src/share/vm/gc_implementation/g1/heapRegion.cpp

Sat, 07 Nov 2020 10:30:02 +0800

author
aoqi
date
Sat, 07 Nov 2020 10:30:02 +0800
changeset 10026
8c95980d0b66
parent 9931
fd44df5e3bc3
permissions
-rw-r--r--

Added tag mips-jdk8u275-b01 for changeset d3b4d62f391f

     1 /*
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    34 #include "gc_implementation/shared/liveRange.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/iterator.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/orderAccess.inline.hpp"
    40 #include "gc_implementation/g1/heapRegionTracer.hpp"
    42 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    44 int    HeapRegion::LogOfHRGrainBytes = 0;
    45 int    HeapRegion::LogOfHRGrainWords = 0;
    46 size_t HeapRegion::GrainBytes        = 0;
    47 size_t HeapRegion::GrainWords        = 0;
    48 size_t HeapRegion::CardsPerRegion    = 0;
    50 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    51                                  HeapRegion* hr,
    52                                  G1ParPushHeapRSClosure* cl,
    53                                  CardTableModRefBS::PrecisionStyle precision) :
    54   DirtyCardToOopClosure(hr, cl, precision, NULL),
    55   _hr(hr), _rs_scan(cl), _g1(g1) { }
    57 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    58                                                    OopClosure* oc) :
    59   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    61 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    62                                       HeapWord* bottom,
    63                                       HeapWord* top) {
    64   G1CollectedHeap* g1h = _g1;
    65   size_t oop_size;
    66   HeapWord* cur = bottom;
    68   // Start filtering what we add to the remembered set. If the object is
    69   // not considered dead, either because it is marked (in the mark bitmap)
    70   // or it was allocated after marking finished, then we add it. Otherwise
    71   // we can safely ignore the object.
    72   if (!g1h->is_obj_dead(oop(cur), _hr)) {
    73     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
    74   } else {
    75     oop_size = _hr->block_size(cur);
    76   }
    78   cur += oop_size;
    80   if (cur < top) {
    81     oop cur_oop = oop(cur);
    82     oop_size = _hr->block_size(cur);
    83     HeapWord* next_obj = cur + oop_size;
    84     while (next_obj < top) {
    85       // Keep filtering the remembered set.
    86       if (!g1h->is_obj_dead(cur_oop, _hr)) {
    87         // Bottom lies entirely below top, so we can call the
    88         // non-memRegion version of oop_iterate below.
    89         cur_oop->oop_iterate(_rs_scan);
    90       }
    91       cur = next_obj;
    92       cur_oop = oop(cur);
    93       oop_size = _hr->block_size(cur);
    94       next_obj = cur + oop_size;
    95     }
    97     // Last object. Need to do dead-obj filtering here too.
    98     if (!g1h->is_obj_dead(oop(cur), _hr)) {
    99       oop(cur)->oop_iterate(_rs_scan, mr);
   100     }
   101   }
   102 }
   104 size_t HeapRegion::max_region_size() {
   105   return HeapRegionBounds::max_size();
   106 }
   108 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   109   uintx region_size = G1HeapRegionSize;
   110   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   111     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   112     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
   113                        (uintx) HeapRegionBounds::min_size());
   114   }
   116   int region_size_log = log2_long((jlong) region_size);
   117   // Recalculate the region size to make sure it's a power of
   118   // 2. This means that region_size is the largest power of 2 that's
   119   // <= what we've calculated so far.
   120   region_size = ((uintx)1 << region_size_log);
   122   // Now make sure that we don't go over or under our limits.
   123   if (region_size < HeapRegionBounds::min_size()) {
   124     region_size = HeapRegionBounds::min_size();
   125   } else if (region_size > HeapRegionBounds::max_size()) {
   126     region_size = HeapRegionBounds::max_size();
   127   }
   129   // And recalculate the log.
   130   region_size_log = log2_long((jlong) region_size);
   132   // Now, set up the globals.
   133   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   134   LogOfHRGrainBytes = region_size_log;
   136   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   137   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   139   guarantee(GrainBytes == 0, "we should only set it once");
   140   // The cast to int is safe, given that we've bounded region_size by
   141   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   142   GrainBytes = (size_t)region_size;
   144   guarantee(GrainWords == 0, "we should only set it once");
   145   GrainWords = GrainBytes >> LogHeapWordSize;
   146   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   148   guarantee(CardsPerRegion == 0, "we should only set it once");
   149   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   150 }
   152 void HeapRegion::reset_after_compaction() {
   153   G1OffsetTableContigSpace::reset_after_compaction();
   154   // After a compaction the mark bitmap is invalid, so we must
   155   // treat all objects as being inside the unmarked area.
