src/share/vm/memory/space.hpp

Fri, 15 Apr 2011 09:36:28 -0400

author
coleenp
date
Fri, 15 Apr 2011 09:36:28 -0400
changeset 2777
8ce625481709
parent 2314
f95d63e2154a
child 3156
f08d439fab8c
permissions
-rw-r--r--

7032407: Crash in LinkResolver::runtime_resolve_virtual_method()
Summary: Make CDS reorder vtables so that dump time vtables match run time order, so when redefine classes reinitializes them, they aren't in the wrong order.
Reviewed-by: dcubed, acorn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
    26 #define SHARE_VM_MEMORY_SPACE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/blockOffsetTable.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/iterator.hpp"
    32 #include "memory/memRegion.hpp"
    33 #include "memory/watermark.hpp"
    34 #include "oops/markOop.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "runtime/prefetch.hpp"
    37 #include "utilities/workgroup.hpp"
    38 #ifdef TARGET_OS_FAMILY_linux
    39 # include "os_linux.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_FAMILY_solaris
    42 # include "os_solaris.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_windows
    45 # include "os_windows.inline.hpp"
    46 #endif
    48 // A space is an abstraction for the "storage units" backing
    49 // up the generation abstraction. It includes specific
    50 // implementations for keeping track of free and used space,
    51 // for iterating over objects and free blocks, etc.
    53 // Here's the Space hierarchy:
    54 //
    55 // - Space               -- an asbtract base class describing a heap area
    56 //   - CompactibleSpace  -- a space supporting compaction
    57 //     - CompactibleFreeListSpace -- (used for CMS generation)
    58 //     - ContiguousSpace -- a compactible space in which all free space
    59 //                          is contiguous
    60 //       - EdenSpace     -- contiguous space used as nursery
    61 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
    62 //       - OffsetTableContigSpace -- contiguous space with a block offset array
    63 //                          that allows "fast" block_start calls
    64 //         - TenuredSpace -- (used for TenuredGeneration)
    65 //         - ContigPermSpace -- an offset table contiguous space for perm gen
    67 // Forward decls.
    68 class Space;
    69 class BlockOffsetArray;
    70 class BlockOffsetArrayContigSpace;
    71 class Generation;
    72 class CompactibleSpace;
    73 class BlockOffsetTable;
    74 class GenRemSet;
    75 class CardTableRS;
    76 class DirtyCardToOopClosure;
    78 // An oop closure that is circumscribed by a filtering memory region.
    79 class SpaceMemRegionOopsIterClosure: public OopClosure {
    80  private:
    81   OopClosure* _cl;
    82   MemRegion   _mr;
    83  protected:
    84   template <class T> void do_oop_work(T* p) {
    85     if (_mr.contains(p)) {
    86       _cl->do_oop(p);
    87     }
    88   }
    89  public:
    90   SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
    91     _cl(cl), _mr(mr) {}
    92   virtual void do_oop(oop* p);
    93   virtual void do_oop(narrowOop* p);
    94 };
    96 // A Space describes a heap area. Class Space is an abstract
    97 // base class.
    98 //
    99 // Space supports allocation, size computation and GC support is provided.
   100 //
   101 // Invariant: bottom() and end() are on page_size boundaries and
   102 // bottom() <= top() <= end()
   103 // top() is inclusive and end() is exclusive.
   105 class Space: public CHeapObj {
   106   friend class VMStructs;
   107  protected:
   108   HeapWord* _bottom;
   109   HeapWord* _end;
   111   // Used in support of save_marks()
   112   HeapWord* _saved_mark_word;
   114   MemRegionClosure* _preconsumptionDirtyCardClosure;
   116   // A sequential tasks done structure. This supports
   117   // parallel GC, where we have threads dynamically
   118   // claiming sub-tasks from a larger parallel task.
   119   SequentialSubTasksDone _par_seq_tasks;
   121   Space():
   122     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
   124  public:
   125   // Accessors
   126   HeapWord* bottom() const         { return _bottom; }
   127   HeapWord* end() const            { return _end;    }
   128   virtual void set_bottom(HeapWord* value) { _bottom = value; }
   129   virtual void set_end(HeapWord* value)    { _end = value; }
   131   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
   133   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
   135   MemRegionClosure* preconsumptionDirtyCardClosure() const {
   136     return _preconsumptionDirtyCardClosure;
   137   }
   138   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
   139     _preconsumptionDirtyCardClosure = cl;
   140   }
   142   // Returns a subregion of the space containing all the objects in
   143   // the space.
   144   virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
   146   // Returns a region that is guaranteed to contain (at least) all objects
   147   // allocated at the time of the last call to "save_marks".  If the space
   148   // initializes its DirtyCardToOopClosure's specifying the "contig" option
   149   // (that is, if the space is contiguous), then this region must contain only
   150   // such objects: the memregion will be from the bottom of the region to the
   151   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
   152   // the space must distiguish between objects in the region allocated before
   153   // and after the call to save marks.
   154   virtual MemRegion used_region_at_save_marks() const {
   155     return MemRegion(bottom(), saved_mark_word());
   156   }
   158   // Initialization.
   159   // "initialize" should be called once on a space, before it is used for
   160   // any purpose.  The "mr" arguments gives the bounds of the space, and
   161   // the "clear_space" argument should be true unless the memory in "mr" is
   162   // known to be zeroed.
