src/share/vm/opto/matcher.cpp

Sat, 07 Nov 2020 10:30:02 +0800

author
aoqi
date
Sat, 07 Nov 2020 10:30:02 +0800
changeset 10026
8c95980d0b66
parent 9756
2be326848943
permissions
-rw-r--r--

Added tag mips-jdk8u275-b01 for changeset d3b4d62f391f

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "memory/allocation.inline.hpp"
    33 #include "opto/addnode.hpp"
    34 #include "opto/callnode.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/matcher.hpp"
    38 #include "opto/memnode.hpp"
    39 #include "opto/opcodes.hpp"
    40 #include "opto/regmask.hpp"
    41 #include "opto/rootnode.hpp"
    42 #include "opto/runtime.hpp"
    43 #include "opto/type.hpp"
    44 #include "opto/vectornode.hpp"
    45 #include "runtime/atomic.hpp"
    46 #include "runtime/os.hpp"
    47 #if defined AD_MD_HPP
    48 # include AD_MD_HPP
    49 #elif defined TARGET_ARCH_MODEL_x86_32
    50 # include "adfiles/ad_x86_32.hpp"
    51 #elif defined TARGET_ARCH_MODEL_x86_64
    52 # include "adfiles/ad_x86_64.hpp"
    53 #elif defined TARGET_ARCH_MODEL_sparc
    54 # include "adfiles/ad_sparc.hpp"
    55 #elif defined TARGET_ARCH_MODEL_zero
    56 # include "adfiles/ad_zero.hpp"
    57 #elif defined TARGET_ARCH_MODEL_ppc_64
    58 # include "adfiles/ad_ppc_64.hpp"
    59 #elif defined TARGET_ARCH_MODEL_mips_64
    60 # include "adfiles/ad_mips_64.hpp"
    61 #endif
    63 OptoReg::Name OptoReg::c_frame_pointer;
    65 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    66 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    67 RegMask Matcher::STACK_ONLY_mask;
    68 RegMask Matcher::c_frame_ptr_mask;
    69 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    70 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    72 //---------------------------Matcher-------------------------------------------
    73 Matcher::Matcher()
    74 : PhaseTransform( Phase::Ins_Select ),
    75 #ifdef ASSERT
    76   _old2new_map(C->comp_arena()),
    77   _new2old_map(C->comp_arena()),
    78 #endif
    79   _shared_nodes(C->comp_arena()),
    80   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    81   _swallowed(swallowed),
    82   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    83   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    84   _must_clone(must_clone),
    85   _register_save_policy(register_save_policy),
    86   _c_reg_save_policy(c_reg_save_policy),
    87   _register_save_type(register_save_type),
    88   _ruleName(ruleName),
    89   _allocation_started(false),
    90   _states_arena(Chunk::medium_size, mtCompiler),
    91   _visited(&_states_arena),
    92   _shared(&_states_arena),
    93   _dontcare(&_states_arena) {
    94   C->set_matcher(this);
    96   idealreg2spillmask  [Op_RegI] = NULL;
    97   idealreg2spillmask  [Op_RegN] = NULL;
    98   idealreg2spillmask  [Op_RegL] = NULL;
    99   idealreg2spillmask  [Op_RegF] = NULL;
   100   idealreg2spillmask  [Op_RegD] = NULL;
   101   idealreg2spillmask  [Op_RegP] = NULL;
   102   idealreg2spillmask  [Op_VecS] = NULL;
   103   idealreg2spillmask  [Op_VecD] = NULL;
   104   idealreg2spillmask  [Op_VecX] = NULL;
   105   idealreg2spillmask  [Op_VecY] = NULL;
   106   idealreg2spillmask  [Op_RegFlags] = NULL;
   108   idealreg2debugmask  [Op_RegI] = NULL;
   109   idealreg2debugmask  [Op_RegN] = NULL;
   110   idealreg2debugmask  [Op_RegL] = NULL;
   111   idealreg2debugmask  [Op_RegF] = NULL;
   112   idealreg2debugmask  [Op_RegD] = NULL;
   113   idealreg2debugmask  [Op_RegP] = NULL;
   114   idealreg2debugmask  [Op_VecS] = NULL;
   115   idealreg2debugmask  [Op_VecD] = NULL;
   116   idealreg2debugmask  [Op_VecX] = NULL;
   117   idealreg2debugmask  [Op_VecY] = NULL;
   118   idealreg2debugmask  [Op_RegFlags] = NULL;
   120   idealreg2mhdebugmask[Op_RegI] = NULL;
   121   idealreg2mhdebugmask[Op_RegN] = NULL;
   122   idealreg2mhdebugmask[Op_RegL] = NULL;
   123   idealreg2mhdebugmask[Op_RegF] = NULL;
   124   idealreg2mhdebugmask[Op_RegD] = NULL;
   125   idealreg2mhdebugmask[Op_RegP] = NULL;
   126   idealreg2mhdebugmask[Op_VecS] = NULL;
   127   idealreg2mhdebugmask[Op_VecD] = NULL;
   128   idealreg2mhdebugmask[Op_VecX] = NULL;
   129   idealreg2mhdebugmask[Op_VecY] = NULL;
   130   idealreg2mhdebugmask[Op_RegFlags] = NULL;
   132   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   133 }
   135 //------------------------------warp_incoming_stk_arg------------------------
   136 // This warps a VMReg into an OptoReg::Name
   137 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   138   OptoReg::Name warped;
   139   if( reg->is_stack() ) {  // Stack slot argument?
   140     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   141     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   142     if( warped >= _in_arg_limit )
   143       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   144     if (!RegMask::can_represent_arg(warped)) {
   145       // the compiler cannot represent this method's calling sequence
   146       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   147       return OptoReg::Bad;
   148     }
   149     return warped;
   150   }
   151   return OptoReg::as_OptoReg(reg);
   152 }
   154 //---------------------------compute_old_SP------------------------------------
   155 OptoReg::Name Compile::compute_old_SP() {
   156   int fixed    = fixed_slots();
   157   int preserve = in_preserve_stack_slots();
   158   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   159 }
   163 #ifdef ASSERT
   164 void Matcher::verify_new_nodes_only(Node* xroot) {
   165   // Make sure that the new graph only references new nodes
   166   ResourceMark rm;
   167   Unique_Node_List worklist;
   168   VectorSet visited(Thread::current()->resource_area());
   169   worklist.push(xroot);
   170   while (worklist.size() > 0) {
   171     Node* n = worklist.pop();
   172     visited <<= n->_idx;
   173     assert(C->node_arena()->contains(n), "dead node");
   174     for (uint j = 0; j < n->req(); j++) {
   175       Node* in = n->in(j);
   176       if (in != NULL) {
   177         assert(C->node_arena()->contains(in), "dead node");
   178         if (!visited.test(in->_idx)) {
   179           worklist.push(in);
   180         }
   181       }
   182     }
   183   }
   184 }
   185 #endif
   188 //---------------------------match---------------------------------------------
   189 void Matcher::match( ) {
   190   if( MaxLabelRootDepth < 100 ) { // Too small?
   191     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   192     MaxLabelRootDepth = 100;
   193   }
   194   // One-time initialization of some register masks.
   195   init_spill_mask( C->root()->in(1) );
   196   _return_addr_mask = return_addr();
   197 #ifdef _LP64
   198   // Pointers take 2 slots in 64-bit land
   199   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   200 #endif
   202   // Map a Java-signature return type into return register-value
   203   // machine registers for 0, 1 and 2 returned values.
   204   const TypeTuple *range = C->tf()->range();
   205   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   206     // Get ideal-register return type
   207     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
   208     // Get machine return register
   209     uint sop = C->start()->Opcode();
   210     OptoRegPair regs = return_value(ireg, false);
   212     // And mask for same
   213     _return_value_mask = RegMask(regs.first());
   214     if( OptoReg::is_valid(regs.second()) )
   215       _return_value_mask.Insert(regs.second());
   216   }
   218   // ---------------
   219   // Frame Layout
   221   // Need the method signature to determine the incoming argument types,
   222   // because the types determine which registers the incoming arguments are
   223   // in, and this affects the matched code.
   224   const TypeTuple *domain = C->tf()->domain();
   225   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   226   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   227   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   228   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   229   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   230   uint i;
   231   for( i = 0; i<argcnt; i++ ) {
   232     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   233   }
   235   // Pass array of ideal registers and length to USER code (from the AD file)
   236   // that will convert this to an array of register numbers.
   237   const StartNode *start = C->start();
   238   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   239 #ifdef ASSERT
   240   // Sanity check users' calling convention.  Real handy while trying to
   241   // get the initial port correct.
   242   { for (uint i = 0; i<argcnt; i++) {
   243       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   244         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   245         _parm_regs[i].set_bad();
   246         continue;
   247       }
   248       VMReg parm_reg = vm_parm_regs[i].first();
   249       assert(parm_reg->is_valid(), "invalid arg?");
   250       if (parm_reg->is_reg()) {
   251         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   252         assert(can_be_java_arg(opto_parm_reg) ||
   253                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   254                opto_parm_reg == inline_cache_reg(),
   255                "parameters in register must be preserved by runtime stubs");
   256       }
   257       for (uint j = 0; j < i; j++) {
   258         assert(parm_reg != vm_parm_regs[j].first(),
   259                "calling conv. must produce distinct regs");
   260       }
   261     }
   262   }
   263 #endif
   265   // Do some initial frame layout.
   267   // Compute the old incoming SP (may be called FP) as
   268   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   269   _old_SP = C->compute_old_SP();
   270   assert( is_even(_old_SP), "must be even" );
   272   // Compute highest incoming stack argument as
   273   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   274   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   275   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   276   for( i = 0; i < argcnt; i++ ) {
   277     // Permit args to have no register
   278     _calling_convention_mask[i].Clear();
   279     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   280       continue;
   281     }
   282     // calling_convention returns stack arguments as a count of
   283     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   284     // the allocators point of view, taking into account all the
   285     // preserve area, locks & pad2.
   287     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   288     if( OptoReg::is_valid(reg1))
   289       _calling_convention_mask[i].Insert(reg1);
   291     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   292     if( OptoReg::is_valid(reg2))
   293       _calling_convention_mask[i].Insert(reg2);
   295     // Saved biased stack-slot register number
   296     _parm_regs[i].set_pair(reg2, reg1);
   297   }
   299   // Finally, make sure the incoming arguments take up an even number of
   300   // words, in case the arguments or locals need to contain doubleword stack
   301   // slots.  The rest of the system assumes that stack slot pairs (in
   302   // particular, in the spill area) which look aligned will in fact be
   303   // aligned relative to the stack pointer in the target machine.  Double
   304   // stack slots will always be allocated aligned.
   305   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   307   // Compute highest outgoing stack argument as
   308   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   309   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   310   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   312   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
   313     // the compiler cannot represent this method's calling sequence
   314     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   315   }
   317   if (C->failing())  return;  // bailed out on incoming arg failure
   319   // ---------------
   320   // Collect roots of matcher trees.  Every node for which
   321   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   322   // can be a valid interior of some tree.
