src/share/vm/memory/referenceProcessor.hpp

Fri, 15 Apr 2011 09:36:28 -0400

author
coleenp
date
Fri, 15 Apr 2011 09:36:28 -0400
changeset 2777
8ce625481709
parent 2651
92da084fefc9
child 3115
c2bf0120ee5d
permissions
-rw-r--r--

7032407: Crash in LinkResolver::runtime_resolve_virtual_method()
Summary: Make CDS reorder vtables so that dump time vtables match run time order, so when redefine classes reinitializes them, they aren't in the wrong order.
Reviewed-by: dcubed, acorn

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    28 #include "memory/referencePolicy.hpp"
    29 #include "oops/instanceRefKlass.hpp"
    31 // ReferenceProcessor class encapsulates the per-"collector" processing
    32 // of java.lang.Reference objects for GC. The interface is useful for supporting
    33 // a generational abstraction, in particular when there are multiple
    34 // generations that are being independently collected -- possibly
    35 // concurrently and/or incrementally.  Note, however, that the
    36 // ReferenceProcessor class abstracts away from a generational setting
    37 // by using only a heap interval (called "span" below), thus allowing
    38 // its use in a straightforward manner in a general, non-generational
    39 // setting.
    40 //
    41 // The basic idea is that each ReferenceProcessor object concerns
    42 // itself with ("weak") reference processing in a specific "span"
    43 // of the heap of interest to a specific collector. Currently,
    44 // the span is a convex interval of the heap, but, efficiency
    45 // apart, there seems to be no reason it couldn't be extended
    46 // (with appropriate modifications) to any "non-convex interval".
    48 // forward references
    49 class ReferencePolicy;
    50 class AbstractRefProcTaskExecutor;
    51 class DiscoveredList;
    53 class ReferenceProcessor : public CHeapObj {
    54  protected:
    55   // End of list marker
    56   static oop  _sentinelRef;
    57   MemRegion   _span; // (right-open) interval of heap
    58                      // subject to wkref discovery
    59   bool        _discovering_refs;      // true when discovery enabled
    60   bool        _discovery_is_atomic;   // if discovery is atomic wrt
    61                                       // other collectors in configuration
    62   bool        _discovery_is_mt;       // true if reference discovery is MT.
    63   // If true, setting "next" field of a discovered refs list requires
    64   // write barrier(s).  (Must be true if used in a collector in which
    65   // elements of a discovered list may be moved during discovery: for
    66   // example, a collector like Garbage-First that moves objects during a
    67   // long-term concurrent marking phase that does weak reference
    68   // discovery.)
    69   bool        _discovered_list_needs_barrier;
    70   BarrierSet* _bs;                    // Cached copy of BarrierSet.
    71   bool        _enqueuing_is_done;     // true if all weak references enqueued
    72   bool        _processing_is_mt;      // true during phases when
    73                                       // reference processing is MT.
    74   int         _next_id;               // round-robin mod _num_q counter in
    75                                       // support of work distribution
    77   // For collectors that do not keep GC marking information
    78   // in the object header, this field holds a closure that
    79   // helps the reference processor determine the reachability
    80   // of an oop (the field is currently initialized to NULL for
    81   // all collectors but the CMS collector).
    82   BoolObjectClosure* _is_alive_non_header;
    84   // Soft ref clearing policies
    85   // . the default policy
    86   static ReferencePolicy*   _default_soft_ref_policy;
    87   // . the "clear all" policy
    88   static ReferencePolicy*   _always_clear_soft_ref_policy;
    89   // . the current policy below is either one of the above
    90   ReferencePolicy*          _current_soft_ref_policy;
    92   // The discovered ref lists themselves
    94   // The active MT'ness degree of the queues below
    95   int             _num_q;
    96   // The maximum MT'ness degree of the queues below
    97   int             _max_num_q;
    98   // Arrays of lists of oops, one per thread
    99   DiscoveredList* _discoveredSoftRefs;
   100   DiscoveredList* _discoveredWeakRefs;
   101   DiscoveredList* _discoveredFinalRefs;
   102   DiscoveredList* _discoveredPhantomRefs;
   104  public:
   105   int num_q()                            { return _num_q; }
   106   int max_num_q()                        { return _max_num_q; }
   107   void set_active_mt_degree(int v)       { _num_q = v; }
   108   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
   109   static oop  sentinel_ref()             { return _sentinelRef; }
   110   static oop* adr_sentinel_ref()         { return &_sentinelRef; }
   111   ReferencePolicy* setup_policy(bool always_clear) {
   112     _current_soft_ref_policy = always_clear ?