   163   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   165   // The "clear" method must be called on a region that may have
   166   // had allocation performed in it, but is now to be considered empty.
   167   virtual void clear(bool mangle_space);
   169   // For detecting GC bugs.  Should only be called at GC boundaries, since
   170   // some unused space may be used as scratch space during GC's.
   171   // Default implementation does nothing. We also call this when expanding
   172   // a space to satisfy an allocation request. See bug #4668531
   173   virtual void mangle_unused_area() {}
   174   virtual void mangle_unused_area_complete() {}
   175   virtual void mangle_region(MemRegion mr) {}
   177   // Testers
   178   bool is_empty() const              { return used() == 0; }
   179   bool not_empty() const             { return used() > 0; }
   181   // Returns true iff the given the space contains the
   182   // given address as part of an allocated object. For
   183   // ceratin kinds of spaces, this might be a potentially
   184   // expensive operation. To prevent performance problems
   185   // on account of its inadvertent use in product jvm's,
   186   // we restrict its use to assertion checks only.
   187   virtual bool is_in(const void* p) const;
   189   // Returns true iff the given reserved memory of the space contains the
   190   // given address.
   191   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
   193   // Returns true iff the given block is not allocated.
   194   virtual bool is_free_block(const HeapWord* p) const = 0;
   196   // Test whether p is double-aligned
   197   static bool is_aligned(void* p) {
   198     return ((intptr_t)p & (sizeof(double)-1)) == 0;
   199   }
   201   // Size computations.  Sizes are in bytes.
   202   size_t capacity()     const { return byte_size(bottom(), end()); }
   203   virtual size_t used() const = 0;
   204   virtual size_t free() const = 0;
   206   // Iterate over all the ref-containing fields of all objects in the
   207   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
   208   // applications of the closure are not included in the iteration.
   209   virtual void oop_iterate(OopClosure* cl);
   211   // Same as above, restricted to the intersection of a memory region and
   212   // the space.  Fields in objects allocated by applications of the closure
   213   // are not included in the iteration.
   214   virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
   216   // Iterate over all objects in the space, calling "cl.do_object" on
   217   // each.  Objects allocated by applications of the closure are not
   218   // included in the iteration.
   219   virtual void object_iterate(ObjectClosure* blk) = 0;
   220   // Similar to object_iterate() except only iterates over
   221   // objects whose internal references point to objects in the space.
   222   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
   224   // Iterate over all objects that intersect with mr, calling "cl->do_object"
   225   // on each.  There is an exception to this: if this closure has already
   226   // been invoked on an object, it may skip such objects in some cases.  This is
   227   // Most likely to happen in an "upwards" (ascending address) iteration of
   228   // MemRegions.
   229   virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   231   // Iterate over as many initialized objects in the space as possible,
   232   // calling "cl.do_object_careful" on each. Return NULL if all objects
   233   // in the space (at the start of the iteration) were iterated over.
   234   // Return an address indicating the extent of the iteration in the
   235   // event that the iteration had to return because of finding an
   236   // uninitialized object in the space, or if the closure "cl"
   237   // signalled early termination.
   238   virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   239   virtual HeapWord* object_iterate_careful_m(MemRegion mr,
   240                                              ObjectClosureCareful* cl);
   242   // Create and return a new dirty card to oop closure. Can be
   243   // overriden to return the appropriate type of closure
   244   // depending on the type of space in which the closure will
   245   // operate. ResourceArea allocated.
   246   virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   247                                              CardTableModRefBS::PrecisionStyle precision,
   248                                              HeapWord* boundary = NULL);
   250   // If "p" is in the space, returns the address of the start of the
   251   // "block" that contains "p".  We say "block" instead of "object" since
   252   // some heaps may not pack objects densely; a chunk may either be an
   253   // object or a non-object.  If "p" is not in the space, return NULL.
   254   virtual HeapWord* block_start_const(const void* p) const = 0;
   256   // The non-const version may have benevolent side effects on the data
   257   // structure supporting these calls, possibly speeding up future calls.
   258   // The default implementation, however, is simply to call the const
   259   // version.
   260   inline virtual HeapWord* block_start(const void* p);
   262   // Requires "addr" to be the start of a chunk, and returns its size.
   263   // "addr + size" is required to be the start of a new chunk, or the end
   264   // of the active area of the heap.
   265   virtual size_t block_size(const HeapWord* addr) const = 0;
   267   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   268   // the block is an object.
   269   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   271   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   272   // the block is an object and the object is alive.
   273   virtual bool obj_is_alive(const HeapWord* addr) const;
   275   // Allocation (return NULL if full).  Assumes the caller has established
   276   // mutually exclusive access to the space.
   277   virtual HeapWord* allocate(size_t word_size) = 0;
   279   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
   280   virtual HeapWord* par_allocate(size_t word_size) = 0;
   282   // Returns true if this object has been allocated since a
   283   // generation's "save_marks" call.
   284   virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
   286   // Mark-sweep-compact support: all spaces can update pointers to objects
   287   // moving as a part of compaction.
   288   virtual void adjust_pointers();
   290   // PrintHeapAtGC support
   291   virtual void print() const;
   292   virtual void print_on(outputStream* st) const;
   293   virtual void print_short() const;
   294   virtual void print_short_on(outputStream* st) const;
   297   // Accessor for parallel sequential tasks.
   298   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
   300   // IF "this" is a ContiguousSpace, return it, else return NULL.