   156   zero_marked_bytes();
   157   init_top_at_mark_start();
   158 }
   160 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   161   assert(_humongous_start_region == NULL,
   162          "we should have already filtered out humongous regions");
   163   assert(_end == _orig_end,
   164          "we should have already filtered out humongous regions");
   166   _in_collection_set = false;
   168   set_allocation_context(AllocationContext::system());
   169   set_young_index_in_cset(-1);
   170   uninstall_surv_rate_group();
   171   set_free();
   172   reset_pre_dummy_top();
   174   if (!par) {
   175     // If this is parallel, this will be done later.
   176     HeapRegionRemSet* hrrs = rem_set();
   177     if (locked) {
   178       hrrs->clear_locked();
   179     } else {
   180       hrrs->clear();
   181     }
   182     _claimed = InitialClaimValue;
   183   }
   184   zero_marked_bytes();
   186   _offsets.resize(HeapRegion::GrainWords);
   187   init_top_at_mark_start();
   188   if (clear_space) clear(SpaceDecorator::Mangle);
   189 }
   191 void HeapRegion::par_clear() {
   192   assert(used() == 0, "the region should have been already cleared");
   193   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   194   HeapRegionRemSet* hrrs = rem_set();
   195   hrrs->clear();
   196   CardTableModRefBS* ct_bs =
   197                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   198   ct_bs->clear(MemRegion(bottom(), end()));
   199 }
   201 void HeapRegion::calc_gc_efficiency() {
   202   // GC efficiency is the ratio of how much space would be
   203   // reclaimed over how long we predict it would take to reclaim it.
   204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   205   G1CollectorPolicy* g1p = g1h->g1_policy();
   207   // Retrieve a prediction of the elapsed time for this region for
   208   // a mixed gc because the region will only be evacuated during a
   209   // mixed gc.
   210   double region_elapsed_time_ms =
   211     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   212   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   213 }
   215 void HeapRegion::set_free() {
   216   report_region_type_change(G1HeapRegionTraceType::Free);
   217   _type.set_free();
   218 }
   220 void HeapRegion::set_eden() {
   221   report_region_type_change(G1HeapRegionTraceType::Eden);
   222   _type.set_eden();
   223 }
   225 void HeapRegion::set_eden_pre_gc() {
   226   report_region_type_change(G1HeapRegionTraceType::Eden);
   227   _type.set_eden_pre_gc();
   228 }
   230 void HeapRegion::set_survivor() {
   231   report_region_type_change(G1HeapRegionTraceType::Survivor);
   232   _type.set_survivor();
   233 }
   235 void HeapRegion::set_old() {
   236   report_region_type_change(G1HeapRegionTraceType::Old);
   237   _type.set_old();
   238 }
   240 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   241   assert(!isHumongous(), "sanity / pre-condition");
   242   assert(end() == _orig_end,
   243          "Should be normal before the humongous object allocation");
   244   assert(top() == bottom(), "should be empty");
   245   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   247   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
   248   _type.set_starts_humongous();
   249   _humongous_start_region = this;
   251   set_end(new_end);
   252   _offsets.set_for_starts_humongous(new_top);
   253 }
   255 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   256   assert(!isHumongous(), "sanity / pre-condition");
   257   assert(end() == _orig_end,
   258          "Should be normal before the humongous object allocation");
   259   assert(top() == bottom(), "should be empty");
   260   assert(first_hr->startsHumongous(), "pre-condition");
   262   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
   263   _type.set_continues_humongous();
   264   _humongous_start_region = first_hr;
   265 }
   267 void HeapRegion::clear_humongous() {
   268   assert(isHumongous(), "pre-condition");
   270   if (startsHumongous()) {
   271     assert(top() <= end(), "pre-condition");
   272     set_end(_orig_end);
   273     if (top() > end()) {
   274       // at least one "continues humongous" region after it
   275       set_top(end());
   276     }
   277   } else {
   278     // continues humongous
   279     assert(end() == _orig_end, "sanity");
   280   }
   282   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   283   _humongous_start_region = NULL;
   284 }
   286 bool HeapRegion::claimHeapRegion(jint claimValue) {
   287   jint current = _claimed;
   288   if (current != claimValue) {
   289     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   290     if (res == current) {
   291       return true;
   292     }
   293   }
   294   return false;
   295 }
   297 HeapRegion::HeapRegion(uint hrm_index,
   298                        G1BlockOffsetSharedArray* sharedOffsetArray,
   299                        MemRegion mr) :
   300     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   301     _hrm_index(hrm_index),
   302     _allocation_context(AllocationContext::system()),
   303     _humongous_start_region(NULL),
   304     _in_collection_set(false),
   305     _next_in_special_set(NULL), _orig_end(NULL),
   306     _claimed(InitialClaimValue), _evacuation_failed(false),
