_exit);
   722   // Step A3: Make the fall-in values to the post-loop come from the
   723   // fall-out values of the main-loop.
   724   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   725     Node* main_phi = main_head->fast_out(i);
   726     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   727       Node *post_phi = old_new[main_phi->_idx];
   728       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   729                                               post_head->init_control(),
   730                                               main_phi->in(LoopNode::LoopBackControl));
   731       _igvn.hash_delete(post_phi);
   732       post_phi->set_req( LoopNode::EntryControl, fallmain );
   733     }
   734   }
   736   // Update local caches for next stanza
   737   main_exit = new_main_exit;
   740   //------------------------------
   741   // Step B: Create Pre-Loop.
   743   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   744   // loop pre-header illegally has 2 control users (old & new loops).
   745   clone_loop( loop, old_new, dd_main_head );
   746   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   747   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   748   pre_head->set_pre_loop(main_head);
   749   Node *pre_incr = old_new[incr->_idx];
   751   // Find the pre-loop normal exit.
   752   Node* pre_exit = pre_end->proj_out(false);
   753   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   754   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   755   _igvn.register_new_node_with_optimizer( new_pre_exit );
   756   set_idom(new_pre_exit, pre_end, dd_main_head);
   757   set_loop(new_pre_exit, loop->_parent);
   759   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   760   // pre-loop, the main-loop may not execute at all.  Later in life this
   761   // zero-trip guard will become the minimum-trip guard when we unroll
   762   // the main-loop.
   763   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
   764   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
   765   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
   766   register_new_node( min_opaq, new_pre_exit );
   767   register_new_node( min_cmp , new_pre_exit );
   768   register_new_node( min_bol , new_pre_exit );
   770   // Build the IfNode
   771   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_FAIR, COUNT_UNKNOWN );
   772   _igvn.register_new_node_with_optimizer( min_iff );
   773   set_idom(min_iff, new_pre_exit, dd_main_head);
   774   set_loop(min_iff, loop->_parent);
   776   // Plug in the false-path, taken if we need to skip main-loop
   777   _igvn.hash_delete( pre_exit );
   778   pre_exit->set_req(0, min_iff);
   779   set_idom(pre_exit, min_iff, dd_main_head);
   780   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
   781   // Make the true-path, must enter the main loop
   782   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
   783   _igvn.register_new_node_with_optimizer( min_taken );
   784   set_idom(min_taken, min_iff, dd_main_head);
   785   set_loop(min_taken, loop->_parent);
   786   // Plug in the true path
   787   _igvn.hash_delete( main_head );
   788   main_head->set_req(LoopNode::EntryControl, min_taken);
   789   set_idom(main_head, min_taken, dd_main_head);
   791   // Step B3: Make the fall-in values to the main-loop come from the
   792   // fall-out values of the pre-loop.
   793   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
   794     Node* main_phi = main_head->fast_out(i2);
   795     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
   796       Node *pre_phi = old_new[main_phi->_idx];
   797       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
   798                                              main_head->init_control(),
   799                                              pre_phi->in(LoopNode::LoopBackControl));
   800       _igvn.hash_delete(main_phi);
   801       main_phi->set_req( LoopNode::EntryControl, fallpre );
   802     }
   803   }
   805   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
   806   // RCE and alignment may change this later.
   807   Node *cmp_end = pre_end->cmp_node();
   808   assert( cmp_end->in(2) == limit, "" );
   809   Node *pre_limit = new (C, 3) AddINode( init, stride );
   811   // Save the original loop limit in this Opaque1 node for
   812   // use by range check elimination.
   813   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
   815   register_new_node( pre_limit, pre_head->in(0) );
   816   register_new_node( pre_opaq , pre_head->in(0) );
   818   // Since no other users of pre-loop compare, I can hack limit directly
   819   assert( cmp_end->outcnt() == 1, "no other users" );
   820   _igvn.hash_delete(cmp_end);
   821   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
   823   // Special case for not-equal loop bounds:
   824   // Change pre loop test, main loop test, and the
   825   // main loop guard test to use lt or gt depending on stride
   826   // direction:
   827   // positive stride use <
   828   // negative stride use >
   830   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
   832     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
   833     // Modify pre loop end condition
   834     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   835     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
   836     register_new_node( new_bol0, pre_head->in(0) );
   837     _igvn.hash_delete(pre_end);
   838     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
   839     // Modify main loop guard condition
   840     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
   841     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
   842     register_new_node( new_bol1, new_pre_exit );
   843     _igvn.hash_delete(min_iff);
   844     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
   845     // Modify main loop end condition
   846     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   847     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
   848     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
   849     _igvn.hash_delete(main_end);
   850     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
   851   }
   853   // Flag main loop
   854   main_head->set_main_loop();
   855   if( peel_only ) main_head->set_main_no_pre_loop();
   857   // It's difficult to be precise about the trip-counts
   858   // for the pre/post loops.  They are usually very short,
   859   // so guess that 4 trips is a reasonable value.
