src/share/vm/memory/referenceProcessor.cpp

Fri, 15 Apr 2011 09:36:28 -0400

author
coleenp
date
Fri, 15 Apr 2011 09:36:28 -0400
changeset 2777
8ce625481709
parent 2651
92da084fefc9
child 3115
c2bf0120ee5d
permissions
-rw-r--r--

7032407: Crash in LinkResolver::runtime_resolve_virtual_method()
Summary: Make CDS reorder vtables so that dump time vtables match run time order, so when redefine classes reinitializes them, they aren't in the wrong order.
Reviewed-by: dcubed, acorn

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_interface/collectedHeap.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/referencePolicy.hpp"
    31 #include "memory/referenceProcessor.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/jniHandles.hpp"
    36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    38 oop              ReferenceProcessor::_sentinelRef = NULL;
    39 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
    41 // List of discovered references.
    42 class DiscoveredList {
    43 public:
    44   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    45   oop head() const     {
    46      return UseCompressedOops ?  oopDesc::decode_heap_oop_not_null(_compressed_head) :
    47                                 _oop_head;
    48   }
    49   HeapWord* adr_head() {
    50     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    51                                (HeapWord*)&_oop_head;
    52   }
    53   void   set_head(oop o) {
    54     if (UseCompressedOops) {
    55       // Must compress the head ptr.
    56       _compressed_head = oopDesc::encode_heap_oop_not_null(o);
    57     } else {
    58       _oop_head = o;
    59     }
    60   }
    61   bool   empty() const          { return head() == ReferenceProcessor::sentinel_ref(); }
    62   size_t length()               { return _len; }
    63   void   set_length(size_t len) { _len = len;  }
    64   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    65   void   dec_length(size_t dec) { _len -= dec; }
    66 private:
    67   // Set value depending on UseCompressedOops. This could be a template class
    68   // but then we have to fix all the instantiations and declarations that use this class.
    69   oop       _oop_head;
    70   narrowOop _compressed_head;
    71   size_t _len;
    72 };
    74 void referenceProcessor_init() {
    75   ReferenceProcessor::init_statics();
    76 }
    78 void ReferenceProcessor::init_statics() {
    79   assert(_sentinelRef == NULL, "should be initialized precisely once");
    80   EXCEPTION_MARK;
    81   _sentinelRef = instanceKlass::cast(
    82                     SystemDictionary::Reference_klass())->
    83                       allocate_permanent_instance(THREAD);
    85   // Initialize the master soft ref clock.
    86   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
    88   if (HAS_PENDING_EXCEPTION) {
    89       Handle ex(THREAD, PENDING_EXCEPTION);
    90       vm_exit_during_initialization(ex);
    91   }
    92   assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
    93          "Just constructed it!");
    94   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    95   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    96                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    97   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    98     vm_exit_during_initialization("Could not allocate reference policy object");
    99   }
   100   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
   101             RefDiscoveryPolicy == ReferentBasedDiscovery,
   102             "Unrecongnized RefDiscoveryPolicy");
   103 }
   105 ReferenceProcessor::ReferenceProcessor(MemRegion span,
   106                                        bool      mt_processing,
   107                                        int       mt_processing_degree,
   108                                        bool      mt_discovery,
   109                                        int       mt_discovery_degree,
   110                                        bool      atomic_discovery,
   111                                        BoolObjectClosure* is_alive_non_header,
   112                                        bool      discovered_list_needs_barrier)  :
   113   _discovering_refs(false),
   114   _enqueuing_is_done(false),
   115   _is_alive_non_header(is_alive_non_header),
   116   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   117   _bs(NULL),
   118   _processing_is_mt(mt_processing),
   119   _next_id(0)
   120 {
   121   _span = span;
   122   _discovery_is_atomic = atomic_discovery;
   123   _discovery_is_mt     = mt_discovery;
   124   _num_q               = MAX2(1, mt_processing_degree);
   125   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   126   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _max_num_q * subclasses_of_ref);
   127   if (_discoveredSoftRefs == NULL) {
   128     vm_exit_during_initialization("Could not allocated RefProc Array");
   129   }
   130   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   131   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   132   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   133   assert(sentinel_ref() != NULL, "_sentinelRef is NULL");
   134   // Initialized all entries to _sentinelRef
   135   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   136         _discoveredSoftRefs[i].set_head(sentinel_ref());
   137     _discoveredSoftRefs[i].set_length(0);
   138   }
   139   // If we do barreirs, cache a copy of the barrier set.
   140   if (discovered_list_needs_barrier) {
   141     _bs = Universe::heap()->barrier_set();
   142   }
   143   setup_policy(false /* default soft ref policy */);
   144 }
   146 #ifndef PRODUCT
   147 void ReferenceProcessor::verify_no_references_recorded() {
   148   guarantee(!_discovering_refs, "Discovering refs?");
   149   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   150     guarantee(_discoveredSoftRefs[i].empty(),
   151               "Found non-empty discovered list");
   152   }
   153 }
   154 #endif
   156 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   157   // Should this instead be
   158   // for (int i = 0; i < subclasses_of_ref; i++_ {
   159   //   for (int j = 0; j < _num_q; j++) {
   160   //     int index = i * _max_num_q + j;
   161   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   162     if (UseCompressedOops) {
   163       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
   164     } else {
   165       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
   166     }
   167   }
   168 }
   170 void ReferenceProcessor::oops_do(OopClosure* f) {
   171   f->do_oop(adr_sentinel_ref());
   172 }
   174 void ReferenceProcessor::update_soft_ref_master_clock() {
   175   // Update (advance) the soft ref master clock field. This must be done
   176   // after processing the soft ref list.