   307     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   308     _next_young_region(NULL),
   309     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
   310 #ifdef ASSERT
   311     _containing_set(NULL),
   312 #endif // ASSERT
   313      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   314     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   315     _predicted_bytes_to_copy(0)
   316 {
   317   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   318   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   320   initialize(mr);
   321 }
   323 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   324   assert(_rem_set->is_empty(), "Remembered set must be empty");
   326   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
   328   _orig_end = mr.end();
   329   hr_clear(false /*par*/, false /*clear_space*/);
   330   set_top(bottom());
   331   record_timestamp();
   332 }
   334 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
   335   HeapRegionTracer::send_region_type_change(_hrm_index,
   336                                             get_trace_type(),
   337                                             to,
   338                                             (uintptr_t)bottom(),
   339                                             used());
   340 }
   342 CompactibleSpace* HeapRegion::next_compaction_space() const {
   343   return G1CollectedHeap::heap()->next_compaction_region(this);
   344 }
   346 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   347                                                     bool during_conc_mark) {
   348   // We always recreate the prev marking info and we'll explicitly
   349   // mark all objects we find to be self-forwarded on the prev
   350   // bitmap. So all objects need to be below PTAMS.
   351   _prev_marked_bytes = 0;
   353   if (during_initial_mark) {
   354     // During initial-mark, we'll also explicitly mark all objects
   355     // we find to be self-forwarded on the next bitmap. So all
   356     // objects need to be below NTAMS.
   357     _next_top_at_mark_start = top();
   358     _next_marked_bytes = 0;
   359   } else if (during_conc_mark) {
   360     // During concurrent mark, all objects in the CSet (including
   361     // the ones we find to be self-forwarded) are implicitly live.
   362     // So all objects need to be above NTAMS.
   363     _next_top_at_mark_start = bottom();
   364     _next_marked_bytes = 0;
   365   }
   366 }
   368 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   369                                                   bool during_conc_mark,
   370                                                   size_t marked_bytes) {
   371   assert(0 <= marked_bytes && marked_bytes <= used(),
   372          err_msg("marked: " SIZE_FORMAT " used: " SIZE_FORMAT,
   373                  marked_bytes, used()));
   374   _prev_top_at_mark_start = top();
   375   _prev_marked_bytes = marked_bytes;
   376 }
   378 HeapWord*
   379 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   380                                                  ObjectClosure* cl) {
   381   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   382   // We used to use "block_start_careful" here.  But we're actually happy
   383   // to update the BOT while we do this...
   384   HeapWord* cur = block_start(mr.start());
   385   mr = mr.intersection(used_region());
   386   if (mr.is_empty()) return NULL;
   387   // Otherwise, find the obj that extends onto mr.start().
   389   assert(cur <= mr.start()
   390          && (oop(cur)->klass_or_null() == NULL ||
   391              cur + oop(cur)->size() > mr.start()),
   392          "postcondition of block_start");
   393   oop obj;
   394   while (cur < mr.end()) {
   395     obj = oop(cur);
   396     if (obj->klass_or_null() == NULL) {
   397       // Ran into an unparseable point.
   398       return cur;
   399     } else if (!g1h->is_obj_dead(obj)) {
   400       cl->do_object(obj);
   401     }
   402     if (cl->abort()) return cur;
   403     // The check above must occur before the operation below, since an
   404     // abort might invalidate the "size" operation.
   405     cur += block_size(cur);
   406   }
   407   return NULL;
   408 }
   410 HeapWord*
   411 HeapRegion::
   412 oops_on_card_seq_iterate_careful(MemRegion mr,
   413                                  FilterOutOfRegionClosure* cl,
   414                                  bool filter_young,
   415                                  jbyte* card_ptr) {
   416   // Currently, we should only have to clean the card if filter_young
   417   // is true and vice versa.
   418   if (filter_young) {
   419     assert(card_ptr != NULL, "pre-condition");
   420   } else {
   421     assert(card_ptr == NULL, "pre-condition");
   422   }
   423   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   425   // If we're within a stop-world GC, then we might look at a card in a
   426   // GC alloc region that extends onto a GC LAB, which may not be
   427   // parseable.  Stop such at the "scan_top" of the region.
   428   if (g1h->is_gc_active()) {
   429     mr = mr.intersection(MemRegion(bottom(), scan_top()));
   430   } else {
   431     mr = mr.intersection(used_region());
   432   }
   433   if (mr.is_empty()) return NULL;
   434   // Otherwise, find the obj that extends onto mr.start().