   860   post_head->set_profile_trip_cnt(4.0);
   861   pre_head->set_profile_trip_cnt(4.0);
   863   // Now force out all loop-invariant dominating tests.  The optimizer
   864   // finds some, but we _know_ they are all useless.
   865   peeled_dom_test_elim(loop,old_new);
   866 }
   868 //------------------------------is_invariant-----------------------------
   869 // Return true if n is invariant
   870 bool IdealLoopTree::is_invariant(Node* n) const {
   871   Node *n_c = _phase->get_ctrl(n);
   872   if (n_c->is_top()) return false;
   873   return !is_member(_phase->get_loop(n_c));
   874 }
   877 //------------------------------do_unroll--------------------------------------
   878 // Unroll the loop body one step - make each trip do 2 iterations.
   879 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
   880   assert( LoopUnrollLimit, "" );
   881 #ifndef PRODUCT
   882   if( PrintOpto && VerifyLoopOptimizations ) {
   883     tty->print("Unrolling ");
   884     loop->dump_head();
   885   }
   886 #endif
   887   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
   888   CountedLoopEndNode *loop_end = loop_head->loopexit();
   889   assert( loop_end, "" );
   891   // Remember loop node count before unrolling to detect
   892   // if rounds of unroll,optimize are making progress
   893   loop_head->set_node_count_before_unroll(loop->_body.size());
   895   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
   896   Node *limit = loop_head->limit();
   897   Node *init  = loop_head->init_trip();
   898   Node *strid = loop_head->stride();
   900   Node *opaq = NULL;
   901   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
   902     assert( loop_head->is_main_loop(), "" );
   903     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
   904     Node *iff = ctrl->in(0);
   905     assert( iff->Opcode() == Op_If, "" );
   906     Node *bol = iff->in(1);
   907     assert( bol->Opcode() == Op_Bool, "" );
   908     Node *cmp = bol->in(1);
   909     assert( cmp->Opcode() == Op_CmpI, "" );
   910     opaq = cmp->in(2);
   911     // Occasionally it's possible for a pre-loop Opaque1 node to be
   912     // optimized away and then another round of loop opts attempted.
   913     // We can not optimize this particular loop in that case.
   914     if( opaq->Opcode() != Op_Opaque1 )
   915       return;                   // Cannot find pre-loop!  Bail out!
   916   }
   918   C->set_major_progress();
   920   // Adjust max trip count. The trip count is intentionally rounded
   921   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
   922   // the main, unrolled, part of the loop will never execute as it is protected
   923   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
   924   // and later determined that part of the unrolled loop was dead.
   925   loop_head->set_trip_count(loop_head->trip_count() / 2);
   927   // Double the count of original iterations in the unrolled loop body.
   928   loop_head->double_unrolled_count();
   930   // -----------
   931   // Step 2: Cut back the trip counter for an unroll amount of 2.
   932   // Loop will normally trip (limit - init)/stride_con.  Since it's a
   933   // CountedLoop this is exact (stride divides limit-init exactly).
   934   // We are going to double the loop body, so we want to knock off any
   935   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
   936   Node *span = new (C, 3) SubINode( limit, init );
   937   register_new_node( span, ctrl );
   938   Node *trip = new (C, 3) DivINode( 0, span, strid );
   939   register_new_node( trip, ctrl );
   940   Node *mtwo = _igvn.intcon(-2);
   941   set_ctrl(mtwo, C->root());
   942   Node *rond = new (C, 3) AndINode( trip, mtwo );
   943   register_new_node( rond, ctrl );
   944   Node *spn2 = new (C, 3) MulINode( rond, strid );
   945   register_new_node( spn2, ctrl );
   946   Node *lim2 = new (C, 3) AddINode( spn2, init );
   947   register_new_node( lim2, ctrl );
   949   // Hammer in the new limit
   950   Node *ctrl2 = loop_end->in(0);
   951   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
   952   register_new_node( cmp2, ctrl2 );
   953   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
   954   register_new_node( bol2, ctrl2 );
   955   _igvn.hash_delete(loop_end);
   956   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
   958   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
   959   // Make it a 1-trip test (means at least 2 trips).