   301   virtual ContiguousSpace* toContiguousSpace() {
   302     return NULL;
   303   }
   305   // Debugging
   306   virtual void verify(bool allow_dirty) const = 0;
   307 };
   309 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
   310 // OopClosure to (the addresses of) all the ref-containing fields that could
   311 // be modified by virtue of the given MemRegion being dirty. (Note that
   312 // because of the imprecise nature of the write barrier, this may iterate
   313 // over oops beyond the region.)
   314 // This base type for dirty card to oop closures handles memory regions
   315 // in non-contiguous spaces with no boundaries, and should be sub-classed
   316 // to support other space types. See ContiguousDCTOC for a sub-class
   317 // that works with ContiguousSpaces.
   319 class DirtyCardToOopClosure: public MemRegionClosureRO {
   320 protected:
   321   OopClosure* _cl;
   322   Space* _sp;
   323   CardTableModRefBS::PrecisionStyle _precision;
   324   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
   325                                 // pointing below boundary.
   326   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
   327                                 // a downwards traversal; this is the
   328                                 // lowest location already done (or,
   329                                 // alternatively, the lowest address that
   330                                 // shouldn't be done again.  NULL means infinity.)
   331   NOT_PRODUCT(HeapWord* _last_bottom;)
   332   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
   334   // Get the actual top of the area on which the closure will
   335   // operate, given where the top is assumed to be (the end of the
   336   // memory region passed to do_MemRegion) and where the object
   337   // at the top is assumed to start. For example, an object may
   338   // start at the top but actually extend past the assumed top,
   339   // in which case the top becomes the end of the object.
   340   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   342   // Walk the given memory region from bottom to (actual) top
   343   // looking for objects and applying the oop closure (_cl) to
   344   // them. The base implementation of this treats the area as
   345   // blocks, where a block may or may not be an object. Sub-
   346   // classes should override this to provide more accurate
   347   // or possibly more efficient walking.
   348   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
   350 public:
   351   DirtyCardToOopClosure(Space* sp, OopClosure* cl,
   352                         CardTableModRefBS::PrecisionStyle precision,
   353                         HeapWord* boundary) :
   354     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
   355     _min_done(NULL) {
   356     NOT_PRODUCT(_last_bottom = NULL);
   357     NOT_PRODUCT(_last_explicit_min_done = NULL);
   358   }
   360   void do_MemRegion(MemRegion mr);
   362   void set_min_done(HeapWord* min_done) {
   363     _min_done = min_done;
   364     NOT_PRODUCT(_last_explicit_min_done = _min_done);
   365   }
   366 #ifndef PRODUCT
   367   void set_last_bottom(HeapWord* last_bottom) {
   368     _last_bottom = last_bottom;
   369   }
   370 #endif
   371 };
   373 // A structure to represent a point at which objects are being copied
   374 // during compaction.
   375 class CompactPoint : public StackObj {
   376 public:
   377   Generation* gen;
   378   CompactibleSpace* space;
   379   HeapWord* threshold;
   380   CompactPoint(Generation* _gen, CompactibleSpace* _space,
   381                HeapWord* _threshold) :
   382     gen(_gen), space(_space), threshold(_threshold) {}
   383 };
   386 // A space that supports compaction operations.  This is usually, but not
   387 // necessarily, a space that is normally contiguous.  But, for example, a
   388 // free-list-based space whose normal collection is a mark-sweep without
   389 // compaction could still support compaction in full GC's.
   391 class CompactibleSpace: public Space {
   392   friend class VMStructs;
   393   friend class CompactibleFreeListSpace;
   394   friend class CompactingPermGenGen;
   395   friend class CMSPermGenGen;
   396 private:
   397   HeapWord* _compaction_top;
   398   CompactibleSpace* _next_compaction_space;
   400 public:
   401   CompactibleSpace() :
   402    _compaction_top(NULL), _next_compaction_space(NULL) {}
   404   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   405   virtual void clear(bool mangle_space);
   407   // Used temporarily during a compaction phase to hold the value
   408   // top should have when compaction is complete.
   409   HeapWord* compaction_top() const { return _compaction_top;    }
   411   void set_compaction_top(HeapWord* value) {
   412     assert(value == NULL || (value >= bottom() && value <= end()),
   413       "should point inside space");
   414     _compaction_top = value;
   415   }
   417   // Perform operations on the space needed after a compaction
   418   // has been performed.
   419   virtual void reset_after_compaction() {}
   421   // Returns the next space (in the current generation) to be compacted in
   422   // the global compaction order.  Also is used to select the next
   423   // space into which to compact.
   425   virtual CompactibleSpace* next_compaction_space() const {
   426     return _next_compaction_space;
   427   }
   429   void set_next_compaction_space(CompactibleSpace* csp) {
   430     _next_compaction_space = csp;
   431   }
   433   // MarkSweep support phase2
   435   // Start the process of compaction of the current space: compute
   436   // post-compaction addresses, and insert forwarding pointers.  The fields
   437   // "cp->gen" and "cp->compaction_space" are the generation and space into
   438   // which we are currently compacting.  This call updates "cp" as necessary,
   439   // and leaves the "compaction_top" of the final value of
   440   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
   441   // this phase as if the final copy had occurred; if so, "cp->threshold"
   442   // indicates when the next such action should be taken.