   436   // The intersection of the incoming mr (for the card) and the
   437   // allocated part of the region is non-empty. This implies that
   438   // we have actually allocated into this region. The code in
   439   // G1CollectedHeap.cpp that allocates a new region sets the
   440   // is_young tag on the region before allocating. Thus we
   441   // safely know if this region is young.
   442   if (is_young() && filter_young) {
   443     return NULL;
   444   }
   446   assert(!is_young(), "check value of filter_young");
   448   // We can only clean the card here, after we make the decision that
   449   // the card is not young. And we only clean the card if we have been
   450   // asked to (i.e., card_ptr != NULL).
   451   if (card_ptr != NULL) {
   452     *card_ptr = CardTableModRefBS::clean_card_val();
   453     // We must complete this write before we do any of the reads below.
   454     OrderAccess::storeload();
   455   }
   457   // Cache the boundaries of the memory region in some const locals
   458   HeapWord* const start = mr.start();
   459   HeapWord* const end = mr.end();
   461   // We used to use "block_start_careful" here.  But we're actually happy
   462   // to update the BOT while we do this...
   463   HeapWord* cur = block_start(start);
   464   assert(cur <= start, "Postcondition");
   466   oop obj;
   468   HeapWord* next = cur;
   469   do {
   470     cur = next;
   471     obj = oop(cur);
   472     if (obj->klass_or_null() == NULL) {
   473       // Ran into an unparseable point.
   474       return cur;
   475     }
   476     // Otherwise...
   477     next = cur + block_size(cur);
   478   } while (next <= start);
   480   // If we finish the above loop...We have a parseable object that
   481   // begins on or before the start of the memory region, and ends
   482   // inside or spans the entire region.
   483   assert(cur <= start, "Loop postcondition");
   484   assert(obj->klass_or_null() != NULL, "Loop postcondition");
   486   do {
   487     obj = oop(cur);
   488     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
   489     if (obj->klass_or_null() == NULL) {
   490       // Ran into an unparseable point.
   491       return cur;
   492     }
   494     // Advance the current pointer. "obj" still points to the object to iterate.
   495     cur = cur + block_size(cur);
   497     if (!g1h->is_obj_dead(obj)) {
   498       // Non-objArrays are sometimes marked imprecise at the object start. We
   499       // always need to iterate over them in full.
   500       // We only iterate over object arrays in full if they are completely contained
   501       // in the memory region.
   502       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
   503         obj->oop_iterate(cl);
   504       } else {
   505         obj->oop_iterate(cl, mr);
   506       }
   507     }
   508   } while (cur < end);
   510   return NULL;
   511 }
   513 // Code roots support
   515 void HeapRegion::add_strong_code_root(nmethod* nm) {
   516   HeapRegionRemSet* hrrs = rem_set();
   517   hrrs->add_strong_code_root(nm);
   518 }
   520 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
   521   assert_locked_or_safepoint(CodeCache_lock);
   522   HeapRegionRemSet* hrrs = rem_set();
   523   hrrs->add_strong_code_root_locked(nm);
   524 }
   526 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   527   HeapRegionRemSet* hrrs = rem_set();
   528   hrrs->remove_strong_code_root(nm);
   529 }
   531 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   532   HeapRegionRemSet* hrrs = rem_set();
   533   hrrs->strong_code_roots_do(blk);
   534 }
   536 class VerifyStrongCodeRootOopClosure: public OopClosure {
   537   const HeapRegion* _hr;
   538   nmethod* _nm;
   539   bool _failures;
   540   bool _has_oops_in_region;
   542   template <class T> void do_oop_work(T* p) {
   543     T heap_oop = oopDesc::load_heap_oop(p);
   544     if (!oopDesc::is_null(heap_oop)) {
   545       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   547       // Note: not all the oops embedded in the nmethod are in the
   548       // current region. We only look at those which are.