   960   if( adjust_min_trip ) {
   961     // Guard test uses an 'opaque' node which is not shared.  Hence I
   962     // can edit it's inputs directly.  Hammer in the new limit for the
   963     // minimum-trip guard.
   964     assert( opaq->outcnt() == 1, "" );
   965     _igvn.hash_delete(opaq);
   966     opaq->set_req(1, lim2);
   967   }
   969   // ---------
   970   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
   971   // represents the odd iterations; since the loop trips an even number of
   972   // times its backedge is never taken.  Kill the backedge.
   973   uint dd = dom_depth(loop_head);
   974   clone_loop( loop, old_new, dd );
   976   // Make backedges of the clone equal to backedges of the original.
   977   // Make the fall-in from the original come from the fall-out of the clone.
   978   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
   979     Node* phi = loop_head->fast_out(j);
   980     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
   981       Node *newphi = old_new[phi->_idx];
   982       _igvn.hash_delete( phi );
   983       _igvn.hash_delete( newphi );
   985       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
   986       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
   987       phi   ->set_req(LoopNode::LoopBackControl, C->top());
   988     }
   989   }
   990   Node *clone_head = old_new[loop_head->_idx];
   991   _igvn.hash_delete( clone_head );
   992   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
   993   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
   994   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
   995   loop->_head = clone_head;     // New loop header
   997   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
   998   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1000   // Kill the clone's backedge
  1001   Node *newcle = old_new[loop_end->_idx];
  1002   _igvn.hash_delete( newcle );
  1003   Node *one = _igvn.intcon(1);
  1004   set_ctrl(one, C->root());
  1005   newcle->set_req(1, one);
  1006   // Force clone into same loop body
  1007   uint max = loop->_body.size();
  1008   for( uint k = 0; k < max; k++ ) {
  1009     Node *old = loop->_body.at(k);
  1010     Node *nnn = old_new[old->_idx];
  1011     loop->_body.push(nnn);
  1012     if (!has_ctrl(old))
  1013       set_loop(nnn, loop);
  1017 //------------------------------do_maximally_unroll----------------------------
  1019 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1020   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1021   assert( cl->trip_count() > 0, "");
  1023   // If loop is tripping an odd number of times, peel odd iteration
  1024   if( (cl->trip_count() & 1) == 1 ) {
  1025     do_peeling( loop, old_new );
  1028   // Now its tripping an even number of times remaining.  Double loop body.
  1029   // Do not adjust pre-guards; they are not needed and do not exist.
  1030   if( cl->trip_count() > 0 ) {
  1031     do_unroll( loop, old_new, false );
  1035 //------------------------------dominates_backedge---------------------------------
  1036 // Returns true if ctrl is executed on every complete iteration
  1037 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1038   assert(ctrl->is_CFG(), "must be control");
  1039   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1040   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1043 //------------------------------add_constraint---------------------------------
  1044 // Constrain the main loop iterations so the condition:
  1045 //    scale_con * I + offset  <  limit
  1046 // always holds true.  That is, either increase the number of iterations in
  1047 // the pre-loop or the post-loop until the condition holds true in the main
  1048 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1049 // stride and scale are constants (offset and limit often are).
  1050 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1052   // Compute "I :: (limit-offset)/scale_con"
  1053   Node *con = new (C, 3) SubINode( limit, offset );
  1054   register_new_node( con, pre_ctrl );
  1055   Node *scale = _igvn.intcon(scale_con);
  1056   set_ctrl(scale, C->root());
  1057   Node *X = new (C, 3) DivINode( 0, con, scale );
  1058   register_new_node( X, pre_ctrl );
  1060   // For positive stride, the pre-loop limit always uses a MAX function
  1061   // and the main loop a MIN function.  For negative stride these are
  1062   // reversed.
  1064   // Also for positive stride*scale the affine function is increasing, so the
  1065   // pre-loop must check for underflow and the post-loop for overflow.
  1066   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1067   // post-loop for underflow.
  1068   if( stride_con*scale_con > 0 ) {
  1069     // Compute I < (limit-offset)/scale_con
  1070     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1071     *main_limit = (stride_con > 0)
  1072       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1073       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1074     register_new_node( *main_limit, pre_ctrl );
  1076   } else {
  1077     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1078     // Add the negation of the main-loop constraint to the pre-loop.
