src/share/vm/opto/runtime.cpp

Sat, 07 Nov 2020 10:30:02 +0800

author
aoqi
date
Sat, 07 Nov 2020 10:30:02 +0800
changeset 10026
8c95980d0b66
parent 9806
758c07667682
permissions
-rw-r--r--

Added tag mips-jdk8u275-b01 for changeset d3b4d62f391f

     1 /*
     2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/systemDictionary.hpp"
    33 #include "classfile/vmSymbols.hpp"
    34 #include "code/compiledIC.hpp"
    35 #include "code/icBuffer.hpp"
    36 #include "code/nmethod.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/compileBroker.hpp"
    41 #include "compiler/compilerOracle.hpp"
    42 #include "compiler/oopMap.hpp"
    43 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    44 #include "gc_implementation/g1/heapRegion.hpp"
    45 #include "gc_interface/collectedHeap.hpp"
    46 #include "interpreter/bytecode.hpp"
    47 #include "interpreter/interpreter.hpp"
    48 #include "interpreter/linkResolver.hpp"
    49 #include "memory/barrierSet.hpp"
    50 #include "memory/gcLocker.inline.hpp"
    51 #include "memory/oopFactory.hpp"
    52 #include "oops/objArrayKlass.hpp"
    53 #include "oops/oop.inline.hpp"
    54 #include "opto/addnode.hpp"
    55 #include "opto/callnode.hpp"
    56 #include "opto/cfgnode.hpp"
    57 #include "opto/connode.hpp"
    58 #include "opto/graphKit.hpp"
    59 #include "opto/machnode.hpp"
    60 #include "opto/matcher.hpp"
    61 #include "opto/memnode.hpp"
    62 #include "opto/mulnode.hpp"
    63 #include "opto/runtime.hpp"
    64 #include "opto/subnode.hpp"
    65 #include "runtime/fprofiler.hpp"
    66 #include "runtime/handles.inline.hpp"
    67 #include "runtime/interfaceSupport.hpp"
    68 #include "runtime/javaCalls.hpp"
    69 #include "runtime/sharedRuntime.hpp"
    70 #include "runtime/signature.hpp"
    71 #include "runtime/threadCritical.hpp"
    72 #include "runtime/vframe.hpp"
    73 #include "runtime/vframeArray.hpp"
    74 #include "runtime/vframe_hp.hpp"
    75 #include "utilities/copy.hpp"
    76 #include "utilities/preserveException.hpp"
    77 #if defined AD_MD_HPP
    78 # include AD_MD_HPP
    79 #elif defined TARGET_ARCH_MODEL_x86_32
    80 # include "adfiles/ad_x86_32.hpp"
    81 #elif defined TARGET_ARCH_MODEL_x86_64
    82 # include "adfiles/ad_x86_64.hpp"
    83 #elif defined TARGET_ARCH_MODEL_sparc
    84 # include "adfiles/ad_sparc.hpp"
    85 #elif defined TARGET_ARCH_MODEL_zero
    86 # include "adfiles/ad_zero.hpp"
    87 #elif defined TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #elif defined TARGET_ARCH_MODEL_mips_64
    90 # include "adfiles/ad_mips_64.hpp"
    91 #endif
    94 // For debugging purposes:
    95 //  To force FullGCALot inside a runtime function, add the following two lines
    96 //
    97 //  Universe::release_fullgc_alot_dummy();
    98 //  MarkSweep::invoke(0, "Debugging");
    99 //
   100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   103 // GHASH block processing
   104 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
   105     int argcnt = 4;
   107     const Type** fields = TypeTuple::fields(argcnt);
   108     int argp = TypeFunc::Parms;
   109     fields[argp++] = TypePtr::NOTNULL;    // state
   110     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
   111     fields[argp++] = TypePtr::NOTNULL;    // data
   112     fields[argp++] = TypeInt::INT;        // blocks
   113     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   114     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   116     // result type needed
   117     fields = TypeTuple::fields(1);
   118     fields[TypeFunc::Parms+0] = NULL; // void
   119     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   120     return TypeFunc::make(domain, range);
   121 }
   123 // Compiled code entry points
   124 address OptoRuntime::_new_instance_Java                           = NULL;
   125 address OptoRuntime::_new_array_Java                              = NULL;
   126 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   127 address OptoRuntime::_multianewarray2_Java                        = NULL;
   128 address OptoRuntime::_multianewarray3_Java                        = NULL;
   129 address OptoRuntime::_multianewarray4_Java                        = NULL;
   130 address OptoRuntime::_multianewarray5_Java                        = NULL;
   131 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   132 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   133 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   134 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   135 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   136 address OptoRuntime::_rethrow_Java                                = NULL;
   138 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   139 address OptoRuntime::_register_finalizer_Java                     = NULL;
   141 # ifdef ENABLE_ZAP_DEAD_LOCALS
   142 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   143 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   144 # endif
   146 ExceptionBlob* OptoRuntime::_exception_blob;
   148 // This should be called in an assertion at the start of OptoRuntime routines
   149 // which are entered from compiled code (all of them)
   150 #ifdef ASSERT
   151 static bool check_compiled_frame(JavaThread* thread) {
   152   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   153   RegisterMap map(thread, false);
   154   frame caller = thread->last_frame().sender(&map);
   155   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   156   return true;
   157 }
   158 #endif // ASSERT
   161 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   162   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   163   if (var == NULL) { return false; }
   165 bool OptoRuntime::generate(ciEnv* env) {
   167   generate_exception_blob();
   169   // Note: tls: Means fetching the return oop out of the thread-local storage
   170   //
   171   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   172   // -------------------------------------------------------------------------------------------------------------------------------
   173   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   174   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   175   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   176   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   177   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   178   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   179   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   180   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   181   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   182   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   183   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   184   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   186   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   187   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   189 # ifdef ENABLE_ZAP_DEAD_LOCALS
   190   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   191   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   192 # endif
   193   return true;
   194 }
   196 #undef gen
   199 // Helper method to do generation of RunTimeStub's
   200 address OptoRuntime::generate_stub( ciEnv* env,
   201                                     TypeFunc_generator gen, address C_function,
   202                                     const char *name, int is_fancy_jump,
   203                                     bool pass_tls,
   204                                     bool save_argument_registers,
   205                                     bool return_pc ) {
   206   ResourceMark rm;
   207   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   208   return  C.stub_entry_point();
   209 }
   211 const char* OptoRuntime::stub_name(address entry) {
   212 #ifndef PRODUCT
   213   CodeBlob* cb = CodeCache::find_blob(entry);
   214   RuntimeStub* rs =(RuntimeStub *)cb;
   215   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   216   return rs->name();
   217 #else
   218   // Fast implementation for product mode (maybe it should be inlined too)
   219   return "runtime stub";
   220 #endif
   221 }
   224 //=============================================================================
   225 // Opto compiler runtime routines
   226 //=============================================================================
   229 //=============================allocation======================================
   230 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   231 // and try allocation again.