   549       if (_hr->is_in(obj)) {
   550         // Object is in the region. Check that its less than top
   551         if (_hr->top() <= (HeapWord*)obj) {
   552           // Object is above top
   553           gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
   554                                  "[" PTR_FORMAT ", " PTR_FORMAT ") is above "
   555                                  "top " PTR_FORMAT,
   556                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   557           _failures = true;
   558           return;
   559         }
   560         // Nmethod has at least one oop in the current region
   561         _has_oops_in_region = true;
   562       }
   563     }
   564   }
   566 public:
   567   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   568     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   570   void do_oop(narrowOop* p) { do_oop_work(p); }
   571   void do_oop(oop* p)       { do_oop_work(p); }
   573   bool failures()           { return _failures; }
   574   bool has_oops_in_region() { return _has_oops_in_region; }
   575 };
   577 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   578   const HeapRegion* _hr;
   579   bool _failures;
   580 public:
   581   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   582     _hr(hr), _failures(false) {}
   584   void do_code_blob(CodeBlob* cb) {
   585     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   586     if (nm != NULL) {
   587       // Verify that the nemthod is live
   588       if (!nm->is_alive()) {
   589         gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
   590                                PTR_FORMAT " in its strong code roots",
   591                                _hr->bottom(), _hr->end(), nm);
   592         _failures = true;
   593       } else {
   594         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   595         nm->oops_do(&oop_cl);
   596         if (!oop_cl.has_oops_in_region()) {
   597           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
   598                                  PTR_FORMAT " in its strong code roots "
   599                                  "with no pointers into region",
   600                                  _hr->bottom(), _hr->end(), nm);
   601           _failures = true;
   602         } else if (oop_cl.failures()) {
   603           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
   604                                  "failures for nmethod " PTR_FORMAT,
   605                                  _hr->bottom(), _hr->end(), nm);
   606           _failures = true;
   607         }
   608       }
   609     }
   610   }
   612   bool failures()       { return _failures; }
   613 };
   615 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   616   if (!G1VerifyHeapRegionCodeRoots) {
   617     // We're not verifying code roots.
   618     return;
   619   }
   620   if (vo == VerifyOption_G1UseMarkWord) {
   621     // Marking verification during a full GC is performed after class
   622     // unloading, code cache unloading, etc so the strong code roots
   623     // attached to each heap region are in an inconsistent state. They won't
   624     // be consistent until the strong code roots are rebuilt after the
   625     // actual GC. Skip verifying the strong code roots in this particular
   626     // time.
   627     assert(VerifyDuringGC, "only way to get here");
   628     return;
   629   }
   631   HeapRegionRemSet* hrrs = rem_set();
   632   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   634   // if this region is empty then there should be no entries
   635   // on its strong code root list
   636   if (is_empty()) {
   637     if (strong_code_roots_length > 0) {
   638       gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
   639                              "but has " SIZE_FORMAT " code root entries",
   640                              bottom(), end(), strong_code_roots_length);
   641       *failures = true;
   642     }
   643     return;
   644   }
   646   if (continuesHumongous()) {
   647     if (strong_code_roots_length > 0) {
   648       gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
   649                              "region but has " SIZE_FORMAT " code root entries",
   650                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   651       *failures = true;
   652     }
   653     return;
   654   }
   656   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   657   strong_code_roots_do(&cb_cl);
   659   if (cb_cl.failures()) {
   660     *failures = true;
   661   }
   662 }
   664 void HeapRegion::print() const { print_on(gclog_or_tty); }
   665 void HeapRegion::print_on(outputStream* st) const {
   666   st->print("AC%4u", allocation_context());
   667   st->print(" %2s", get_short_type_str());
   668   if (in_collection_set())
   669     st->print(" CS");
   670   else
   671     st->print("   ");
   672   st->print(" TS %5d", _gc_time_stamp);
   673   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
   674             prev_top_at_mark_start(), next_top_at_mark_start());
   675   G1OffsetTableContigSpace::print_on(st);
   676 }
   678 class G1VerificationClosure : public OopClosure {
   679 protected:
   680   G1CollectedHeap* _g1h;
   681   CardTableModRefBS* _bs;
   682   oop _containing_obj;
   683   bool _failures;
   684   int _n_failures;
   685   VerifyOption _vo;
   686 public:
   687   // _vo == UsePrevMarking -> use "prev" marking information,
   688   // _vo == UseNextMarking -> use "next" marking information,
   689   // _vo == UseMarkWord    -> use mark word from object header.
