src/share/vm/gc_implementation/g1/concurrentMark.cpp

Sat, 07 Nov 2020 10:30:02 +0800

author
aoqi
date
Sat, 07 Nov 2020 10:30:02 +0800
changeset 10026
8c95980d0b66
parent 10015
eb7ce841ccec
permissions
-rw-r--r--

Added tag mips-jdk8u275-b01 for changeset d3b4d62f391f

     1 /*
     2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/metadataOnStackMark.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    34 #include "gc_implementation/g1/g1Log.hpp"
    35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    36 #include "gc_implementation/g1/g1RemSet.hpp"
    37 #include "gc_implementation/g1/heapRegion.inline.hpp"
    38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    41 #include "gc_implementation/shared/vmGCOperations.hpp"
    42 #include "gc_implementation/shared/gcTimer.hpp"
    43 #include "gc_implementation/shared/gcTrace.hpp"
    44 #include "gc_implementation/shared/gcTraceTime.hpp"
    45 #include "memory/allocation.hpp"
    46 #include "memory/genOopClosures.inline.hpp"
    47 #include "memory/referencePolicy.hpp"
    48 #include "memory/resourceArea.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "runtime/handles.inline.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/prefetch.inline.hpp"
    53 #include "services/memTracker.hpp"
    55 // Concurrent marking bit map wrapper
    57 CMBitMapRO::CMBitMapRO(int shifter) :
    58   _bm(),
    59   _shifter(shifter) {
    60   _bmStartWord = 0;
    61   _bmWordSize = 0;
    62 }
    64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
    65                                                const HeapWord* limit) const {
    66   // First we must round addr *up* to a possible object boundary.
    67   addr = (HeapWord*)align_size_up((intptr_t)addr,
    68                                   HeapWordSize << _shifter);
    69   size_t addrOffset = heapWordToOffset(addr);
    70   if (limit == NULL) {
    71     limit = _bmStartWord + _bmWordSize;
    72   }
    73   size_t limitOffset = heapWordToOffset(limit);
    74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    76   assert(nextAddr >= addr, "get_next_one postcondition");
    77   assert(nextAddr == limit || isMarked(nextAddr),
    78          "get_next_one postcondition");
    79   return nextAddr;
    80 }
    82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
    83                                                  const HeapWord* limit) const {
    84   size_t addrOffset = heapWordToOffset(addr);
    85   if (limit == NULL) {
    86     limit = _bmStartWord + _bmWordSize;
    87   }
    88   size_t limitOffset = heapWordToOffset(limit);
    89   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    90   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    91   assert(nextAddr >= addr, "get_next_one postcondition");
    92   assert(nextAddr == limit || !isMarked(nextAddr),
    93          "get_next_one postcondition");
    94   return nextAddr;
    95 }
    97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    98   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    99   return (int) (diff >> _shifter);
   100 }
   102 #ifndef PRODUCT
   103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
   104   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   105   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   106          "size inconsistency");
   107   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
   108          _bmWordSize  == heap_rs.word_size();
   109 }
   110 #endif
   112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   113   _bm.print_on_error(st, prefix);
   114 }
   116 size_t CMBitMap::compute_size(size_t heap_size) {
   117   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
   118 }
   120 size_t CMBitMap::mark_distance() {
   121   return MinObjAlignmentInBytes * BitsPerByte;
   122 }
   124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
   125   _bmStartWord = heap.start();
   126   _bmWordSize = heap.word_size();
   128   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
   129   _bm.set_size(_bmWordSize >> _shifter);
   131   storage->set_mapping_changed_listener(&_listener);
   132 }
   134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
   135   if (zero_filled) {
   136     return;
   137   }
   138   // We need to clear the bitmap on commit, removing any existing information.
   139   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
   140   _bm->clearRange(mr);
   141 }
   143 // Closure used for clearing the given mark bitmap.
   144 class ClearBitmapHRClosure : public HeapRegionClosure {
   145  private:
   146   ConcurrentMark* _cm;
   147   CMBitMap* _bitmap;
   148   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
   149  public:
   150   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
   151     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
   152   }
   154   virtual bool doHeapRegion(HeapRegion* r) {
   155     size_t const chunk_size_in_words = M / HeapWordSize;
   157     HeapWord* cur = r->bottom();
   158     HeapWord* const end = r->end();
   160     while (cur < end) {
   161       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
   162       _bitmap->clearRange(mr);
   164       cur += chunk_size_in_words;
   166       // Abort iteration if after yielding the marking has been aborted.
   167       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
   168         return true;
   169       }
   170       // Repeat the asserts from before the start of the closure. We will do them
   171       // as asserts here to minimize their overhead on the product. However, we
   172       // will have them as guarantees at the beginning / end of the bitmap
   173       // clearing to get some checking in the product.