   443   virtual void prepare_for_compaction(CompactPoint* cp);
   444   // MarkSweep support phase3
   445   virtual void adjust_pointers();
   446   // MarkSweep support phase4
   447   virtual void compact();
   449   // The maximum percentage of objects that can be dead in the compacted
   450   // live part of a compacted space ("deadwood" support.)
   451   virtual size_t allowed_dead_ratio() const { return 0; };
   453   // Some contiguous spaces may maintain some data structures that should
   454   // be updated whenever an allocation crosses a boundary.  This function
   455   // returns the first such boundary.
   456   // (The default implementation returns the end of the space, so the
   457   // boundary is never crossed.)
   458   virtual HeapWord* initialize_threshold() { return end(); }
   460   // "q" is an object of the given "size" that should be forwarded;
   461   // "cp" names the generation ("gen") and containing "this" (which must
   462   // also equal "cp->space").  "compact_top" is where in "this" the
   463   // next object should be forwarded to.  If there is room in "this" for
   464   // the object, insert an appropriate forwarding pointer in "q".
   465   // If not, go to the next compaction space (there must
   466   // be one, since compaction must succeed -- we go to the first space of
   467   // the previous generation if necessary, updating "cp"), reset compact_top
   468   // and then forward.  In either case, returns the new value of "compact_top".
   469   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
   470   // function of the then-current compaction space, and updates "cp->threshold
   471   // accordingly".
   472   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
   473                     HeapWord* compact_top);
   475   // Return a size with adjusments as required of the space.
   476   virtual size_t adjust_object_size_v(size_t size) const { return size; }
   478 protected:
   479   // Used during compaction.
   480   HeapWord* _first_dead;
   481   HeapWord* _end_of_live;
   483   // Minimum size of a free block.
   484   virtual size_t minimum_free_block_size() const = 0;
   486   // This the function is invoked when an allocation of an object covering
   487   // "start" to "end occurs crosses the threshold; returns the next
   488   // threshold.  (The default implementation does nothing.)
   489   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
   490     return end();
   491   }
   493   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
   494   // free block of the given "word_len", and that "q", were it an object,
   495   // would not move if forwared.  If the size allows, fill the free
   496   // block with an object, to prevent excessive compaction.  Returns "true"
   497   // iff the free region was made deadspace, and modifies
   498   // "allowed_deadspace_words" to reflect the number of available deadspace
   499   // words remaining after this operation.
   500   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
   501                         size_t word_len);
   502 };
   504 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) {            \
   505   /* Compute the new addresses for the live objects and store it in the mark \
   506    * Used by universe::mark_sweep_phase2()                                   \
   507    */                                                                        \
   508   HeapWord* compact_top; /* This is where we are currently compacting to. */ \
   509                                                                              \
   510   /* We're sure to be here before any objects are compacted into this        \
   511    * space, so this is a good time to initialize this:                       \
   512    */                                                                        \
   513   set_compaction_top(bottom());                                              \
   514                                                                              \
   515   if (cp->space == NULL) {                                                   \
   516     assert(cp->gen != NULL, "need a generation");                            \
   517     assert(cp->threshold == NULL, "just checking");                          \
   518     assert(cp->gen->first_compaction_space() == this, "just checking");      \
   519     cp->space = cp->gen->first_compaction_space();                           \
   520     compact_top = cp->space->bottom();                                       \
   521     cp->space->set_compaction_top(compact_top);                              \
   522     cp->threshold = cp->space->initialize_threshold();                       \
   523   } else {                                                                   \
   524     compact_top = cp->space->compaction_top();                               \
   525   }                                                                          \
   526                                                                              \
   527   /* We allow some amount of garbage towards the bottom of the space, so     \
   528    * we don't start compacting before there is a significant gain to be made.\
   529    * Occasionally, we want to ensure a full compaction, which is determined  \
   530    * by the MarkSweepAlwaysCompactCount parameter.                           \
   531    */                                                                        \
   532   int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
   533   bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);       \
   534                                                                              \
   535   size_t allowed_deadspace = 0;                                              \
   536   if (skip_dead) {                                                           \
   537     const size_t ratio = allowed_dead_ratio();                               \
   538     allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize;           \
   539   }                                                                          \
   540                                                                              \
   541   HeapWord* q = bottom();                                                    \
   542   HeapWord* t = scan_limit();                                                \
   543                                                                              \
   544   HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last \
   545                                    live object. */                           \
   546   HeapWord*  first_dead = end();/* The first dead object. */                 \
   547   LiveRange* liveRange  = NULL; /* The current live range, recorded in the   \
   548                                    first header of preceding free area. */   \
   549   _first_dead = first_dead;                                                  \
   550                                                                              \
   551   const intx interval = PrefetchScanIntervalInBytes;                         \
   552                                                                              \
   553   while (q < t) {                                                            \
   554     assert(!block_is_obj(q) ||                                               \
   555            oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||   \
   556            oop(q)->mark()->has_bias_pattern(),                               \
   557            "these are the only valid states during a mark sweep");           \
   558     if (block_is_obj(q) && oop(q)->is_gc_marked()) {                         \
   559       /* prefetch beyond q */                                                \
   560       Prefetch::write(q, interval);                                          \
   561       /* size_t size = oop(q)->size();  changing this for cms for perm gen */\
   562       size_t size = block_size(q);                                           \
   563       compact_top = cp->space->forward(oop(q), size, cp, compact_top);       \
   564       q += size;                                                             \
   565       end_of_live = q;                                                       \
   566     } else {                                                                 \
   567       /* run over all the contiguous dead objects */                         \
   568       HeapWord* end = q;                                                     \
   569       do {                                                                   \
   570         /* prefetch beyond end */                                            \
   571         Prefetch::write(end, interval);                                      \
   572         end += block_size(end);                                              \
   573       } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
   574                                                                              \
   575       /* see if we might want to pretend this object is alive so that        \
   576        * we don't have to compact quite as often.                            \
   577        */                                                                    \
   578       if (allowed_deadspace > 0 && q == compact_top) {                       \