   690   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   691     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   692     _failures(false), _n_failures(0), _vo(vo)
   693   {
   694     BarrierSet* bs = _g1h->barrier_set();
   695     if (bs->is_a(BarrierSet::CardTableModRef))
   696       _bs = (CardTableModRefBS*)bs;
   697   }
   699   void set_containing_obj(oop obj) {
   700     _containing_obj = obj;
   701   }
   703   bool failures() { return _failures; }
   704   int n_failures() { return _n_failures; }
   706   void print_object(outputStream* out, oop obj) {
   707 #ifdef PRODUCT
   708     Klass* k = obj->klass();
   709     const char* class_name = InstanceKlass::cast(k)->external_name();
   710     out->print_cr("class name %s", class_name);
   711 #else // PRODUCT
   712     obj->print_on(out);
   713 #endif // PRODUCT
   714   }
   715 };
   717 class VerifyLiveClosure : public G1VerificationClosure {
   718 public:
   719   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
   720   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   721   virtual void do_oop(oop* p) { do_oop_work(p); }
   723   template <class T>
   724   void do_oop_work(T* p) {
   725     assert(_containing_obj != NULL, "Precondition");
   726     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   727       "Precondition");
   728     verify_liveness(p);
   729   }
   731   template <class T>
   732   void verify_liveness(T* p) {
   733     T heap_oop = oopDesc::load_heap_oop(p);
   734     if (!oopDesc::is_null(heap_oop)) {
   735       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   736       bool failed = false;
   737       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   738         MutexLockerEx x(ParGCRareEvent_lock,
   739           Mutex::_no_safepoint_check_flag);
   741         if (!_failures) {
   742           gclog_or_tty->cr();
   743           gclog_or_tty->print_cr("----------");
   744         }
   745         if (!_g1h->is_in_closed_subset(obj)) {
   746           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   747           gclog_or_tty->print_cr("Field " PTR_FORMAT
   748                                  " of live obj " PTR_FORMAT " in region "
   749                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   750                                  p, (void*) _containing_obj,
   751                                  from->bottom(), from->end());
   752           print_object(gclog_or_tty, _containing_obj);
   753           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
   754                                  (void*) obj);
   755         } else {
   756           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   757           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   758           gclog_or_tty->print_cr("Field " PTR_FORMAT
   759                                  " of live obj " PTR_FORMAT " in region "
   760                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   761                                  p, (void*) _containing_obj,
   762                                  from->bottom(), from->end());
   763           print_object(gclog_or_tty, _containing_obj);
   764           gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
   765                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   766                                  (void*) obj, to->bottom(), to->end());
   767           print_object(gclog_or_tty, obj);
   768         }
   769         gclog_or_tty->print_cr("----------");
   770         gclog_or_tty->flush();
   771         _failures = true;
   772         failed = true;
   773         _n_failures++;
   774       }
   775     }
   776   }
   777 };
   779 class VerifyRemSetClosure : public G1VerificationClosure {
   780 public:
   781   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
   782   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   783   virtual void do_oop(oop* p) { do_oop_work(p); }
   785   template <class T>
   786   void do_oop_work(T* p) {
   787     assert(_containing_obj != NULL, "Precondition");
   788     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   789       "Precondition");
   790     verify_remembered_set(p);
   791   }
   793   template <class T>
   794   void verify_remembered_set(T* p) {
   795     T heap_oop = oopDesc::load_heap_oop(p);
   796     if (!oopDesc::is_null(heap_oop)) {
   797       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   798       bool failed = false;
   799       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   800       HeapRegion* to   = _g1h->heap_region_containing(obj);
   801       if (from != NULL && to != NULL &&
   802           from != to &&
   803           !to->isHumongous()) {
   804         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   805         jbyte cv_field = *_bs->byte_for_const(p);
   806         const jbyte dirty = CardTableModRefBS::dirty_card_val();
   808         bool is_bad = !(from->is_young()
   809                         || to->rem_set()->contains_reference(p)
   810                         || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   811                             (_containing_obj->is_objArray() ?
   812                                 cv_field == dirty
   813                              : cv_obj == dirty || cv_field == dirty));
   814         if (is_bad) {
   815           MutexLockerEx x(ParGCRareEvent_lock,
   816                           Mutex::_no_safepoint_check_flag);
   818           if (!_failures) {
   819             gclog_or_tty->cr();
   820             gclog_or_tty->print_cr("----------");
   821           }
   822           gclog_or_tty->print_cr("Missing rem set entry:");
   823           gclog_or_tty->print_cr("Field " PTR_FORMAT " "
   824                                  "of obj " PTR_FORMAT ", "
   825                                  "in region " HR_FORMAT,
   826                                  p, (void*) _containing_obj,
   827                                  HR_FORMAT_PARAMS(from));
   828           _containing_obj->print_on(gclog_or_tty);
   829           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
   830                                  "in region " HR_FORMAT,
   831                                  (void*) obj,
   832                                  HR_FORMAT_PARAMS(to));
   833           if (obj->is_oop()) {
   834             obj->print_on(gclog_or_tty);
   835           }
   836           gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   837                         cv_obj, cv_field);
   838           gclog_or_tty->print_cr("----------");
   839           gclog_or_tty->flush();
   840           _failures = true;
   841           if (!failed) _n_failures++;
   842         }
   843       }
   844     }
   845   }
   846 };
   848 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   849 // We would need a mechanism to make that code skip dead objects.