   174       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
   175       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
   176     }
   178     return false;
   179   }
   180 };
   182 void CMBitMap::clearAll() {
   183   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
   184   G1CollectedHeap::heap()->heap_region_iterate(&cl);
   185   guarantee(cl.complete(), "Must have completed iteration.");
   186   return;
   187 }
   189 void CMBitMap::markRange(MemRegion mr) {
   190   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   191   assert(!mr.is_empty(), "unexpected empty region");
   192   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   193           ((HeapWord *) mr.end())),
   194          "markRange memory region end is not card aligned");
   195   // convert address range into offset range
   196   _bm.at_put_range(heapWordToOffset(mr.start()),
   197                    heapWordToOffset(mr.end()), true);
   198 }
   200 void CMBitMap::clearRange(MemRegion mr) {
   201   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   202   assert(!mr.is_empty(), "unexpected empty region");
   203   // convert address range into offset range
   204   _bm.at_put_range(heapWordToOffset(mr.start()),
   205                    heapWordToOffset(mr.end()), false);
   206 }
   208 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   209                                             HeapWord* end_addr) {
   210   HeapWord* start = getNextMarkedWordAddress(addr);
   211   start = MIN2(start, end_addr);
   212   HeapWord* end   = getNextUnmarkedWordAddress(start);
   213   end = MIN2(end, end_addr);
   214   assert(start <= end, "Consistency check");
   215   MemRegion mr(start, end);
   216   if (!mr.is_empty()) {
   217     clearRange(mr);
   218   }
   219   return mr;
   220 }
   222 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   223   _base(NULL), _cm(cm)
   224 #ifdef ASSERT
   225   , _drain_in_progress(false)
   226   , _drain_in_progress_yields(false)
   227 #endif
   228 {}
   230 bool CMMarkStack::allocate(size_t capacity) {
   231   // allocate a stack of the requisite depth
   232   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   233   if (!rs.is_reserved()) {
   234     warning("ConcurrentMark MarkStack allocation failure");
   235     return false;
   236   }
   237   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   238   if (!_virtual_space.initialize(rs, rs.size())) {
   239     warning("ConcurrentMark MarkStack backing store failure");
   240     // Release the virtual memory reserved for the marking stack
   241     rs.release();
   242     return false;
   243   }
   244   assert(_virtual_space.committed_size() == rs.size(),
   245          "Didn't reserve backing store for all of ConcurrentMark stack?");
   246   _base = (oop*) _virtual_space.low();
   247   setEmpty();
   248   _capacity = (jint) capacity;
   249   _saved_index = -1;
   250   _should_expand = false;
   251   NOT_PRODUCT(_max_depth = 0);
   252   return true;
   253 }
   255 void CMMarkStack::expand() {
   256   // Called, during remark, if we've overflown the marking stack during marking.
   257   assert(isEmpty(), "stack should been emptied while handling overflow");
   258   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   259   // Clear expansion flag
   260   _should_expand = false;
   261   if (_capacity == (jint) MarkStackSizeMax) {
   262     if (PrintGCDetails && Verbose) {
   263       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   264     }
   265     return;
   266   }
   267   // Double capacity if possible
   268   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   269   // Do not give up existing stack until we have managed to
   270   // get the double capacity that we desired.
   271   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   272                                                            sizeof(oop)));
   273   if (rs.is_reserved()) {
   274     // Release the backing store associated with old stack
   275     _virtual_space.release();
   276     // Reinitialize virtual space for new stack
   277     if (!_virtual_space.initialize(rs, rs.size())) {
   278       fatal("Not enough swap for expanded marking stack capacity");
   279     }
   280     _base = (oop*)(_virtual_space.low());
   281     _index = 0;
   282     _capacity = new_capacity;
   283   } else {
   284     if (PrintGCDetails && Verbose) {
   285       // Failed to double capacity, continue;
   286       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   287                           SIZE_FORMAT "K to " SIZE_FORMAT "K",
   288                           _capacity / K, new_capacity / K);
   289     }
   290   }
   291 }
   293 void CMMarkStack::set_should_expand() {
   294   // If we're resetting the marking state because of an
   295   // marking stack overflow, record that we should, if
   296   // possible, expand the stack.
   297   _should_expand = _cm->has_overflown();
   298 }
   300 CMMarkStack::~CMMarkStack() {
   301   if (_base != NULL) {
   302     _base = NULL;
   303     _virtual_space.release();
   304   }
   305 }
   307 void CMMarkStack::par_push(oop ptr) {
   308   while (true) {
   309     if (isFull()) {
   310       _overflow = true;
   311       return;
   312     }
   313     // Otherwise...
   314     jint index = _index;
   315     jint next_index = index+1;
   316     jint res = Atomic::cmpxchg(next_index, &_index, index);
   317     if (res == index) {
   318       _base[index] = ptr;
   319       // Note that we don't maintain this atomically.  We could, but it
   320       // doesn't seem necessary.
   321       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   322       return;
   323     }
   324     // Otherwise, we need to try again.
   325   }
   326 }
   328 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   329   while (true) {
   330     if (isFull()) {
   331       _overflow = true;
   332       return;
   333     }
   334     // Otherwise...
   335     jint index = _index;
   336     jint next_index = index + n;
   337     if (next_index > _capacity) {
   338       _overflow = true;
   339       return;
   340     }
   341     jint res = Atomic::cmpxchg(next_index, &_index, index);
   342     if (res == index) {
   343       for (int i = 0; i < n; i++) {
   344         int  ind = index + i;
   345         assert(ind < _capacity, "By overflow test above.");
   346         _base[ind] = ptr_arr[i];
   347       }
   348       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   349       return;
   350     }
   351     // Otherwise, we need to try again.
   352   }
   353 }
   355 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   356   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   357   jint start = _index;
   358   jint next_index = start + n;
   359   if (next_index > _capacity) {
   360     _overflow = true;
   361     return;
   362   }
   363   // Otherwise.