   113       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   114     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   115     return _current_soft_ref_policy;
   116   }
   118  public:
   119   // Process references with a certain reachability level.
   120   void process_discovered_reflist(DiscoveredList               refs_lists[],
   121                                   ReferencePolicy*             policy,
   122                                   bool                         clear_referent,
   123                                   BoolObjectClosure*           is_alive,
   124                                   OopClosure*                  keep_alive,
   125                                   VoidClosure*                 complete_gc,
   126                                   AbstractRefProcTaskExecutor* task_executor);
   128   void process_phaseJNI(BoolObjectClosure* is_alive,
   129                         OopClosure*        keep_alive,
   130                         VoidClosure*       complete_gc);
   132   // Work methods used by the method process_discovered_reflist
   133   // Phase1: keep alive all those referents that are otherwise
   134   // dead but which must be kept alive by policy (and their closure).
   135   void process_phase1(DiscoveredList&     refs_list,
   136                       ReferencePolicy*    policy,
   137                       BoolObjectClosure*  is_alive,
   138                       OopClosure*         keep_alive,
   139                       VoidClosure*        complete_gc);
   140   // Phase2: remove all those references whose referents are
   141   // reachable.
   142   inline void process_phase2(DiscoveredList&    refs_list,
   143                              BoolObjectClosure* is_alive,
   144                              OopClosure*        keep_alive,
   145                              VoidClosure*       complete_gc) {
   146     if (discovery_is_atomic()) {
   147       // complete_gc is ignored in this case for this phase
   148       pp2_work(refs_list, is_alive, keep_alive);
   149     } else {
   150       assert(complete_gc != NULL, "Error");
   151       pp2_work_concurrent_discovery(refs_list, is_alive,
   152                                     keep_alive, complete_gc);
   153     }
   154   }
   155   // Work methods in support of process_phase2
   156   void pp2_work(DiscoveredList&    refs_list,
   157                 BoolObjectClosure* is_alive,
   158                 OopClosure*        keep_alive);
   159   void pp2_work_concurrent_discovery(
   160                 DiscoveredList&    refs_list,
   161                 BoolObjectClosure* is_alive,
   162                 OopClosure*        keep_alive,
   163                 VoidClosure*       complete_gc);
   164   // Phase3: process the referents by either clearing them
   165   // or keeping them alive (and their closure)
   166   void process_phase3(DiscoveredList&    refs_list,
   167                       bool               clear_referent,
   168                       BoolObjectClosure* is_alive,
   169                       OopClosure*        keep_alive,
   170                       VoidClosure*       complete_gc);
   172   // Enqueue references with a certain reachability level
   173   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   175   // "Preclean" all the discovered reference lists
   176   // by removing references with strongly reachable referents.
   177   // The first argument is a predicate on an oop that indicates
   178   // its (strong) reachability and the second is a closure that
   179   // may be used to incrementalize or abort the precleaning process.
   180   // The caller is responsible for taking care of potential
   181   // interference with concurrent operations on these lists
   182   // (or predicates involved) by other threads. Currently
   183   // only used by the CMS collector.  should_unload_classes is
   184   // used to aid assertion checking when classes are collected.