   851 void HeapRegion::verify(VerifyOption vo,
   852                         bool* failures) const {
   853   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   854   *failures = false;
   855   HeapWord* p = bottom();
   856   HeapWord* prev_p = NULL;
   857   VerifyLiveClosure vl_cl(g1, vo);
   858   VerifyRemSetClosure vr_cl(g1, vo);
   859   bool is_humongous = isHumongous();
   860   bool do_bot_verify = !is_young();
   861   size_t object_num = 0;
   862   while (p < top()) {
   863     oop obj = oop(p);
   864     size_t obj_size = block_size(p);
   865     object_num += 1;
   867     if (is_humongous != g1->isHumongous(obj_size) &&
   868         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
   869       gclog_or_tty->print_cr("obj " PTR_FORMAT " is of %shumongous size ("
   870                              SIZE_FORMAT " words) in a %shumongous region",
   871                              p, g1->isHumongous(obj_size) ? "" : "non-",
   872                              obj_size, is_humongous ? "" : "non-");
   873        *failures = true;
   874        return;
   875     }
   877     // If it returns false, verify_for_object() will output the
   878     // appropriate message.
   879     if (do_bot_verify &&
   880         !g1->is_obj_dead(obj, this) &&
   881         !_offsets.verify_for_object(p, obj_size)) {
   882       *failures = true;
   883       return;
   884     }
   886     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   887       if (obj->is_oop()) {
   888         Klass* klass = obj->klass();
   889         bool is_metaspace_object = Metaspace::contains(klass) ||
   890                                    (vo == VerifyOption_G1UsePrevMarking &&
   891                                    ClassLoaderDataGraph::unload_list_contains(klass));
   892         if (!is_metaspace_object) {
   893           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
   894                                  "not metadata", klass, (void *)obj);
   895           *failures = true;
   896           return;
   897         } else if (!klass->is_klass()) {
   898           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
   899                                  "not a klass", klass, (void *)obj);
   900           *failures = true;
   901           return;
   902         } else {
   903           vl_cl.set_containing_obj(obj);
   904           if (!g1->full_collection() || G1VerifyRSetsDuringFullGC) {
   905             // verify liveness and rem_set
   906             vr_cl.set_containing_obj(obj);
   907             G1Mux2Closure mux(&vl_cl, &vr_cl);
   908             obj->oop_iterate_no_header(&mux);
   910             if (vr_cl.failures()) {
   911               *failures = true;
   912             }
   913             if (G1MaxVerifyFailures >= 0 &&
   914               vr_cl.n_failures() >= G1MaxVerifyFailures) {
   915               return;
   916             }
   917           } else {
   918             // verify only liveness
   919             obj->oop_iterate_no_header(&vl_cl);
   920           }
   921           if (vl_cl.failures()) {
   922             *failures = true;
   923           }
   924           if (G1MaxVerifyFailures >= 0 &&
   925               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   926             return;
   927           }
   928         }
   929       } else {
   930         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", (void *)obj);
   931         *failures = true;
   932         return;
   933       }
   934     }
   935     prev_p = p;
   936     p += obj_size;
   937   }
   939   if (p != top()) {
   940     gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
   941                            "does not match top " PTR_FORMAT, p, top());
   942     *failures = true;
   943     return;
   944   }
   946   HeapWord* the_end = end();
   947   assert(p == top(), "it should still hold");
   948   // Do some extra BOT consistency checking for addresses in the
   949   // range [top, end). BOT look-ups in this range should yield
   950   // top. No point in doing that if top == end (there's nothing there).