   233 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   234   // After any safepoint, just before going back to compiled code,
   235   // we inform the GC that we will be doing initializing writes to
   236   // this object in the future without emitting card-marks, so
   237   // GC may take any compensating steps.
   238   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   240   oop new_obj = thread->vm_result();
   241   if (new_obj == NULL)  return;
   243   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   244          "compiler must check this first");
   245   // GC may decide to give back a safer copy of new_obj.
   246   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   247   thread->set_vm_result(new_obj);
   248 }
   250 // object allocation
   251 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   252   JRT_BLOCK;
   253 #ifndef PRODUCT
   254   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   255 #endif
   256   assert(check_compiled_frame(thread), "incorrect caller");
   258   // These checks are cheap to make and support reflective allocation.
   259   int lh = klass->layout_helper();
   260   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
   261     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   262     klass->check_valid_for_instantiation(false, THREAD);
   263     if (!HAS_PENDING_EXCEPTION) {
   264       InstanceKlass::cast(klass)->initialize(THREAD);
   265     }
   266   }
   268   if (!HAS_PENDING_EXCEPTION) {
   269     // Scavenge and allocate an instance.
   270     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   271     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   272     thread->set_vm_result(result);
   274     // Pass oops back through thread local storage.  Our apparent type to Java
   275     // is that we return an oop, but we can block on exit from this routine and
   276     // a GC can trash the oop in C's return register.  The generated stub will
   277     // fetch the oop from TLS after any possible GC.
   278   }
   280   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   281   JRT_BLOCK_END;
   283   if (GraphKit::use_ReduceInitialCardMarks()) {
   284     // inform GC that we won't do card marks for initializing writes.
   285     new_store_pre_barrier(thread);
   286   }
   287 JRT_END
   290 // array allocation
   291 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   292   JRT_BLOCK;
   293 #ifndef PRODUCT
   294   SharedRuntime::_new_array_ctr++;            // new array requires GC
   295 #endif
   296   assert(check_compiled_frame(thread), "incorrect caller");
   298   // Scavenge and allocate an instance.
   299   oop result;
   301   if (array_type->oop_is_typeArray()) {
   302     // The oopFactory likes to work with the element type.
   303     // (We could bypass the oopFactory, since it doesn't add much value.)
   304     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   305     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   306   } else {
   307     // Although the oopFactory likes to work with the elem_type,
   308     // the compiler prefers the array_type, since it must already have
   309     // that latter value in hand for the fast path.
   310     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
   311     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   312     result = oopFactory::new_objArray(elem_type, len, THREAD);
   313   }
   315   // Pass oops back through thread local storage.  Our apparent type to Java
   316   // is that we return an oop, but we can block on exit from this routine and
   317   // a GC can trash the oop in C's return register.  The generated stub will
   318   // fetch the oop from TLS after any possible GC.
   319   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   320   thread->set_vm_result(result);
   321   JRT_BLOCK_END;
   323   if (GraphKit::use_ReduceInitialCardMarks()) {
   324     // inform GC that we won't do card marks for initializing writes.
   325     new_store_pre_barrier(thread);
   326   }
   327 JRT_END
   329 // array allocation without zeroing
   330 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   331   JRT_BLOCK;
   332 #ifndef PRODUCT
   333   SharedRuntime::_new_array_ctr++;            // new array requires GC
   334 #endif
   335   assert(check_compiled_frame(thread), "incorrect caller");
   337   // Scavenge and allocate an instance.
   338   oop result;
   340   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   341   // The oopFactory likes to work with the element type.
   342   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   343   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   345   // Pass oops back through thread local storage.  Our apparent type to Java
   346   // is that we return an oop, but we can block on exit from this routine and
   347   // a GC can trash the oop in C's return register.  The generated stub will
   348   // fetch the oop from TLS after any possible GC.
   349   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   350   thread->set_vm_result(result);
   351   JRT_BLOCK_END;
   353   if (GraphKit::use_ReduceInitialCardMarks()) {
   354     // inform GC that we won't do card marks for initializing writes.
   355     new_store_pre_barrier(thread);
   356   }
   358   oop result = thread->vm_result();
   359   if ((len > 0) && (result != NULL) &&
   360       is_deoptimized_caller_frame(thread)) {
   361     // Zero array here if the caller is deoptimized.
   362     int size = ((typeArrayOop)result)->object_size();
   363     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   364     const size_t hs = arrayOopDesc::header_size(elem_type);
   365     // Align to next 8 bytes to avoid trashing arrays's length.
   366     const size_t aligned_hs = align_object_offset(hs);
   367     HeapWord* obj = (HeapWord*)result;
   368     if (aligned_hs > hs) {
   369       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   370     }
   371     // Optimized zeroing.