   185   void preclean_discovered_references(BoolObjectClosure* is_alive,
   186                                       OopClosure*        keep_alive,
   187                                       VoidClosure*       complete_gc,
   188                                       YieldClosure*      yield,
   189                                       bool               should_unload_classes);
   191   // Delete entries in the discovered lists that have
   192   // either a null referent or are not active. Such
   193   // Reference objects can result from the clearing
   194   // or enqueueing of Reference objects concurrent
   195   // with their discovery by a (concurrent) collector.
   196   // For a definition of "active" see java.lang.ref.Reference;
   197   // Refs are born active, become inactive when enqueued,
   198   // and never become active again. The state of being
   199   // active is encoded as follows: A Ref is active
   200   // if and only if its "next" field is NULL.
   201   void clean_up_discovered_references();
   202   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   204   // Returns the name of the discovered reference list
   205   // occupying the i / _num_q slot.
   206   const char* list_name(int i);
   208   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   210  protected:
   211   // "Preclean" the given discovered reference list
   212   // by removing references with strongly reachable referents.
   213   // Currently used in support of CMS only.
   214   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   215                                    BoolObjectClosure* is_alive,
   216                                    OopClosure*        keep_alive,
   217                                    VoidClosure*       complete_gc,
   218                                    YieldClosure*      yield);
   220   // round-robin mod _num_q (not: _not_ mode _max_num_q)
   221   int next_id() {
   222     int id = _next_id;
   223     if (++_next_id == _num_q) {
   224       _next_id = 0;
   225     }
   226     return id;
   227   }
   228   DiscoveredList* get_discovered_list(ReferenceType rt);
   229   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   230                                         HeapWord* discovered_addr);
   231   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   233   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   235   // Calculate the number of jni handles.
   236   unsigned int count_jni_refs();
   238   // Balances reference queues.
   239   void balance_queues(DiscoveredList ref_lists[]);
   241   // Update (advance) the soft ref master clock field.
   242   void update_soft_ref_master_clock();
   244  public:
   245   // constructor
   246   ReferenceProcessor():
   247     _span((HeapWord*)NULL, (HeapWord*)NULL),
   248     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
   249     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
   250     _discovering_refs(false),
   251     _discovery_is_atomic(true),
   252     _enqueuing_is_done(false),
   253     _discovery_is_mt(false),
   254     _discovered_list_needs_barrier(false),
   255     _bs(NULL),
   256     _is_alive_non_header(NULL),
   257     _num_q(0),
   258     _max_num_q(0),
   259     _processing_is_mt(false),
   260     _next_id(0)
   261   { }
   263   // Default parameters give you a vanilla reference processor.
   264   ReferenceProcessor(MemRegion span,
   265                      bool mt_processing = false, int mt_processing_degree = 1,
   266                      bool mt_discovery  = false, int mt_discovery_degree  = 1,
   267                      bool atomic_discovery = true,
   268                      BoolObjectClosure* is_alive_non_header = NULL,
   269                      bool discovered_list_needs_barrier = false);
   271   // RefDiscoveryPolicy values
   272   enum DiscoveryPolicy {
   273     ReferenceBasedDiscovery = 0,
   274     ReferentBasedDiscovery  = 1,
   275     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   276     DiscoveryPolicyMax      = ReferentBasedDiscovery
   277   };
   279   static void init_statics();
   281  public:
   282   // get and set "is_alive_non_header" field
   283   BoolObjectClosure* is_alive_non_header() {
   284     return _is_alive_non_header;
   285   }
   286   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   287     _is_alive_non_header = is_alive_non_header;
   288   }
   290   // get and set span
   291   MemRegion span()                   { return _span; }
   292   void      set_span(MemRegion span) { _span = span; }
   294   // start and stop weak ref discovery
   295   void enable_discovery()   { _discovering_refs = true;  }
   296   void disable_discovery()  { _discovering_refs = false; }
   297   bool discovery_enabled()  { return _discovering_refs;  }
   299   // whether discovery is atomic wrt other collectors
   300   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   301   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   303   // whether discovery is done by multiple threads same-old-timeously
   304   bool discovery_is_mt() const { return _discovery_is_mt; }
   305   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   307   // Whether we are in a phase when _processing_ is MT.