   579         size_t sz = pointer_delta(end, q);                                   \
   580         if (insert_deadspace(allowed_deadspace, q, sz)) {                    \
   581           compact_top = cp->space->forward(oop(q), sz, cp, compact_top);     \
   582           q = end;                                                           \
   583           end_of_live = end;                                                 \
   584           continue;                                                          \
   585         }                                                                    \
   586       }                                                                      \
   587                                                                              \
   588       /* otherwise, it really is a free region. */                           \
   589                                                                              \
   590       /* for the previous LiveRange, record the end of the live objects. */  \
   591       if (liveRange) {                                                       \
   592         liveRange->set_end(q);                                               \
   593       }                                                                      \
   594                                                                              \
   595       /* record the current LiveRange object.                                \
   596        * liveRange->start() is overlaid on the mark word.                    \
   597        */                                                                    \
   598       liveRange = (LiveRange*)q;                                             \
   599       liveRange->set_start(end);                                             \
   600       liveRange->set_end(end);                                               \
   601                                                                              \
   602       /* see if this is the first dead region. */                            \
   603       if (q < first_dead) {                                                  \
   604         first_dead = q;                                                      \
   605       }                                                                      \
   606                                                                              \
   607       /* move on to the next object */                                       \
   608       q = end;                                                               \
   609     }                                                                        \
   610   }                                                                          \
   611                                                                              \
   612   assert(q == t, "just checking");                                           \
   613   if (liveRange != NULL) {                                                   \
   614     liveRange->set_end(q);                                                   \
   615   }                                                                          \
   616   _end_of_live = end_of_live;                                                \
   617   if (end_of_live < first_dead) {                                            \
   618     first_dead = end_of_live;                                                \
   619   }                                                                          \
   620   _first_dead = first_dead;                                                  \
   621                                                                              \
   622   /* save the compaction_top of the compaction space. */                     \
   623   cp->space->set_compaction_top(compact_top);                                \
   624 }
   626 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) {                             \
   627   /* adjust all the interior pointers to point at the new locations of objects  \
   628    * Used by MarkSweep::mark_sweep_phase3() */                                  \
   629                                                                                 \
   630   HeapWord* q = bottom();                                                       \
   631   HeapWord* t = _end_of_live;  /* Established by "prepare_for_compaction". */   \
   632                                                                                 \
   633   assert(_first_dead <= _end_of_live, "Stands to reason, no?");                 \
   634                                                                                 \
   635   if (q < t && _first_dead > q &&                                               \
   636       !oop(q)->is_gc_marked()) {                                                \
   637     /* we have a chunk of the space which hasn't moved and we've                \
   638      * reinitialized the mark word during the previous pass, so we can't        \
   639      * use is_gc_marked for the traversal. */                                   \
   640     HeapWord* end = _first_dead;                                                \
   641                                                                                 \
   642     while (q < end) {                                                           \
   643       /* I originally tried to conjoin "block_start(q) == q" to the             \
   644        * assertion below, but that doesn't work, because you can't              \
   645        * accurately traverse previous objects to get to the current one         \
   646        * after their pointers (including pointers into permGen) have been       \
   647        * updated, until the actual compaction is done.  dld, 4/00 */            \
   648       assert(block_is_obj(q),                                                   \
   649              "should be at block boundaries, and should be looking at objs");   \
   650                                                                                 \
   651       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   652                                                                                 \
   653       /* point all the oops to the new location */                              \
   654       size_t size = oop(q)->adjust_pointers();                                  \
   655       size = adjust_obj_size(size);                                             \
   656                                                                                 \
   657       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   658                                                                                 \
   659       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   660                                                                                 \
   661       q += size;                                                                \
   662     }                                                                           \
   663                                                                                 \
   664     if (_first_dead == t) {                                                     \
   665       q = t;                                                                    \
   666     } else {                                                                    \
   667       /* $$$ This is funky.  Using this to read the previously written          \
   668        * LiveRange.  See also use below. */                                     \
   669       q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer();                \
   670     }                                                                           \
   671   }                                                                             \
   672                                                                                 \
   673   const intx interval = PrefetchScanIntervalInBytes;                            \
   674                                                                                 \
   675   debug_only(HeapWord* prev_q = NULL);                                          \
   676   while (q < t) {                                                               \
   677     /* prefetch beyond q */                                                     \
   678     Prefetch::write(q, interval);                                               \
   679     if (oop(q)->is_gc_marked()) {                                               \
   680       /* q is alive */                                                          \
   681       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   682       /* point all the oops to the new location */                              \
   683       size_t size = oop(q)->adjust_pointers();                                  \
   684       size = adjust_obj_size(size);                                             \
   685       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   686       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   687       debug_only(prev_q = q);                                                   \
   688       q += size;                                                                \
   689     } else {                                                                    \