   951   if (p < the_end) {
   952     // Look up top
   953     HeapWord* addr_1 = p;
   954     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   955     if (b_start_1 != p) {
   956       gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
   957                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   958                              addr_1, b_start_1, p);
   959       *failures = true;
   960       return;
   961     }
   963     // Look up top + 1
   964     HeapWord* addr_2 = p + 1;
   965     if (addr_2 < the_end) {
   966       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   967       if (b_start_2 != p) {
   968         gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
   969                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   970                                addr_2, b_start_2, p);
   971         *failures = true;
   972         return;
   973       }
   974     }
   976     // Look up an address between top and end
   977     size_t diff = pointer_delta(the_end, p) / 2;
   978     HeapWord* addr_3 = p + diff;
   979     if (addr_3 < the_end) {
   980       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   981       if (b_start_3 != p) {
   982         gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
   983                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   984                                addr_3, b_start_3, p);
   985         *failures = true;
   986         return;
   987       }
   988     }
   990     // Loook up end - 1
   991     HeapWord* addr_4 = the_end - 1;
   992     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   993     if (b_start_4 != p) {
   994       gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
   995                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   996                              addr_4, b_start_4, p);
   997       *failures = true;
   998       return;
   999     }
  1002   if (is_humongous && object_num > 1) {
  1003     gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is humongous "
  1004                            "but has " SIZE_FORMAT ", objects",
  1005                            bottom(), end(), object_num);
  1006     *failures = true;
  1007     return;
  1010   verify_strong_code_roots(vo, failures);
  1013 void HeapRegion::verify() const {
  1014   bool dummy = false;
  1015   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1018 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
  1019   G1CollectedHeap* g1 = G1CollectedHeap::heap();
  1020   *failures = false;
  1021   HeapWord* p = bottom();
  1022   HeapWord* prev_p = NULL;
  1023   VerifyRemSetClosure vr_cl(g1, vo);
  1024   while (p < top()) {
  1025     oop obj = oop(p);
  1026     size_t obj_size = block_size(p);
  1028     if (!g1->is_obj_dead_cond(obj, this, vo)) {
  1029       if (obj->is_oop()) {
  1030         vr_cl.set_containing_obj(obj);
  1031         obj->oop_iterate_no_header(&vr_cl);
  1033         if (vr_cl.failures()) {
  1034           *failures = true;
  1036         if (G1MaxVerifyFailures >= 0 &&
  1037           vr_cl.n_failures() >= G1MaxVerifyFailures) {
  1038           return;
  1040       } else {
  1041         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", p2i(obj));
  1042         *failures = true;
  1043         return;
  1047     prev_p = p;
  1048     p += obj_size;
  1052 void HeapRegion::verify_rem_set() const {
  1053   bool failures = false;
  1054   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
  1055   guarantee(!failures, "HeapRegion RemSet verification failed");
  1058 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1059 // away eventually.
  1061 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1062   set_top(bottom());
  1063   _scan_top = bottom();
  1064   CompactibleSpace::clear(mangle_space);
  1065   reset_bot();
  1068 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1069   Space::set_bottom(new_bottom);
  1070   _offsets.set_bottom(new_bottom);
  1073 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1074   Space::set_end(new_end);
  1075   _offsets.resize(new_end - bottom());
  1078 void G1OffsetTableContigSpace::print() const {
  1079   print_short();
  1080   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1081                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1082                 bottom(), top(), _offsets.threshold(), end());
  1085 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1086   return _offsets.initialize_threshold();
  1089 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1090                                                     HeapWord* end) {
  1091   _offsets.alloc_block(start, end);
  1092   return _offsets.threshold();
  1095 HeapWord* G1OffsetTableContigSpace::scan_top() const {
  1096   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1097   HeapWord* local_top = top();
  1098   OrderAccess::loadload();
  1099   const unsigned local_time_stamp = _gc_time_stamp;
  1100   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
  1101   if (local_time_stamp < g1h->get_gc_time_stamp()) {
  1102     return local_top;
  1103   } else {
  1104     return _scan_top;
  1108 void G1OffsetTableContigSpace::record_timestamp() {
  1109   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1110   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1112   if (_gc_time_stamp < curr_gc_time_stamp) {
  1113     // Setting the time stamp here tells concurrent readers to look at
  1114     // scan_top to know the maximum allowed address to look at.
  1116     // scan_top should be bottom for all regions except for the
  1117     // retained old alloc region which should have scan_top == top
  1118     HeapWord* st = _scan_top;
  1119     guarantee(st == _bottom || st == _top, "invariant");
  1121     _gc_time_stamp = curr_gc_time_stamp;
  1125 void G1OffsetTableContigSpace::record_retained_region() {
  1126   // scan_top is the maximum address where it's safe for the next gc to
  1127   // scan this region.
  1128   _scan_top = top();
  1131 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  1132   object_iterate(blk);
  1135 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  1136   HeapWord* p = bottom();
  1137   while (p < top()) {
  1138     if (block_is_obj(p)) {
  1139       blk->do_object(oop(p));
  1141     p += block_size(p);
  1145 #define block_is_always_obj(q) true
  1146 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  1147   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
  1149 #undef block_is_always_obj
  1151 G1OffsetTableContigSpace::
  1152 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1153                          MemRegion mr) :
  1154   _offsets(sharedOffsetArray, mr),
  1155   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1156   _gc_time_stamp(0)
  1158   _offsets.set_space(this);
  1161 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  1162   CompactibleSpace::initialize(mr, clear_space, mangle_space);
  1163   _top = bottom();
  1164   _scan_top = bottom();
  1165   set_saved_mark_word(NULL);
  1166   reset_bot();

mercurial