  1079     // See footnote [++] below for a derivation of the limit expression.
  1080     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1081     set_ctrl(incr, C->root());
  1082     Node *adj = new (C, 3) AddINode( X, incr );
  1083     register_new_node( adj, pre_ctrl );
  1084     *pre_limit = (scale_con > 0)
  1085       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1086       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1087     register_new_node( *pre_limit, pre_ctrl );
  1089 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1090 //
  1091 //   NOT( scale_con * I + offset  <  limit )
  1092 //      ==
  1093 //   scale_con * I + offset  >=  limit
  1094 //      ==
  1095 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1096 //      ==
  1097 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1098 //      ==
  1099 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1100 //      ==
  1101 //   ( if (scale_con > 0) /*common case*/
  1102 //       (limit-offset)/scale_con - 1  <  I
  1103 //     else
  1104 //       (limit-offset)/scale_con + 1  >  I
  1105 //    )
  1106 //   ( if (scale_con > 0) /*common case*/
  1107 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1108 //     else
  1109 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1114 //------------------------------is_scaled_iv---------------------------------
  1115 // Return true if exp is a constant times an induction var
  1116 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1117   if (exp == iv) {
  1118     if (p_scale != NULL) {
  1119       *p_scale = 1;
  1121     return true;
  1123   int opc = exp->Opcode();
  1124   if (opc == Op_MulI) {
  1125     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1126       if (p_scale != NULL) {
  1127         *p_scale = exp->in(2)->get_int();
  1129       return true;
  1131     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1132       if (p_scale != NULL) {
  1133         *p_scale = exp->in(1)->get_int();
  1135       return true;
  1137   } else if (opc == Op_LShiftI) {
  1138     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1139       if (p_scale != NULL) {
  1140         *p_scale = 1 << exp->in(2)->get_int();
  1142       return true;
  1145   return false;
  1148 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1149 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1150 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1151   if (is_scaled_iv(exp, iv, p_scale)) {
  1152     if (p_offset != NULL) {
  1153       Node *zero = _igvn.intcon(0);
  1154       set_ctrl(zero, C->root());
  1155       *p_offset = zero;
  1157     return true;
  1159   int opc = exp->Opcode();
  1160   if (opc == Op_AddI) {
  1161     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1162       if (p_offset != NULL) {
  1163         *p_offset = exp->in(2);
  1165       return true;
  1167     if (exp->in(2)->is_Con()) {
  1168       Node* offset2 = NULL;
  1169       if (depth < 2 &&
  1170           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1171                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1172         if (p_offset != NULL) {
  1173           Node *ctrl_off2 = get_ctrl(offset2);
  1174           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1175           register_new_node(offset, ctrl_off2);
  1176           *p_offset = offset;
  1178         return true;
  1181   } else if (opc == Op_SubI) {
  1182     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1183       if (p_offset != NULL) {
  1184         Node *zero = _igvn.intcon(0);
  1185         set_ctrl(zero, C->root());
  1186         Node *ctrl_off = get_ctrl(exp->in(2));
  1187         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1188         register_new_node(offset, ctrl_off);
  1189         *p_offset = offset;
  1191       return true;
  1193     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1194       if (p_offset != NULL) {
  1195         *p_scale *= -1;
  1196         *p_offset = exp->in(1);
  1198       return true;
  1201   return false;
  1204 //------------------------------do_range_check---------------------------------
  1205 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1206 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1207 #ifndef PRODUCT
  1208   if( PrintOpto && VerifyLoopOptimizations ) {
  1209     tty->print("Range Check Elimination ");
  1210     loop->dump_head();
  1212 #endif
  1213   assert( RangeCheckElimination, "" );
  1214   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1215   assert( cl->is_main_loop(), "" );
  1217   // Find the trip counter; we are iteration splitting based on it
  1218   Node *trip_counter = cl->phi();
  1219   // Find the main loop limit; we will trim it's iterations
  1220   // to not ever trip end tests
  1221   Node *main_limit = cl->limit();
  1222   // Find the pre-loop limit; we will expand it's iterations to
  1223   // not ever trip low tests.
  1224   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1225   assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1226   Node *iffm = ctrl->in(0);
  1227   assert( iffm->Opcode() == Op_If, "" );
  1228   Node *p_f = iffm->in(0);
  1229   assert( p_f->Opcode() == Op_IfFalse, "" );
  1230   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1231   assert( pre_end->loopnode()->is_pre_loop(), "" );
  1232   Node *pre_opaq1 = pre_end->limit();
  1233   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1234   // optimized away and then another round of loop opts attempted.