   690       /* q is not a live object, so its mark should point at the next           \
   691        * live object */                                                         \
   692       debug_only(prev_q = q);                                                   \
   693       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   694       assert(q > prev_q, "we should be moving forward through memory");         \
   695     }                                                                           \
   696   }                                                                             \
   697                                                                                 \
   698   assert(q == t, "just checking");                                              \
   699 }
   701 #define SCAN_AND_COMPACT(obj_size) {                                            \
   702   /* Copy all live objects to their new location                                \
   703    * Used by MarkSweep::mark_sweep_phase4() */                                  \
   704                                                                                 \
   705   HeapWord*       q = bottom();                                                 \
   706   HeapWord* const t = _end_of_live;                                             \
   707   debug_only(HeapWord* prev_q = NULL);                                          \
   708                                                                                 \
   709   if (q < t && _first_dead > q &&                                               \
   710       !oop(q)->is_gc_marked()) {                                                \
   711     debug_only(                                                                 \
   712     /* we have a chunk of the space which hasn't moved and we've reinitialized  \
   713      * the mark word during the previous pass, so we can't use is_gc_marked for \
   714      * the traversal. */                                                        \
   715     HeapWord* const end = _first_dead;                                          \
   716                                                                                 \
   717     while (q < end) {                                                           \
   718       size_t size = obj_size(q);                                                \
   719       assert(!oop(q)->is_gc_marked(),                                           \
   720              "should be unmarked (special dense prefix handling)");             \
   721       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q));       \
   722       debug_only(prev_q = q);                                                   \
   723       q += size;                                                                \
   724     }                                                                           \
   725     )  /* debug_only */                                                         \
   726                                                                                 \
   727     if (_first_dead == t) {                                                     \
   728       q = t;                                                                    \
   729     } else {                                                                    \
   730       /* $$$ Funky */                                                           \
   731       q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();               \
   732     }                                                                           \
   733   }                                                                             \
   734                                                                                 \
   735   const intx scan_interval = PrefetchScanIntervalInBytes;                       \
   736   const intx copy_interval = PrefetchCopyIntervalInBytes;                       \
   737   while (q < t) {                                                               \
   738     if (!oop(q)->is_gc_marked()) {                                              \
   739       /* mark is pointer to next marked oop */                                  \
   740       debug_only(prev_q = q);                                                   \
   741       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   742       assert(q > prev_q, "we should be moving forward through memory");         \
   743     } else {                                                                    \
   744       /* prefetch beyond q */                                                   \
   745       Prefetch::read(q, scan_interval);                                         \
   746                                                                                 \
   747       /* size and destination */                                                \
   748       size_t size = obj_size(q);                                                \
   749       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();                \
   750                                                                                 \
   751       /* prefetch beyond compaction_top */                                      \
   752       Prefetch::write(compaction_top, copy_interval);                           \
   753                                                                                 \
   754       /* copy object and reinit its mark */                                     \
   755       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size,            \
   756                                                             compaction_top));   \
   757       assert(q != compaction_top, "everything in this pass should be moving");  \
   758       Copy::aligned_conjoint_words(q, compaction_top, size);                    \
   759       oop(compaction_top)->init_mark();                                         \
   760       assert(oop(compaction_top)->klass() != NULL, "should have a class");      \
   761                                                                                 \
   762       debug_only(prev_q = q);                                                   \
   763       q += size;                                                                \
   764     }                                                                           \
   765   }                                                                             \
   766                                                                                 \
   767   /* Let's remember if we were empty before we did the compaction. */           \
   768   bool was_empty = used_region().is_empty();                                    \
   769   /* Reset space after compaction is complete */                                \
   770   reset_after_compaction();                                                     \
   771   /* We do this clear, below, since it has overloaded meanings for some */      \
   772   /* space subtypes.  For example, OffsetTableContigSpace's that were   */      \
   773   /* compacted into will have had their offset table thresholds updated */      \
   774   /* continuously, but those that weren't need to have their thresholds */      \
   775   /* re-initialized.  Also mangles unused area for debugging.           */      \
   776   if (used_region().is_empty()) {                                               \
   777     if (!was_empty) clear(SpaceDecorator::Mangle);                              \
   778   } else {                                                                      \
   779     if (ZapUnusedHeapArea) mangle_unused_area();                                \
   780   }                                                                             \
   781 }
   783 class GenSpaceMangler;
   785 // A space in which the free area is contiguous.  It therefore supports
   786 // faster allocation, and compaction.
   787 class ContiguousSpace: public CompactibleSpace {
   788   friend class OneContigSpaceCardGeneration;
   789   friend class VMStructs;
   790  protected:
   791   HeapWord* _top;
   792   HeapWord* _concurrent_iteration_safe_limit;
   793   // A helper for mangling the unused area of the space in debug builds.
   794   GenSpaceMangler* _mangler;
   796   GenSpaceMangler* mangler() { return _mangler; }
   798   // Allocation helpers (return NULL if full).
   799   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   800   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   802  public:
   803   ContiguousSpace();
   804   ~ContiguousSpace();
   806   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   807   virtual void clear(bool mangle_space);
   809   // Accessors
   810   HeapWord* top() const            { return _top;    }
   811   void set_top(HeapWord* value)    { _top = value; }
   813   virtual void set_saved_mark()    { _saved_mark_word = top();    }
   814   void reset_saved_mark()          { _saved_mark_word = bottom(); }
   816   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
   817   WaterMark top_mark()        { return WaterMark(this, top()); }
   818   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
   819   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
   821   // In debug mode mangle (write it with a particular bit
   822   // pattern) the unused part of a space.