   323   find_shared( C->root() );
   324   find_shared( C->top() );
   326   C->print_method(PHASE_BEFORE_MATCHING);
   328   // Create new ideal node ConP #NULL even if it does exist in old space
   329   // to avoid false sharing if the corresponding mach node is not used.
   330   // The corresponding mach node is only used in rare cases for derived
   331   // pointers.
   332   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   334   // Swap out to old-space; emptying new-space
   335   Arena *old = C->node_arena()->move_contents(C->old_arena());
   337   // Save debug and profile information for nodes in old space:
   338   _old_node_note_array = C->node_note_array();
   339   if (_old_node_note_array != NULL) {
   340     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   341                            (C->comp_arena(), _old_node_note_array->length(),
   342                             0, NULL));
   343   }
   345   // Pre-size the new_node table to avoid the need for range checks.
   346   grow_new_node_array(C->unique());
   348   // Reset node counter so MachNodes start with _idx at 0
   349   int live_nodes = C->live_nodes();
   350   C->set_unique(0);
   351   C->reset_dead_node_list();
   353   // Recursively match trees from old space into new space.
   354   // Correct leaves of new-space Nodes; they point to old-space.
   355   _visited.Clear();             // Clear visit bits for xform call
   356   C->set_cached_top_node(xform( C->top(), live_nodes));
   357   if (!C->failing()) {
   358     Node* xroot =        xform( C->root(), 1 );
   359     if (xroot == NULL) {
   360       Matcher::soft_match_failure();  // recursive matching process failed
   361       C->record_method_not_compilable("instruction match failed");
   362     } else {
   363       // During matching shared constants were attached to C->root()
   364       // because xroot wasn't available yet, so transfer the uses to
   365       // the xroot.
   366       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   367         Node* n = C->root()->fast_out(j);
   368         if (C->node_arena()->contains(n)) {
   369           assert(n->in(0) == C->root(), "should be control user");
   370           n->set_req(0, xroot);
   371           --j;
   372           --jmax;
   373         }
   374       }
   376       // Generate new mach node for ConP #NULL
   377       assert(new_ideal_null != NULL, "sanity");
   378       _mach_null = match_tree(new_ideal_null);
   379       // Don't set control, it will confuse GCM since there are no uses.
   380       // The control will be set when this node is used first time
   381       // in find_base_for_derived().
   382       assert(_mach_null != NULL, "");
   384       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   386 #ifdef ASSERT
   387       verify_new_nodes_only(xroot);
   388 #endif
   389     }
   390   }
   391   if (C->top() == NULL || C->root() == NULL) {
   392     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   393   }
   394   if (C->failing()) {
   395     // delete old;
   396     old->destruct_contents();
   397     return;
   398   }
   399   assert( C->top(), "" );
   400   assert( C->root(), "" );
   401   validate_null_checks();
   403   // Now smoke old-space
   404   NOT_DEBUG( old->destruct_contents() );
   406   // ------------------------
   407   // Set up save-on-entry registers
   408   Fixup_Save_On_Entry( );
   409 }
   412 //------------------------------Fixup_Save_On_Entry----------------------------
   413 // The stated purpose of this routine is to take care of save-on-entry
   414 // registers.  However, the overall goal of the Match phase is to convert into
   415 // machine-specific instructions which have RegMasks to guide allocation.
   416 // So what this procedure really does is put a valid RegMask on each input
   417 // to the machine-specific variations of all Return, TailCall and Halt
   418 // instructions.  It also adds edgs to define the save-on-entry values (and of
   419 // course gives them a mask).
   421 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   422   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   423   // Do all the pre-defined register masks
   424   rms[TypeFunc::Control  ] = RegMask::Empty;
   425   rms[TypeFunc::I_O      ] = RegMask::Empty;
   426   rms[TypeFunc::Memory   ] = RegMask::Empty;
   427   rms[TypeFunc::ReturnAdr] = ret_adr;
   428   rms[TypeFunc::FramePtr ] = fp;
   429   return rms;
   430 }
   432 //---------------------------init_first_stack_mask-----------------------------
   433 // Create the initial stack mask used by values spilling to the stack.
   434 // Disallow any debug info in outgoing argument areas by setting the
   435 // initial mask accordingly.
   436 void Matcher::init_first_stack_mask() {
   438   // Allocate storage for spill masks as masks for the appropriate load type.
   439   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
   441   idealreg2spillmask  [Op_RegN] = &rms[0];
   442   idealreg2spillmask  [Op_RegI] = &rms[1];
   443   idealreg2spillmask  [Op_RegL] = &rms[2];
   444   idealreg2spillmask  [Op_RegF] = &rms[3];
   445   idealreg2spillmask  [Op_RegD] = &rms[4];
   446   idealreg2spillmask  [Op_RegP] = &rms[5];
   448   idealreg2debugmask  [Op_RegN] = &rms[6];
   449   idealreg2debugmask  [Op_RegI] = &rms[7];
   450   idealreg2debugmask  [Op_RegL] = &rms[8];
   451   idealreg2debugmask  [Op_RegF] = &rms[9];
   452   idealreg2debugmask  [Op_RegD] = &rms[10];
   453   idealreg2debugmask  [Op_RegP] = &rms[11];
   455   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   456   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   457   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   458   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   459   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   460   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   462   idealreg2spillmask  [Op_VecS] = &rms[18];
   463   idealreg2spillmask  [Op_VecD] = &rms[19];
   464   idealreg2spillmask  [Op_VecX] = &rms[20];
   465   idealreg2spillmask  [Op_VecY] = &rms[21];
   467   OptoReg::Name i;
   469   // At first, start with the empty mask
   470   C->FIRST_STACK_mask().Clear();
   472   // Add in the incoming argument area
   473   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   474   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
   475     C->FIRST_STACK_mask().Insert(i);
   476   }
   477   // Add in all bits past the outgoing argument area
   478   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
   479             "must be able to represent all call arguments in reg mask");
   480   OptoReg::Name init = _out_arg_limit;
   481   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
   482     C->FIRST_STACK_mask().Insert(i);
   483   }
   484   // Finally, set the "infinite stack" bit.
   485   C->FIRST_STACK_mask().set_AllStack();
   487   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   488   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
   489   // Keep spill masks aligned.
   490   aligned_stack_mask.clear_to_pairs();
   491   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   493   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   494 #ifdef _LP64
   495   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   496    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   497    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
   498 #else
   499    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   500 #endif
   501   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   502    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   503   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   504    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
   505   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   506    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   507   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   508    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
   510   if (Matcher::vector_size_supported(T_BYTE,4)) {
   511     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
   512      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
   513   }
   514   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   515     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
   516     // RA guarantees such alignment since it is needed for Double and Long values.
   517     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
   518      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
   519   }
   520   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   521     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
   522     //
   523     // RA can use input arguments stack slots for spills but until RA
   524     // we don't know frame size and offset of input arg stack slots.
   525     //
   526     // Exclude last input arg stack slots to avoid spilling vectors there
   527     // otherwise vector spills could stomp over stack slots in caller frame.
   528     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   529     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
   530       aligned_stack_mask.Remove(in);
   531       in = OptoReg::add(in, -1);
   532     }
   533      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
   534      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   535     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
   536      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
   537   }
   538   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   539     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
   540     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   541     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
   542       aligned_stack_mask.Remove(in);
   543       in = OptoReg::add(in, -1);
   544     }
   545      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
   546      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   547     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
   548      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
   549   }
   550    if (UseFPUForSpilling) {
   551      // This mask logic assumes that the spill operations are
   552      // symmetric and that the registers involved are the same size.
   553      // On sparc for instance we may have to use 64 bit moves will
   554      // kill 2 registers when used with F0-F31.
   555      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   556      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   557 #ifdef _LP64
   558      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   559      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   560      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   561      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   562 #else
   563      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   564 #ifdef ARM
   565      // ARM has support for moving 64bit values between a pair of
   566      // integer registers and a double register
   567      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   568      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   569 #endif
   570 #endif
   571    }
   573   // Make up debug masks.  Any spill slot plus callee-save registers.
   574   // Caller-save registers are assumed to be trashable by the various
   575   // inline-cache fixup routines.
   576   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   577   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   578   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   579   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   580   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   581   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   583   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   584   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   585   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   586   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   587   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   588   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   590   // Prevent stub compilations from attempting to reference
   591   // callee-saved registers from debug info
   592   bool exclude_soe = !Compile::current()->is_method_compilation();
   594   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   595     // registers the caller has to save do not work
   596     if( _register_save_policy[i] == 'C' ||
   597         _register_save_policy[i] == 'A' ||
   598         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   599       idealreg2debugmask  [Op_RegN]->Remove(i);
   600       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   601       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   602       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   603       idealreg2debugmask  [Op_RegD]->Remove(i);
   604       idealreg2debugmask  [Op_RegP]->Remove(i);
   606       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   607       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   608       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   609       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   610       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   611       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   612     }
   613   }
   615   // Subtract the register we use to save the SP for MethodHandle
   616   // invokes to from the debug mask.
   617   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   618   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   619   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   620   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   621   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   622   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   623   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   624 }
   626 //---------------------------is_save_on_entry----------------------------------
   627 bool Matcher::is_save_on_entry( int reg ) {
   628   return
   629     _register_save_policy[reg] == 'E' ||
   630     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   631     // Also save argument registers in the trampolining stubs
   632     (C->save_argument_registers() && is_spillable_arg(reg));
   633 }
   635 //---------------------------Fixup_Save_On_Entry-------------------------------
   636 void Matcher::Fixup_Save_On_Entry( ) {
   637   init_first_stack_mask();
   639   Node *root = C->root();       // Short name for root
   640   // Count number of save-on-entry registers.
   641   uint soe_cnt = number_of_saved_registers();
   642   uint i;
   644   // Find the procedure Start Node
   645   StartNode *start = C->start();
   646   assert( start, "Expect a start node" );
   648   // Save argument registers in the trampolining stubs
   649   if( C->save_argument_registers() )
   650     for( i = 0; i < _last_Mach_Reg; i++ )
   651       if( is_spillable_arg(i) )
   652         soe_cnt++;
   654   // Input RegMask array shared by all Returns.
   655   // The type for doubles and longs has a count of 2, but
   656   // there is only 1 returned value
   657   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   658   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   659   // Returns have 0 or 1 returned values depending on call signature.
   660   // Return register is specified by return_value in the AD file.
   661   if (ret_edge_cnt > TypeFunc::Parms)
   662     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   664   // Input RegMask array shared by all Rethrows.
   665   uint reth_edge_cnt = TypeFunc::Parms+1;
   666   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   667   // Rethrow takes exception oop only, but in the argument 0 slot.