   177   jlong now = os::javaTimeMillis();
   178   jlong clock = java_lang_ref_SoftReference::clock();
   179   NOT_PRODUCT(
   180   if (now < clock) {
   181     warning("time warp: %d to %d", clock, now);
   182   }
   183   )
   184   // In product mode, protect ourselves from system time being adjusted
   185   // externally and going backward; see note in the implementation of
   186   // GenCollectedHeap::time_since_last_gc() for the right way to fix
   187   // this uniformly throughout the VM; see bug-id 4741166. XXX
   188   if (now > clock) {
   189     java_lang_ref_SoftReference::set_clock(now);
   190   }
   191   // Else leave clock stalled at its old value until time progresses
   192   // past clock value.
   193 }
   195 void ReferenceProcessor::process_discovered_references(
   196   BoolObjectClosure*           is_alive,
   197   OopClosure*                  keep_alive,
   198   VoidClosure*                 complete_gc,
   199   AbstractRefProcTaskExecutor* task_executor) {
   200   NOT_PRODUCT(verify_ok_to_handle_reflists());
   202   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   203   // Stop treating discovered references specially.
   204   disable_discovery();
   206   bool trace_time = PrintGCDetails && PrintReferenceGC;
   207   // Soft references
   208   {
   209     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
   210     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   211                                is_alive, keep_alive, complete_gc, task_executor);
   212   }
   214   update_soft_ref_master_clock();
   216   // Weak references
   217   {
   218     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
   219     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   220                                is_alive, keep_alive, complete_gc, task_executor);
   221   }
   223   // Final references
   224   {
   225     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
   226     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   227                                is_alive, keep_alive, complete_gc, task_executor);
   228   }
   230   // Phantom references
   231   {
   232     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
   233     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   234                                is_alive, keep_alive, complete_gc, task_executor);
   235   }
   237   // Weak global JNI references. It would make more sense (semantically) to
   238   // traverse these simultaneously with the regular weak references above, but
   239   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   240   // thus use JNI weak references to circumvent the phantom references and
   241   // resurrect a "post-mortem" object.
   242   {
   243     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
   244     if (task_executor != NULL) {
   245       task_executor->set_single_threaded_mode();
   246     }
   247     process_phaseJNI(is_alive, keep_alive, complete_gc);
   248   }
   249 }
   251 #ifndef PRODUCT
   252 // Calculate the number of jni handles.
   253 uint ReferenceProcessor::count_jni_refs() {
   254   class AlwaysAliveClosure: public BoolObjectClosure {
   255   public:
   256     virtual bool do_object_b(oop obj) { return true; }
   257     virtual void do_object(oop obj) { assert(false, "Don't call"); }
   258   };
   260   class CountHandleClosure: public OopClosure {
   261   private:
   262     int _count;
   263   public:
   264     CountHandleClosure(): _count(0) {}
   265     void do_oop(oop* unused)       { _count++; }
   266     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   267     int count() { return _count; }
   268   };
   269   CountHandleClosure global_handle_count;
   270   AlwaysAliveClosure always_alive;
   271   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   272   return global_handle_count.count();
   273 }
   274 #endif
   276 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   277                                           OopClosure*        keep_alive,
   278                                           VoidClosure*       complete_gc) {
   279 #ifndef PRODUCT
   280   if (PrintGCDetails && PrintReferenceGC) {
   281     unsigned int count = count_jni_refs();
   282     gclog_or_tty->print(", %u refs", count);
   283   }
   284 #endif
   285   JNIHandles::weak_oops_do(is_alive, keep_alive);
   286   // Finally remember to keep sentinel around
   287   keep_alive->do_oop(adr_sentinel_ref());
   288   complete_gc->do_void();
   289 }
   292 template <class T>
   293 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   294                                    AbstractRefProcTaskExecutor* task_executor) {
   296   // Remember old value of pending references list
   297   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   298   T old_pending_list_value = *pending_list_addr;
   300   // Enqueue references that are not made active again, and
   301   // clear the decks for the next collection (cycle).
   302   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   303   // Do the oop-check on pending_list_addr missed in
   304   // enqueue_discovered_reflist. We should probably
   305   // do a raw oop_check so that future such idempotent
   306   // oop_stores relying on the oop-check side-effect
   307   // may be elided automatically and safely without
   308   // affecting correctness.
   309   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   311   // Stop treating discovered references specially.
   312   ref->disable_discovery();
   314   // Return true if new pending references were added
   315   return old_pending_list_value != *pending_list_addr;
   316 }
   318 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   319   NOT_PRODUCT(verify_ok_to_handle_reflists());
   320   if (UseCompressedOops) {
   321     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   322   } else {
   323     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   324   }
   325 }
   327 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   328                                                     HeapWord* pending_list_addr) {
   329   // Given a list of refs linked through the "discovered" field
   330   // (java.lang.ref.Reference.discovered) chain them through the
   331   // "next" field (java.lang.ref.Reference.next) and prepend
   332   // to the pending list.
   333   if (TraceReferenceGC && PrintGCDetails) {
   334     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   335                            INTPTR_FORMAT, (address)refs_list.head());
   336   }
   337   oop obj = refs_list.head();
   338   // Walk down the list, copying the discovered field into
   339   // the next field and clearing it (except for the last
   340   // non-sentinel object which is treated specially to avoid
   341   // confusion with an active reference).
   342   while (obj != sentinel_ref()) {
   343     assert(obj->is_instanceRef(), "should be reference object");
   344     oop next = java_lang_ref_Reference::discovered(obj);
   345     if (TraceReferenceGC && PrintGCDetails) {
   346       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
   347                              obj, next);
   348     }
   349     assert(java_lang_ref_Reference::next(obj) == NULL,
   350            "The reference should not be enqueued");
   351     if (next == sentinel_ref()) {  // obj is last
   352       // Swap refs_list into pendling_list_addr and
   353       // set obj's next to what we read from pending_list_addr.
   354       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   355       // Need oop_check on pending_list_addr above;
   356       // see special oop-check code at the end of
   357       // enqueue_discovered_reflists() further below.
   358       if (old == NULL) {
   359         // obj should be made to point to itself, since
   360         // pending list was empty.