   824   // Used to save the an address in a space for later use during mangling.
   825   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
   826   // Used to save the space's current top for later use during mangling.
   827   void set_top_for_allocations() PRODUCT_RETURN;
   829   // Mangle regions in the space from the current top up to the
   830   // previously mangled part of the space.
   831   void mangle_unused_area() PRODUCT_RETURN;
   832   // Mangle [top, end)
   833   void mangle_unused_area_complete() PRODUCT_RETURN;
   834   // Mangle the given MemRegion.
   835   void mangle_region(MemRegion mr) PRODUCT_RETURN;
   837   // Do some sparse checking on the area that should have been mangled.
   838   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
   839   // Check the complete area that should have been mangled.
   840   // This code may be NULL depending on the macro DEBUG_MANGLING.
   841   void check_mangled_unused_area_complete() PRODUCT_RETURN;
   843   // Size computations: sizes in bytes.
   844   size_t capacity() const        { return byte_size(bottom(), end()); }
   845   size_t used() const            { return byte_size(bottom(), top()); }
   846   size_t free() const            { return byte_size(top(),    end()); }
   848   // Override from space.
   849   bool is_in(const void* p) const;
   851   virtual bool is_free_block(const HeapWord* p) const;
   853   // In a contiguous space we have a more obvious bound on what parts
   854   // contain objects.
   855   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   857   MemRegion used_region_at_save_marks() const {
   858     return MemRegion(bottom(), saved_mark_word());
   859   }
   861   // Allocation (return NULL if full)
   862   virtual HeapWord* allocate(size_t word_size);
   863   virtual HeapWord* par_allocate(size_t word_size);
   865   virtual bool obj_allocated_since_save_marks(const oop obj) const {
   866     return (HeapWord*)obj >= saved_mark_word();
   867   }
   869   // Iteration
   870   void oop_iterate(OopClosure* cl);
   871   void oop_iterate(MemRegion mr, OopClosure* cl);
   872   void object_iterate(ObjectClosure* blk);
   873   // For contiguous spaces this method will iterate safely over objects
   874   // in the space (i.e., between bottom and top) when at a safepoint.
   875   void safe_object_iterate(ObjectClosure* blk);
   876   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   877   // iterates on objects up to the safe limit
   878   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   879   inline HeapWord* concurrent_iteration_safe_limit();
   880   // changes the safe limit, all objects from bottom() to the new
   881   // limit should be properly initialized
   882   inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
   884 #ifndef SERIALGC
   885   // In support of parallel oop_iterate.
   886   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
   887     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
   889     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
   890   #undef ContigSpace_PAR_OOP_ITERATE_DECL
   891 #endif // SERIALGC
   893   // Compaction support
   894   virtual void reset_after_compaction() {
   895     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
   896     set_top(compaction_top());
   897     // set new iteration safe limit
   898     set_concurrent_iteration_safe_limit(compaction_top());
   899   }
   900   virtual size_t minimum_free_block_size() const { return 0; }
   902   // Override.
   903   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   904                                      CardTableModRefBS::PrecisionStyle precision,
   905                                      HeapWord* boundary = NULL);
   907   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   908   // starting with the _saved_mark_word, which was noted during a generation's
   909   // save_marks and is required to denote the head of an object.
   910   // Fields in objects allocated by applications of the closure
   911   // *are* included in the iteration.
   912   // Updates _saved_mark_word to point to just after the last object
   913   // iterated over.
   914 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   915   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   917   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
   918 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
   920   // Same as object_iterate, but starting from "mark", which is required
   921   // to denote the start of an object.  Objects allocated by
   922   // applications of the closure *are* included in the iteration.
   923   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
   925   // Very inefficient implementation.
   926   virtual HeapWord* block_start_const(const void* p) const;
   927   size_t block_size(const HeapWord* p) const;
   928   // If a block is in the allocated area, it is an object.
   929   bool block_is_obj(const HeapWord* p) const { return p < top(); }
   931   // Addresses for inlined allocation
   932   HeapWord** top_addr() { return &_top; }
   933   HeapWord** end_addr() { return &_end; }
   935   // Overrides for more efficient compaction support.
   936   void prepare_for_compaction(CompactPoint* cp);
   938   // PrintHeapAtGC support.
   939   virtual void print_on(outputStream* st) const;
   941   // Checked dynamic downcasts.
   942   virtual ContiguousSpace* toContiguousSpace() {
   943     return this;
   944   }
   946   // Debugging
   947   virtual void verify(bool allow_dirty) const;
   949   // Used to increase collection frequency.  "factor" of 0 means entire
   950   // space.
   951   void allocate_temporary_filler(int factor);
   953 };
   956 // A dirty card to oop closure that does filtering.
   957 // It knows how to filter out objects that are outside of the _boundary.
   958 class Filtering_DCTOC : public DirtyCardToOopClosure {
   959 protected:
   960   // Override.
   961   void walk_mem_region(MemRegion mr,
   962                        HeapWord* bottom, HeapWord* top);
   964   // Walk the given memory region, from bottom to top, applying
   965   // the given oop closure to (possibly) all objects found. The
   966   // given oop closure may or may not be the same as the oop
   967   // closure with which this closure was created, as it may
   968   // be a filtering closure which makes use of the _boundary.