  1235   // We can not optimize this particular loop in that case.
  1236   if( pre_opaq1->Opcode() != Op_Opaque1 )
  1237     return;
  1238   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1239   Node *pre_limit = pre_opaq->in(1);
  1241   // Where do we put new limit calculations
  1242   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1244   // Ensure the original loop limit is available from the
  1245   // pre-loop Opaque1 node.
  1246   Node *orig_limit = pre_opaq->original_loop_limit();
  1247   if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
  1248     return;
  1250   // Need to find the main-loop zero-trip guard
  1251   Node *bolzm = iffm->in(1);
  1252   assert( bolzm->Opcode() == Op_Bool, "" );
  1253   Node *cmpzm = bolzm->in(1);
  1254   assert( cmpzm->is_Cmp(), "" );
  1255   Node *opqzm = cmpzm->in(2);
  1256   if( opqzm->Opcode() != Op_Opaque1 )
  1257     return;
  1258   assert( opqzm->in(1) == main_limit, "do not understand situation" );
  1260   // Must know if its a count-up or count-down loop
  1262   // protect against stride not being a constant
  1263   if ( !cl->stride_is_con() ) {
  1264     return;
  1266   int stride_con = cl->stride_con();
  1267   Node *zero = _igvn.intcon(0);
  1268   Node *one  = _igvn.intcon(1);
  1269   set_ctrl(zero, C->root());
  1270   set_ctrl(one,  C->root());
  1272   // Range checks that do not dominate the loop backedge (ie.
  1273   // conditionally executed) can lengthen the pre loop limit beyond
  1274   // the original loop limit. To prevent this, the pre limit is
  1275   // (for stride > 0) MINed with the original loop limit (MAXed
  1276   // stride < 0) when some range_check (rc) is conditionally
  1277   // executed.
  1278   bool conditional_rc = false;
  1280   // Check loop body for tests of trip-counter plus loop-invariant vs
  1281   // loop-invariant.
  1282   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1283     Node *iff = loop->_body[i];
  1284     if( iff->Opcode() == Op_If ) { // Test?
  1286       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1287       // we need loop unswitching instead of iteration splitting.
  1288       Node *exit = loop->is_loop_exit(iff);
  1289       if( !exit ) continue;
  1290       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1292       // Get boolean condition to test
  1293       Node *i1 = iff->in(1);
  1294       if( !i1->is_Bool() ) continue;
  1295       BoolNode *bol = i1->as_Bool();
  1296       BoolTest b_test = bol->_test;
  1297       // Flip sense of test if exit condition is flipped
  1298       if( flip )
  1299         b_test = b_test.negate();
  1301       // Get compare
  1302       Node *cmp = bol->in(1);
  1304       // Look for trip_counter + offset vs limit
  1305       Node *rc_exp = cmp->in(1);
  1306       Node *limit  = cmp->in(2);
  1307       jint scale_con= 1;        // Assume trip counter not scaled
  1309       Node *limit_c = get_ctrl(limit);
  1310       if( loop->is_member(get_loop(limit_c) ) ) {
  1311         // Compare might have operands swapped; commute them
  1312         b_test = b_test.commute();
  1313         rc_exp = cmp->in(2);
  1314         limit  = cmp->in(1);
  1315         limit_c = get_ctrl(limit);
  1316         if( loop->is_member(get_loop(limit_c) ) )
  1317           continue;             // Both inputs are loop varying; cannot RCE
  1319       // Here we know 'limit' is loop invariant
  1321       // 'limit' maybe pinned below the zero trip test (probably from a
  1322       // previous round of rce), in which case, it can't be used in the
  1323       // zero trip test expression which must occur before the zero test's if.
  1324       if( limit_c == ctrl ) {
  1325         continue;  // Don't rce this check but continue looking for other candidates.
  1328       // Check for scaled induction variable plus an offset
  1329       Node *offset = NULL;
  1331       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1332         continue;
  1335       Node *offset_c = get_ctrl(offset);
  1336       if( loop->is_member( get_loop(offset_c) ) )
  1337         continue;               // Offset is not really loop invariant
  1338       // Here we know 'offset' is loop invariant.
  1340       // As above for the 'limit', the 'offset' maybe pinned below the
  1341       // zero trip test.