   364   _index = next_index;
   365   for (int i = 0; i < n; i++) {
   366     int ind = start + i;
   367     assert(ind < _capacity, "By overflow test above.");
   368     _base[ind] = ptr_arr[i];
   369   }
   370   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   371 }
   373 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   374   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   375   jint index = _index;
   376   if (index == 0) {
   377     *n = 0;
   378     return false;
   379   } else {
   380     int k = MIN2(max, index);
   381     jint  new_ind = index - k;
   382     for (int j = 0; j < k; j++) {
   383       ptr_arr[j] = _base[new_ind + j];
   384     }
   385     _index = new_ind;
   386     *n = k;
   387     return true;
   388   }
   389 }
   391 template<class OopClosureClass>
   392 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   393   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   394          || SafepointSynchronize::is_at_safepoint(),
   395          "Drain recursion must be yield-safe.");
   396   bool res = true;
   397   debug_only(_drain_in_progress = true);
   398   debug_only(_drain_in_progress_yields = yield_after);
   399   while (!isEmpty()) {
   400     oop newOop = pop();
   401     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   402     assert(newOop->is_oop(), "Expected an oop");
   403     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   404            "only grey objects on this stack");
   405     newOop->oop_iterate(cl);
   406     if (yield_after && _cm->do_yield_check()) {
   407       res = false;
   408       break;
   409     }
   410   }
   411   debug_only(_drain_in_progress = false);
   412   return res;
   413 }
   415 void CMMarkStack::note_start_of_gc() {
   416   assert(_saved_index == -1,
   417          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   418   _saved_index = _index;
   419 }
   421 void CMMarkStack::note_end_of_gc() {
   422   // This is intentionally a guarantee, instead of an assert. If we
   423   // accidentally add something to the mark stack during GC, it
   424   // will be a correctness issue so it's better if we crash. we'll
   425   // only check this once per GC anyway, so it won't be a performance
   426   // issue in any way.
   427   guarantee(_saved_index == _index,
   428             err_msg("saved index: %d index: %d", _saved_index, _index));
   429   _saved_index = -1;
   430 }
   432 void CMMarkStack::oops_do(OopClosure* f) {
   433   assert(_saved_index == _index,
   434          err_msg("saved index: %d index: %d", _saved_index, _index));
   435   for (int i = 0; i < _index; i += 1) {
   436     f->do_oop(&_base[i]);
   437   }
   438 }
   440 CMRootRegions::CMRootRegions() :
   441   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   442   _should_abort(false),  _next_survivor(NULL) { }
   444 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   445   _young_list = g1h->young_list();
   446   _cm = cm;
   447 }
   449 void CMRootRegions::prepare_for_scan() {
   450   assert(!scan_in_progress(), "pre-condition");
   452   // Currently, only survivors can be root regions.
   453   assert(_next_survivor == NULL, "pre-condition");
   454   _next_survivor = _young_list->first_survivor_region();
   455   _scan_in_progress = (_next_survivor != NULL);
   456   _should_abort = false;
   457 }
   459 HeapRegion* CMRootRegions::claim_next() {
   460   if (_should_abort) {
   461     // If someone has set the should_abort flag, we return NULL to
   462     // force the caller to bail out of their loop.
   463     return NULL;
   464   }
   466   // Currently, only survivors can be root regions.
   467   HeapRegion* res = _next_survivor;
   468   if (res != NULL) {
   469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   470     // Read it again in case it changed while we were waiting for the lock.
   471     res = _next_survivor;
   472     if (res != NULL) {
   473       if (res == _young_list->last_survivor_region()) {
   474         // We just claimed the last survivor so store NULL to indicate
   475         // that we're done.
   476         _next_survivor = NULL;
   477       } else {
   478         _next_survivor = res->get_next_young_region();
   479       }
   480     } else {
   481       // Someone else claimed the last survivor while we were trying
   482       // to take the lock so nothing else to do.
   483     }
   484   }
   485   assert(res == NULL || res->is_survivor(), "post-condition");
   487   return res;
   488 }
   490 void CMRootRegions::scan_finished() {
   491   assert(scan_in_progress(), "pre-condition");
   493   // Currently, only survivors can be root regions.
   494   if (!_should_abort) {
   495     assert(_next_survivor == NULL, "we should have claimed all survivors");
   496   }
   497   _next_survivor = NULL;
   499   {
   500     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   501     _scan_in_progress = false;
   502     RootRegionScan_lock->notify_all();
   503   }
   504 }
   506 bool CMRootRegions::wait_until_scan_finished() {
   507   if (!scan_in_progress()) return false;
   509   {
   510     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   511     while (scan_in_progress()) {
   512       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   513     }
   514   }
   515   return true;
   516 }
   518 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   519 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   520 #endif // _MSC_VER
   522 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   523   return MAX2((n_par_threads + 2) / 4, 1U);
   524 }
   526 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
   527   _g1h(g1h),
   528   _markBitMap1(),
   529   _markBitMap2(),
   530   _parallel_marking_threads(0),
   531   _max_parallel_marking_threads(0),
   532   _sleep_factor(0.0),
   533   _marking_task_overhead(1.0),
   534   _cleanup_sleep_factor(0.0),
   535   _cleanup_task_overhead(1.0),
   536   _cleanup_list("Cleanup List"),
   537   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   538   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
   539             CardTableModRefBS::card_shift,
   540             false /* in_resource_area*/),
   542   _prevMarkBitMap(&_markBitMap1),
   543   _nextMarkBitMap(&_markBitMap2),
   545   _markStack(this),
   546   // _finger set in set_non_marking_state
   548   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   549   // _active_tasks set in set_non_marking_state
   550   // _tasks set inside the constructor
   551   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   552   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   554   _has_overflown(false),
   555   _concurrent(false),
   556   _has_aborted(false),
   557   _aborted_gc_id(GCId::undefined()),
   558   _restart_for_overflow(false),
   559   _concurrent_marking_in_progress(false),
   561   // _verbose_level set below
   563   _init_times(),
   564   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   565   _cleanup_times(),
   566   _total_counting_time(0.0),
   567   _total_rs_scrub_time(0.0),
   569   _parallel_workers(NULL),
   571   _count_card_bitmaps(NULL),
   572   _count_marked_bytes(NULL),
   573   _completed_initialization(false) {
   574   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   575   if (verbose_level < no_verbose) {
   576     verbose_level = no_verbose;
   577   }
   578   if (verbose_level > high_verbose) {
   579     verbose_level = high_verbose;
   580   }
   581   _verbose_level = verbose_level;
   583   if (verbose_low()) {
   584     gclog_or_tty->print_cr("[global] init, heap start = " PTR_FORMAT", "
   585                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
   586   }
   588   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
   589   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
   591   // Create & start a ConcurrentMark thread.