   308   bool processing_is_mt() const { return _processing_is_mt; }
   309   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   311   // whether all enqueuing of weak references is complete
   312   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   313   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   315   // iterate over oops
   316   void weak_oops_do(OopClosure* f);       // weak roots
   317   static void oops_do(OopClosure* f);     // strong root(s)
   319   // Balance each of the discovered lists.
   320   void balance_all_queues();
   322   // Discover a Reference object, using appropriate discovery criteria
   323   bool discover_reference(oop obj, ReferenceType rt);
   325   // Process references found during GC (called by the garbage collector)
   326   void process_discovered_references(BoolObjectClosure*           is_alive,
   327                                      OopClosure*                  keep_alive,
   328                                      VoidClosure*                 complete_gc,
   329                                      AbstractRefProcTaskExecutor* task_executor);
   331  public:
   332   // Enqueue references at end of GC (called by the garbage collector)
   333   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   335   // If a discovery is in process that is being superceded, abandon it: all
   336   // the discovered lists will be empty, and all the objects on them will
   337   // have NULL discovered fields.  Must be called only at a safepoint.
   338   void abandon_partial_discovery();
   340   // debugging
   341   void verify_no_references_recorded() PRODUCT_RETURN;
   342   void verify_referent(oop obj)        PRODUCT_RETURN;
   343   static void verify();
   345   // clear the discovered lists (unlinking each entry).
   346   void clear_discovered_references() PRODUCT_RETURN;
   347 };
   349 // A utility class to disable reference discovery in
   350 // the scope which contains it, for given ReferenceProcessor.
   351 class NoRefDiscovery: StackObj {
   352  private:
   353   ReferenceProcessor* _rp;
   354   bool _was_discovering_refs;
   355  public:
   356   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   357     _was_discovering_refs = _rp->discovery_enabled();
   358     if (_was_discovering_refs) {
   359       _rp->disable_discovery();
   360     }
   361   }
   363   ~NoRefDiscovery() {
   364     if (_was_discovering_refs) {
   365       _rp->enable_discovery();
   366     }
   367   }
   368 };
   371 // A utility class to temporarily mutate the span of the
   372 // given ReferenceProcessor in the scope that contains it.
   373 class ReferenceProcessorSpanMutator: StackObj {
   374  private:
   375   ReferenceProcessor* _rp;
   376   MemRegion           _saved_span;
   378  public:
   379   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   380                                 MemRegion span):
   381     _rp(rp) {
   382     _saved_span = _rp->span();
   383     _rp->set_span(span);
   384   }
   386   ~ReferenceProcessorSpanMutator() {
   387     _rp->set_span(_saved_span);
   388   }
   389 };
   391 // A utility class to temporarily change the MT'ness of
   392 // reference discovery for the given ReferenceProcessor
   393 // in the scope that contains it.
   394 class ReferenceProcessorMTDiscoveryMutator: StackObj {
   395  private:
   396   ReferenceProcessor* _rp;
   397   bool                _saved_mt;
   399  public:
   400   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
   401                                        bool mt):
   402     _rp(rp) {
   403     _saved_mt = _rp->discovery_is_mt();
   404     _rp->set_mt_discovery(mt);
   405   }
   407   ~ReferenceProcessorMTDiscoveryMutator() {
   408     _rp->set_mt_discovery(_saved_mt);
   409   }
   410 };
   413 // A utility class to temporarily change the disposition
   414 // of the "is_alive_non_header" closure field of the
   415 // given ReferenceProcessor in the scope that contains it.
   416 class ReferenceProcessorIsAliveMutator: StackObj {
   417  private:
   418   ReferenceProcessor* _rp;
   419   BoolObjectClosure*  _saved_cl;
   421  public:
   422   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   423                                    BoolObjectClosure*  cl):
   424     _rp(rp) {
   425     _saved_cl = _rp->is_alive_non_header();
   426     _rp->set_is_alive_non_header(cl);
   427   }
   429   ~ReferenceProcessorIsAliveMutator() {
   430     _rp->set_is_alive_non_header(_saved_cl);
   431   }
   432 };
   434 // A utility class to temporarily change the disposition
   435 // of the "discovery_is_atomic" field of the
   436 // given ReferenceProcessor in the scope that contains it.