  1342       if( offset_c == ctrl ) {
  1343         continue; // Don't rce this check but continue looking for other candidates.
  1346       // At this point we have the expression as:
  1347       //   scale_con * trip_counter + offset :: limit
  1348       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1349       // monotonically increases by stride_con, a constant.  Both (or either)
  1350       // stride_con and scale_con can be negative which will flip about the
  1351       // sense of the test.
  1353       // Adjust pre and main loop limits to guard the correct iteration set
  1354       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1355         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1356           // The overflow limit: scale*I+offset < limit
  1357           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1358           // The underflow limit: 0 <= scale*I+offset.
  1359           // Some math yields: -scale*I-(offset+1) < 0
  1360           Node *plus_one = new (C, 3) AddINode( offset, one );
  1361           register_new_node( plus_one, pre_ctrl );
  1362           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1363           register_new_node( neg_offset, pre_ctrl );
  1364           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1365           if (!conditional_rc) {
  1366             conditional_rc = !loop->dominates_backedge(iff);
  1368         } else {
  1369 #ifndef PRODUCT
  1370           if( PrintOpto )
  1371             tty->print_cr("missed RCE opportunity");
  1372 #endif
  1373           continue;             // In release mode, ignore it
  1375       } else {                  // Otherwise work on normal compares
  1376         switch( b_test._test ) {
  1377         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1378           scale_con = -scale_con;
  1379           offset = new (C, 3) SubINode( zero, offset );
  1380           register_new_node( offset, pre_ctrl );
  1381           limit  = new (C, 3) SubINode( zero, limit  );
  1382           register_new_node( limit, pre_ctrl );
  1383           // Fall into LE case
  1384         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1385           limit = new (C, 3) AddINode( limit, one );
  1386           register_new_node( limit, pre_ctrl );
  1387           // Fall into LT case
  1388         case BoolTest::lt:
  1389           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1390           if (!conditional_rc) {
  1391             conditional_rc = !loop->dominates_backedge(iff);
  1393           break;
  1394         default:
  1395 #ifndef PRODUCT
  1396           if( PrintOpto )
  1397             tty->print_cr("missed RCE opportunity");
  1398 #endif
  1399           continue;             // Unhandled case
  1403       // Kill the eliminated test
  1404       C->set_major_progress();
  1405       Node *kill_con = _igvn.intcon( 1-flip );
  1406       set_ctrl(kill_con, C->root());
  1407       _igvn.hash_delete(iff);
  1408       iff->set_req(1, kill_con);
  1409       _igvn._worklist.push(iff);
  1410       // Find surviving projection
  1411       assert(iff->is_If(), "");
  1412       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1413       // Find loads off the surviving projection; remove their control edge
  1414       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1415         Node* cd = dp->fast_out(i); // Control-dependent node
  1416         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1417           _igvn.hash_delete(cd);
  1418           // Allow the load to float around in the loop, or before it
  1419           // but NOT before the pre-loop.
  1420           cd->set_req(0, ctrl);   // ctrl, not NULL
  1421           _igvn._worklist.push(cd);
  1422           --i;
  1423           --imax;
  1427     } // End of is IF
  1431   // Update loop limits
  1432   if (conditional_rc) {
  1433     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1434                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1435     register_new_node(pre_limit, pre_ctrl);
  1437   _igvn.hash_delete(pre_opaq);
  1438   pre_opaq->set_req(1, pre_limit);
  1440   // Note:: we are making the main loop limit no longer precise;
  1441   // need to round up based on stride.
  1442   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1443     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1444     // Hopefully, compiler will optimize for powers of 2.
