src/share/vm/libadt/dict.cpp

Sat, 07 Nov 2020 10:30:02 +0800

author
aoqi
date
Sat, 07 Nov 2020 10:30:02 +0800
changeset 10026
8c95980d0b66
parent 6876
710a3c8b516e
permissions
-rw-r--r--

Added tag mips-jdk8u275-b01 for changeset d3b4d62f391f

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/dict.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/thread.hpp"
    31 // Dictionaries - An Abstract Data Type
    33 // %%%%% includes not needed with AVM framework - Ungar
    35 // #include "port.hpp"
    36 //IMPLEMENTATION
    37 // #include "dict.hpp"
    39 #include <assert.h>
    41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    43 // The iostream is not needed and it gets confused for gcc by the
    44 // define of bool.
    45 //
    46 // #include <iostream.h>
    48 //------------------------------data-----------------------------------------
    49 // String hash tables
    50 #define MAXID 20
    51 static byte initflag = 0;       // True after 1st initialization
    52 static const char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6};
    53 static short xsum[MAXID];
    55 //------------------------------bucket---------------------------------------
    56 class bucket : public ResourceObj {
    57 public:
    58   uint _cnt, _max;              // Size of bucket
    59   void **_keyvals;              // Array of keys and values
    60 };
    62 //------------------------------Dict-----------------------------------------
    63 // The dictionary is kept has a hash table.  The hash table is a even power
    64 // of two, for nice modulo operations.  Each bucket in the hash table points
    65 // to a linear list of key-value pairs; each key & value is just a (void *).
    66 // The list starts with a count.  A hash lookup finds the list head, then a
    67 // simple linear scan finds the key.  If the table gets too full, it's
    68 // doubled in size; the total amount of EXTRA times all hash functions are
    69 // computed for the doubling is no more than the current size - thus the
    70 // doubling in size costs no more than a constant factor in speed.
    71 Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp),
    72   _arena(Thread::current()->resource_area()) {
    73   int i;
    75   // Precompute table of null character hashes
    76   if( !initflag ) {             // Not initializated yet?
    77     xsum[0] = (1<<shft[0])+1;   // Initialize
    78     for(i=1; i<MAXID; i++) {
    79       xsum[i] = (1<<shft[i])+1+xsum[i-1];
    80     }
    81     initflag = 1;               // Never again
    82   }
    84   _size = 16;                   // Size is a power of 2
    85   _cnt = 0;                     // Dictionary is empty
    86   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
    87   memset(_bin,0,sizeof(bucket)*_size);
    88 }
    90 Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena, int size)
    91 : _hash(inithash), _cmp(initcmp), _arena(arena) {
    92   int i;
    94   // Precompute table of null character hashes
    95   if( !initflag ) {             // Not initializated yet?
    96     xsum[0] = (1<<shft[0])+1;   // Initialize
    97     for(i=1; i<MAXID; i++) {
    98       xsum[i] = (1<<shft[i])+1+xsum[i-1];
    99     }
   100     initflag = 1;               // Never again
   101   }
   103   i=16;
   104   while( i < size ) i <<= 1;
   105   _size = i;                    // Size is a power of 2
   106   _cnt = 0;                     // Dictionary is empty
   107   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
   108   memset(_bin,0,sizeof(bucket)*_size);
   109 }
   111 //------------------------------~Dict------------------------------------------
   112 // Delete an existing dictionary.
   113 Dict::~Dict() {
   114   /*
   115   tty->print("~Dict %d/%d: ",_cnt,_size);
   116   for( uint i=0; i < _size; i++) // For complete new table do
   117     tty->print("%d ",_bin[i]._cnt);
   118   tty->print("\n");*/
   119   /*for( uint i=0; i<_size; i++ ) {
   120     FREE_FAST( _bin[i]._keyvals );
   121     } */
   122 }
   124 //------------------------------Clear----------------------------------------
   125 // Zap to empty; ready for re-use
   126 void Dict::Clear() {
   127   _cnt = 0;                     // Empty contents
   128   for( uint i=0; i<_size; i++ )
   129     _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
   130   // Leave _size & _bin alone, under the assumption that dictionary will
   131   // grow to this size again.