   361         java_lang_ref_Reference::set_next(obj, obj);
   362       } else {
   363         java_lang_ref_Reference::set_next(obj, old);
   364       }
   365     } else {
   366       java_lang_ref_Reference::set_next(obj, next);
   367     }
   368     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   369     obj = next;
   370   }
   371 }
   373 // Parallel enqueue task
   374 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   375 public:
   376   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   377                      DiscoveredList      discovered_refs[],
   378                      HeapWord*           pending_list_addr,
   379                      oop                 sentinel_ref,
   380                      int                 n_queues)
   381     : EnqueueTask(ref_processor, discovered_refs,
   382                   pending_list_addr, sentinel_ref, n_queues)
   383   { }
   385   virtual void work(unsigned int work_id) {
   386     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   387     // Simplest first cut: static partitioning.
   388     int index = work_id;
   389     // The increment on "index" must correspond to the maximum number of queues
   390     // (n_queues) with which that ReferenceProcessor was created.  That
   391     // is because of the "clever" way the discovered references lists were
   392     // allocated and are indexed into.
   393     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   394     for (int j = 0;
   395          j < subclasses_of_ref;
   396          j++, index += _n_queues) {
   397       _ref_processor.enqueue_discovered_reflist(
   398         _refs_lists[index], _pending_list_addr);
   399       _refs_lists[index].set_head(_sentinel_ref);
   400       _refs_lists[index].set_length(0);
   401     }
   402   }
   403 };
   405 // Enqueue references that are not made active again
   406 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   407   AbstractRefProcTaskExecutor* task_executor) {
   408   if (_processing_is_mt && task_executor != NULL) {
   409     // Parallel code
   410     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
   411                            pending_list_addr, sentinel_ref(), _max_num_q);
   412     task_executor->execute(tsk);
   413   } else {
   414     // Serial code: call the parent class's implementation
   415     for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   416       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
   417       _discoveredSoftRefs[i].set_head(sentinel_ref());
   418       _discoveredSoftRefs[i].set_length(0);
   419     }
   420   }
   421 }
   423 // Iterator for the list of discovered references.
   424 class DiscoveredListIterator {
   425 public:
   426   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   427                                 OopClosure*        keep_alive,
   428                                 BoolObjectClosure* is_alive);
   430   // End Of List.
   431   inline bool has_next() const { return _next != ReferenceProcessor::sentinel_ref(); }
   433   // Get oop to the Reference object.
   434   inline oop obj() const { return _ref; }
   436   // Get oop to the referent object.
   437   inline oop referent() const { return _referent; }
   439   // Returns true if referent is alive.
   440   inline bool is_referent_alive() const;
   442   // Loads data for the current reference.
   443   // The "allow_null_referent" argument tells us to allow for the possibility
   444   // of a NULL referent in the discovered Reference object. This typically
   445   // happens in the case of concurrent collectors that may have done the
   446   // discovery concurrently, or interleaved, with mutator execution.
   447   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   449   // Move to the next discovered reference.
   450   inline void next();
   452   // Remove the current reference from the list
   453   inline void remove();
   455   // Make the Reference object active again.
   456   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
   458   // Make the referent alive.
   459   inline void make_referent_alive() {
   460     if (UseCompressedOops) {
   461       _keep_alive->do_oop((narrowOop*)_referent_addr);
   462     } else {
   463       _keep_alive->do_oop((oop*)_referent_addr);
   464     }
   465   }
   467   // Update the discovered field.
   468   inline void update_discovered() {
   469     // First _prev_next ref actually points into DiscoveredList (gross).
   470     if (UseCompressedOops) {
   471       _keep_alive->do_oop((narrowOop*)_prev_next);
   472     } else {
   473       _keep_alive->do_oop((oop*)_prev_next);
   474     }
   475   }
   477   // NULL out referent pointer.
   478   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
   480   // Statistics
   481   NOT_PRODUCT(
   482   inline size_t processed() const { return _processed; }
   483   inline size_t removed() const   { return _removed; }
   484   )
   486   inline void move_to_next();
   488 private:
   489   DiscoveredList&    _refs_list;
   490   HeapWord*          _prev_next;
   491   oop                _ref;
   492   HeapWord*          _discovered_addr;
   493   oop                _next;
   494   HeapWord*          _referent_addr;
   495   oop                _referent;
   496   OopClosure*        _keep_alive;
   497   BoolObjectClosure* _is_alive;
   498   DEBUG_ONLY(
   499   oop                _first_seen; // cyclic linked list check
   500   )
   501   NOT_PRODUCT(
   502   size_t             _processed;
   503   size_t             _removed;
   504   )
   505 };
   507 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
   508                                                       OopClosure*        keep_alive,
   509                                                       BoolObjectClosure* is_alive)
   510   : _refs_list(refs_list),
   511     _prev_next(refs_list.adr_head()),
   512     _ref(refs_list.head()),
   513 #ifdef ASSERT
   514     _first_seen(refs_list.head()),
   515 #endif
   516 #ifndef PRODUCT
   517     _processed(0),
   518     _removed(0),
   519 #endif
   520     _next(refs_list.head()),
   521     _keep_alive(keep_alive),
   522     _is_alive(is_alive)
   523 { }
   525 inline bool DiscoveredListIterator::is_referent_alive() const {
   526   return _is_alive->do_object_b(_referent);
   527 }
   529 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   530   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   531   oop discovered = java_lang_ref_Reference::discovered(_ref);
   532   assert(_discovered_addr && discovered->is_oop_or_null(),
   533          "discovered field is bad");
   534   _next = discovered;
   535   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   536   _referent = java_lang_ref_Reference::referent(_ref);
   537   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   538          "Wrong oop found in java.lang.Reference object");
   539   assert(allow_null_referent ?
   540              _referent->is_oop_or_null()
   541            : _referent->is_oop(),
   542          "bad referent");
   543 }
   545 inline void DiscoveredListIterator::next() {
   546   _prev_next = _discovered_addr;
   547   move_to_next();
   548 }
   550 inline void DiscoveredListIterator::remove() {
   551   assert(_ref->is_oop(), "Dropping a bad reference");
   552   oop_store_raw(_discovered_addr, NULL);
   553   // First _prev_next ref actually points into DiscoveredList (gross).