   372     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   373   }
   375 JRT_END
   377 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   379 // multianewarray for 2 dimensions
   380 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   381 #ifndef PRODUCT
   382   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   383 #endif
   384   assert(check_compiled_frame(thread), "incorrect caller");
   385   assert(elem_type->is_klass(), "not a class");
   386   jint dims[2];
   387   dims[0] = len1;
   388   dims[1] = len2;
   389   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   390   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   391   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   392   thread->set_vm_result(obj);
   393 JRT_END
   395 // multianewarray for 3 dimensions
   396 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   397 #ifndef PRODUCT
   398   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   399 #endif
   400   assert(check_compiled_frame(thread), "incorrect caller");
   401   assert(elem_type->is_klass(), "not a class");
   402   jint dims[3];
   403   dims[0] = len1;
   404   dims[1] = len2;
   405   dims[2] = len3;
   406   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   409   thread->set_vm_result(obj);
   410 JRT_END
   412 // multianewarray for 4 dimensions
   413 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   414 #ifndef PRODUCT
   415   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   416 #endif
   417   assert(check_compiled_frame(thread), "incorrect caller");
   418   assert(elem_type->is_klass(), "not a class");
   419   jint dims[4];
   420   dims[0] = len1;
   421   dims[1] = len2;
   422   dims[2] = len3;
   423   dims[3] = len4;
   424   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   425   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   426   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   427   thread->set_vm_result(obj);
   428 JRT_END
   430 // multianewarray for 5 dimensions
   431 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   432 #ifndef PRODUCT
   433   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   434 #endif
   435   assert(check_compiled_frame(thread), "incorrect caller");
   436   assert(elem_type->is_klass(), "not a class");
   437   jint dims[5];
   438   dims[0] = len1;
   439   dims[1] = len2;
   440   dims[2] = len3;
   441   dims[3] = len4;
   442   dims[4] = len5;
   443   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   444   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   445   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   446   thread->set_vm_result(obj);
   447 JRT_END
   449 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   450   assert(check_compiled_frame(thread), "incorrect caller");
   451   assert(elem_type->is_klass(), "not a class");
   452   assert(oop(dims)->is_typeArray(), "not an array");
   454   ResourceMark rm;
   455   jint len = dims->length();
   456   assert(len > 0, "Dimensions array should contain data");
   457   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   458   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   459   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   461   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   462   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   463   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   464   thread->set_vm_result(obj);
   465 JRT_END
   468 const TypeFunc *OptoRuntime::new_instance_Type() {
   469   // create input type (domain)
   470   const Type **fields = TypeTuple::fields(1);
   471   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   472   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   474   // create result type (range)
   475   fields = TypeTuple::fields(1);
   476   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   478   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   480   return TypeFunc::make(domain, range);
   481 }
   484 const TypeFunc *OptoRuntime::athrow_Type() {
   485   // create input type (domain)
   486   const Type **fields = TypeTuple::fields(1);
   487   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   490   // create result type (range)
   491   fields = TypeTuple::fields(0);
   493   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   495   return TypeFunc::make(domain, range);
   496 }
   499 const TypeFunc *OptoRuntime::new_array_Type() {
   500   // create input type (domain)
   501   const Type **fields = TypeTuple::fields(2);
   502   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   503   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   504   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   506   // create result type (range)
   507   fields = TypeTuple::fields(1);
   508   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   510   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   512   return TypeFunc::make(domain, range);
   513 }
   515 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   516   // create input type (domain)
   517   const int nargs = ndim + 1;
   518   const Type **fields = TypeTuple::fields(nargs);
   519   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   520   for( int i = 1; i < nargs; i++ )
   521     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   522   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   524   // create result type (range)
   525   fields = TypeTuple::fields(1);
   526   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   527   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   529   return TypeFunc::make(domain, range);
   530 }
   532 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   533   return multianewarray_Type(2);
   534 }
   536 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   537   return multianewarray_Type(3);
   538 }
   540 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   541   return multianewarray_Type(4);
   542 }
   544 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   545   return multianewarray_Type(5);
   546 }
   548 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   549   // create input type (domain)
   550   const Type **fields = TypeTuple::fields(2);
   551   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   552   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   553   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   555   // create result type (range)
   556   fields = TypeTuple::fields(1);
   557   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   558   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   560   return TypeFunc::make(domain, range);
   561 }
   563 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   564   const Type **fields = TypeTuple::fields(2);
   565   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   566   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   567   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   569   // create result type (range)
   570   fields = TypeTuple::fields(0);
   571   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   573   return TypeFunc::make(domain, range);
   574 }
   576 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   578   const Type **fields = TypeTuple::fields(2);
   579   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   580   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   581   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   583   // create result type (range)
   584   fields = TypeTuple::fields(0);
   585   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   587   return TypeFunc::make(domain, range);
   588 }
   590 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   591   // create input type (domain)
   592   const Type **fields = TypeTuple::fields(1);
   593   // Symbol* name of class to be loaded
   594   fields[TypeFunc::Parms+0] = TypeInt::INT;
   595   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   597   // create result type (range)
   598   fields = TypeTuple::fields(0);
   599   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   601   return TypeFunc::make(domain, range);
   602 }
   604 # ifdef ENABLE_ZAP_DEAD_LOCALS
   605 // Type used for stub generation for zap_dead_locals.