   132 }
   134 //------------------------------doubhash---------------------------------------
   135 // Double hash table size.  If can't do so, just suffer.  If can, then run
   136 // thru old hash table, moving things to new table.  Note that since hash
   137 // table doubled, exactly 1 new bit is exposed in the mask - so everything
   138 // in the old table ends up on 1 of two lists in the new table; a hi and a
   139 // lo list depending on the value of the bit.
   140 void Dict::doubhash(void) {
   141   uint oldsize = _size;
   142   _size <<= 1;                  // Double in size
   143   _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
   144   memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
   145   // Rehash things to spread into new table
   146   for( uint i=0; i < oldsize; i++) { // For complete OLD table do
   147     bucket *b = &_bin[i];       // Handy shortcut for _bin[i]
   148     if( !b->_keyvals ) continue;        // Skip empties fast
   150     bucket *nb = &_bin[i+oldsize];  // New bucket shortcut
   151     uint j = b->_max;               // Trim new bucket to nearest power of 2
   152     while( j > b->_cnt ) j >>= 1;   // above old bucket _cnt
   153     if( !j ) j = 1;             // Handle zero-sized buckets
   154     nb->_max = j<<1;
   155     // Allocate worst case space for key-value pairs
   156     nb->_keyvals = (void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
   157     uint nbcnt = 0;
   159     for( j=0; j<b->_cnt; j++ ) {  // Rehash all keys in this bucket
   160       void *key = b->_keyvals[j+j];
   161       if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
   162         nb->_keyvals[nbcnt+nbcnt] = key;
   163         nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
   164         nb->_cnt = nbcnt = nbcnt+1;
   165         b->_cnt--;              // Remove key/value from lo bucket
   166         b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
   167         b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
   168         j--;                    // Hash compacted element also
   169       }
   170     } // End of for all key-value pairs in bucket
   171   } // End of for all buckets
   174 }
   176 //------------------------------Dict-----------------------------------------
   177 // Deep copy a dictionary.
   178 Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
   179   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
   180   memcpy( _bin, d._bin, sizeof(bucket)*_size );
   181   for( uint i=0; i<_size; i++ ) {
   182     if( !_bin[i]._keyvals ) continue;
   183     _bin[i]._keyvals=(void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
   184     memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
   185   }
   186 }
   188 //------------------------------Dict-----------------------------------------
   189 // Deep copy a dictionary.
   190 Dict &Dict::operator =( const Dict &d ) {
   191   if( _size < d._size ) {       // If must have more buckets
   192     _arena = d._arena;
   193     _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
   194     memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
   195     _size = d._size;
   196   }
   197   uint i;
   198   for( i=0; i<_size; i++ ) // All buckets are empty
   199     _bin[i]._cnt = 0;           // But leave bucket allocations alone
   200   _cnt = d._cnt;
   201   *(Hash*)(&_hash) = d._hash;
   202   *(CmpKey*)(&_cmp) = d._cmp;
   203   for( i=0; i<_size; i++ ) {
   204     bucket *b = &d._bin[i];     // Shortcut to source bucket
   205     for( uint j=0; j<b->_cnt; j++ )
   206       Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
   207   }
   208   return *this;
   209 }
   211 //------------------------------Insert----------------------------------------
   212 // Insert or replace a key/value pair in the given dictionary.  If the
   213 // dictionary is too full, it's size is doubled.  The prior value being
   214 // replaced is returned (NULL if this is a 1st insertion of that key).  If
   215 // an old value is found, it's swapped with the prior key-value pair on the
   216 // list.  This moves a commonly searched-for value towards the list head.