   592   _cmThread = new ConcurrentMarkThread(this);
   593   assert(cmThread() != NULL, "CM Thread should have been created");
   594   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   595   if (_cmThread->osthread() == NULL) {
   596       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   597   }
   599   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   600   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
   601   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
   603   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   604   satb_qs.set_buffer_size(G1SATBBufferSize);
   606   _root_regions.init(_g1h, this);
   608   if (ConcGCThreads > ParallelGCThreads) {
   609     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
   610             "than ParallelGCThreads (" UINTX_FORMAT ").",
   611             ConcGCThreads, ParallelGCThreads);
   612     return;
   613   }
   614   if (ParallelGCThreads == 0) {
   615     // if we are not running with any parallel GC threads we will not
   616     // spawn any marking threads either
   617     _parallel_marking_threads =       0;
   618     _max_parallel_marking_threads =   0;
   619     _sleep_factor             =     0.0;
   620     _marking_task_overhead    =     1.0;
   621   } else {
   622     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   623       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   624       // if both are set
   625       _sleep_factor             = 0.0;
   626       _marking_task_overhead    = 1.0;
   627     } else if (G1MarkingOverheadPercent > 0) {
   628       // We will calculate the number of parallel marking threads based
   629       // on a target overhead with respect to the soft real-time goal
   630       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   631       double overall_cm_overhead =
   632         (double) MaxGCPauseMillis * marking_overhead /
   633         (double) GCPauseIntervalMillis;
   634       double cpu_ratio = 1.0 / os::initial_active_processor_count();
   635       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   636       double marking_task_overhead =
   637         overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
   638       double sleep_factor =
   639                          (1.0 - marking_task_overhead) / marking_task_overhead;
   641       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   642       _sleep_factor             = sleep_factor;
   643       _marking_task_overhead    = marking_task_overhead;
   644     } else {
   645       // Calculate the number of parallel marking threads by scaling
   646       // the number of parallel GC threads.
   647       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   648       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   649       _sleep_factor             = 0.0;
   650       _marking_task_overhead    = 1.0;
   651     }
   653     assert(ConcGCThreads > 0, "Should have been set");
   654     _parallel_marking_threads = (uint) ConcGCThreads;
   655     _max_parallel_marking_threads = _parallel_marking_threads;
   657     if (parallel_marking_threads() > 1) {
   658       _cleanup_task_overhead = 1.0;
   659     } else {
   660       _cleanup_task_overhead = marking_task_overhead();
   661     }
   662     _cleanup_sleep_factor =
   663                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   665 #if 0
   666     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   667     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   668     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   669     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   670     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   671 #endif
   673     guarantee(parallel_marking_threads() > 0, "peace of mind");
   674     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   675          _max_parallel_marking_threads, false, true);
   676     if (_parallel_workers == NULL) {
   677       vm_exit_during_initialization("Failed necessary allocation.");
   678     } else {
   679       _parallel_workers->initialize_workers();
   680     }
   681   }
   683   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   684     uintx mark_stack_size =
   685       MIN2(MarkStackSizeMax,
   686           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   687     // Verify that the calculated value for MarkStackSize is in range.
   688     // It would be nice to use the private utility routine from Arguments.
   689     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   690       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   691               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   692               mark_stack_size, (uintx) 1, MarkStackSizeMax);
   693       return;
   694     }
   695     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   696   } else {
   697     // Verify MarkStackSize is in range.
   698     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   699       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   700         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   701           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   702                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   703                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
   704           return;
   705         }
   706       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   707         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   708           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   709                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   710                   MarkStackSize, MarkStackSizeMax);
   711           return;
   712         }
   713       }
   714     }
   715   }
   717   if (!_markStack.allocate(MarkStackSize)) {
   718     warning("Failed to allocate CM marking stack");
   719     return;
   720   }
   722   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   723   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   725   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   726   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   728   BitMap::idx_t card_bm_size = _card_bm.size();
   730   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   731   _active_tasks = _max_worker_id;
   733   size_t max_regions = (size_t) _g1h->max_regions();
   734   for (uint i = 0; i < _max_worker_id; ++i) {
   735     CMTaskQueue* task_queue = new CMTaskQueue();
   736     task_queue->initialize();
   737     _task_queues->register_queue(i, task_queue);
   739     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   740     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   742     _tasks[i] = new CMTask(i, this,
   743                            _count_marked_bytes[i],
   744                            &_count_card_bitmaps[i],
   745                            task_queue, _task_queues);
   747     _accum_task_vtime[i] = 0.0;
   748   }
   750   // Calculate the card number for the bottom of the heap. Used
   751   // in biasing indexes into the accounting card bitmaps.