   606 // No inputs or outputs
   607 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   608   // create input type (domain)
   609   const Type **fields = TypeTuple::fields(0);
   610   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   612   // create result type (range)
   613   fields = TypeTuple::fields(0);
   614   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   616   return TypeFunc::make(domain,range);
   617 }
   618 # endif
   621 //-----------------------------------------------------------------------------
   622 // Monitor Handling
   623 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   624   // create input type (domain)
   625   const Type **fields = TypeTuple::fields(2);
   626   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   627   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   628   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   630   // create result type (range)
   631   fields = TypeTuple::fields(0);
   633   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   635   return TypeFunc::make(domain,range);
   636 }
   639 //-----------------------------------------------------------------------------
   640 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   641   // create input type (domain)
   642   const Type **fields = TypeTuple::fields(2);
   643   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   644   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   645   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   647   // create result type (range)
   648   fields = TypeTuple::fields(0);
   650   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   652   return TypeFunc::make(domain,range);
   653 }
   655 const TypeFunc* OptoRuntime::flush_windows_Type() {
   656   // create input type (domain)
   657   const Type** fields = TypeTuple::fields(1);
   658   fields[TypeFunc::Parms+0] = NULL; // void
   659   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   661   // create result type
   662   fields = TypeTuple::fields(1);
   663   fields[TypeFunc::Parms+0] = NULL; // void
   664   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   666   return TypeFunc::make(domain, range);
   667 }
   669 const TypeFunc* OptoRuntime::l2f_Type() {
   670   // create input type (domain)
   671   const Type **fields = TypeTuple::fields(2);
   672   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   673   fields[TypeFunc::Parms+1] = Type::HALF;
   674   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   676   // create result type (range)
   677   fields = TypeTuple::fields(1);
   678   fields[TypeFunc::Parms+0] = Type::FLOAT;
   679   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   681   return TypeFunc::make(domain, range);
   682 }
   684 const TypeFunc* OptoRuntime::modf_Type() {
   685   const Type **fields = TypeTuple::fields(2);
   686   fields[TypeFunc::Parms+0] = Type::FLOAT;
   687   fields[TypeFunc::Parms+1] = Type::FLOAT;
   688   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   690   // create result type (range)
   691   fields = TypeTuple::fields(1);
   692   fields[TypeFunc::Parms+0] = Type::FLOAT;
   694   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   696   return TypeFunc::make(domain, range);
   697 }
   699 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   700   // create input type (domain)
   701   const Type **fields = TypeTuple::fields(2);
   702   // Symbol* name of class to be loaded
   703   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   704   fields[TypeFunc::Parms+1] = Type::HALF;
   705   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   707   // create result type (range)
   708   fields = TypeTuple::fields(2);
   709   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   710   fields[TypeFunc::Parms+1] = Type::HALF;
   711   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   713   return TypeFunc::make(domain, range);
   714 }
   716 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   717   const Type **fields = TypeTuple::fields(4);
   718   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   719   fields[TypeFunc::Parms+1] = Type::HALF;
   720   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   721   fields[TypeFunc::Parms+3] = Type::HALF;
   722   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   724   // create result type (range)
   725   fields = TypeTuple::fields(2);
   726   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   727   fields[TypeFunc::Parms+1] = Type::HALF;
   728   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   730   return TypeFunc::make(domain, range);
   731 }
   733 //-------------- currentTimeMillis, currentTimeNanos, etc
   735 const TypeFunc* OptoRuntime::void_long_Type() {
   736   // create input type (domain)
   737   const Type **fields = TypeTuple::fields(0);
   738   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   740   // create result type (range)
   741   fields = TypeTuple::fields(2);
   742   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   743   fields[TypeFunc::Parms+1] = Type::HALF;
   744   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   746   return TypeFunc::make(domain, range);
   747 }
   749 // arraycopy stub variations:
   750 enum ArrayCopyType {
   751   ac_fast,                      // void(ptr, ptr, size_t)
   752   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   753   ac_slow,                      // void(ptr, int, ptr, int, int)
   754   ac_generic                    //  int(ptr, int, ptr, int, int)
   755 };
   757 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   758   // create input type (domain)
   759   int num_args      = (act == ac_fast ? 3 : 5);
   760   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   761   int argcnt = num_args;
   762   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   763   const Type** fields = TypeTuple::fields(argcnt);
   764   int argp = TypeFunc::Parms;
   765   fields[argp++] = TypePtr::NOTNULL;    // src
   766   if (num_size_args == 0) {
   767     fields[argp++] = TypeInt::INT;      // src_pos
   768   }
   769   fields[argp++] = TypePtr::NOTNULL;    // dest
   770   if (num_size_args == 0) {
   771     fields[argp++] = TypeInt::INT;      // dest_pos
   772     fields[argp++] = TypeInt::INT;      // length
   773   }
   774   while (num_size_args-- > 0) {
   775     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   776     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   777   }
   778   if (act == ac_checkcast) {
   779     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   780   }
   781   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   782   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   784   // create result type if needed
   785   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   786   fields = TypeTuple::fields(1);
   787   if (retcnt == 0)
   788     fields[TypeFunc::Parms+0] = NULL; // void
   789   else
   790     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   791   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   792   return TypeFunc::make(domain, range);
   793 }
   795 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   796   // This signature is simple:  Two base pointers and a size_t.
   797   return make_arraycopy_Type(ac_fast);
   798 }
   800 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   801   // An extension of fast_arraycopy_Type which adds type checking.
   802   return make_arraycopy_Type(ac_checkcast);
   803 }
   805 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   806   // This signature is exactly the same as System.arraycopy.
   807   // There are no intptr_t (int/long) arguments.
   808   return make_arraycopy_Type(ac_slow);
   809 }
   811 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   812   // This signature is like System.arraycopy, except that it returns status.
   813   return make_arraycopy_Type(ac_generic);
   814 }
   817 const TypeFunc* OptoRuntime::array_fill_Type() {
   818   const Type** fields;
   819   int argp = TypeFunc::Parms;
   820   if (CCallingConventionRequiresIntsAsLongs) {
   821   // create input type (domain): pointer, int, size_t