  1445     Node *ctrl = get_ctrl(main_limit);
  1446     Node *stride = cl->stride();
  1447     Node *init = cl->init_trip();
  1448     Node *span = new (C, 3) SubINode(main_limit,init);
  1449     register_new_node(span,ctrl);
  1450     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1451     Node *add = new (C, 3) AddINode(span,rndup);
  1452     register_new_node(add,ctrl);
  1453     Node *div = new (C, 3) DivINode(0,add,stride);
  1454     register_new_node(div,ctrl);
  1455     Node *mul = new (C, 3) MulINode(div,stride);
  1456     register_new_node(mul,ctrl);
  1457     Node *newlim = new (C, 3) AddINode(mul,init);
  1458     register_new_node(newlim,ctrl);
  1459     main_limit = newlim;
  1462   Node *main_cle = cl->loopexit();
  1463   Node *main_bol = main_cle->in(1);
  1464   // Hacking loop bounds; need private copies of exit test
  1465   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1466     _igvn.hash_delete(main_cle);
  1467     main_bol = main_bol->clone();// Clone a private BoolNode
  1468     register_new_node( main_bol, main_cle->in(0) );
  1469     main_cle->set_req(1,main_bol);
  1471   Node *main_cmp = main_bol->in(1);
  1472   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1473     _igvn.hash_delete(main_bol);
  1474     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1475     register_new_node( main_cmp, main_cle->in(0) );
  1476     main_bol->set_req(1,main_cmp);
  1478   // Hack the now-private loop bounds
  1479   _igvn.hash_delete(main_cmp);
  1480   main_cmp->set_req(2, main_limit);
  1481   _igvn._worklist.push(main_cmp);
  1482   // The OpaqueNode is unshared by design
  1483   _igvn.hash_delete(opqzm);
  1484   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1485   opqzm->set_req(1,main_limit);
  1486   _igvn._worklist.push(opqzm);
  1489 //------------------------------DCE_loop_body----------------------------------
  1490 // Remove simplistic dead code from loop body
  1491 void IdealLoopTree::DCE_loop_body() {
  1492   for( uint i = 0; i < _body.size(); i++ )
  1493     if( _body.at(i)->outcnt() == 0 )
  1494       _body.map( i--, _body.pop() );
  1498 //------------------------------adjust_loop_exit_prob--------------------------
  1499 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1500 // Replace with a 1-in-10 exit guess.
  1501 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1502   Node *test = tail();
  1503   while( test != _head ) {
  1504     uint top = test->Opcode();
  1505     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1506       int test_con = ((ProjNode*)test)->_con;
  1507       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1508       IfNode *iff = test->in(0)->as_If();
  1509       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1510         Node *bol = iff->in(1);
  1511         if( bol && bol->req() > 1 && bol->in(1) &&
  1512             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1513              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1514              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1515              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1516              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1517              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1518           return;               // Allocation loops RARELY take backedge
  1519         // Find the OTHER exit path from the IF
  1520         Node* ex = iff->proj_out(1-test_con);
  1521         float p = iff->_prob;
  1522         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1523           if( top == Op_IfTrue ) {
  1524             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1525               iff->_prob = PROB_STATIC_FREQUENT;
  1527           } else {
  1528             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1529               iff->_prob = PROB_STATIC_INFREQUENT;
  1535     test = phase->idom(test);
  1540 //------------------------------policy_do_remove_empty_loop--------------------
  1541 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1542 // The 'DO' part is to replace the trip counter with the value it will
  1543 // have on the last iteration.  This will break the loop.
  1544 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1545   // Minimum size must be empty loop
  1546   if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
  1548   if( !_head->is_CountedLoop() ) return false;     // Dead loop
  1549   CountedLoopNode *cl = _head->as_CountedLoop();
  1550   if( !cl->loopexit() ) return false; // Malformed loop
  1551   if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
  1552     return false;             // Infinite loop
  1553 #ifndef PRODUCT
  1554   if( PrintOpto )
  1555     tty->print_cr("Removing empty loop");
  1556 #endif
  1557 #ifdef ASSERT
  1558   // Ensure only one phi which is the iv.
  1559   Node* iv = NULL;
  1560   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1561     Node* n = cl->fast_out(i);
  1562     if (n->Opcode() == Op_Phi) {
  1563       assert(iv == NULL, "Too many phis" );
  1564       iv = n;
  1567   assert(iv == cl->phi(), "Wrong phi" );
  1568 #endif
  1569   // Replace the phi at loop head with the final value of the last
  1570   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1571   // taken) and all loop-invariant uses of the exit values will be correct.
  1572   Node *phi = cl->phi();
  1573   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1574   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1575   phase->_igvn.hash_delete(phi);
  1576   phase->_igvn.subsume_node(phi,final);
  1577   phase->C->set_major_progress();
  1578   return true;
  1582 //=============================================================================
  1583 //------------------------------iteration_split_impl---------------------------
  1584 void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1585   // Check and remove empty loops (spam micro-benchmarks)
  1586   if( policy_do_remove_empty_loop(phase) )
  1587     return;                     // Here we removed an empty loop
  1589   bool should_peel = policy_peeling(phase); // Should we peel?
  1591   bool should_unswitch = policy_unswitching(phase);
  1593   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1594   // This removes loop-invariant tests (usually null checks).
  1595   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1596     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1597       return;
  1599     if( should_peel ) {            // Should we peel?