   752   _heap_bottom_card_num =
   753     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   754                                 CardTableModRefBS::card_shift);
   756   // Clear all the liveness counting data
   757   clear_all_count_data();
   759   // so that the call below can read a sensible value
   760   _heap_start = g1h->reserved_region().start();
   761   set_non_marking_state();
   762   _completed_initialization = true;
   763 }
   765 void ConcurrentMark::reset() {
   766   // Starting values for these two. This should be called in a STW
   767   // phase.
   768   MemRegion reserved = _g1h->g1_reserved();
   769   _heap_start = reserved.start();
   770   _heap_end   = reserved.end();
   772   // Separated the asserts so that we know which one fires.
   773   assert(_heap_start != NULL, "heap bounds should look ok");
   774   assert(_heap_end != NULL, "heap bounds should look ok");
   775   assert(_heap_start < _heap_end, "heap bounds should look ok");
   777   // Reset all the marking data structures and any necessary flags
   778   reset_marking_state();
   780   if (verbose_low()) {
   781     gclog_or_tty->print_cr("[global] resetting");
   782   }
   784   // We do reset all of them, since different phases will use
   785   // different number of active threads. So, it's easiest to have all
   786   // of them ready.
   787   for (uint i = 0; i < _max_worker_id; ++i) {
   788     _tasks[i]->reset(_nextMarkBitMap);
   789   }
   791   // we need this to make sure that the flag is on during the evac
   792   // pause with initial mark piggy-backed
   793   set_concurrent_marking_in_progress();
   794 }
   797 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   798   _markStack.set_should_expand();
   799   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   800   if (clear_overflow) {
   801     clear_has_overflown();
   802   } else {
   803     assert(has_overflown(), "pre-condition");
   804   }
   805   _finger = _heap_start;
   807   for (uint i = 0; i < _max_worker_id; ++i) {
   808     CMTaskQueue* queue = _task_queues->queue(i);
   809     queue->set_empty();
   810   }
   811 }
   813 void ConcurrentMark::set_concurrency(uint active_tasks) {
   814   assert(active_tasks <= _max_worker_id, "we should not have more");
   816   _active_tasks = active_tasks;
   817   // Need to update the three data structures below according to the
   818   // number of active threads for this phase.
   819   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   820   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   821   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   822 }
   824 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   825   set_concurrency(active_tasks);
   827   _concurrent = concurrent;
   828   // We propagate this to all tasks, not just the active ones.
   829   for (uint i = 0; i < _max_worker_id; ++i)
   830     _tasks[i]->set_concurrent(concurrent);
   832   if (concurrent) {
   833     set_concurrent_marking_in_progress();
   834   } else {
   835     // We currently assume that the concurrent flag has been set to
   836     // false before we start remark. At this point we should also be
   837     // in a STW phase.
   838     assert(!concurrent_marking_in_progress(), "invariant");
   839     assert(out_of_regions(),
   840            err_msg("only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
   841                    p2i(_finger), p2i(_heap_end)));
   842   }
   843 }
   845 void ConcurrentMark::set_non_marking_state() {
   846   // We set the global marking state to some default values when we're
   847   // not doing marking.
   848   reset_marking_state();
   849   _active_tasks = 0;
   850   clear_concurrent_marking_in_progress();
   851 }
   853 ConcurrentMark::~ConcurrentMark() {
   854   // The ConcurrentMark instance is never freed.
   855   ShouldNotReachHere();
   856 }
   858 void ConcurrentMark::clearNextBitmap() {
   859   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   861   // Make sure that the concurrent mark thread looks to still be in
   862   // the current cycle.
   863   guarantee(cmThread()->during_cycle(), "invariant");
   865   // We are finishing up the current cycle by clearing the next
   866   // marking bitmap and getting it ready for the next cycle. During
   867   // this time no other cycle can start. So, let's make sure that this
   868   // is the case.
   869   guarantee(!g1h->mark_in_progress(), "invariant");
   871   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
   872   g1h->heap_region_iterate(&cl);
   874   // Clear the liveness counting data. If the marking has been aborted, the abort()
   875   // call already did that.
   876   if (cl.complete()) {
   877     clear_all_count_data();
   878   }
   880   // Repeat the asserts from above.
   881   guarantee(cmThread()->during_cycle(), "invariant");
   882   guarantee(!g1h->mark_in_progress(), "invariant");
   883 }
   885 class CheckBitmapClearHRClosure : public HeapRegionClosure {
   886   CMBitMap* _bitmap;
   887   bool _error;
   888  public:
   889   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
   890   }
   892   virtual bool doHeapRegion(HeapRegion* r) {
   893     // This closure can be called concurrently to the mutator, so we must make sure
   894     // that the result of the getNextMarkedWordAddress() call is compared to the
   895     // value passed to it as limit to detect any found bits.
   896     // We can use the region's orig_end() for the limit and the comparison value
   897     // as it always contains the "real" end of the region that never changes and
   898     // has no side effects.
   899     // Due to the latter, there can also be no problem with the compiler generating
   900     // reloads of the orig_end() call.