   822     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
   823     fields[argp++] = TypePtr::NOTNULL;
   824     fields[argp++] = TypeLong::LONG;
   825     fields[argp++] = Type::HALF;
   826   } else {
   827     // create input type (domain): pointer, int, size_t
   828     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   829     fields[argp++] = TypePtr::NOTNULL;
   830     fields[argp++] = TypeInt::INT;
   831   }
   832   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   833   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   834   const TypeTuple *domain = TypeTuple::make(argp, fields);
   836   // create result type
   837   fields = TypeTuple::fields(1);
   838   fields[TypeFunc::Parms+0] = NULL; // void
   839   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   841   return TypeFunc::make(domain, range);
   842 }
   844 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   845 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   846   // create input type (domain)
   847   int num_args      = 3;
   848   if (Matcher::pass_original_key_for_aes()) {
   849     num_args = 4;
   850   }
   851   int argcnt = num_args;
   852   const Type** fields = TypeTuple::fields(argcnt);
   853   int argp = TypeFunc::Parms;
   854   fields[argp++] = TypePtr::NOTNULL;    // src
   855   fields[argp++] = TypePtr::NOTNULL;    // dest
   856   fields[argp++] = TypePtr::NOTNULL;    // k array
   857   if (Matcher::pass_original_key_for_aes()) {
   858     fields[argp++] = TypePtr::NOTNULL;    // original k array
   859   }
   860   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   861   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   863   // no result type needed
   864   fields = TypeTuple::fields(1);
   865   fields[TypeFunc::Parms+0] = NULL; // void
   866   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   867   return TypeFunc::make(domain, range);
   868 }
   870 /**
   871  * int updateBytesCRC32(int crc, byte* b, int len)
   872  */
   873 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   874   // create input type (domain)
   875   int num_args = 3;
   876   int argcnt = num_args;
   877   if (CCallingConventionRequiresIntsAsLongs) {
   878     argcnt += 2;
   879   }
   880   const Type** fields = TypeTuple::fields(argcnt);
   881   int argp = TypeFunc::Parms;
   882   if (CCallingConventionRequiresIntsAsLongs) {
   883     fields[argp++] = TypeLong::LONG;   // crc
   884     fields[argp++] = Type::HALF;
   885     fields[argp++] = TypePtr::NOTNULL; // src
   886     fields[argp++] = TypeLong::LONG;   // len
   887     fields[argp++] = Type::HALF;
   888   } else {
   889     fields[argp++] = TypeInt::INT;     // crc
   890     fields[argp++] = TypePtr::NOTNULL; // src
   891     fields[argp++] = TypeInt::INT;     // len
   892   }
   893   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   894   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   896   // result type needed
   897   fields = TypeTuple::fields(1);
   898   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   899   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   900   return TypeFunc::make(domain, range);
   901 }
   903 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
   904 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   905   // create input type (domain)
   906   int num_args      = 5;
   907   if (Matcher::pass_original_key_for_aes()) {
   908     num_args = 6;
   909   }
   910   int argcnt = num_args;
   911   const Type** fields = TypeTuple::fields(argcnt);
   912   int argp = TypeFunc::Parms;
   913   fields[argp++] = TypePtr::NOTNULL;    // src
   914   fields[argp++] = TypePtr::NOTNULL;    // dest
   915   fields[argp++] = TypePtr::NOTNULL;    // k array
   916   fields[argp++] = TypePtr::NOTNULL;    // r array
   917   fields[argp++] = TypeInt::INT;        // src len
   918   if (Matcher::pass_original_key_for_aes()) {
   919     fields[argp++] = TypePtr::NOTNULL;    // original k array
   920   }
   921   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   922   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   924   // returning cipher len (int)
   925   fields = TypeTuple::fields(1);
   926   fields[TypeFunc::Parms+0] = TypeInt::INT;
   927   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   928   return TypeFunc::make(domain, range);
   929 }
   931 /*
   932  * void implCompress(byte[] buf, int ofs)
   933  */
   934 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
   935   // create input type (domain)
   936   int num_args = 2;
   937   int argcnt = num_args;
   938   const Type** fields = TypeTuple::fields(argcnt);
   939   int argp = TypeFunc::Parms;
   940   fields[argp++] = TypePtr::NOTNULL; // buf
   941   fields[argp++] = TypePtr::NOTNULL; // state
   942   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   943   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   945   // no result type needed
   946   fields = TypeTuple::fields(1);
   947   fields[TypeFunc::Parms+0] = NULL; // void
   948   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   949   return TypeFunc::make(domain, range);
   950 }
   952 /*
   953  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
   954  */
   955 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
   956   // create input type (domain)
   957   int num_args = 4;
   958   int argcnt = num_args;
   959   if(CCallingConventionRequiresIntsAsLongs) {
   960     argcnt += 2;
   961   }
   962   const Type** fields = TypeTuple::fields(argcnt);
   963   int argp = TypeFunc::Parms;
   964   if(CCallingConventionRequiresIntsAsLongs) {
   965     fields[argp++] = TypePtr::NOTNULL; // buf
   966     fields[argp++] = TypePtr::NOTNULL; // state
   967     fields[argp++] = TypeLong::LONG;   // ofs
   968     fields[argp++] = Type::HALF;
   969     fields[argp++] = TypeLong::LONG;   // limit
   970     fields[argp++] = Type::HALF;
   971   } else {
   972     fields[argp++] = TypePtr::NOTNULL; // buf
   973     fields[argp++] = TypePtr::NOTNULL; // state
   974     fields[argp++] = TypeInt::INT;     // ofs
   975     fields[argp++] = TypeInt::INT;     // limit
   976   }
   977   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   978   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   980   // returning ofs (int)
   981   fields = TypeTuple::fields(1);
   982   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
   983   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   984   return TypeFunc::make(domain, range);
   985 }
   987 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
   988   // create input type (domain)
   989   int num_args      = 6;
   990   int argcnt = num_args;
   991   const Type** fields = TypeTuple::fields(argcnt);
   992   int argp = TypeFunc::Parms;
   993   fields[argp++] = TypePtr::NOTNULL;    // x
   994   fields[argp++] = TypeInt::INT;        // xlen
   995   fields[argp++] = TypePtr::NOTNULL;    // y
   996   fields[argp++] = TypeInt::INT;        // ylen
   997   fields[argp++] = TypePtr::NOTNULL;    // z
   998   fields[argp++] = TypeInt::INT;        // zlen
   999   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1000   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1002   // no result type needed
  1003   fields = TypeTuple::fields(1);
  1004   fields[TypeFunc::Parms+0] = NULL;
  1005   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1006   return TypeFunc::make(domain, range);
  1009 const TypeFunc* OptoRuntime::squareToLen_Type() {
  1010   // create input type (domain)
  1011   int num_args      = 4;
  1012   int argcnt = num_args;
  1013   const Type** fields = TypeTuple::fields(argcnt);
  1014   int argp = TypeFunc::Parms;
  1015   fields[argp++] = TypePtr::NOTNULL;    // x
  1016   fields[argp++] = TypeInt::INT;        // len
  1017   fields[argp++] = TypePtr::NOTNULL;    // z
  1018   fields[argp++] = TypeInt::INT;        // zlen
  1019   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1020   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1022   // no result type needed
  1023   fields = TypeTuple::fields(1);
  1024   fields[TypeFunc::Parms+0] = NULL;