   554   if (UseCompressedOops) {
   555     // Remove Reference object from list.
   556     oopDesc::encode_store_heap_oop_not_null((narrowOop*)_prev_next, _next);
   557   } else {
   558     // Remove Reference object from list.
   559     oopDesc::store_heap_oop((oop*)_prev_next, _next);
   560   }
   561   NOT_PRODUCT(_removed++);
   562   _refs_list.dec_length(1);
   563 }
   565 inline void DiscoveredListIterator::move_to_next() {
   566   _ref = _next;
   567   assert(_ref != _first_seen, "cyclic ref_list found");
   568   NOT_PRODUCT(_processed++);
   569 }
   571 // NOTE: process_phase*() are largely similar, and at a high level
   572 // merely iterate over the extant list applying a predicate to
   573 // each of its elements and possibly removing that element from the
   574 // list and applying some further closures to that element.
   575 // We should consider the possibility of replacing these
   576 // process_phase*() methods by abstracting them into
   577 // a single general iterator invocation that receives appropriate
   578 // closures that accomplish this work.
   580 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   581 // referents are not alive, but that should be kept alive for policy reasons.
   582 // Keep alive the transitive closure of all such referents.
   583 void
   584 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   585                                    ReferencePolicy*   policy,
   586                                    BoolObjectClosure* is_alive,
   587                                    OopClosure*        keep_alive,
   588                                    VoidClosure*       complete_gc) {
   589   assert(policy != NULL, "Must have a non-NULL policy");
   590   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   591   // Decide which softly reachable refs should be kept alive.
   592   while (iter.has_next()) {
   593     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   594     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   595     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
   596       if (TraceReferenceGC) {
   597         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   598                                iter.obj(), iter.obj()->blueprint()->internal_name());
   599       }
   600       // Remove Reference object from list
   601       iter.remove();
   602       // Make the Reference object active again
   603       iter.make_active();
   604       // keep the referent around
   605       iter.make_referent_alive();
   606       iter.move_to_next();
   607     } else {
   608       iter.next();
   609     }
   610   }
   611   // Close the reachable set
   612   complete_gc->do_void();
   613   NOT_PRODUCT(
   614     if (PrintGCDetails && TraceReferenceGC) {
   615       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   616         "discovered Refs by policy  list " INTPTR_FORMAT,
   617         iter.removed(), iter.processed(), (address)refs_list.head());
   618     }
   619   )
   620 }
   622 // Traverse the list and remove any Refs that are not active, or
   623 // whose referents are either alive or NULL.
   624 void
   625 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   626                              BoolObjectClosure* is_alive,
   627                              OopClosure*        keep_alive) {
   628   assert(discovery_is_atomic(), "Error");
   629   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   630   while (iter.has_next()) {
   631     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   632     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   633     assert(next == NULL, "Should not discover inactive Reference");
   634     if (iter.is_referent_alive()) {
   635       if (TraceReferenceGC) {
   636         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   637                                iter.obj(), iter.obj()->blueprint()->internal_name());
   638       }
   639       // The referent is reachable after all.
   640       // Remove Reference object from list.
   641       iter.remove();
   642       // Update the referent pointer as necessary: Note that this
   643       // should not entail any recursive marking because the
   644       // referent must already have been traversed.
   645       iter.make_referent_alive();
   646       iter.move_to_next();
   647     } else {
   648       iter.next();
   649     }
   650   }
   651   NOT_PRODUCT(
   652     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   653       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   654         "Refs in discovered list " INTPTR_FORMAT,
   655         iter.removed(), iter.processed(), (address)refs_list.head());
   656     }
   657   )
   658 }
   660 void
   661 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   662                                                   BoolObjectClosure* is_alive,
   663                                                   OopClosure*        keep_alive,
   664                                                   VoidClosure*       complete_gc) {
   665   assert(!discovery_is_atomic(), "Error");
   666   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   667   while (iter.has_next()) {
   668     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   669     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   670     oop next = java_lang_ref_Reference::next(iter.obj());
   671     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   672          next != NULL)) {
   673       assert(next->is_oop_or_null(), "bad next field");
   674       // Remove Reference object from list
   675       iter.remove();
   676       // Trace the cohorts
   677       iter.make_referent_alive();
   678       if (UseCompressedOops) {
   679         keep_alive->do_oop((narrowOop*)next_addr);
   680       } else {
   681         keep_alive->do_oop((oop*)next_addr);
   682       }
   683       iter.move_to_next();
   684     } else {
   685       iter.next();
   686     }
   687   }
   688   // Now close the newly reachable set
   689   complete_gc->do_void();
   690   NOT_PRODUCT(
   691     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   692       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   693         "Refs in discovered list " INTPTR_FORMAT,
   694         iter.removed(), iter.processed(), (address)refs_list.head());
   695     }
   696   )
   697 }
   699 // Traverse the list and process the referents, by either
   700 // clearing them or keeping them (and their reachable
   701 // closure) alive.