   668   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   669 #ifdef _LP64
   670   // Need two slots for ptrs in 64-bit land
   671   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   672 #endif
   674   // Input RegMask array shared by all TailCalls
   675   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   676   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   678   // Input RegMask array shared by all TailJumps
   679   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   680   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   682   // TailCalls have 2 returned values (target & moop), whose masks come
   683   // from the usual MachNode/MachOper mechanism.  Find a sample
   684   // TailCall to extract these masks and put the correct masks into
   685   // the tail_call_rms array.
   686   for( i=1; i < root->req(); i++ ) {
   687     MachReturnNode *m = root->in(i)->as_MachReturn();
   688     if( m->ideal_Opcode() == Op_TailCall ) {
   689       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   690       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   691       break;
   692     }
   693   }
   695   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   696   // from the usual MachNode/MachOper mechanism.  Find a sample
   697   // TailJump to extract these masks and put the correct masks into
   698   // the tail_jump_rms array.
   699   for( i=1; i < root->req(); i++ ) {
   700     MachReturnNode *m = root->in(i)->as_MachReturn();
   701     if( m->ideal_Opcode() == Op_TailJump ) {
   702       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   703       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   704       break;
   705     }
   706   }
   708   // Input RegMask array shared by all Halts
   709   uint halt_edge_cnt = TypeFunc::Parms;
   710   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   712   // Capture the return input masks into each exit flavor
   713   for( i=1; i < root->req(); i++ ) {
   714     MachReturnNode *exit = root->in(i)->as_MachReturn();
   715     switch( exit->ideal_Opcode() ) {
   716       case Op_Return   : exit->_in_rms = ret_rms;  break;
   717       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   718       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   719       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   720       case Op_Halt     : exit->_in_rms = halt_rms; break;
   721       default          : ShouldNotReachHere();
   722     }
   723   }
   725   // Next unused projection number from Start.
   726   int proj_cnt = C->tf()->domain()->cnt();
   728   // Do all the save-on-entry registers.  Make projections from Start for
   729   // them, and give them a use at the exit points.  To the allocator, they
   730   // look like incoming register arguments.
   731   for( i = 0; i < _last_Mach_Reg; i++ ) {
   732     if( is_save_on_entry(i) ) {
   734       // Add the save-on-entry to the mask array
   735       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   736       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   737       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   738       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   739       // Halts need the SOE registers, but only in the stack as debug info.
   740       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   741       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   743       Node *mproj;
   745       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   746       // into a single RegD.
   747       if( (i&1) == 0 &&
   748           _register_save_type[i  ] == Op_RegF &&
   749           _register_save_type[i+1] == Op_RegF &&
   750           is_save_on_entry(i+1) ) {
   751         // Add other bit for double
   752         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   753         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   754         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   755         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   756         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   757         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   758         proj_cnt += 2;          // Skip 2 for doubles
   759       }
   760       else if( (i&1) == 1 &&    // Else check for high half of double
   761                _register_save_type[i-1] == Op_RegF &&
   762                _register_save_type[i  ] == Op_RegF &&
   763                is_save_on_entry(i-1) ) {
   764         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   765         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   766         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   767         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   768         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   769         mproj = C->top();
   770       }
   771       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   772       // into a single RegL.
   773       else if( (i&1) == 0 &&
   774           _register_save_type[i  ] == Op_RegI &&
   775           _register_save_type[i+1] == Op_RegI &&
   776         is_save_on_entry(i+1) ) {
   777         // Add other bit for long
   778         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   779         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   780         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   781         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   782         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   783         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   784         proj_cnt += 2;          // Skip 2 for longs
   785       }
   786       else if( (i&1) == 1 &&    // Else check for high half of long
   787                _register_save_type[i-1] == Op_RegI &&
   788                _register_save_type[i  ] == Op_RegI &&
   789                is_save_on_entry(i-1) ) {
   790         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   791         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   792         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   793         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   794         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   795         mproj = C->top();
   796       } else {
   797         // Make a projection for it off the Start
   798         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   799       }
   801       ret_edge_cnt ++;
   802       reth_edge_cnt ++;
   803       tail_call_edge_cnt ++;
   804       tail_jump_edge_cnt ++;
   805       halt_edge_cnt ++;
   807       // Add a use of the SOE register to all exit paths
   808       for( uint j=1; j < root->req(); j++ )
   809         root->in(j)->add_req(mproj);
   810     } // End of if a save-on-entry register
   811   } // End of for all machine registers
   812 }
   814 //------------------------------init_spill_mask--------------------------------
   815 void Matcher::init_spill_mask( Node *ret ) {
   816   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   818   OptoReg::c_frame_pointer = c_frame_pointer();
   819   c_frame_ptr_mask = c_frame_pointer();
   820 #ifdef _LP64
   821   // pointers are twice as big
   822   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   823 #endif
   825   // Start at OptoReg::stack0()
   826   STACK_ONLY_mask.Clear();
   827   OptoReg::Name init = OptoReg::stack2reg(0);
   828   // STACK_ONLY_mask is all stack bits
   829   OptoReg::Name i;
   830   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   831     STACK_ONLY_mask.Insert(i);
   832   // Also set the "infinite stack" bit.
   833   STACK_ONLY_mask.set_AllStack();
   835   // Copy the register names over into the shared world
   836   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   837     // SharedInfo::regName[i] = regName[i];
   838     // Handy RegMasks per machine register
   839     mreg2regmask[i].Insert(i);
   840   }
   842   // Grab the Frame Pointer
   843   Node *fp  = ret->in(TypeFunc::FramePtr);
   844   Node *mem = ret->in(TypeFunc::Memory);
   845   const TypePtr* atp = TypePtr::BOTTOM;
   846   // Share frame pointer while making spill ops
   847   set_shared(fp);
   849   // Compute generic short-offset Loads
   850 #ifdef _LP64
   851   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
   852 #endif
   853   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
   854   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest,false));
   855   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
   856   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
   857   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
   858   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   859          spillD != NULL && spillP != NULL, "");
   860   // Get the ADLC notion of the right regmask, for each basic type.
   861 #ifdef _LP64
   862   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   863 #endif
   864   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   865   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   866   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   867   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   868   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   870   // Vector regmasks.
   871   if (Matcher::vector_size_supported(T_BYTE,4)) {
   872     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
   873     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
   874     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
   875   }
   876   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   877     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
   878     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
   879   }
   880   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   881     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
   882     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
   883   }
   884   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   885     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
   886     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
   887   }
   888 }
   890 #ifdef ASSERT
   891 static void match_alias_type(Compile* C, Node* n, Node* m) {
   892   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   893   const TypePtr* nat = n->adr_type();
   894   const TypePtr* mat = m->adr_type();
   895   int nidx = C->get_alias_index(nat);
   896   int midx = C->get_alias_index(mat);
   897   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   898   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   899     for (uint i = 1; i < n->req(); i++) {
   900       Node* n1 = n->in(i);
   901       const TypePtr* n1at = n1->adr_type();
   902       if (n1at != NULL) {
   903         nat = n1at;
   904         nidx = C->get_alias_index(n1at);
   905       }
   906     }
   907   }
   908   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   909   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   910     switch (n->Opcode()) {
   911     case Op_PrefetchRead:
   912     case Op_PrefetchWrite:
   913     case Op_PrefetchAllocation:
   914       nidx = Compile::AliasIdxRaw;
   915       nat = TypeRawPtr::BOTTOM;
   916       break;
   917     }
   918   }
   919   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   920     switch (n->Opcode()) {
   921     case Op_ClearArray:
   922       midx = Compile::AliasIdxRaw;
   923       mat = TypeRawPtr::BOTTOM;
   924       break;
   925     }
   926   }
   927   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   928     switch (n->Opcode()) {
   929     case Op_Return:
   930     case Op_Rethrow:
   931     case Op_Halt:
   932     case Op_TailCall:
   933     case Op_TailJump:
   934       nidx = Compile::AliasIdxBot;
   935       nat = TypePtr::BOTTOM;
   936       break;
   937     }
   938   }
   939   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   940     switch (n->Opcode()) {
   941     case Op_StrComp:
   942     case Op_StrEquals:
   943     case Op_StrIndexOf:
   944     case Op_AryEq:
   945     case Op_MemBarVolatile:
   946     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   947     case Op_EncodeISOArray:
   948       nidx = Compile::AliasIdxTop;
   949       nat = NULL;
   950       break;
   951     }
   952   }
   953   if (nidx != midx) {
   954     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   955       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   956       n->dump();
   957       m->dump();
   958     }
   959     assert(C->subsume_loads() && C->must_alias(nat, midx),
   960            "must not lose alias info when matching");
   961   }
   962 }
   963 #endif
   966 //------------------------------MStack-----------------------------------------
   967 // State and MStack class used in xform() and find_shared() iterative methods.
   968 enum Node_State { Pre_Visit,  // node has to be pre-visited
   969                       Visit,  // visit node
   970                  Post_Visit,  // post-visit node
   971              Alt_Post_Visit   // alternative post-visit path
   972                 };
   974 class MStack: public Node_Stack {
   975   public:
   976     MStack(int size) : Node_Stack(size) { }
   978     void push(Node *n, Node_State ns) {
   979       Node_Stack::push(n, (uint)ns);
   980     }
   981     void push(Node *n, Node_State ns, Node *parent, int indx) {
   982       ++_inode_top;
   983       if ((_inode_top + 1) >= _inode_max) grow();
   984       _inode_top->node = parent;
   985       _inode_top->indx = (uint)indx;
   986       ++_inode_top;
   987       _inode_top->node = n;
   988       _inode_top->indx = (uint)ns;
   989     }
   990     Node *parent() {
   991       pop();
   992       return node();
   993     }
   994     Node_State state() const {
   995       return (Node_State)index();
   996     }
   997     void set_state(Node_State ns) {
   998       set_index((uint)ns);
   999     }
  1000 };
  1003 //------------------------------xform------------------------------------------
  1004 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
  1005 // Node in new-space.  Given a new-space Node, recursively walk his children.
  1006 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
  1007 Node *Matcher::xform( Node *n, int max_stack ) {
  1008   // Use one stack to keep both: child's node/state and parent's node/index
  1009   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
  1010   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
  1012   while (mstack.is_nonempty()) {
  1013     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
  1014     if (C->failing()) return NULL;
  1015     n = mstack.node();          // Leave node on stack
  1016     Node_State nstate = mstack.state();
  1017     if (nstate == Visit) {
  1018       mstack.set_state(Post_Visit);
  1019       Node *oldn = n;
  1020       // Old-space or new-space check
  1021       if (!C->node_arena()->contains(n)) {
  1022         // Old space!
  1023         Node* m;
  1024         if (has_new_node(n)) {  // Not yet Label/Reduced
  1025           m = new_node(n);
  1026         } else {
  1027           if (!is_dontcare(n)) { // Matcher can match this guy
  1028             // Calls match special.  They match alone with no children.