  1025   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1026   return TypeFunc::make(domain, range);
  1029 // for mulAdd calls, 2 pointers and 3 ints, returning int
  1030 const TypeFunc* OptoRuntime::mulAdd_Type() {
  1031   // create input type (domain)
  1032   int num_args      = 5;
  1033   int argcnt = num_args;
  1034   const Type** fields = TypeTuple::fields(argcnt);
  1035   int argp = TypeFunc::Parms;
  1036   fields[argp++] = TypePtr::NOTNULL;    // out
  1037   fields[argp++] = TypePtr::NOTNULL;    // in
  1038   fields[argp++] = TypeInt::INT;        // offset
  1039   fields[argp++] = TypeInt::INT;        // len
  1040   fields[argp++] = TypeInt::INT;        // k
  1041   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1042   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1044   // returning carry (int)
  1045   fields = TypeTuple::fields(1);
  1046   fields[TypeFunc::Parms+0] = TypeInt::INT;
  1047   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1048   return TypeFunc::make(domain, range);
  1051 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
  1052   // create input type (domain)
  1053   int num_args      = 7;
  1054   int argcnt = num_args;
  1055   if (CCallingConventionRequiresIntsAsLongs) {
  1056     argcnt++;                           // additional placeholder
  1058   const Type** fields = TypeTuple::fields(argcnt);
  1059   int argp = TypeFunc::Parms;
  1060   fields[argp++] = TypePtr::NOTNULL;    // a
  1061   fields[argp++] = TypePtr::NOTNULL;    // b
  1062   fields[argp++] = TypePtr::NOTNULL;    // n
  1063   if (CCallingConventionRequiresIntsAsLongs) {
  1064     fields[argp++] = TypeLong::LONG;    // len
  1065     fields[argp++] = TypeLong::HALF;    // placeholder
  1066   } else {
  1067     fields[argp++] = TypeInt::INT;      // len
  1069   fields[argp++] = TypeLong::LONG;      // inv
  1070   fields[argp++] = Type::HALF;
  1071   fields[argp++] = TypePtr::NOTNULL;    // result
  1072   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1073   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1075   // result type needed
  1076   fields = TypeTuple::fields(1);
  1077   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1079   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1080   return TypeFunc::make(domain, range);
  1083 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
  1084   // create input type (domain)
  1085   int num_args      = 6;
  1086   int argcnt = num_args;
  1087   if (CCallingConventionRequiresIntsAsLongs) {
  1088     argcnt++;                           // additional placeholder
  1090   const Type** fields = TypeTuple::fields(argcnt);
  1091   int argp = TypeFunc::Parms;
  1092   fields[argp++] = TypePtr::NOTNULL;    // a
  1093   fields[argp++] = TypePtr::NOTNULL;    // n
  1094   if (CCallingConventionRequiresIntsAsLongs) {
  1095     fields[argp++] = TypeLong::LONG;    // len
  1096     fields[argp++] = TypeLong::HALF;    // placeholder
  1097   } else {
  1098     fields[argp++] = TypeInt::INT;      // len
  1100   fields[argp++] = TypeLong::LONG;      // inv
  1101   fields[argp++] = Type::HALF;
  1102   fields[argp++] = TypePtr::NOTNULL;    // result
  1103   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1104   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1106   // result type needed
  1107   fields = TypeTuple::fields(1);
  1108   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1110   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1111   return TypeFunc::make(domain, range);
  1115 //------------- Interpreter state access for on stack replacement
  1116 const TypeFunc* OptoRuntime::osr_end_Type() {
  1117   // create input type (domain)
  1118   const Type **fields = TypeTuple::fields(1);
  1119   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
  1120   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
  1122   // create result type
  1123   fields = TypeTuple::fields(1);
  1124   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
  1125   fields[TypeFunc::Parms+0] = NULL; // void
  1126   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1127   return TypeFunc::make(domain, range);
  1130 //-------------- methodData update helpers
  1132 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
  1133   // create input type (domain)
  1134   const Type **fields = TypeTuple::fields(2);
  1135   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
  1136   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
  1137   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  1139   // create result type
  1140   fields = TypeTuple::fields(1);
  1141   fields[TypeFunc::Parms+0] = NULL; // void
  1142   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1143   return TypeFunc::make(domain,range);
  1146 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
  1147   if (receiver == NULL) return;
  1148   Klass* receiver_klass = receiver->klass();
  1150   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
  1151   int empty_row = -1;           // free row, if any is encountered
  1153   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
  1154   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
  1155     // if (vc->receiver(row) == receiver_klass)
  1156     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
  1157     intptr_t row_recv = *(mdp + receiver_off);
  1158     if (row_recv == (intptr_t) receiver_klass) {
  1159       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
  1160       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
  1161       *(mdp + count_off) += DataLayout::counter_increment;
  1162       return;
  1163     } else if (row_recv == 0) {
  1164       // else if (vc->receiver(row) == NULL)
  1165       empty_row = (int) row;
  1169   if (empty_row != -1) {
  1170     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
  1171     // vc->set_receiver(empty_row, receiver_klass);
  1172     *(mdp + receiver_off) = (intptr_t) receiver_klass;
  1173     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
  1174     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
  1175     *(mdp + count_off) = DataLayout::counter_increment;
  1176   } else {
  1177     // Receiver did not match any saved receiver and there is no empty row for it.
  1178     // Increment total counter to indicate polymorphic case.
  1179     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
  1180     *count_p += DataLayout::counter_increment;
  1182 JRT_END
  1184 //-------------------------------------------------------------------------------------
  1185 // register policy
  1187 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
  1188   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
  1189   switch (register_save_policy[reg]) {
  1190     case 'C': return false; //SOC
  1191     case 'E': return true ; //SOE
  1192     case 'N': return false; //NS
  1193     case 'A': return false; //AS
  1195   ShouldNotReachHere();
  1196   return false;
  1199 //-----------------------------------------------------------------------
  1200 // Exceptions
  1201 //
  1203 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
  1205 // The method is an entry that is always called by a C++ method not
  1206 // directly from compiled code. Compiled code will call the C++ method following.
  1207 // We can't allow async exception to be installed during  exception processing.
  1208 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
  1210   // Do not confuse exception_oop with pending_exception. The exception_oop
  1211   // is only used to pass arguments into the method. Not for general
  1212   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  1213   // the runtime stubs checks this on exit.
  1214   assert(thread->exception_oop() != NULL, "exception oop is found");
  1215   address handler_address = NULL;
  1217   Handle exception(thread, thread->exception_oop());
  1218   address pc = thread->exception_pc();
  1220   // Clear out the exception oop and pc since looking up an
  1221   // exception handler can cause class loading, which might throw an
  1222   // exception and those fields are expected to be clear during
  1223   // normal bytecode execution.