   702 void
   703 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   704                                    bool               clear_referent,
   705                                    BoolObjectClosure* is_alive,
   706                                    OopClosure*        keep_alive,
   707                                    VoidClosure*       complete_gc) {
   708   ResourceMark rm;
   709   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   710   while (iter.has_next()) {
   711     iter.update_discovered();
   712     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   713     if (clear_referent) {
   714       // NULL out referent pointer
   715       iter.clear_referent();
   716     } else {
   717       // keep the referent around
   718       iter.make_referent_alive();
   719     }
   720     if (TraceReferenceGC) {
   721       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   722                              clear_referent ? "cleared " : "",
   723                              iter.obj(), iter.obj()->blueprint()->internal_name());
   724     }
   725     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   726     iter.next();
   727   }
   728   // Remember to keep sentinel pointer around
   729   iter.update_discovered();
   730   // Close the reachable set
   731   complete_gc->do_void();
   732 }
   734 void
   735 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   736   oop obj = refs_list.head();
   737   while (obj != sentinel_ref()) {
   738     oop discovered = java_lang_ref_Reference::discovered(obj);
   739     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   740     obj = discovered;
   741   }
   742   refs_list.set_head(sentinel_ref());
   743   refs_list.set_length(0);
   744 }
   746 void ReferenceProcessor::abandon_partial_discovery() {
   747   // loop over the lists
   748   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   749     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   750       gclog_or_tty->print_cr("\nAbandoning %s discovered list",
   751                              list_name(i));
   752     }
   753     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
   754   }
   755 }
   757 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   758 public:
   759   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   760                     DiscoveredList      refs_lists[],
   761                     ReferencePolicy*    policy,
   762                     bool                marks_oops_alive)
   763     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   764       _policy(policy)
   765   { }
   766   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   767                     OopClosure& keep_alive,
   768                     VoidClosure& complete_gc)
   769   {
   770     Thread* thr = Thread::current();
   771     int refs_list_index = ((WorkerThread*)thr)->id();
   772     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   773                                   &is_alive, &keep_alive, &complete_gc);
   774   }
   775 private:
   776   ReferencePolicy* _policy;
   777 };
   779 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   780 public:
   781   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   782                     DiscoveredList      refs_lists[],
   783                     bool                marks_oops_alive)
   784     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   785   { }
   786   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   787                     OopClosure& keep_alive,
   788                     VoidClosure& complete_gc)
   789   {
   790     _ref_processor.process_phase2(_refs_lists[i],
   791                                   &is_alive, &keep_alive, &complete_gc);
   792   }
   793 };
   795 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   796 public:
   797   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   798                     DiscoveredList      refs_lists[],
   799                     bool                clear_referent,
   800                     bool                marks_oops_alive)
   801     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   802       _clear_referent(clear_referent)
   803   { }
   804   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   805                     OopClosure& keep_alive,
   806                     VoidClosure& complete_gc)
   807   {
   808     // Don't use "refs_list_index" calculated in this way because
   809     // balance_queues() has moved the Ref's into the first n queues.
   810     // Thread* thr = Thread::current();
   811     // int refs_list_index = ((WorkerThread*)thr)->id();
   812     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   813     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   814                                   &is_alive, &keep_alive, &complete_gc);
   815   }
   816 private:
   817   bool _clear_referent;
   818 };
   820 // Balances reference queues.
   821 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   822 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   823 // corresponding to the active workers will be processed.
   824 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   825 {
   826   // calculate total length
   827   size_t total_refs = 0;
   828   if (TraceReferenceGC && PrintGCDetails) {
   829     gclog_or_tty->print_cr("\nBalance ref_lists ");
   830   }
   832   for (int i = 0; i < _max_num_q; ++i) {
   833     total_refs += ref_lists[i].length();
   834     if (TraceReferenceGC && PrintGCDetails) {
   835       gclog_or_tty->print("%d ", ref_lists[i].length());
   836     }
   837   }
   838   if (TraceReferenceGC && PrintGCDetails) {
   839     gclog_or_tty->print_cr(" = %d", total_refs);
   840   }
   841   size_t avg_refs = total_refs / _num_q + 1;
   842   int to_idx = 0;
   843   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
   844     bool move_all = false;
   845     if (from_idx >= _num_q) {
   846       move_all = ref_lists[from_idx].length() > 0;
   847     }
   848     while ((ref_lists[from_idx].length() > avg_refs) ||
   849            move_all) {
   850       assert(to_idx < _num_q, "Sanity Check!");
   851       if (ref_lists[to_idx].length() < avg_refs) {
   852         // move superfluous refs
   853         size_t refs_to_move;
   854         // Move all the Ref's if the from queue will not be processed.
   855         if (move_all) {
   856           refs_to_move = MIN2(ref_lists[from_idx].length(),
   857                               avg_refs - ref_lists[to_idx].length());
   858         } else {
   859           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   860                               avg_refs - ref_lists[to_idx].length());
   861         }
   862         oop move_head = ref_lists[from_idx].head();
   863         oop move_tail = move_head;
   864         oop new_head  = move_head;
   865         // find an element to split the list on
   866         for (size_t j = 0; j < refs_to_move; ++j) {
   867           move_tail = new_head;
   868           new_head = java_lang_ref_Reference::discovered(new_head);
   869         }
   870         java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
   871         ref_lists[to_idx].set_head(move_head);
   872         ref_lists[to_idx].inc_length(refs_to_move);
   873         ref_lists[from_idx].set_head(new_head);
   874         ref_lists[from_idx].dec_length(refs_to_move);
   875         if (ref_lists[from_idx].length() == 0) {
   876           break;
   877         }
   878       } else {
   879         to_idx = (to_idx + 1) % _num_q;
   880       }
   881     }
   882   }
   883 #ifdef ASSERT
   884   size_t balanced_total_refs = 0;
   885   for (int i = 0; i < _max_num_q; ++i) {
   886     balanced_total_refs += ref_lists[i].length();
   887     if (TraceReferenceGC && PrintGCDetails) {
   888       gclog_or_tty->print("%d ", ref_lists[i].length());
   889     }
   890   }
   891   if (TraceReferenceGC && PrintGCDetails) {
   892     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   893     gclog_or_tty->flush();
   894   }
   895   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   896 #endif
   897 }
   899 void ReferenceProcessor::balance_all_queues() {
   900   balance_queues(_discoveredSoftRefs);
   901   balance_queues(_discoveredWeakRefs);
   902   balance_queues(_discoveredFinalRefs);
   903   balance_queues(_discoveredPhantomRefs);
   904 }
   906 void
   907 ReferenceProcessor::process_discovered_reflist(
   908   DiscoveredList               refs_lists[],
   909   ReferencePolicy*             policy,
   910   bool                         clear_referent,
   911   BoolObjectClosure*           is_alive,
   912   OopClosure*                  keep_alive,
   913   VoidClosure*                 complete_gc,
   914   AbstractRefProcTaskExecutor* task_executor)
   915 {
   916   bool mt_processing = task_executor != NULL && _processing_is_mt;
   917   // If discovery used MT and a dynamic number of GC threads, then
   918   // the queues must be balanced for correctness if fewer than the
   919   // maximum number of queues were used.  The number of queue used
   920   // during discovery may be different than the number to be used
   921   // for processing so don't depend of _num_q < _max_num_q as part
   922   // of the test.