   217 void *Dict::Insert(void *key, void *val, bool replace) {
   218   uint hash = _hash( key );     // Get hash key
   219   uint i = hash & (_size-1);    // Get hash key, corrected for size
   220   bucket *b = &_bin[i];         // Handy shortcut
   221   for( uint j=0; j<b->_cnt; j++ ) {
   222     if( !_cmp(key,b->_keyvals[j+j]) ) {
   223       if (!replace) {
   224         return b->_keyvals[j+j+1];
   225       } else {
   226         void *prior = b->_keyvals[j+j+1];
   227         b->_keyvals[j+j  ] = key;       // Insert current key-value
   228         b->_keyvals[j+j+1] = val;
   229         return prior;           // Return prior
   230       }
   231     }
   232   }
   233   if( ++_cnt > _size ) {        // Hash table is full
   234     doubhash();                 // Grow whole table if too full
   235     i = hash & (_size-1);       // Rehash
   236     b = &_bin[i];               // Handy shortcut
   237   }
   238   if( b->_cnt == b->_max ) {    // Must grow bucket?
   239     if( !b->_keyvals ) {
   240       b->_max = 2;              // Initial bucket size
   241       b->_keyvals = (void**)_arena->Amalloc_4(sizeof(void*) * b->_max * 2);
   242     } else {
   243       b->_keyvals = (void**)_arena->Arealloc(b->_keyvals, sizeof(void*) * b->_max * 2, sizeof(void*) * b->_max * 4);
   244       b->_max <<= 1;            // Double bucket
   245     }
   246   }
   247   b->_keyvals[b->_cnt+b->_cnt  ] = key;
   248   b->_keyvals[b->_cnt+b->_cnt+1] = val;
   249   b->_cnt++;
   250   return NULL;                  // Nothing found prior
   251 }
   253 //------------------------------Delete---------------------------------------
   254 // Find & remove a value from dictionary. Return old value.
   255 void *Dict::Delete(void *key) {
   256   uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
   257   bucket *b = &_bin[i];         // Handy shortcut
   258   for( uint j=0; j<b->_cnt; j++ )
   259     if( !_cmp(key,b->_keyvals[j+j]) ) {
   260       void *prior = b->_keyvals[j+j+1];
   261       b->_cnt--;                // Remove key/value from lo bucket
   262       b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
   263       b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
   264       _cnt--;                   // One less thing in table
   265       return prior;
   266     }
   267   return NULL;
   268 }
   270 //------------------------------FindDict-------------------------------------
   271 // Find a key-value pair in the given dictionary.  If not found, return NULL.
   272 // If found, move key-value pair towards head of list.
   273 void *Dict::operator [](const void *key) const {
   274   uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
   275   bucket *b = &_bin[i];         // Handy shortcut
   276   for( uint j=0; j<b->_cnt; j++ )
   277     if( !_cmp(key,b->_keyvals[j+j]) )
   278       return b->_keyvals[j+j+1];
   279   return NULL;
   280 }
   282 //------------------------------CmpDict--------------------------------------
   283 // CmpDict compares two dictionaries; they must have the same keys (their
   284 // keys must match using CmpKey) and they must have the same values (pointer
   285 // comparison).  If so 1 is returned, if not 0 is returned.
   286 int32 Dict::operator ==(const Dict &d2) const {
   287   if( _cnt != d2._cnt ) return 0;
   288   if( _hash != d2._hash ) return 0;
   289   if( _cmp != d2._cmp ) return 0;
   290   for( uint i=0; i < _size; i++) {      // For complete hash table do
   291     bucket *b = &_bin[i];       // Handy shortcut
   292     if( b->_cnt != d2._bin[i]._cnt ) return 0;
   293     if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
   294       return 0;                 // Key-value pairs must match
   295   }
   296   return 1;                     // All match, is OK
   297 }
   299 //------------------------------print------------------------------------------