  1224   thread->clear_exception_oop_and_pc();
  1226   if (TraceExceptions) {
  1227     trace_exception(exception(), pc, "");
  1230   // for AbortVMOnException flag
  1231   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1233 #ifdef ASSERT
  1234   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1235     // should throw an exception here
  1236     ShouldNotReachHere();
  1238 #endif
  1240   // new exception handling: this method is entered only from adapters
  1241   // exceptions from compiled java methods are handled in compiled code
  1242   // using rethrow node
  1244   nm = CodeCache::find_nmethod(pc);
  1245   assert(nm != NULL, "No NMethod found");
  1246   if (nm->is_native_method()) {
  1247     fatal("Native method should not have path to exception handling");
  1248   } else {
  1249     // we are switching to old paradigm: search for exception handler in caller_frame
  1250     // instead in exception handler of caller_frame.sender()
  1252     if (JvmtiExport::can_post_on_exceptions()) {
  1253       // "Full-speed catching" is not necessary here,
  1254       // since we're notifying the VM on every catch.
  1255       // Force deoptimization and the rest of the lookup
  1256       // will be fine.
  1257       deoptimize_caller_frame(thread);
  1260     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1261     // otherwise, forcibly unwind the frame.
  1262     //
  1263     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1264     bool force_unwind = !thread->reguard_stack();
  1265     bool deopting = false;
  1266     if (nm->is_deopt_pc(pc)) {
  1267       deopting = true;
  1268       RegisterMap map(thread, false);
  1269       frame deoptee = thread->last_frame().sender(&map);
  1270       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1271       // Adjust the pc back to the original throwing pc
  1272       pc = deoptee.pc();
  1275     // If we are forcing an unwind because of stack overflow then deopt is
  1276     // irrelevant since we are throwing the frame away anyway.
  1278     if (deopting && !force_unwind) {
  1279       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1280     } else {
  1282       handler_address =
  1283         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1285       if (handler_address == NULL) {
  1286         bool recursive_exception = false;
  1287         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
  1288         assert (handler_address != NULL, "must have compiled handler");
  1289         // Update the exception cache only when the unwind was not forced
  1290         // and there didn't happen another exception during the computation of the
  1291         // compiled exception handler. Checking for exception oop equality is not
  1292         // sufficient because some exceptions are pre-allocated and reused.
  1293         if (!force_unwind && !recursive_exception) {
  1294           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1296       } else {
  1297 #ifdef ASSERT
  1298         bool recursive_exception = false;
  1299         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
  1300         assert(recursive_exception || (handler_address == computed_address), err_msg("Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
  1301                  p2i(handler_address), p2i(computed_address)));
  1302 #endif
  1306     thread->set_exception_pc(pc);
  1307     thread->set_exception_handler_pc(handler_address);
  1309     // Check if the exception PC is a MethodHandle call site.
  1310     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1313   // Restore correct return pc.  Was saved above.
  1314   thread->set_exception_oop(exception());
  1315   return handler_address;
  1317 JRT_END
  1319 // We are entering here from exception_blob
  1320 // If there is a compiled exception handler in this method, we will continue there;
  1321 // otherwise we will unwind the stack and continue at the caller of top frame method
  1322 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1323 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1324 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1325 // we must not use the handler and instead return the deopt blob.
  1326 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1327 //
  1328 // We are in Java not VM and in debug mode we have a NoHandleMark
  1329 //
  1330 #ifndef PRODUCT
  1331   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1332 #endif
  1333   debug_only(NoHandleMark __hm;)
  1334   nmethod* nm = NULL;
  1335   address handler_address = NULL;
  1337     // Enter the VM
  1339     ResetNoHandleMark rnhm;
  1340     handler_address = handle_exception_C_helper(thread, nm);
  1343   // Back in java: Use no oops, DON'T safepoint
  1345   // Now check to see if the handler we are returning is in a now
  1346   // deoptimized frame
  1348   if (nm != NULL) {
  1349     RegisterMap map(thread, false);
  1350     frame caller = thread->last_frame().sender(&map);
  1351 #ifdef ASSERT
  1352     assert(caller.is_compiled_frame(), "must be");
  1353 #endif // ASSERT
  1354     if (caller.is_deoptimized_frame()) {
  1355       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1358   return handler_address;
  1361 //------------------------------rethrow----------------------------------------
  1362 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1363 // is either throwing or rethrowing an exception.  The callee-save registers
  1364 // have been restored, synchronized objects have been unlocked and the callee
  1365 // stack frame has been removed.  The return address was passed in.
  1366 // Exception oop is passed as the 1st argument.  This routine is then called
  1367 // from the stub.  On exit, we know where to jump in the caller's code.
  1368 // After this C code exits, the stub will pop his frame and end in a jump
  1369 // (instead of a return).  We enter the caller's default handler.
  1370 //
  1371 // This must be JRT_LEAF:
  1372 //     - caller will not change its state as we cannot block on exit,
  1373 //       therefore raw_exception_handler_for_return_address is all it takes
  1374 //       to handle deoptimized blobs
  1375 //
  1376 // However, there needs to be a safepoint check in the middle!  So compiled
  1377 // safepoints are completely watertight.
  1378 //
  1379 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1380 //
  1381 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1382 //
  1383 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1384 #ifndef PRODUCT
  1385   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1386 #endif
  1387   assert (exception != NULL, "should have thrown a NULLPointerException");
  1388 #ifdef ASSERT
  1389   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1390     // should throw an exception here
  1391     ShouldNotReachHere();
  1393 #endif
  1395   thread->set_vm_result(exception);
  1396   // Frame not compiled (handles deoptimization blob)
  1397   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1401 const TypeFunc *OptoRuntime::rethrow_Type() {
  1402   // create input type (domain)
  1403   const Type **fields = TypeTuple::fields(1);
  1404   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1405   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1407   // create result type (range)
  1408   fields = TypeTuple::fields(1);
  1409   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1410   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1412   return TypeFunc::make(domain, range);
  1416 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1417   // Deoptimize the caller before continuing, as the compiled
  1418   // exception handler table may not be valid.
  1419   if (!StressCompiledExceptionHandlers && doit) {
  1420     deoptimize_caller_frame(thread);
  1424 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1425   // Called from within the owner thread, so no need for safepoint
  1426   RegisterMap reg_map(thread);
  1427   frame stub_frame = thread->last_frame();
  1428   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1429   frame caller_frame = stub_frame.sender(&reg_map);
  1431   // Deoptimize the caller frame.