  1029             // Their children, the incoming arguments, match normally.
  1030             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
  1031             if (C->failing())  return NULL;
  1032             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
  1033           } else {                  // Nothing the matcher cares about
  1034             if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) {       // Projections?
  1035               // Convert to machine-dependent projection
  1036               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
  1037 #ifdef ASSERT
  1038               _new2old_map.map(m->_idx, n);
  1039 #endif
  1040               if (m->in(0) != NULL) // m might be top
  1041                 collect_null_checks(m, n);
  1042             } else {                // Else just a regular 'ol guy
  1043               m = n->clone();       // So just clone into new-space
  1044 #ifdef ASSERT
  1045               _new2old_map.map(m->_idx, n);
  1046 #endif
  1047               // Def-Use edges will be added incrementally as Uses
  1048               // of this node are matched.
  1049               assert(m->outcnt() == 0, "no Uses of this clone yet");
  1053           set_new_node(n, m);       // Map old to new
  1054           if (_old_node_note_array != NULL) {
  1055             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
  1056                                                   n->_idx);
  1057             C->set_node_notes_at(m->_idx, nn);
  1059           debug_only(match_alias_type(C, n, m));
  1061         n = m;    // n is now a new-space node
  1062         mstack.set_node(n);
  1065       // New space!
  1066       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
  1068       int i;
  1069       // Put precedence edges on stack first (match them last).
  1070       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
  1071         Node *m = oldn->in(i);
  1072         if (m == NULL) break;
  1073         // set -1 to call add_prec() instead of set_req() during Step1
  1074         mstack.push(m, Visit, n, -1);
  1077       // For constant debug info, I'd rather have unmatched constants.
  1078       int cnt = n->req();
  1079       JVMState* jvms = n->jvms();
  1080       int debug_cnt = jvms ? jvms->debug_start() : cnt;
  1082       // Now do only debug info.  Clone constants rather than matching.
  1083       // Constants are represented directly in the debug info without
  1084       // the need for executable machine instructions.
  1085       // Monitor boxes are also represented directly.
  1086       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
  1087         Node *m = n->in(i);          // Get input
  1088         int op = m->Opcode();
  1089         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
  1090         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
  1091             op == Op_ConF || op == Op_ConD || op == Op_ConL
  1092             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1093             ) {
  1094           m = m->clone();
  1095 #ifdef ASSERT
  1096           _new2old_map.map(m->_idx, n);
  1097 #endif
  1098           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1099           mstack.push(m->in(0), Visit, m, 0);
  1100         } else {
  1101           mstack.push(m, Visit, n, i);
  1105       // And now walk his children, and convert his inputs to new-space.
  1106       for( ; i >= 0; --i ) { // For all normal inputs do
  1107         Node *m = n->in(i);  // Get input
  1108         if(m != NULL)
  1109           mstack.push(m, Visit, n, i);
  1113     else if (nstate == Post_Visit) {
  1114       // Set xformed input
  1115       Node *p = mstack.parent();
  1116       if (p != NULL) { // root doesn't have parent
  1117         int i = (int)mstack.index();
  1118         if (i >= 0)
  1119           p->set_req(i, n); // required input
  1120         else if (i == -1)
  1121           p->add_prec(n);   // precedence input
  1122         else
  1123           ShouldNotReachHere();
  1125       mstack.pop(); // remove processed node from stack
  1127     else {
  1128       ShouldNotReachHere();
  1130   } // while (mstack.is_nonempty())
  1131   return n; // Return new-space Node
  1134 //------------------------------warp_outgoing_stk_arg------------------------
  1135 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1136   // Convert outgoing argument location to a pre-biased stack offset
  1137   if (reg->is_stack()) {
  1138     OptoReg::Name warped = reg->reg2stack();
  1139     // Adjust the stack slot offset to be the register number used
  1140     // by the allocator.
  1141     warped = OptoReg::add(begin_out_arg_area, warped);
  1142     // Keep track of the largest numbered stack slot used for an arg.
  1143     // Largest used slot per call-site indicates the amount of stack
  1144     // that is killed by the call.
  1145     if( warped >= out_arg_limit_per_call )
  1146       out_arg_limit_per_call = OptoReg::add(warped,1);
  1147     if (!RegMask::can_represent_arg(warped)) {
  1148       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1149       return OptoReg::Bad;
  1151     return warped;
  1153   return OptoReg::as_OptoReg(reg);
  1157 //------------------------------match_sfpt-------------------------------------
  1158 // Helper function to match call instructions.  Calls match special.
  1159 // They match alone with no children.  Their children, the incoming
  1160 // arguments, match normally.
  1161 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1162   MachSafePointNode *msfpt = NULL;
  1163   MachCallNode      *mcall = NULL;
  1164   uint               cnt;
  1165   // Split out case for SafePoint vs Call
  1166   CallNode *call;
  1167   const TypeTuple *domain;
  1168   ciMethod*        method = NULL;
  1169   bool             is_method_handle_invoke = false;  // for special kill effects
  1170   if( sfpt->is_Call() ) {
  1171     call = sfpt->as_Call();
  1172     domain = call->tf()->domain();
  1173     cnt = domain->cnt();
  1175     // Match just the call, nothing else
  1176     MachNode *m = match_tree(call);
  1177     if (C->failing())  return NULL;
  1178     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1180     // Copy data from the Ideal SafePoint to the machine version
  1181     mcall = m->as_MachCall();
  1183     mcall->set_tf(         call->tf());
  1184     mcall->set_entry_point(call->entry_point());
  1185     mcall->set_cnt(        call->cnt());
  1187     if( mcall->is_MachCallJava() ) {
  1188       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1189       const CallJavaNode *call_java =  call->as_CallJava();
  1190       method = call_java->method();
  1191       mcall_java->_method = method;
  1192       mcall_java->_bci = call_java->_bci;
  1193       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1194       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1195       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1196       if (is_method_handle_invoke) {
  1197         C->set_has_method_handle_invokes(true);
  1199       if( mcall_java->is_MachCallStaticJava() )
  1200         mcall_java->as_MachCallStaticJava()->_name =
  1201          call_java->as_CallStaticJava()->_name;
  1202       if( mcall_java->is_MachCallDynamicJava() )
  1203         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1204          call_java->as_CallDynamicJava()->_vtable_index;
  1206     else if( mcall->is_MachCallRuntime() ) {
  1207       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1209     msfpt = mcall;
  1211   // This is a non-call safepoint
  1212   else {
  1213     call = NULL;
  1214     domain = NULL;
  1215     MachNode *mn = match_tree(sfpt);
  1216     if (C->failing())  return NULL;
  1217     msfpt = mn->as_MachSafePoint();
  1218     cnt = TypeFunc::Parms;
  1221   // Advertise the correct memory effects (for anti-dependence computation).
  1222   msfpt->set_adr_type(sfpt->adr_type());
  1224   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1225   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1226   // Empty them all.
  1227   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1229   // Do all the pre-defined non-Empty register masks
  1230   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1231   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1233   // Place first outgoing argument can possibly be put.
  1234   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1235   assert( is_even(begin_out_arg_area), "" );
  1236   // Compute max outgoing register number per call site.
  1237   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1238   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1239   // These are usually backing store for register arguments for varargs.
  1240   if( call != NULL && call->is_CallRuntime() )
  1241     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1244   // Do the normal argument list (parameters) register masks
  1245   int argcnt = cnt - TypeFunc::Parms;
  1246   if( argcnt > 0 ) {          // Skip it all if we have no args
  1247     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1248     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1249     int i;
  1250     for( i = 0; i < argcnt; i++ ) {
  1251       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1253     // V-call to pick proper calling convention
  1254     call->calling_convention( sig_bt, parm_regs, argcnt );
  1256 #ifdef ASSERT
  1257     // Sanity check users' calling convention.  Really handy during
  1258     // the initial porting effort.  Fairly expensive otherwise.
  1259     { for (int i = 0; i<argcnt; i++) {
  1260       if( !parm_regs[i].first()->is_valid() &&
  1261           !parm_regs[i].second()->is_valid() ) continue;
  1262       VMReg reg1 = parm_regs[i].first();
  1263       VMReg reg2 = parm_regs[i].second();
  1264       for (int j = 0; j < i; j++) {
  1265         if( !parm_regs[j].first()->is_valid() &&
  1266             !parm_regs[j].second()->is_valid() ) continue;
  1267         VMReg reg3 = parm_regs[j].first();
  1268         VMReg reg4 = parm_regs[j].second();
  1269         if( !reg1->is_valid() ) {
  1270           assert( !reg2->is_valid(), "valid halvsies" );
  1271         } else if( !reg3->is_valid() ) {
  1272           assert( !reg4->is_valid(), "valid halvsies" );
  1273         } else {
  1274           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1275           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1276           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1277           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1278           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1279           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1284 #endif
  1286     // Visit each argument.  Compute its outgoing register mask.
  1287     // Return results now can have 2 bits returned.
  1288     // Compute max over all outgoing arguments both per call-site
  1289     // and over the entire method.
  1290     for( i = 0; i < argcnt; i++ ) {
  1291       // Address of incoming argument mask to fill in
  1292       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1293       if( !parm_regs[i].first()->is_valid() &&
  1294           !parm_regs[i].second()->is_valid() ) {
  1295         continue;               // Avoid Halves
  1297       // Grab first register, adjust stack slots and insert in mask.
  1298       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1299       if (OptoReg::is_valid(reg1))
  1300         rm->Insert( reg1 );
  1301       // Grab second register (if any), adjust stack slots and insert in mask.
  1302       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1303       if (OptoReg::is_valid(reg2))
  1304         rm->Insert( reg2 );
  1305     } // End of for all arguments
  1307     // Compute number of stack slots needed to restore stack in case of
  1308     // Pascal-style argument popping.
  1309     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1312   // Compute the max stack slot killed by any call.  These will not be
  1313   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1314   // after all call sites have been visited.
  1315   if( _out_arg_limit < out_arg_limit_per_call)
  1316     _out_arg_limit = out_arg_limit_per_call;
  1318   if (mcall) {
  1319     // Kill the outgoing argument area, including any non-argument holes and
  1320     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1321     // Since the max-per-method covers the max-per-call-site and debug info
  1322     // is excluded on the max-per-method basis, debug info cannot land in
  1323     // this killed area.
  1324     uint r_cnt = mcall->tf()->range()->cnt();
  1325     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1326     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
  1327       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1328     } else {
  1329       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1330         proj->_rout.Insert(OptoReg::Name(i));
  1332     if (proj->_rout.is_NotEmpty()) {
  1333       push_projection(proj);
  1336   // Transfer the safepoint information from the call to the mcall
  1337   // Move the JVMState list
  1338   msfpt->set_jvms(sfpt->jvms());
  1339   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1340     jvms->set_map(sfpt);
  1343   // Debug inputs begin just after the last incoming parameter
  1344   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
  1345          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
  1347   // Move the OopMap
  1348   msfpt->_oop_map = sfpt->_oop_map;
  1350   // Add additional edges.