   969   // We offer two signatures, so the FilteringClosure static type is
   970   // apparent.
   971   virtual void walk_mem_region_with_cl(MemRegion mr,
   972                                        HeapWord* bottom, HeapWord* top,
   973                                        OopClosure* cl) = 0;
   974   virtual void walk_mem_region_with_cl(MemRegion mr,
   975                                        HeapWord* bottom, HeapWord* top,
   976                                        FilteringClosure* cl) = 0;
   978 public:
   979   Filtering_DCTOC(Space* sp, OopClosure* cl,
   980                   CardTableModRefBS::PrecisionStyle precision,
   981                   HeapWord* boundary) :
   982     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
   983 };
   985 // A dirty card to oop closure for contiguous spaces
   986 // (ContiguousSpace and sub-classes).
   987 // It is a FilteringClosure, as defined above, and it knows:
   988 //
   989 // 1. That the actual top of any area in a memory region
   990 //    contained by the space is bounded by the end of the contiguous
   991 //    region of the space.
   992 // 2. That the space is really made up of objects and not just
   993 //    blocks.
   995 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
   996 protected:
   997   // Overrides.
   998   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
  1000   virtual void walk_mem_region_with_cl(MemRegion mr,
  1001                                        HeapWord* bottom, HeapWord* top,
  1002                                        OopClosure* cl);
  1003   virtual void walk_mem_region_with_cl(MemRegion mr,
  1004                                        HeapWord* bottom, HeapWord* top,
  1005                                        FilteringClosure* cl);
  1007 public:
  1008   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
  1009                        CardTableModRefBS::PrecisionStyle precision,
  1010                        HeapWord* boundary) :
  1011     Filtering_DCTOC(sp, cl, precision, boundary)
  1012   {}
  1013 };
  1016 // Class EdenSpace describes eden-space in new generation.
  1018 class DefNewGeneration;
  1020 class EdenSpace : public ContiguousSpace {
  1021   friend class VMStructs;
  1022  private:
  1023   DefNewGeneration* _gen;
  1025   // _soft_end is used as a soft limit on allocation.  As soft limits are
  1026   // reached, the slow-path allocation code can invoke other actions and then
  1027   // adjust _soft_end up to a new soft limit or to end().
  1028   HeapWord* _soft_end;
  1030  public:
  1031   EdenSpace(DefNewGeneration* gen) :
  1032    _gen(gen), _soft_end(NULL) {}
  1034   // Get/set just the 'soft' limit.
  1035   HeapWord* soft_end()               { return _soft_end; }
  1036   HeapWord** soft_end_addr()         { return &_soft_end; }
  1037   void set_soft_end(HeapWord* value) { _soft_end = value; }
  1039   // Override.
  1040   void clear(bool mangle_space);
  1042   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
  1043   void set_end(HeapWord* value) {
  1044     set_soft_end(value);
  1045     ContiguousSpace::set_end(value);
  1048   // Allocation (return NULL if full)
  1049   HeapWord* allocate(size_t word_size);
  1050   HeapWord* par_allocate(size_t word_size);
  1051 };
  1053 // Class ConcEdenSpace extends EdenSpace for the sake of safe
  1054 // allocation while soft-end is being modified concurrently
  1056 class ConcEdenSpace : public EdenSpace {
  1057  public:
  1058   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
  1060   // Allocation (return NULL if full)
  1061   HeapWord* par_allocate(size_t word_size);
  1062 };
  1065 // A ContigSpace that Supports an efficient "block_start" operation via
  1066 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
  1067 // other spaces.)  This is the abstract base class for old generation
  1068 // (tenured, perm) spaces.
  1070 class OffsetTableContigSpace: public ContiguousSpace {
  1071   friend class VMStructs;
  1072  protected:
  1073   BlockOffsetArrayContigSpace _offsets;
  1074   Mutex _par_alloc_lock;
  1076  public:
  1077   // Constructor
  1078   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1079                          MemRegion mr);
  1081   void set_bottom(HeapWord* value);
  1082   void set_end(HeapWord* value);
  1084   void clear(bool mangle_space);
  1086   inline HeapWord* block_start_const(const void* p) const;
  1088   // Add offset table update.
  1089   virtual inline HeapWord* allocate(size_t word_size);
  1090   inline HeapWord* par_allocate(size_t word_size);
  1092   // MarkSweep support phase3
  1093   virtual HeapWord* initialize_threshold();
  1094   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
  1096   virtual void print_on(outputStream* st) const;
  1098   // Debugging
  1099   void verify(bool allow_dirty) const;
  1101   // Shared space support
  1102   void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
  1103 };
  1106 // Class TenuredSpace is used by TenuredGeneration
  1108 class TenuredSpace: public OffsetTableContigSpace {
  1109   friend class VMStructs;
  1110  protected:
  1111   // Mark sweep support
  1112   size_t allowed_dead_ratio() const;
  1113  public:
  1114   // Constructor
  1115   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1116                MemRegion mr) :
  1117     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1118 };
  1121 // Class ContigPermSpace is used by CompactingPermGen
  1123 class ContigPermSpace: public OffsetTableContigSpace {
  1124   friend class VMStructs;
  1125  protected:
  1126   // Mark sweep support
  1127   size_t allowed_dead_ratio() const;
  1128  public:
  1129   // Constructor
  1130   ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
  1131     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1132 };
  1134 #endif // SHARE_VM_MEMORY_SPACE_HPP

mercurial