  1432   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1436 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1437   // Called from within the owner thread, so no need for safepoint
  1438   RegisterMap reg_map(thread);
  1439   frame stub_frame = thread->last_frame();
  1440   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1441   frame caller_frame = stub_frame.sender(&reg_map);
  1442   return caller_frame.is_deoptimized_frame();
  1446 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1447   // create input type (domain)
  1448   const Type **fields = TypeTuple::fields(1);
  1449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1450   // // The JavaThread* is passed to each routine as the last argument
  1451   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1452   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1454   // create result type (range)
  1455   fields = TypeTuple::fields(0);
  1457   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1459   return TypeFunc::make(domain,range);
  1463 //-----------------------------------------------------------------------------
  1464 // Dtrace support.  entry and exit probes have the same signature
  1465 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1466   // create input type (domain)
  1467   const Type **fields = TypeTuple::fields(2);
  1468   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1469   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1470   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1472   // create result type (range)
  1473   fields = TypeTuple::fields(0);
  1475   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1477   return TypeFunc::make(domain,range);
  1480 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1481   // create input type (domain)
  1482   const Type **fields = TypeTuple::fields(2);
  1483   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1484   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1486   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1488   // create result type (range)
  1489   fields = TypeTuple::fields(0);
  1491   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1493   return TypeFunc::make(domain,range);
  1497 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1498   assert(obj->is_oop(), "must be a valid oop");
  1499   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1500   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1501 JRT_END
  1503 //-----------------------------------------------------------------------------
  1505 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1507 //
  1508 // dump the collected NamedCounters.
  1509 //
  1510 void OptoRuntime::print_named_counters() {
  1511   int total_lock_count = 0;
  1512   int eliminated_lock_count = 0;
  1514   NamedCounter* c = _named_counters;
  1515   while (c) {
  1516     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1517       int count = c->count();
  1518       if (count > 0) {
  1519         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1520         if (Verbose) {
  1521           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1523         total_lock_count += count;
  1524         if (eliminated) {
  1525           eliminated_lock_count += count;
  1528     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1529       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1530       if (blc->nonzero()) {
  1531         tty->print_cr("%s", c->name());
  1532         blc->print_on(tty);
  1534 #if INCLUDE_RTM_OPT
  1535     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
  1536       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
  1537       if (rlc->nonzero()) {
  1538         tty->print_cr("%s", c->name());
  1539         rlc->print_on(tty);
  1541 #endif
  1543     c = c->next();
  1545   if (total_lock_count > 0) {
  1546     tty->print_cr("dynamic locks: %d", total_lock_count);
  1547     if (eliminated_lock_count) {
  1548       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1549                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1554 //
  1555 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1556 //  name which consists of method@line for the inlining tree.
  1557 //
  1559 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1560   int max_depth = youngest_jvms->depth();
  1562   // Visit scopes from youngest to oldest.
  1563   bool first = true;
  1564   stringStream st;
  1565   for (int depth = max_depth; depth >= 1; depth--) {
  1566     JVMState* jvms = youngest_jvms->of_depth(depth);
  1567     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1568     if (!first) {
  1569       st.print(" ");
  1570     } else {
  1571       first = false;
  1573     int bci = jvms->bci();
  1574     if (bci < 0) bci = 0;
  1575     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1576     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1578   NamedCounter* c;
  1579   if (tag == NamedCounter::BiasedLockingCounter) {
  1580     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1581   } else if (tag == NamedCounter::RTMLockingCounter) {
  1582     c = new RTMLockingNamedCounter(strdup(st.as_string()));
  1583   } else {
  1584     c = new NamedCounter(strdup(st.as_string()), tag);
  1587   // atomically add the new counter to the head of the list.  We only
  1588   // add counters so this is safe.
  1589   NamedCounter* head;
  1590   do {
  1591     c->set_next(NULL);
  1592     head = _named_counters;
  1593     c->set_next(head);
  1594   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1595   return c;
  1598 //-----------------------------------------------------------------------------
  1599 // Non-product code
  1600 #ifndef PRODUCT
  1602 int trace_exception_counter = 0;
  1603 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1604   ttyLocker ttyl;
  1605   trace_exception_counter++;
  1606   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1607   exception_oop->print_value();
  1608   tty->print(" in ");
  1609   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1610   if (blob->is_nmethod()) {
  1611     nmethod* nm = blob->as_nmethod_or_null();
  1612     nm->method()->print_value();
  1613   } else if (blob->is_runtime_stub()) {
  1614     tty->print("<runtime-stub>");
  1615   } else {
  1616     tty->print("<unknown>");
  1618   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
  1619   tty->print_cr("]");
  1622 #endif  // PRODUCT
  1625 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1626 // Called from call sites in compiled code with oop maps (actually safepoints)
  1627 // Zaps dead locals in first java frame.
  1628 // Is entry because may need to lock to generate oop maps
  1629 // Currently, only used for compiler frames, but someday may be used
  1630 // for interpreter frames, too.
  1632 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1634 // avoid pointers to member funcs with these helpers
  1635 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1636 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1639 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1640                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1641   assert(JavaThread::current() == thread, "is this needed?");
  1643   if ( !ZapDeadCompiledLocals )  return;
  1645   bool skip = false;
  1647        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1648   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1649   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1650     warning("starting zapping after skipping");
  1652        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1653   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1654   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1655     warning("about to zap last zap");
  1657   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1659   if ( skip )  return;
  1661   // find java frame and zap it
  1663   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1664     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1665       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1666       return;
  1669   warning("no frame found to zap in zap_dead_Java_locals_C");
  1672 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1673   zap_dead_java_or_native_locals(thread, is_java_frame);
  1674 JRT_END
  1676 // The following does not work because for one thing, the
  1677 // thread state is wrong; it expects java, but it is native.
  1678 // Also, the invariants in a native stub are different and
  1679 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1680 // in there.
  1681 // So for now, we do not zap in native stubs.
  1683 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1684   zap_dead_java_or_native_locals(thread, is_native_frame);
  1685 JRT_END
  1687 # endif

mercurial