   300 // Handier print routine
   301 void Dict::print() {
   302   DictI i(this); // Moved definition in iterator here because of g++.
   303   tty->print("Dict@0x%lx[%d] = {", this, _cnt);
   304   for( ; i.test(); ++i ) {
   305     tty->print("(0x%lx,0x%lx),", i._key, i._value);
   306   }
   307   tty->print_cr("}");
   308 }
   310 //------------------------------Hashing Functions----------------------------
   311 // Convert string to hash key.  This algorithm implements a universal hash
   312 // function with the multipliers frozen (ok, so it's not universal).  The
   313 // multipliers (and allowable characters) are all odd, so the resultant sum
   314 // is odd - guaranteed not divisible by any power of two, so the hash tables
   315 // can be any power of two with good results.  Also, I choose multipliers
   316 // that have only 2 bits set (the low is always set to be odd) so
   317 // multiplication requires only shifts and adds.  Characters are required to
   318 // be in the range 0-127 (I double & add 1 to force oddness).  Keys are
   319 // limited to MAXID characters in length.  Experimental evidence on 150K of
   320 // C text shows excellent spreading of values for any size hash table.
   321 int hashstr(const void *t) {
   322   register char c, k = 0;
   323   register int32 sum = 0;
   324   register const char *s = (const char *)t;
   326   while( ((c = *s++) != '\0') && (k < MAXID-1) ) { // Get characters till null or MAXID-1
   327     c = (c<<1)+1;               // Characters are always odd!
   328     sum += c + (c<<shft[k++]);  // Universal hash function
   329   }
   330   return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
   331 }
   333 //------------------------------hashptr--------------------------------------
   334 // Slimey cheap hash function; no guaranteed performance.  Better than the
   335 // default for pointers, especially on MS-DOS machines.
   336 int hashptr(const void *key) {
   337 #ifdef __TURBOC__
   338     return ((intptr_t)key >> 16);
   339 #else  // __TURBOC__
   340     return ((intptr_t)key >> 2);
   341 #endif
   342 }
   344 // Slimey cheap hash function; no guaranteed performance.
   345 int hashkey(const void *key) {
   346   return (intptr_t)key;
   347 }
   349 //------------------------------Key Comparator Functions---------------------
   350 int32 cmpstr(const void *k1, const void *k2) {
   351   return strcmp((const char *)k1,(const char *)k2);
   352 }
   354 // Cheap key comparator.
   355 int32 cmpkey(const void *key1, const void *key2) {
   356   if (key1 == key2) return 0;
   357   intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
   358   if (delta > 0) return 1;
   359   return -1;
   360 }
   362 //=============================================================================
   363 //------------------------------reset------------------------------------------
   364 // Create an iterator and initialize the first variables.
   365 void DictI::reset( const Dict *dict ) {
   366   _d = dict;                    // The dictionary
   367   _i = (uint)-1;                // Before the first bin
   368   _j = 0;                       // Nothing left in the current bin
   369   ++(*this);                    // Step to first real value
   370 }
   372 //------------------------------next-------------------------------------------
   373 // Find the next key-value pair in the dictionary, or return a NULL key and
   374 // value.
   375 void DictI::operator ++(void) {
   376   if( _j-- ) {                  // Still working in current bin?
   377     _key   = _d->_bin[_i]._keyvals[_j+_j];
   378     _value = _d->_bin[_i]._keyvals[_j+_j+1];
   379     return;
   380   }
   382   while( ++_i < _d->_size ) {   // Else scan for non-zero bucket
   383     _j = _d->_bin[_i]._cnt;
   384     if( !_j ) continue;
   385     _j--;
   386     _key   = _d->_bin[_i]._keyvals[_j+_j];
   387     _value = _d->_bin[_i]._keyvals[_j+_j+1];
   388     return;
   389   }
   390   _key = _value = NULL;
   391 }

mercurial