   901     HeapWord* end = r->orig_end();
   902     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
   903   }
   904 };
   906 bool ConcurrentMark::nextMarkBitmapIsClear() {
   907   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
   908   _g1h->heap_region_iterate(&cl);
   909   return cl.complete();
   910 }
   912 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   913 public:
   914   bool doHeapRegion(HeapRegion* r) {
   915     if (!r->continuesHumongous()) {
   916       r->note_start_of_marking();
   917     }
   918     return false;
   919   }
   920 };
   922 void ConcurrentMark::checkpointRootsInitialPre() {
   923   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   924   G1CollectorPolicy* g1p = g1h->g1_policy();
   926   _has_aborted = false;
   928 #ifndef PRODUCT
   929   if (G1PrintReachableAtInitialMark) {
   930     print_reachable("at-cycle-start",
   931                     VerifyOption_G1UsePrevMarking, true /* all */);
   932   }
   933 #endif
   935   // Initialise marking structures. This has to be done in a STW phase.
   936   reset();
   938   // For each region note start of marking.
   939   NoteStartOfMarkHRClosure startcl;
   940   g1h->heap_region_iterate(&startcl);
   941 }
   944 void ConcurrentMark::checkpointRootsInitialPost() {
   945   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   947   // If we force an overflow during remark, the remark operation will
   948   // actually abort and we'll restart concurrent marking. If we always
   949   // force an oveflow during remark we'll never actually complete the
   950   // marking phase. So, we initilize this here, at the start of the
   951   // cycle, so that at the remaining overflow number will decrease at
   952   // every remark and we'll eventually not need to cause one.
   953   force_overflow_stw()->init();
   955   // Start Concurrent Marking weak-reference discovery.
   956   ReferenceProcessor* rp = g1h->ref_processor_cm();
   957   // enable ("weak") refs discovery
   958   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   959   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   961   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   962   // This is the start of  the marking cycle, we're expected all
   963   // threads to have SATB queues with active set to false.
   964   satb_mq_set.set_active_all_threads(true, /* new active value */
   965                                      false /* expected_active */);
   967   _root_regions.prepare_for_scan();
   969   // update_g1_committed() will be called at the end of an evac pause
   970   // when marking is on. So, it's also called at the end of the
   971   // initial-mark pause to update the heap end, if the heap expands
   972   // during it. No need to call it here.
   973 }
   975 /*
   976  * Notice that in the next two methods, we actually leave the STS
   977  * during the barrier sync and join it immediately afterwards. If we
   978  * do not do this, the following deadlock can occur: one thread could
   979  * be in the barrier sync code, waiting for the other thread to also
   980  * sync up, whereas another one could be trying to yield, while also
   981  * waiting for the other threads to sync up too.
   982  *
   983  * Note, however, that this code is also used during remark and in
   984  * this case we should not attempt to leave / enter the STS, otherwise
   985  * we'll either hit an asseert (debug / fastdebug) or deadlock
   986  * (product). So we should only leave / enter the STS if we are
   987  * operating concurrently.
   988  *
   989  * Because the thread that does the sync barrier has left the STS, it
   990  * is possible to be suspended for a Full GC or an evacuation pause
   991  * could occur. This is actually safe, since the entering the sync
   992  * barrier is one of the last things do_marking_step() does, and it
   993  * doesn't manipulate any data structures afterwards.
   994  */
   996 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   997   if (verbose_low()) {
   998     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   999   }
  1001   if (concurrent()) {
  1002     SuspendibleThreadSet::leave();
  1005   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
  1007   if (concurrent()) {
  1008     SuspendibleThreadSet::join();
  1010   // at this point everyone should have synced up and not be doing any
  1011   // more work
  1013   if (verbose_low()) {
  1014     if (barrier_aborted) {
  1015       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
  1016     } else {
  1017       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
  1021   if (barrier_aborted) {
  1022     // If the barrier aborted we ignore the overflow condition and
  1023     // just abort the whole marking phase as quickly as possible.
  1024     return;
  1027   // If we're executing the concurrent phase of marking, reset the marking
  1028   // state; otherwise the marking state is reset after reference processing,
  1029   // during the remark pause.
  1030   // If we reset here as a result of an overflow during the remark we will
  1031   // see assertion failures from any subsequent set_concurrency_and_phase()
  1032   // calls.
  1033   if (concurrent()) {
  1034     // let the task associated with with worker 0 do this
  1035     if (worker_id == 0) {
  1036       // task 0 is responsible for clearing the global data structures
  1037       // We should be here because of an overflow. During STW we should
  1038       // not clear the overflow flag since we rely on it being true when
  1039       // we exit this method to abort the pause and restart concurent
  1040       // marking.