  1351   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
  1352     // For these calls we can not add MachConstantBase in expand(), as the
  1353     // ins are not complete then.
  1354     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
  1355     if (msfpt->jvms() &&
  1356         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
  1357       // We added an edge before jvms, so we must adapt the position of the ins.
  1358       msfpt->jvms()->adapt_position(+1);
  1362   // Registers killed by the call are set in the local scheduling pass
  1363   // of Global Code Motion.
  1364   return msfpt;
  1367 //---------------------------match_tree----------------------------------------
  1368 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1369 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1370 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1371 // a Load's result RegMask for memoization in idealreg2regmask[]
  1372 MachNode *Matcher::match_tree( const Node *n ) {
  1373   assert( n->Opcode() != Op_Phi, "cannot match" );
  1374   assert( !n->is_block_start(), "cannot match" );
  1375   // Set the mark for all locally allocated State objects.
  1376   // When this call returns, the _states_arena arena will be reset
  1377   // freeing all State objects.
  1378   ResourceMark rm( &_states_arena );
  1380   LabelRootDepth = 0;
  1382   // StoreNodes require their Memory input to match any LoadNodes
  1383   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1384 #ifdef ASSERT
  1385   Node* save_mem_node = _mem_node;
  1386   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1387 #endif
  1388   // State object for root node of match tree
  1389   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1390   State *s = new (&_states_arena) State;
  1391   s->_kids[0] = NULL;
  1392   s->_kids[1] = NULL;
  1393   s->_leaf = (Node*)n;
  1394   // Label the input tree, allocating labels from top-level arena
  1395   Label_Root( n, s, n->in(0), mem );
  1396   if (C->failing())  return NULL;
  1398   // The minimum cost match for the whole tree is found at the root State
  1399   uint mincost = max_juint;
  1400   uint cost = max_juint;
  1401   uint i;
  1402   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1403     if( s->valid(i) &&                // valid entry and
  1404         s->_cost[i] < cost &&         // low cost and
  1405         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1406       cost = s->_cost[mincost=i];
  1408   if (mincost == max_juint) {
  1409 #ifndef PRODUCT
  1410     tty->print("No matching rule for:");
  1411     s->dump();
  1412 #endif
  1413     Matcher::soft_match_failure();
  1414     return NULL;
  1416   // Reduce input tree based upon the state labels to machine Nodes
  1417   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1418 #ifdef ASSERT
  1419   _old2new_map.map(n->_idx, m);
  1420   _new2old_map.map(m->_idx, (Node*)n);
  1421 #endif
  1423   // Add any Matcher-ignored edges
  1424   uint cnt = n->req();
  1425   uint start = 1;
  1426   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1427   if( n->is_AddP() ) {
  1428     assert( mem == (Node*)1, "" );
  1429     start = AddPNode::Base+1;
  1431   for( i = start; i < cnt; i++ ) {
  1432     if( !n->match_edge(i) ) {
  1433       if( i < m->req() )
  1434         m->ins_req( i, n->in(i) );
  1435       else
  1436         m->add_req( n->in(i) );
  1440   debug_only( _mem_node = save_mem_node; )
  1441   return m;
  1445 //------------------------------match_into_reg---------------------------------
  1446 // Choose to either match this Node in a register or part of the current
  1447 // match tree.  Return true for requiring a register and false for matching
  1448 // as part of the current match tree.
  1449 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1451   const Type *t = m->bottom_type();
  1453   if (t->singleton()) {
  1454     // Never force constants into registers.  Allow them to match as
  1455     // constants or registers.  Copies of the same value will share
  1456     // the same register.  See find_shared_node.
  1457     return false;
  1458   } else {                      // Not a constant
  1459     // Stop recursion if they have different Controls.
  1460     Node* m_control = m->in(0);
  1461     // Control of load's memory can post-dominates load's control.
  1462     // So use it since load can't float above its memory.
  1463     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
  1464     if (control && m_control && control != m_control && control != mem_control) {
  1466       // Actually, we can live with the most conservative control we
  1467       // find, if it post-dominates the others.  This allows us to
  1468       // pick up load/op/store trees where the load can float a little
  1469       // above the store.
  1470       Node *x = control;
  1471       const uint max_scan = 6;  // Arbitrary scan cutoff
  1472       uint j;
  1473       for (j=0; j<max_scan; j++) {
  1474         if (x->is_Region())     // Bail out at merge points
  1475           return true;
  1476         x = x->in(0);
  1477         if (x == m_control)     // Does 'control' post-dominate
  1478           break;                // m->in(0)?  If so, we can use it
  1479         if (x == mem_control)   // Does 'control' post-dominate
  1480           break;                // mem_control?  If so, we can use it
  1482       if (j == max_scan)        // No post-domination before scan end?
  1483         return true;            // Then break the match tree up
  1485     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
  1486         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
  1487       // These are commonly used in address expressions and can
  1488       // efficiently fold into them on X64 in some cases.
  1489       return false;
  1493   // Not forceable cloning.  If shared, put it into a register.
  1494   return shared;
  1498 //------------------------------Instruction Selection--------------------------
  1499 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1500 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1501 // things the Matcher does not match (e.g., Memory), and things with different
  1502 // Controls (hence forced into different blocks).  We pass in the Control
  1503 // selected for this entire State tree.
  1505 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1506 // Store and the Load must have identical Memories (as well as identical
  1507 // pointers).  Since the Matcher does not have anything for Memory (and
  1508 // does not handle DAGs), I have to match the Memory input myself.  If the
  1509 // Tree root is a Store, I require all Loads to have the identical memory.
  1510 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1511   // Since Label_Root is a recursive function, its possible that we might run
  1512   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1513   LabelRootDepth++;
  1514   if (LabelRootDepth > MaxLabelRootDepth) {
  1515     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1516     return NULL;
  1518   uint care = 0;                // Edges matcher cares about
  1519   uint cnt = n->req();
  1520   uint i = 0;
  1522   // Examine children for memory state
  1523   // Can only subsume a child into your match-tree if that child's memory state
  1524   // is not modified along the path to another input.
  1525   // It is unsafe even if the other inputs are separate roots.
  1526   Node *input_mem = NULL;
  1527   for( i = 1; i < cnt; i++ ) {
  1528     if( !n->match_edge(i) ) continue;
  1529     Node *m = n->in(i);         // Get ith input
  1530     assert( m, "expect non-null children" );
  1531     if( m->is_Load() ) {
  1532       if( input_mem == NULL ) {
  1533         input_mem = m->in(MemNode::Memory);
  1534       } else if( input_mem != m->in(MemNode::Memory) ) {
  1535         input_mem = NodeSentinel;
  1540   for( i = 1; i < cnt; i++ ){// For my children
  1541     if( !n->match_edge(i) ) continue;
  1542     Node *m = n->in(i);         // Get ith input
  1543     // Allocate states out of a private arena
  1544     State *s = new (&_states_arena) State;
  1545     svec->_kids[care++] = s;
  1546     assert( care <= 2, "binary only for now" );
  1548     // Recursively label the State tree.
  1549     s->_kids[0] = NULL;
  1550     s->_kids[1] = NULL;
  1551     s->_leaf = m;
  1553     // Check for leaves of the State Tree; things that cannot be a part of
  1554     // the current tree.  If it finds any, that value is matched as a
  1555     // register operand.  If not, then the normal matching is used.
  1556     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1557         //
  1558         // Stop recursion if this is LoadNode and the root of this tree is a
  1559         // StoreNode and the load & store have different memories.
  1560         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1561         // Can NOT include the match of a subtree when its memory state
  1562         // is used by any of the other subtrees
  1563         (input_mem == NodeSentinel) ) {
  1564 #ifndef PRODUCT
  1565       // Print when we exclude matching due to different memory states at input-loads
  1566       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1567         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1568         tty->print_cr("invalid input_mem");
  1570 #endif
  1571       // Switch to a register-only opcode; this value must be in a register
  1572       // and cannot be subsumed as part of a larger instruction.
  1573       s->DFA( m->ideal_reg(), m );
  1575     } else {
  1576       // If match tree has no control and we do, adopt it for entire tree
  1577       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1578         control = m->in(0);         // Pick up control
  1579       // Else match as a normal part of the match tree.
  1580       control = Label_Root(m,s,control,mem);
  1581       if (C->failing()) return NULL;
  1586   // Call DFA to match this node, and return
  1587   svec->DFA( n->Opcode(), n );
  1589 #ifdef ASSERT
  1590   uint x;
  1591   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1592     if( svec->valid(x) )
  1593       break;
  1595   if (x >= _LAST_MACH_OPER) {
  1596     n->dump();
  1597     svec->dump();
  1598     assert( false, "bad AD file" );
  1600 #endif
  1601   return control;
  1605 // Con nodes reduced using the same rule can share their MachNode
  1606 // which reduces the number of copies of a constant in the final
  1607 // program.  The register allocator is free to split uses later to
  1608 // split live ranges.
  1609 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1610   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
  1612   // See if this Con has already been reduced using this rule.
  1613   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1614   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1615   if (last != NULL && rule == last->rule()) {
  1616     // Don't expect control change for DecodeN
  1617     if (leaf->is_DecodeNarrowPtr())
  1618       return last;
  1619     // Get the new space root.
  1620     Node* xroot = new_node(C->root());
  1621     if (xroot == NULL) {
  1622       // This shouldn't happen give the order of matching.
  1623       return NULL;
  1626     // Shared constants need to have their control be root so they
  1627     // can be scheduled properly.
  1628     Node* control = last->in(0);
  1629     if (control != xroot) {
  1630       if (control == NULL || control == C->root()) {
  1631         last->set_req(0, xroot);
  1632       } else {
  1633         assert(false, "unexpected control");
  1634         return NULL;
  1637     return last;
  1639   return NULL;
  1643 //------------------------------ReduceInst-------------------------------------
  1644 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1645 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1646 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1647 // Each MachNode has a number of complicated MachOper operands; each
  1648 // MachOper also covers a further tree of Ideal Nodes.
  1650 // The root of the Ideal match tree is always an instruction, so we enter
  1651 // the recursion here.  After building the MachNode, we need to recurse
  1652 // the tree checking for these cases:
  1653 // (1) Child is an instruction -
  1654 //     Build the instruction (recursively), add it as an edge.
  1655 //     Build a simple operand (register) to hold the result of the instruction.
  1656 // (2) Child is an interior part of an instruction -
  1657 //     Skip over it (do nothing)
  1658 // (3) Child is the start of a operand -
  1659 //     Build the operand, place it inside the instruction
  1660 //     Call ReduceOper.