   923   bool must_balance = _discovery_is_mt;
   925   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   926       must_balance) {
   927     balance_queues(refs_lists);
   928   }
   929   if (PrintReferenceGC && PrintGCDetails) {
   930     size_t total = 0;
   931     for (int i = 0; i < _max_num_q; ++i) {
   932       total += refs_lists[i].length();
   933     }
   934     gclog_or_tty->print(", %u refs", total);
   935   }
   937   // Phase 1 (soft refs only):
   938   // . Traverse the list and remove any SoftReferences whose
   939   //   referents are not alive, but that should be kept alive for
   940   //   policy reasons. Keep alive the transitive closure of all
   941   //   such referents.
   942   if (policy != NULL) {
   943     if (mt_processing) {
   944       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   945       task_executor->execute(phase1);
   946     } else {
   947       for (int i = 0; i < _max_num_q; i++) {
   948         process_phase1(refs_lists[i], policy,
   949                        is_alive, keep_alive, complete_gc);
   950       }
   951     }
   952   } else { // policy == NULL
   953     assert(refs_lists != _discoveredSoftRefs,
   954            "Policy must be specified for soft references.");
   955   }
   957   // Phase 2:
   958   // . Traverse the list and remove any refs whose referents are alive.
   959   if (mt_processing) {
   960     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   961     task_executor->execute(phase2);
   962   } else {
   963     for (int i = 0; i < _max_num_q; i++) {
   964       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   965     }
   966   }
   968   // Phase 3:
   969   // . Traverse the list and process referents as appropriate.
   970   if (mt_processing) {
   971     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   972     task_executor->execute(phase3);
   973   } else {
   974     for (int i = 0; i < _max_num_q; i++) {
   975       process_phase3(refs_lists[i], clear_referent,
   976                      is_alive, keep_alive, complete_gc);
   977     }
   978   }
   979 }
   981 void ReferenceProcessor::clean_up_discovered_references() {
   982   // loop over the lists
   983   // Should this instead be
   984   // for (int i = 0; i < subclasses_of_ref; i++_ {
   985   //   for (int j = 0; j < _num_q; j++) {
   986   //     int index = i * _max_num_q + j;
   987   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   988     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   989       gclog_or_tty->print_cr(
   990         "\nScrubbing %s discovered list of Null referents",
   991         list_name(i));
   992     }
   993     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
   994   }
   995 }
   997 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   998   assert(!discovery_is_atomic(), "Else why call this method?");
   999   DiscoveredListIterator iter(refs_list, NULL, NULL);
  1000   while (iter.has_next()) {
  1001     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1002     oop next = java_lang_ref_Reference::next(iter.obj());
  1003     assert(next->is_oop_or_null(), "bad next field");
  1004     // If referent has been cleared or Reference is not active,
  1005     // drop it.
  1006     if (iter.referent() == NULL || next != NULL) {
  1007       debug_only(
  1008         if (PrintGCDetails && TraceReferenceGC) {
  1009           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
  1010             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
  1011             " and referent: " INTPTR_FORMAT,
  1012             iter.obj(), next, iter.referent());
  1015       // Remove Reference object from list
  1016       iter.remove();
  1017       iter.move_to_next();
  1018     } else {
  1019       iter.next();
  1022   NOT_PRODUCT(
  1023     if (PrintGCDetails && TraceReferenceGC) {
  1024       gclog_or_tty->print(
  1025         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1026         iter.removed(), iter.processed());
  1031 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1032   int id = 0;
  1033   // Determine the queue index to use for this object.
  1034   if (_discovery_is_mt) {
  1035     // During a multi-threaded discovery phase,
  1036     // each thread saves to its "own" list.
  1037     Thread* thr = Thread::current();
  1038     id = thr->as_Worker_thread()->id();
  1039   } else {
  1040     // single-threaded discovery, we save in round-robin
  1041     // fashion to each of the lists.
  1042     if (_processing_is_mt) {
  1043       id = next_id();
  1046   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1048   // Get the discovered queue to which we will add
  1049   DiscoveredList* list = NULL;
  1050   switch (rt) {
  1051     case REF_OTHER:
  1052       // Unknown reference type, no special treatment
  1053       break;
  1054     case REF_SOFT:
  1055       list = &_discoveredSoftRefs[id];
  1056       break;
  1057     case REF_WEAK:
  1058       list = &_discoveredWeakRefs[id];
  1059       break;
  1060     case REF_FINAL:
  1061       list = &_discoveredFinalRefs[id];
  1062       break;
  1063     case REF_PHANTOM:
  1064       list = &_discoveredPhantomRefs[id];
  1065       break;
  1066     case REF_NONE:
  1067       // we should not reach here if we are an instanceRefKlass
  1068     default:
  1069       ShouldNotReachHere();
  1071   if (TraceReferenceGC && PrintGCDetails) {
  1072     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1074   return list;
  1077 inline void
  1078 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1079                                               oop             obj,
  1080                                               HeapWord*       discovered_addr) {
  1081   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1082   // First we must make sure this object is only enqueued once. CAS in a non null
  1083   // discovered_addr.
  1084   oop current_head = refs_list.head();
  1086   // Note: In the case of G1, this specific pre-barrier is strictly
  1087   // not necessary because the only case we are interested in
  1088   // here is when *discovered_addr is NULL (see the CAS further below),
  1089   // so this will expand to nothing. As a result, we have manually
  1090   // elided this out for G1, but left in the test for some future
  1091   // collector that might have need for a pre-barrier here.