  1600 #ifndef PRODUCT
  1601       if (PrintOpto) tty->print_cr("should_peel");
  1602 #endif
  1603       phase->do_peeling(this,old_new);
  1604     } else if( should_unswitch ) {
  1605       phase->do_unswitching(this, old_new);
  1607     return;
  1609   CountedLoopNode *cl = _head->as_CountedLoop();
  1611   if( !cl->loopexit() ) return; // Ignore various kinds of broken loops
  1613   // Do nothing special to pre- and post- loops
  1614   if( cl->is_pre_loop() || cl->is_post_loop() ) return;
  1616   // Compute loop trip count from profile data
  1617   compute_profile_trip_cnt(phase);
  1619   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1620   // to completely unroll this loop or do loop unswitching.
  1621   if( cl->is_normal_loop() ) {
  1622     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1623     if( should_maximally_unroll ) {
  1624       // Here we did some unrolling and peeling.  Eventually we will
  1625       // completely unroll this loop and it will no longer be a loop.
  1626       phase->do_maximally_unroll(this,old_new);
  1627       return;
  1629     if (should_unswitch) {
  1630       phase->do_unswitching(this, old_new);
  1631       return;
  1636   // Counted loops may be peeled, may need some iterations run up
  1637   // front for RCE, and may want to align loop refs to a cache
  1638   // line.  Thus we clone a full loop up front whose trip count is
  1639   // at least 1 (if peeling), but may be several more.
  1641   // The main loop will start cache-line aligned with at least 1
  1642   // iteration of the unrolled body (zero-trip test required) and
  1643   // will have some range checks removed.
  1645   // A post-loop will finish any odd iterations (leftover after
  1646   // unrolling), plus any needed for RCE purposes.
  1648   bool should_unroll = policy_unroll(phase);
  1650   bool should_rce = policy_range_check(phase);
  1652   bool should_align = policy_align(phase);
  1654   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  1655   // need a pre-loop.  We may still need to peel an initial iteration but
  1656   // we will not be needing an unknown number of pre-iterations.
  1657   //
  1658   // Basically, if may_rce_align reports FALSE first time through,
  1659   // we will not be able to later do RCE or Aligning on this loop.
  1660   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1662   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1663   // we switch to the pre-/main-/post-loop model.  This model also covers
  1664   // peeling.
  1665   if( should_rce || should_align || should_unroll ) {
  1666     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  1667       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1669     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1670     // with full checks, but the main-loop with no checks.  Remove said
  1671     // checks from the main body.
  1672     if( should_rce )
  1673       phase->do_range_check(this,old_new);
  1675     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1676     // twice as many iterations as before) and the main body limit (only do
  1677     // an even number of trips).  If we are peeling, we might enable some RCE
  1678     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1679     // peeling.
  1680     if( should_unroll && !should_peel )
  1681       phase->do_unroll(this,old_new, true);
  1683     // Adjust the pre-loop limits to align the main body
  1684     // iterations.
  1685     if( should_align )
  1686       Unimplemented();
  1688   } else {                      // Else we have an unchanged counted loop
  1689     if( should_peel )           // Might want to peel but do nothing else
  1690       phase->do_peeling(this,old_new);
  1695 //=============================================================================
  1696 //------------------------------iteration_split--------------------------------
  1697 void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  1698   // Recursively iteration split nested loops
  1699   if( _child ) _child->iteration_split( phase, old_new );
  1701   // Clean out prior deadwood
  1702   DCE_loop_body();
  1705   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  1706   // Replace with a 1-in-10 exit guess.
  1707   if( _parent /*not the root loop*/ &&
  1708       !_irreducible &&
  1709       // Also ignore the occasional dead backedge
  1710       !tail()->is_top() ) {
  1711     adjust_loop_exit_prob(phase);
  1715   // Gate unrolling, RCE and peeling efforts.
  1716   if( !_child &&                // If not an inner loop, do not split
  1717       !_irreducible &&
  1718       _allow_optimizations &&
  1719       !tail()->is_top() ) {     // Also ignore the occasional dead backedge
  1720     if (!_has_call) {
  1721       iteration_split_impl( phase, old_new );
  1722     } else if (policy_unswitching(phase)) {
  1723       phase->do_unswitching(this, old_new);
  1727   // Minor offset re-organization to remove loop-fallout uses of
  1728   // trip counter.
  1729   if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
  1730   if( _next ) _next->iteration_split( phase, old_new );

mercurial