  1661 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1662   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1664   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1665   if (shared_node != NULL) {
  1666     return shared_node;
  1669   // Build the object to represent this state & prepare for recursive calls
  1670   MachNode *mach = s->MachNodeGenerator( rule, C );
  1671   guarantee(mach != NULL, "Missing MachNode");
  1672   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1673   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1674   Node *leaf = s->_leaf;
  1675   // Check for instruction or instruction chain rule
  1676   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1677     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1678            "duplicating node that's already been matched");
  1679     // Instruction
  1680     mach->add_req( leaf->in(0) ); // Set initial control
  1681     // Reduce interior of complex instruction
  1682     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1683   } else {
  1684     // Instruction chain rules are data-dependent on their inputs
  1685     mach->add_req(0);             // Set initial control to none
  1686     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1689   // If a Memory was used, insert a Memory edge
  1690   if( mem != (Node*)1 ) {
  1691     mach->ins_req(MemNode::Memory,mem);
  1692 #ifdef ASSERT
  1693     // Verify adr type after matching memory operation
  1694     const MachOper* oper = mach->memory_operand();
  1695     if (oper != NULL && oper != (MachOper*)-1) {
  1696       // It has a unique memory operand.  Find corresponding ideal mem node.
  1697       Node* m = NULL;
  1698       if (leaf->is_Mem()) {
  1699         m = leaf;
  1700       } else {
  1701         m = _mem_node;
  1702         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1704       const Type* mach_at = mach->adr_type();
  1705       // DecodeN node consumed by an address may have different type
  1706       // then its input. Don't compare types for such case.
  1707       if (m->adr_type() != mach_at &&
  1708           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
  1709            m->in(MemNode::Address)->is_AddP() &&
  1710            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
  1711            m->in(MemNode::Address)->is_AddP() &&
  1712            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1713            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
  1714         mach_at = m->adr_type();
  1716       if (m->adr_type() != mach_at) {
  1717         m->dump();
  1718         tty->print_cr("mach:");
  1719         mach->dump(1);
  1721       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1723 #endif
  1726   // If the _leaf is an AddP, insert the base edge
  1727   if (leaf->is_AddP()) {
  1728     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1731   uint number_of_projections_prior = number_of_projections();
  1733   // Perform any 1-to-many expansions required
  1734   MachNode *ex = mach->Expand(s, _projection_list, mem);
  1735   if (ex != mach) {
  1736     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1737     if( ex->in(1)->is_Con() )
  1738       ex->in(1)->set_req(0, C->root());
  1739     // Remove old node from the graph
  1740     for( uint i=0; i<mach->req(); i++ ) {
  1741       mach->set_req(i,NULL);
  1743 #ifdef ASSERT
  1744     _new2old_map.map(ex->_idx, s->_leaf);
  1745 #endif
  1748   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1749   // via the matcher.  By the time, nodes have been wired into the CFG,
  1750   // and any further nodes generated by expand rules will be left hanging
  1751   // in space, and will not get emitted as output code.  Catch this.
  1752   // Also, catch any new register allocation constraints ("projections")
  1753   // generated belatedly during spill code generation.
  1754   if (_allocation_started) {
  1755     guarantee(ex == mach, "no expand rules during spill generation");
  1756     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
  1759   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
  1760     // Record the con for sharing
  1761     _shared_nodes.map(leaf->_idx, ex);
  1764   return ex;
  1767 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1768   // 'op' is what I am expecting to receive
  1769   int op = _leftOp[rule];
  1770   // Operand type to catch childs result
  1771   // This is what my child will give me.
  1772   int opnd_class_instance = s->_rule[op];
  1773   // Choose between operand class or not.
  1774   // This is what I will receive.
  1775   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1776   // New rule for child.  Chase operand classes to get the actual rule.
  1777   int newrule = s->_rule[catch_op];
  1779   if( newrule < NUM_OPERANDS ) {
  1780     // Chain from operand or operand class, may be output of shared node
  1781     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1782             "Bad AD file: Instruction chain rule must chain from operand");
  1783     // Insert operand into array of operands for this instruction
  1784     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1786     ReduceOper( s, newrule, mem, mach );
  1787   } else {
  1788     // Chain from the result of an instruction
  1789     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1790     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1791     Node *mem1 = (Node*)1;
  1792     debug_only(Node *save_mem_node = _mem_node;)
  1793     mach->add_req( ReduceInst(s, newrule, mem1) );
  1794     debug_only(_mem_node = save_mem_node;)
  1796   return;
  1800 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1801   if( s->_leaf->is_Load() ) {
  1802     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1803     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1804     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1805     mem = mem2;
  1807   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1808     if( mach->in(0) == NULL )
  1809       mach->set_req(0, s->_leaf->in(0));
  1812   // Now recursively walk the state tree & add operand list.
  1813   for( uint i=0; i<2; i++ ) {   // binary tree
  1814     State *newstate = s->_kids[i];
  1815     if( newstate == NULL ) break;      // Might only have 1 child
  1816     // 'op' is what I am expecting to receive
  1817     int op;
  1818     if( i == 0 ) {
  1819       op = _leftOp[rule];
  1820     } else {
  1821       op = _rightOp[rule];
  1823     // Operand type to catch childs result
  1824     // This is what my child will give me.
  1825     int opnd_class_instance = newstate->_rule[op];
  1826     // Choose between operand class or not.
  1827     // This is what I will receive.
  1828     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1829     // New rule for child.  Chase operand classes to get the actual rule.
  1830     int newrule = newstate->_rule[catch_op];
  1832     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1833       // Operand/operandClass
  1834       // Insert operand into array of operands for this instruction
  1835       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1836       ReduceOper( newstate, newrule, mem, mach );
  1838     } else {                    // Child is internal operand or new instruction
  1839       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1840         // internal operand --> call ReduceInst_Interior
  1841         // Interior of complex instruction.  Do nothing but recurse.
  1842         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1843       } else {
  1844         // instruction --> call build operand(  ) to catch result
  1845         //             --> ReduceInst( newrule )
  1846         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1847         Node *mem1 = (Node*)1;
  1848         debug_only(Node *save_mem_node = _mem_node;)
  1849         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1850         debug_only(_mem_node = save_mem_node;)
  1853     assert( mach->_opnds[num_opnds-1], "" );
  1855   return num_opnds;
  1858 // This routine walks the interior of possible complex operands.
  1859 // At each point we check our children in the match tree:
  1860 // (1) No children -
  1861 //     We are a leaf; add _leaf field as an input to the MachNode
  1862 // (2) Child is an internal operand -
  1863 //     Skip over it ( do nothing )
  1864 // (3) Child is an instruction -
  1865 //     Call ReduceInst recursively and
  1866 //     and instruction as an input to the MachNode
  1867 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1868   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1869   State *kid = s->_kids[0];
  1870   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1872   // Leaf?  And not subsumed?
  1873   if( kid == NULL && !_swallowed[rule] ) {
  1874     mach->add_req( s->_leaf );  // Add leaf pointer
  1875     return;                     // Bail out
  1878   if( s->_leaf->is_Load() ) {
  1879     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1880     mem = s->_leaf->in(MemNode::Memory);
  1881     debug_only(_mem_node = s->_leaf;)
  1883   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1884     if( !mach->in(0) )
  1885       mach->set_req(0,s->_leaf->in(0));
  1886     else {
  1887       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1891   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1892     int newrule;
  1893     if( i == 0)
  1894       newrule = kid->_rule[_leftOp[rule]];
  1895     else
  1896       newrule = kid->_rule[_rightOp[rule]];
  1898     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1899       // Internal operand; recurse but do nothing else
  1900       ReduceOper( kid, newrule, mem, mach );
  1902     } else {                    // Child is a new instruction
  1903       // Reduce the instruction, and add a direct pointer from this
  1904       // machine instruction to the newly reduced one.
  1905       Node *mem1 = (Node*)1;
  1906       debug_only(Node *save_mem_node = _mem_node;)
  1907       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1908       debug_only(_mem_node = save_mem_node;)
  1914 // -------------------------------------------------------------------------
  1915 // Java-Java calling convention
  1916 // (what you use when Java calls Java)
  1918 //------------------------------find_receiver----------------------------------
  1919 // For a given signature, return the OptoReg for parameter 0.
  1920 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1921   VMRegPair regs;
  1922   BasicType sig_bt = T_OBJECT;
  1923   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1924   // Return argument 0 register.  In the LP64 build pointers
  1925   // take 2 registers, but the VM wants only the 'main' name.
  1926   return OptoReg::as_OptoReg(regs.first());
  1929 // This function identifies sub-graphs in which a 'load' node is
  1930 // input to two different nodes, and such that it can be matched
  1931 // with BMI instructions like blsi, blsr, etc.
  1932 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
  1933 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
  1934 // refers to the same node.
  1935 #ifdef X86
  1936 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
  1937 // This is a temporary solution until we make DAGs expressible in ADL.
  1938 template<typename ConType>
  1939 class FusedPatternMatcher {
  1940   Node* _op1_node;
  1941   Node* _mop_node;
  1942   int _con_op;
  1944   static int match_next(Node* n, int next_op, int next_op_idx) {
  1945     if (n->in(1) == NULL || n->in(2) == NULL) {
  1946       return -1;
  1949     if (next_op_idx == -1) { // n is commutative, try rotations
  1950       if (n->in(1)->Opcode() == next_op) {
  1951         return 1;
  1952       } else if (n->in(2)->Opcode() == next_op) {
  1953         return 2;
  1955     } else {
  1956       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
  1957       if (n->in(next_op_idx)->Opcode() == next_op) {
  1958         return next_op_idx;
  1961     return -1;
  1963 public:
  1964   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
  1965     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
  1967   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
  1968              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
  1969              typename ConType::NativeType con_value) {
  1970     if (_op1_node->Opcode() != op1) {
  1971       return false;
  1973     if (_mop_node->outcnt() > 2) {
  1974       return false;
  1976     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
  1977     if (op1_op2_idx == -1) {
  1978       return false;
  1980     // Memory operation must be the other edge
  1981     int op1_mop_idx = (op1_op2_idx & 1) + 1;
  1983     // Check that the mop node is really what we want
  1984     if (_op1_node->in(op1_mop_idx) == _mop_node) {
  1985       Node *op2_node = _op1_node->in(op1_op2_idx);
  1986       if (op2_node->outcnt() > 1) {
  1987         return false;
  1989       assert(op2_node->Opcode() == op2, "Should be");
  1990       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
  1991       if (op2_con_idx == -1) {
  1992         return false;
  1994       // Memory operation must be the other edge
  1995       int op2_mop_idx = (op2_con_idx & 1) + 1;
  1996       // Check that the memory operation is the same node
  1997       if (op2_node->in(op2_mop_idx) == _mop_node) {
  1998         // Now check the constant
  1999         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
  2000         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
  2001           return true;
  2005     return false;
  2007 };
  2010 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
  2011   if (n != NULL && m != NULL) {
  2012     if (m->Opcode() == Op_LoadI) {
  2013       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
  2014       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
  2015              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
  2016              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
  2017     } else if (m->Opcode() == Op_LoadL) {
  2018       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
  2019       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
  2020              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
  2021              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
  2024   return false;
  2026 #endif // X86
  2028 // A method-klass-holder may be passed in the inline_cache_reg
  2029 // and then expanded into the inline_cache_reg and a method_oop register
  2030 //   defined in ad_<arch>.cpp
  2033 //------------------------------find_shared------------------------------------
  2034 // Set bits if Node is shared or otherwise a root
  2035 void Matcher::find_shared( Node *n ) {
  2036   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
  2037   MStack mstack(C->live_nodes() * 2);
  2038   // Mark nodes as address_visited if they are inputs to an address expression
  2039   VectorSet address_visited(Thread::current()->resource_area());
  2040   mstack.push(n, Visit);     // Don't need to pre-visit root node
  2041   while (mstack.is_nonempty()) {
  2042     n = mstack.node();       // Leave node on stack
  2043     Node_State nstate = mstack.state();
  2044     uint nop = n->Opcode();
  2045     if (nstate == Pre_Visit) {
  2046       if (address_visited.test(n->_idx)) { // Visited in address already?