  1092   if (_discovered_list_needs_barrier && !UseG1GC) {
  1093     if (UseCompressedOops) {
  1094       _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
  1095     } else {
  1096       _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
  1098     guarantee(false, "Need to check non-G1 collector");
  1100   oop retest = oopDesc::atomic_compare_exchange_oop(current_head, discovered_addr,
  1101                                                     NULL);
  1102   if (retest == NULL) {
  1103     // This thread just won the right to enqueue the object.
  1104     // We have separate lists for enqueueing so no synchronization
  1105     // is necessary.
  1106     refs_list.set_head(obj);
  1107     refs_list.inc_length(1);
  1108     if (_discovered_list_needs_barrier) {
  1109       _bs->write_ref_field((void*)discovered_addr, current_head);
  1112     if (TraceReferenceGC) {
  1113       gclog_or_tty->print_cr("Enqueued reference (mt) (" INTPTR_FORMAT ": %s)",
  1114                              obj, obj->blueprint()->internal_name());
  1116   } else {
  1117     // If retest was non NULL, another thread beat us to it:
  1118     // The reference has already been discovered...
  1119     if (TraceReferenceGC) {
  1120       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1121                              obj, obj->blueprint()->internal_name());
  1126 #ifndef PRODUCT
  1127 // Non-atomic (i.e. concurrent) discovery might allow us
  1128 // to observe j.l.References with NULL referents, being those
  1129 // cleared concurrently by mutators during (or after) discovery.
  1130 void ReferenceProcessor::verify_referent(oop obj) {
  1131   bool da = discovery_is_atomic();
  1132   oop referent = java_lang_ref_Reference::referent(obj);
  1133   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1134          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1135                  INTPTR_FORMAT " during %satomic discovery ",
  1136                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
  1138 #endif
  1140 // We mention two of several possible choices here:
  1141 // #0: if the reference object is not in the "originating generation"
  1142 //     (or part of the heap being collected, indicated by our "span"
  1143 //     we don't treat it specially (i.e. we scan it as we would
  1144 //     a normal oop, treating its references as strong references).
  1145 //     This means that references can't be enqueued unless their
  1146 //     referent is also in the same span. This is the simplest,
  1147 //     most "local" and most conservative approach, albeit one
  1148 //     that may cause weak references to be enqueued least promptly.
  1149 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1150 // #1: the reference object may be in any generation (span), but if
  1151 //     the referent is in the generation (span) being currently collected
  1152 //     then we can discover the reference object, provided
  1153 //     the object has not already been discovered by
  1154 //     a different concurrently running collector (as may be the
  1155 //     case, for instance, if the reference object is in CMS and
  1156 //     the referent in DefNewGeneration), and provided the processing
  1157 //     of this reference object by the current collector will
  1158 //     appear atomic to every other collector in the system.
  1159 //     (Thus, for instance, a concurrent collector may not
  1160 //     discover references in other generations even if the
  1161 //     referent is in its own generation). This policy may,
  1162 //     in certain cases, enqueue references somewhat sooner than
  1163 //     might Policy #0 above, but at marginally increased cost
  1164 //     and complexity in processing these references.
  1165 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1166 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1167   // We enqueue references only if we are discovering refs
  1168   // (rather than processing discovered refs).
  1169   if (!_discovering_refs || !RegisterReferences) {
  1170     return false;
  1172   // We only enqueue active references.
  1173   oop next = java_lang_ref_Reference::next(obj);
  1174   if (next != NULL) {
  1175     return false;
  1178   HeapWord* obj_addr = (HeapWord*)obj;
  1179   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1180       !_span.contains(obj_addr)) {
  1181     // Reference is not in the originating generation;
  1182     // don't treat it specially (i.e. we want to scan it as a normal
  1183     // object with strong references).
  1184     return false;
  1187   // We only enqueue references whose referents are not (yet) strongly
  1188   // reachable.
  1189   if (is_alive_non_header() != NULL) {
  1190     verify_referent(obj);
  1191     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1192       return false;  // referent is reachable
  1195   if (rt == REF_SOFT) {
  1196     // For soft refs we can decide now if these are not
  1197     // current candidates for clearing, in which case we
  1198     // can mark through them now, rather than delaying that
  1199     // to the reference-processing phase. Since all current
  1200     // time-stamp policies advance the soft-ref clock only
  1201     // at a major collection cycle, this is always currently
  1202     // accurate.
  1203     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
  1204       return false;
  1208   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1209   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1210   assert(discovered->is_oop_or_null(), "bad discovered field");
  1211   if (discovered != NULL) {
  1212     // The reference has already been discovered...
  1213     if (TraceReferenceGC) {
  1214       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1215                              obj, obj->blueprint()->internal_name());
  1217     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1218       // assumes that an object is not processed twice;
  1219       // if it's been already discovered it must be on another
  1220       // generation's discovered list; so we won't discover it.
  1221       return false;
  1222     } else {
  1223       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1224              "Unrecognized policy");
  1225       // Check assumption that an object is not potentially
  1226       // discovered twice except by concurrent collectors that potentially
  1227       // trace the same Reference object twice.
  1228       assert(UseConcMarkSweepGC || UseG1GC,
  1229              "Only possible with a concurrent marking collector");
  1230       return true;
  1234   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1235     verify_referent(obj);
  1236     // enqueue if and only if either:
  1237     // reference is in our span or
  1238     // we are an atomic collector and referent is in our span
  1239     if (_span.contains(obj_addr) ||
  1240         (discovery_is_atomic() &&
  1241          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1242       // should_enqueue = true;
  1243     } else {
  1244       return false;
  1246   } else {
  1247     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1248            _span.contains(obj_addr), "code inconsistency");
  1251   // Get the right type of discovered queue head.
  1252   DiscoveredList* list = get_discovered_list(rt);
  1253   if (list == NULL) {
  1254     return false;   // nothing special needs to be done
  1257   if (_discovery_is_mt) {
  1258     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1259   } else {
  1260     // If "_discovered_list_needs_barrier", we do write barriers when
  1261     // updating the discovered reference list.  Otherwise, we do a raw store
  1262     // here: the field will be visited later when processing the discovered
  1263     // references.