   437 class ReferenceProcessorAtomicMutator: StackObj {
   438  private:
   439   ReferenceProcessor* _rp;
   440   bool                _saved_atomic_discovery;
   442  public:
   443   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   444                                   bool atomic):
   445     _rp(rp) {
   446     _saved_atomic_discovery = _rp->discovery_is_atomic();
   447     _rp->set_atomic_discovery(atomic);
   448   }
   450   ~ReferenceProcessorAtomicMutator() {
   451     _rp->set_atomic_discovery(_saved_atomic_discovery);
   452   }
   453 };
   456 // A utility class to temporarily change the MT processing
   457 // disposition of the given ReferenceProcessor instance
   458 // in the scope that contains it.
   459 class ReferenceProcessorMTProcMutator: StackObj {
   460  private:
   461   ReferenceProcessor* _rp;
   462   bool  _saved_mt;
   464  public:
   465   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   466                                   bool mt):
   467     _rp(rp) {
   468     _saved_mt = _rp->processing_is_mt();
   469     _rp->set_mt_processing(mt);
   470   }
   472   ~ReferenceProcessorMTProcMutator() {
   473     _rp->set_mt_processing(_saved_mt);
   474   }
   475 };
   478 // This class is an interface used to implement task execution for the
   479 // reference processing.
   480 class AbstractRefProcTaskExecutor {
   481 public:
   483   // Abstract tasks to execute.
   484   class ProcessTask;
   485   class EnqueueTask;
   487   // Executes a task using worker threads.
   488   virtual void execute(ProcessTask& task) = 0;
   489   virtual void execute(EnqueueTask& task) = 0;
   491   // Switch to single threaded mode.
   492   virtual void set_single_threaded_mode() { };
   493 };
   495 // Abstract reference processing task to execute.
   496 class AbstractRefProcTaskExecutor::ProcessTask {
   497 protected:
   498   ProcessTask(ReferenceProcessor& ref_processor,
   499               DiscoveredList      refs_lists[],
   500               bool                marks_oops_alive)
   501     : _ref_processor(ref_processor),
   502       _refs_lists(refs_lists),
   503       _marks_oops_alive(marks_oops_alive)
   504   { }
   506 public:
   507   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   508                     OopClosure& keep_alive,
   509                     VoidClosure& complete_gc) = 0;
   511   // Returns true if a task marks some oops as alive.
   512   bool marks_oops_alive() const
   513   { return _marks_oops_alive; }
   515 protected:
   516   ReferenceProcessor& _ref_processor;
   517   DiscoveredList*     _refs_lists;
   518   const bool          _marks_oops_alive;
   519 };
   521 // Abstract reference processing task to execute.
   522 class AbstractRefProcTaskExecutor::EnqueueTask {
   523 protected:
   524   EnqueueTask(ReferenceProcessor& ref_processor,
   525               DiscoveredList      refs_lists[],
   526               HeapWord*           pending_list_addr,
   527               oop                 sentinel_ref,
   528               int                 n_queues)
   529     : _ref_processor(ref_processor),
   530       _refs_lists(refs_lists),
   531       _pending_list_addr(pending_list_addr),
   532       _sentinel_ref(sentinel_ref),
   533       _n_queues(n_queues)
   534   { }
   536 public:
   537   virtual void work(unsigned int work_id) = 0;
   539 protected:
   540   ReferenceProcessor& _ref_processor;
   541   DiscoveredList*     _refs_lists;
   542   HeapWord*           _pending_list_addr;
   543   oop                 _sentinel_ref;
   544   int                 _n_queues;
   545 };
   547 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP

mercurial