  2047         // Flag as visited and shared now.
  2048         set_visited(n);
  2050       if (is_visited(n)) {   // Visited already?
  2051         // Node is shared and has no reason to clone.  Flag it as shared.
  2052         // This causes it to match into a register for the sharing.
  2053         set_shared(n);       // Flag as shared and
  2054         if (n->is_DecodeNarrowPtr()) {
  2055           // Oop field/array element loads must be shared but since
  2056           // they are shared through a DecodeN they may appear to have
  2057           // a single use so force sharing here.
  2058           set_shared(n->in(1));
  2060         mstack.pop();        // remove node from stack
  2061         continue;
  2063       nstate = Visit; // Not already visited; so visit now
  2065     if (nstate == Visit) {
  2066       mstack.set_state(Post_Visit);
  2067       set_visited(n);   // Flag as visited now
  2068       bool mem_op = false;
  2070       switch( nop ) {  // Handle some opcodes special
  2071       case Op_Phi:             // Treat Phis as shared roots
  2072       case Op_Parm:
  2073       case Op_Proj:            // All handled specially during matching
  2074       case Op_SafePointScalarObject:
  2075         set_shared(n);
  2076         set_dontcare(n);
  2077         break;
  2078       case Op_If:
  2079       case Op_CountedLoopEnd:
  2080         mstack.set_state(Alt_Post_Visit); // Alternative way
  2081         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  2082         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  2083         // Bool and CmpX side-by-side, because it can only get at constants
  2084         // that are at the leaves of Match trees, and the Bool's condition acts
  2085         // as a constant here.
  2086         mstack.push(n->in(1), Visit);         // Clone the Bool
  2087         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  2088         continue; // while (mstack.is_nonempty())
  2089       case Op_ConvI2D:         // These forms efficiently match with a prior
  2090       case Op_ConvI2F:         //   Load but not a following Store
  2091         if( n->in(1)->is_Load() &&        // Prior load
  2092             n->outcnt() == 1 &&           // Not already shared
  2093             n->unique_out()->is_Store() ) // Following store
  2094           set_shared(n);       // Force it to be a root
  2095         break;
  2096       case Op_ReverseBytesI:
  2097       case Op_ReverseBytesL:
  2098         if( n->in(1)->is_Load() &&        // Prior load
  2099             n->outcnt() == 1 )            // Not already shared
  2100           set_shared(n);                  // Force it to be a root
  2101         break;
  2102       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  2103       case Op_IfFalse:
  2104       case Op_IfTrue:
  2105       case Op_MachProj:
  2106       case Op_MergeMem:
  2107       case Op_Catch:
  2108       case Op_CatchProj:
  2109       case Op_CProj:
  2110       case Op_JumpProj:
  2111       case Op_JProj:
  2112       case Op_NeverBranch:
  2113         set_dontcare(n);
  2114         break;
  2115       case Op_Jump:
  2116         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
  2117         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  2118         continue;                             // while (mstack.is_nonempty())
  2119       case Op_StrComp:
  2120       case Op_StrEquals:
  2121       case Op_StrIndexOf:
  2122       case Op_AryEq:
  2123       case Op_EncodeISOArray:
  2124         set_shared(n); // Force result into register (it will be anyways)
  2125         break;
  2126       case Op_ConP: {  // Convert pointers above the centerline to NUL
  2127         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2128         const TypePtr* tp = tn->type()->is_ptr();
  2129         if (tp->_ptr == TypePtr::AnyNull) {
  2130           tn->set_type(TypePtr::NULL_PTR);
  2132         break;
  2134       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  2135         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2136         const TypePtr* tp = tn->type()->make_ptr();
  2137         if (tp && tp->_ptr == TypePtr::AnyNull) {
  2138           tn->set_type(TypeNarrowOop::NULL_PTR);
  2140         break;
  2142       case Op_Binary:         // These are introduced in the Post_Visit state.
  2143         ShouldNotReachHere();
  2144         break;
  2145       case Op_ClearArray:
  2146       case Op_SafePoint:
  2147         mem_op = true;
  2148         break;
  2149       default:
  2150         if( n->is_Store() ) {
  2151           // Do match stores, despite no ideal reg
  2152           mem_op = true;
  2153           break;
  2155         if( n->is_Mem() ) { // Loads and LoadStores
  2156           mem_op = true;
  2157           // Loads must be root of match tree due to prior load conflict
  2158           if( C->subsume_loads() == false )
  2159             set_shared(n);
  2161         // Fall into default case
  2162         if( !n->ideal_reg() )
  2163           set_dontcare(n);  // Unmatchable Nodes
  2164       } // end_switch
  2166       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  2167         Node *m = n->in(i); // Get ith input
  2168         if (m == NULL) continue;  // Ignore NULLs
  2169         uint mop = m->Opcode();
  2171         // Must clone all producers of flags, or we will not match correctly.
  2172         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  2173         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  2174         // are also there, so we may match a float-branch to int-flags and
  2175         // expect the allocator to haul the flags from the int-side to the
  2176         // fp-side.  No can do.
  2177         if( _must_clone[mop] ) {
  2178           mstack.push(m, Visit);
  2179           continue; // for(int i = ...)
  2182         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
  2183 #ifdef X86
  2184         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
  2185           mstack.push(m, Visit);
  2186           continue;
  2188 #endif
  2190         // Clone addressing expressions as they are "free" in memory access instructions
  2191         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  2192           // Some inputs for address expression are not put on stack
  2193           // to avoid marking them as shared and forcing them into register
  2194           // if they are used only in address expressions.
  2195           // But they should be marked as shared if there are other uses
  2196           // besides address expressions.
  2198           Node *off = m->in(AddPNode::Offset);
  2199           if( off->is_Con() &&
  2200               // When there are other uses besides address expressions
  2201               // put it on stack and mark as shared.
  2202               !is_visited(m) ) {
  2203             address_visited.test_set(m->_idx); // Flag as address_visited
  2204             Node *adr = m->in(AddPNode::Address);
  2206             // Intel, ARM and friends can handle 2 adds in addressing mode
  2207             if( clone_shift_expressions && adr->is_AddP() &&
  2208                 // AtomicAdd is not an addressing expression.
  2209                 // Cheap to find it by looking for screwy base.
  2210                 !adr->in(AddPNode::Base)->is_top() &&
  2211                 // Are there other uses besides address expressions?
  2212                 !is_visited(adr) ) {
  2213               address_visited.set(adr->_idx); // Flag as address_visited
  2214               Node *shift = adr->in(AddPNode::Offset);
  2215               // Check for shift by small constant as well
  2216               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2217                   shift->in(2)->get_int() <= 3 &&
  2218                   // Are there other uses besides address expressions?
  2219                   !is_visited(shift) ) {
  2220                 address_visited.set(shift->_idx); // Flag as address_visited
  2221                 mstack.push(shift->in(2), Visit);
  2222                 Node *conv = shift->in(1);
  2223 #ifdef _LP64
  2224                 // Allow Matcher to match the rule which bypass
  2225                 // ConvI2L operation for an array index on LP64
  2226                 // if the index value is positive.
  2227                 if( conv->Opcode() == Op_ConvI2L &&
  2228                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2229                     // Are there other uses besides address expressions?
  2230                     !is_visited(conv) ) {
  2231                   address_visited.set(conv->_idx); // Flag as address_visited
  2232                   mstack.push(conv->in(1), Pre_Visit);
  2233                 } else
  2234 #endif
  2235                 mstack.push(conv, Pre_Visit);
  2236               } else {
  2237                 mstack.push(shift, Pre_Visit);
  2239               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2240               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2241             } else {  // Sparc, Alpha, PPC and friends
  2242               mstack.push(adr, Pre_Visit);
  2245             // Clone X+offset as it also folds into most addressing expressions
  2246             mstack.push(off, Visit);
  2247             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2248             continue; // for(int i = ...)
  2249           } // if( off->is_Con() )
  2250         }   // if( mem_op &&
  2251         mstack.push(m, Pre_Visit);
  2252       }     // for(int i = ...)
  2254     else if (nstate == Alt_Post_Visit) {
  2255       mstack.pop(); // Remove node from stack
  2256       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2257       // shared and all users of the Bool need to move the Cmp in parallel.
  2258       // This leaves both the Bool and the If pointing at the Cmp.  To
  2259       // prevent the Matcher from trying to Match the Cmp along both paths
  2260       // BoolNode::match_edge always returns a zero.
  2262       // We reorder the Op_If in a pre-order manner, so we can visit without
  2263       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2264       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2266     else if (nstate == Post_Visit) {
  2267       mstack.pop(); // Remove node from stack
  2269       // Now hack a few special opcodes
  2270       switch( n->Opcode() ) {       // Handle some opcodes special
  2271       case Op_StorePConditional:
  2272       case Op_StoreIConditional:
  2273       case Op_StoreLConditional:
  2274       case Op_CompareAndSwapI:
  2275       case Op_CompareAndSwapL:
  2276       case Op_CompareAndSwapP:
  2277       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2278         Node *newval = n->in(MemNode::ValueIn );
  2279         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
  2280         Node *pair = new (C) BinaryNode( oldval, newval );
  2281         n->set_req(MemNode::ValueIn,pair);
  2282         n->del_req(LoadStoreConditionalNode::ExpectedIn);
  2283         break;
  2285       case Op_CMoveD:              // Convert trinary to binary-tree
  2286       case Op_CMoveF:
  2287       case Op_CMoveI:
  2288       case Op_CMoveL:
  2289       case Op_CMoveN:
  2290       case Op_CMoveP: {
  2291         // Restructure into a binary tree for Matching.  It's possible that
  2292         // we could move this code up next to the graph reshaping for IfNodes
  2293         // or vice-versa, but I do not want to debug this for Ladybird.
  2294         // 10/2/2000 CNC.