  1264     oop current_head = list->head();
  1265     // As in the case further above, since we are over-writing a NULL
  1266     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1267     assert(discovered == NULL, "control point invariant");
  1268     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
  1269       if (UseCompressedOops) {
  1270         _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
  1271       } else {
  1272         _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
  1274       guarantee(false, "Need to check non-G1 collector");
  1276     oop_store_raw(discovered_addr, current_head);
  1277     if (_discovered_list_needs_barrier) {
  1278       _bs->write_ref_field((void*)discovered_addr, current_head);
  1280     list->set_head(obj);
  1281     list->inc_length(1);
  1283     if (TraceReferenceGC) {
  1284       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
  1285                                 obj, obj->blueprint()->internal_name());
  1288   assert(obj->is_oop(), "Enqueued a bad reference");
  1289   verify_referent(obj);
  1290   return true;
  1293 // Preclean the discovered references by removing those
  1294 // whose referents are alive, and by marking from those that
  1295 // are not active. These lists can be handled here
  1296 // in any order and, indeed, concurrently.
  1297 void ReferenceProcessor::preclean_discovered_references(
  1298   BoolObjectClosure* is_alive,
  1299   OopClosure* keep_alive,
  1300   VoidClosure* complete_gc,
  1301   YieldClosure* yield,
  1302   bool should_unload_classes) {
  1304   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1306 #ifdef ASSERT
  1307   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
  1308                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
  1309                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
  1310                                  UseConcMarkSweepGC && should_unload_classes;
  1311   RememberKlassesChecker mx(must_remember_klasses);
  1312 #endif
  1313   // Soft references
  1315     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1316               false, gclog_or_tty);
  1317     for (int i = 0; i < _max_num_q; i++) {
  1318       if (yield->should_return()) {
  1319         return;
  1321       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1322                                   keep_alive, complete_gc, yield);
  1326   // Weak references
  1328     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1329               false, gclog_or_tty);
  1330     for (int i = 0; i < _max_num_q; i++) {
  1331       if (yield->should_return()) {
  1332         return;
  1334       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1335                                   keep_alive, complete_gc, yield);
  1339   // Final references
  1341     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1342               false, gclog_or_tty);
  1343     for (int i = 0; i < _max_num_q; i++) {
  1344       if (yield->should_return()) {
  1345         return;
  1347       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1348                                   keep_alive, complete_gc, yield);
  1352   // Phantom references
  1354     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1355               false, gclog_or_tty);
  1356     for (int i = 0; i < _max_num_q; i++) {
  1357       if (yield->should_return()) {
  1358         return;
  1360       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1361                                   keep_alive, complete_gc, yield);
  1366 // Walk the given discovered ref list, and remove all reference objects
  1367 // whose referents are still alive, whose referents are NULL or which
  1368 // are not active (have a non-NULL next field). NOTE: When we are
  1369 // thus precleaning the ref lists (which happens single-threaded today),
  1370 // we do not disable refs discovery to honour the correct semantics of
  1371 // java.lang.Reference. As a result, we need to be careful below
  1372 // that ref removal steps interleave safely with ref discovery steps
  1373 // (in this thread).
  1374 void
  1375 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1376                                                 BoolObjectClosure* is_alive,
  1377                                                 OopClosure*        keep_alive,
  1378                                                 VoidClosure*       complete_gc,
  1379                                                 YieldClosure*      yield) {
  1380   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1381   while (iter.has_next()) {
  1382     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1383     oop obj = iter.obj();
  1384     oop next = java_lang_ref_Reference::next(obj);
  1385     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1386         next != NULL) {
  1387       // The referent has been cleared, or is alive, or the Reference is not
  1388       // active; we need to trace and mark its cohort.
  1389       if (TraceReferenceGC) {
  1390         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1391                                iter.obj(), iter.obj()->blueprint()->internal_name());
  1393       // Remove Reference object from list
  1394       iter.remove();
  1395       // Keep alive its cohort.
  1396       iter.make_referent_alive();
  1397       if (UseCompressedOops) {
  1398         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1399         keep_alive->do_oop(next_addr);
  1400       } else {
  1401         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1402         keep_alive->do_oop(next_addr);
  1404       iter.move_to_next();
  1405     } else {
  1406       iter.next();
  1409   // Close the reachable set
  1410   complete_gc->do_void();
  1412   NOT_PRODUCT(
  1413     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1414       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1415         "Refs in discovered list " INTPTR_FORMAT,
  1416         iter.removed(), iter.processed(), (address)refs_list.head());
  1421 const char* ReferenceProcessor::list_name(int i) {
  1422    assert(i >= 0 && i <= _max_num_q * subclasses_of_ref, "Out of bounds index");
  1423    int j = i / _max_num_q;
  1424    switch (j) {
  1425      case 0: return "SoftRef";
  1426      case 1: return "WeakRef";
  1427      case 2: return "FinalRef";
  1428      case 3: return "PhantomRef";
  1430    ShouldNotReachHere();
  1431    return NULL;
  1434 #ifndef PRODUCT
  1435 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1436   // empty for now
  1438 #endif
  1440 void ReferenceProcessor::verify() {
  1441   guarantee(sentinel_ref() != NULL && sentinel_ref()->is_oop(), "Lost _sentinelRef");
  1444 #ifndef PRODUCT
  1445 void ReferenceProcessor::clear_discovered_references() {
  1446   guarantee(!_discovering_refs, "Discovering refs?");
  1447   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
  1448     oop obj = _discoveredSoftRefs[i].head();
  1449     while (obj != sentinel_ref()) {
  1450       oop next = java_lang_ref_Reference::discovered(obj);
  1451       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
  1452       obj = next;
  1454     _discoveredSoftRefs[i].set_head(sentinel_ref());
  1455     _discoveredSoftRefs[i].set_length(0);
  1458 #endif // PRODUCT

mercurial