  1041       reset_marking_state(true /* clear_overflow */);
  1042       force_overflow()->update();
  1044       if (G1Log::fine()) {
  1045         gclog_or_tty->gclog_stamp(concurrent_gc_id());
  1046         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1051   // after this, each task should reset its own data structures then
  1052   // then go into the second barrier
  1055 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1056   if (verbose_low()) {
  1057     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1060   if (concurrent()) {
  1061     SuspendibleThreadSet::leave();
  1064   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
  1066   if (concurrent()) {
  1067     SuspendibleThreadSet::join();
  1069   // at this point everything should be re-initialized and ready to go
  1071   if (verbose_low()) {
  1072     if (barrier_aborted) {
  1073       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
  1074     } else {
  1075       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1080 #ifndef PRODUCT
  1081 void ForceOverflowSettings::init() {
  1082   _num_remaining = G1ConcMarkForceOverflow;
  1083   _force = false;
  1084   update();
  1087 void ForceOverflowSettings::update() {
  1088   if (_num_remaining > 0) {
  1089     _num_remaining -= 1;
  1090     _force = true;
  1091   } else {
  1092     _force = false;
  1096 bool ForceOverflowSettings::should_force() {
  1097   if (_force) {
  1098     _force = false;
  1099     return true;
  1100   } else {
  1101     return false;
  1104 #endif // !PRODUCT
  1106 class CMConcurrentMarkingTask: public AbstractGangTask {
  1107 private:
  1108   ConcurrentMark*       _cm;
  1109   ConcurrentMarkThread* _cmt;
  1111 public:
  1112   void work(uint worker_id) {
  1113     assert(Thread::current()->is_ConcurrentGC_thread(),
  1114            "this should only be done by a conc GC thread");
  1115     ResourceMark rm;
  1117     double start_vtime = os::elapsedVTime();
  1119     SuspendibleThreadSet::join();
  1121     assert(worker_id < _cm->active_tasks(), "invariant");
  1122     CMTask* the_task = _cm->task(worker_id);
  1123     the_task->record_start_time();
  1124     if (!_cm->has_aborted()) {
  1125       do {
  1126         double start_vtime_sec = os::elapsedVTime();
  1127         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1129         the_task->do_marking_step(mark_step_duration_ms,
  1130                                   true  /* do_termination */,
  1131                                   false /* is_serial*/);
  1133         double end_vtime_sec = os::elapsedVTime();
  1134         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1135         _cm->clear_has_overflown();
  1137         _cm->do_yield_check(worker_id);
  1139         jlong sleep_time_ms;
  1140         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1141           sleep_time_ms =
  1142             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1143           SuspendibleThreadSet::leave();
  1144           os::sleep(Thread::current(), sleep_time_ms, false);
  1145           SuspendibleThreadSet::join();
  1147       } while (!_cm->has_aborted() && the_task->has_aborted());
  1149     the_task->record_end_time();
  1150     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1152     SuspendibleThreadSet::leave();
  1154     double end_vtime = os::elapsedVTime();
  1155     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1158   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1159                           ConcurrentMarkThread* cmt) :
  1160       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1162   ~CMConcurrentMarkingTask() { }
  1163 };
  1165 // Calculates the number of active workers for a concurrent
  1166 // phase.
  1167 uint ConcurrentMark::calc_parallel_marking_threads() {
  1168   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1169     uint n_conc_workers = 0;
  1170     if (!UseDynamicNumberOfGCThreads ||
  1171         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1172          !ForceDynamicNumberOfGCThreads)) {
  1173       n_conc_workers = max_parallel_marking_threads();
  1174     } else {
  1175       n_conc_workers =
  1176         AdaptiveSizePolicy::calc_default_active_workers(
  1177                                      max_parallel_marking_threads(),
  1178                                      1, /* Minimum workers */
  1179                                      parallel_marking_threads(),
  1180                                      Threads::number_of_non_daemon_threads());
  1181       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1182       // that scaling has already gone into "_max_parallel_marking_threads".
  1184     assert(n_conc_workers > 0, "Always need at least 1");
  1185     return n_conc_workers;
  1187   // If we are not running with any parallel GC threads we will not
  1188   // have spawned any marking threads either. Hence the number of
  1189   // concurrent workers should be 0.
  1190   return 0;
  1193 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1194   // Currently, only survivors can be root regions.
  1195   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1196   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1198   const uintx interval = PrefetchScanIntervalInBytes;
  1199   HeapWord* curr = hr->bottom();
  1200   const HeapWord* end = hr->top();
  1201   while (curr < end) {
  1202     Prefetch::read(curr, interval);
  1203     oop obj = oop(curr);
  1204     int size = obj->oop_iterate(&cl);
  1205     assert(size == obj->size(), "sanity");
  1206     curr += size;
  1210 class CMRootRegionScanTask : public AbstractGangTask {
  1211 private:
  1212   ConcurrentMark* _cm;
  1214 public:
  1215   CMRootRegionScanTask(ConcurrentMark* cm) :
  1216     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1218   void work(uint worker_id) {
  1219     assert(Thread::current()->is_ConcurrentGC_thread(),
  1220            "this should only be done by a conc GC thread");
  1222     CMRootRegions* root_regions = _cm->root_regions();
  1223     HeapRegion* hr = root_regions->claim_next();
  1224     while (hr != NULL) {
  1225       _cm->scanRootRegion(hr, worker_id);
  1226       hr = root_regions->claim_next();
  1229 };
  1231 void ConcurrentMark::scanRootRegions() {
  1232   // Start of concurrent marking.
  1233   ClassLoaderDataGraph::clear_claimed_marks();
  1235   // scan_in_progress() will have been set to true only if there was
  1236   // at least one root region to scan. So, if it's false, we
  1237   // should not attempt to do any further work.
  1238   if (root_regions()->scan_in_progress()) {
  1239     _parallel_marking_threads = calc_parallel_marking_threads();
  1240     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1241            "Maximum number of marking threads exceeded");
  1242     uint active_workers = MAX2(1U, parallel_marking_threads());
  1244     CMRootRegionScanTask task(this);
  1245     if (use_parallel_marking_threads()) {
  1246       _parallel_workers->set_active_workers((int) active_workers);
  1247       _parallel_workers->run_task(&task);
  1248     } else {
  1249       task.work(0);
  1252     // It's possible that has_aborted() is true here without actually
  1253     // aborting the survivor scan earlier. This is OK as it's
  1254     // mainly used for sanity checking.