  2295         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
  2296         n->set_req(1,pair1);
  2297         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
  2298         n->set_req(2,pair2);
  2299         n->del_req(3);
  2300         break;
  2302       case Op_LoopLimit: {
  2303         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
  2304         n->set_req(1,pair1);
  2305         n->set_req(2,n->in(3));
  2306         n->del_req(3);
  2307         break;
  2309       case Op_StrEquals: {
  2310         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2311         n->set_req(2,pair1);
  2312         n->set_req(3,n->in(4));
  2313         n->del_req(4);
  2314         break;
  2316       case Op_StrComp:
  2317       case Op_StrIndexOf: {
  2318         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2319         n->set_req(2,pair1);
  2320         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
  2321         n->set_req(3,pair2);
  2322         n->del_req(5);
  2323         n->del_req(4);
  2324         break;
  2326       case Op_EncodeISOArray: {
  2327         // Restructure into a binary tree for Matching.
  2328         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
  2329         n->set_req(3, pair);
  2330         n->del_req(4);
  2331         break;
  2333       default:
  2334         break;
  2337     else {
  2338       ShouldNotReachHere();
  2340   } // end of while (mstack.is_nonempty())
  2343 #ifdef ASSERT
  2344 // machine-independent root to machine-dependent root
  2345 void Matcher::dump_old2new_map() {
  2346   _old2new_map.dump();
  2348 #endif
  2350 //---------------------------collect_null_checks-------------------------------
  2351 // Find null checks in the ideal graph; write a machine-specific node for
  2352 // it.  Used by later implicit-null-check handling.  Actually collects
  2353 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2354 // value being tested.
  2355 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2356   Node *iff = proj->in(0);
  2357   if( iff->Opcode() == Op_If ) {
  2358     // During matching If's have Bool & Cmp side-by-side
  2359     BoolNode *b = iff->in(1)->as_Bool();
  2360     Node *cmp = iff->in(2);
  2361     int opc = cmp->Opcode();
  2362     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2364     const Type* ct = cmp->in(2)->bottom_type();
  2365     if (ct == TypePtr::NULL_PTR ||
  2366         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2368       bool push_it = false;
  2369       if( proj->Opcode() == Op_IfTrue ) {
  2370         extern int all_null_checks_found;
  2371         all_null_checks_found++;
  2372         if( b->_test._test == BoolTest::ne ) {
  2373           push_it = true;
  2375       } else {
  2376         assert( proj->Opcode() == Op_IfFalse, "" );
  2377         if( b->_test._test == BoolTest::eq ) {
  2378           push_it = true;
  2381       if( push_it ) {
  2382         _null_check_tests.push(proj);
  2383         Node* val = cmp->in(1);
  2384 #ifdef _LP64
  2385         if (val->bottom_type()->isa_narrowoop() &&
  2386             !Matcher::narrow_oop_use_complex_address()) {
  2387           //
  2388           // Look for DecodeN node which should be pinned to orig_proj.
  2389           // On platforms (Sparc) which can not handle 2 adds
  2390           // in addressing mode we have to keep a DecodeN node and
  2391           // use it to do implicit NULL check in address.
  2392           //
  2393           // DecodeN node was pinned to non-null path (orig_proj) during
  2394           // CastPP transformation in final_graph_reshaping_impl().
  2395           //
  2396           uint cnt = orig_proj->outcnt();
  2397           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2398             Node* d = orig_proj->raw_out(i);
  2399             if (d->is_DecodeN() && d->in(1) == val) {
  2400               val = d;
  2401               val->set_req(0, NULL); // Unpin now.
  2402               // Mark this as special case to distinguish from
  2403               // a regular case: CmpP(DecodeN, NULL).
  2404               val = (Node*)(((intptr_t)val) | 1);
  2405               break;
  2409 #endif
  2410         _null_check_tests.push(val);
  2416 //---------------------------validate_null_checks------------------------------
  2417 // Its possible that the value being NULL checked is not the root of a match
  2418 // tree.  If so, I cannot use the value in an implicit null check.
  2419 void Matcher::validate_null_checks( ) {
  2420   uint cnt = _null_check_tests.size();
  2421   for( uint i=0; i < cnt; i+=2 ) {
  2422     Node *test = _null_check_tests[i];
  2423     Node *val = _null_check_tests[i+1];
  2424     bool is_decoden = ((intptr_t)val) & 1;
  2425     val = (Node*)(((intptr_t)val) & ~1);
  2426     if (has_new_node(val)) {
  2427       Node* new_val = new_node(val);
  2428       if (is_decoden) {
  2429         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
  2430         // Note: new_val may have a control edge if
  2431         // the original ideal node DecodeN was matched before
  2432         // it was unpinned in Matcher::collect_null_checks().
  2433         // Unpin the mach node and mark it.
  2434         new_val->set_req(0, NULL);
  2435         new_val = (Node*)(((intptr_t)new_val) | 1);
  2437       // Is a match-tree root, so replace with the matched value
  2438       _null_check_tests.map(i+1, new_val);
  2439     } else {
  2440       // Yank from candidate list
  2441       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2442       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2443       _null_check_tests.pop();
  2444       _null_check_tests.pop();
  2445       i-=2;
  2450 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2451 // atomic instruction acting as a store_load barrier without any
  2452 // intervening volatile load, and thus we don't need a barrier here.
  2453 // We retain the Node to act as a compiler ordering barrier.
  2454 bool Matcher::post_store_load_barrier(const Node* vmb) {
  2455   Compile* C = Compile::current();
  2456   assert(vmb->is_MemBar(), "");
  2457   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
  2458   const MemBarNode* membar = vmb->as_MemBar();
  2460   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
  2461   Node* ctrl = NULL;
  2462   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
  2463     Node* p = membar->fast_out(i);
  2464     assert(p->is_Proj(), "only projections here");
  2465     if ((p->as_Proj()->_con == TypeFunc::Control) &&
  2466         !C->node_arena()->contains(p)) { // Unmatched old-space only
  2467       ctrl = p;
  2468       break;
  2471   assert((ctrl != NULL), "missing control projection");
  2473   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
  2474     Node *x = ctrl->fast_out(j);
  2475     int xop = x->Opcode();
  2477     // We don't need current barrier if we see another or a lock
  2478     // before seeing volatile load.
  2479     //
  2480     // Op_Fastunlock previously appeared in the Op_* list below.
  2481     // With the advent of 1-0 lock operations we're no longer guaranteed
  2482     // that a monitor exit operation contains a serializing instruction.
  2484     if (xop == Op_MemBarVolatile ||
  2485         xop == Op_CompareAndSwapL ||
  2486         xop == Op_CompareAndSwapP ||
  2487         xop == Op_CompareAndSwapN ||
  2488         xop == Op_CompareAndSwapI) {
  2489       return true;
  2492     // Op_FastLock previously appeared in the Op_* list above.
  2493     // With biased locking we're no longer guaranteed that a monitor
  2494     // enter operation contains a serializing instruction.
  2495     if ((xop == Op_FastLock) && !UseBiasedLocking) {
  2496       return true;
  2499     if (x->is_MemBar()) {
  2500       // We must retain this membar if there is an upcoming volatile
  2501       // load, which will be followed by acquire membar.
  2502       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
  2503         return false;
  2504       } else {
  2505         // For other kinds of barriers, check by pretending we
  2506         // are them, and seeing if we can be removed.
  2507         return post_store_load_barrier(x->as_MemBar());
  2511     // probably not necessary to check for these
  2512     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
  2513       return false;
  2516   return false;
  2519 // Check whether node n is a branch to an uncommon trap that we could
  2520 // optimize as test with very high branch costs in case of going to
  2521 // the uncommon trap. The code must be able to be recompiled to use
  2522 // a cheaper test.
  2523 bool Matcher::branches_to_uncommon_trap(const Node *n) {
  2524   // Don't do it for natives, adapters, or runtime stubs
  2525   Compile *C = Compile::current();
  2526   if (!C->is_method_compilation()) return false;
  2528   assert(n->is_If(), "You should only call this on if nodes.");
  2529   IfNode *ifn = n->as_If();
  2531   Node *ifFalse = NULL;
  2532   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
  2533     if (ifn->fast_out(i)->is_IfFalse()) {
  2534       ifFalse = ifn->fast_out(i);
  2535       break;
  2538   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
  2540   Node *reg = ifFalse;
  2541   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
  2542                // Alternatively use visited set?  Seems too expensive.
  2543   while (reg != NULL && cnt > 0) {
  2544     CallNode *call = NULL;
  2545     RegionNode *nxt_reg = NULL;
  2546     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
  2547       Node *o = reg->fast_out(i);
  2548       if (o->is_Call()) {
  2549         call = o->as_Call();
  2551       if (o->is_Region()) {
  2552         nxt_reg = o->as_Region();
  2556     if (call &&
  2557         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
  2558       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
  2559       if (trtype->isa_int() && trtype->is_int()->is_con()) {
  2560         jint tr_con = trtype->is_int()->get_con();
  2561         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
  2562         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
  2563         assert((int)reason < (int)BitsPerInt, "recode bit map");
  2565         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
  2566             && action != Deoptimization::Action_none) {
  2567           // This uncommon trap is sure to recompile, eventually.
  2568           // When that happens, C->too_many_traps will prevent
  2569           // this transformation from happening again.
  2570           return true;
  2575     reg = nxt_reg;
  2576     cnt--;
  2579   return false;
  2582 //=============================================================================
  2583 //---------------------------State---------------------------------------------
  2584 State::State(void) {
  2585 #ifdef ASSERT
  2586   _id = 0;
  2587   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2588   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2589   //memset(_cost, -1, sizeof(_cost));
  2590   //memset(_rule, -1, sizeof(_rule));
  2591 #endif
  2592   memset(_valid, 0, sizeof(_valid));
  2595 #ifdef ASSERT
  2596 State::~State() {
  2597   _id = 99;
  2598   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2599   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2600   memset(_cost, -3, sizeof(_cost));
  2601   memset(_rule, -3, sizeof(_rule));
  2603 #endif
  2605 #ifndef PRODUCT
  2606 //---------------------------dump----------------------------------------------
  2607 void State::dump() {
  2608   tty->print("\n");
  2609   dump(0);
  2612 void State::dump(int depth) {
  2613   for( int j = 0; j < depth; j++ )
  2614     tty->print("   ");
  2615   tty->print("--N: ");
  2616   _leaf->dump();
  2617   uint i;
  2618   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2619     // Check for valid entry
  2620     if( valid(i) ) {
  2621       for( int j = 0; j < depth; j++ )
  2622         tty->print("   ");
  2623         assert(_cost[i] != max_juint, "cost must be a valid value");
  2624         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2625         tty->print_cr("%s  %d  %s",
  2626                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2628   tty->cr();
  2630   for( i=0; i<2; i++ )
  2631     if( _kids[i] )
  2632       _kids[i]->dump(depth+1);
  2634 #endif

mercurial