  1255     root_regions()->scan_finished();
  1259 void ConcurrentMark::markFromRoots() {
  1260   // we might be tempted to assert that:
  1261   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1262   //        "inconsistent argument?");
  1263   // However that wouldn't be right, because it's possible that
  1264   // a safepoint is indeed in progress as a younger generation
  1265   // stop-the-world GC happens even as we mark in this generation.
  1267   _restart_for_overflow = false;
  1268   force_overflow_conc()->init();
  1270   // _g1h has _n_par_threads
  1271   _parallel_marking_threads = calc_parallel_marking_threads();
  1272   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1273     "Maximum number of marking threads exceeded");
  1275   uint active_workers = MAX2(1U, parallel_marking_threads());
  1277   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1278   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1280   CMConcurrentMarkingTask markingTask(this, cmThread());
  1281   if (use_parallel_marking_threads()) {
  1282     _parallel_workers->set_active_workers((int)active_workers);
  1283     // Don't set _n_par_threads because it affects MT in process_roots()
  1284     // and the decisions on that MT processing is made elsewhere.
  1285     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1286     _parallel_workers->run_task(&markingTask);
  1287   } else {
  1288     markingTask.work(0);
  1290   print_stats();
  1293 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1294   // world is stopped at this checkpoint
  1295   assert(SafepointSynchronize::is_at_safepoint(),
  1296          "world should be stopped");
  1298   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1300   // If a full collection has happened, we shouldn't do this.
  1301   if (has_aborted()) {
  1302     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1303     return;
  1306   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1308   if (VerifyDuringGC) {
  1309     HandleMark hm;  // handle scope
  1310     Universe::heap()->prepare_for_verify();
  1311     Universe::verify(VerifyOption_G1UsePrevMarking,
  1312                      " VerifyDuringGC:(before)");
  1314   g1h->check_bitmaps("Remark Start");
  1316   G1CollectorPolicy* g1p = g1h->g1_policy();
  1317   g1p->record_concurrent_mark_remark_start();
  1319   double start = os::elapsedTime();
  1321   checkpointRootsFinalWork();
  1323   double mark_work_end = os::elapsedTime();
  1325   weakRefsWork(clear_all_soft_refs);
  1327   if (has_overflown()) {
  1328     // Oops.  We overflowed.  Restart concurrent marking.
  1329     _restart_for_overflow = true;
  1330     if (G1TraceMarkStackOverflow) {
  1331       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1334     // Verify the heap w.r.t. the previous marking bitmap.
  1335     if (VerifyDuringGC) {
  1336       HandleMark hm;  // handle scope
  1337       Universe::heap()->prepare_for_verify();
  1338       Universe::verify(VerifyOption_G1UsePrevMarking,
  1339                        " VerifyDuringGC:(overflow)");
  1342     // Clear the marking state because we will be restarting
  1343     // marking due to overflowing the global mark stack.
  1344     reset_marking_state();
  1345   } else {
  1346     // Aggregate the per-task counting data that we have accumulated
  1347     // while marking.
  1348     aggregate_count_data();
  1350     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1351     // We're done with marking.
  1352     // This is the end of  the marking cycle, we're expected all
  1353     // threads to have SATB queues with active set to true.
  1354     satb_mq_set.set_active_all_threads(false, /* new active value */
  1355                                        true /* expected_active */);
  1357     if (VerifyDuringGC) {
  1358       HandleMark hm;  // handle scope
  1359       Universe::heap()->prepare_for_verify();
  1360       Universe::verify(VerifyOption_G1UseNextMarking,
  1361                        " VerifyDuringGC:(after)");
  1363     g1h->check_bitmaps("Remark End");
  1364     assert(!restart_for_overflow(), "sanity");
  1365     // Completely reset the marking state since marking completed
  1366     set_non_marking_state();
  1369   // Expand the marking stack, if we have to and if we can.
  1370   if (_markStack.should_expand()) {
  1371     _markStack.expand();
  1374   // Statistics
  1375   double now = os::elapsedTime();
  1376   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1377   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1378   _remark_times.add((now - start) * 1000.0);
  1380   g1p->record_concurrent_mark_remark_end();
  1382   G1CMIsAliveClosure is_alive(g1h);
  1383   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1386 // Base class of the closures that finalize and verify the
  1387 // liveness counting data.
  1388 class CMCountDataClosureBase: public HeapRegionClosure {
  1389 protected:
  1390   G1CollectedHeap* _g1h;
  1391   ConcurrentMark* _cm;
  1392   CardTableModRefBS* _ct_bs;
  1394   BitMap* _region_bm;
  1395   BitMap* _card_bm;
  1397   // Takes a region that's not empty (i.e., it has at least one
  1398   // live object in it and sets its corresponding bit on the region
  1399   // bitmap to 1. If the region is "starts humongous" it will also set
  1400   // to 1 the bits on the region bitmap that correspond to its
  1401   // associated "continues humongous" regions.
  1402   void set_bit_for_region(HeapRegion* hr) {
  1403     assert(!hr->continuesHumongous(), "should have filtered those out");
  1405     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
  1406     if (!hr->startsHumongous()) {
  1407       // Normal (non-humongous) case: just set the bit.
  1408       _region_bm->par_at_put(index, true);
  1409     } else {
  1410       // Starts humongous case: calculate how many regions are part of
  1411       // this humongous region and then set the bit range.
  1412       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1413       _region_bm->par_at_put_range(index, end_index, true);
  1417 public:
  1418   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1419                          BitMap* region_bm, BitMap* card_bm):
  1420     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1421     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1422     _region_bm(region_bm), _card_bm(card_bm) { }
  1423 };
  1425 // Closure that calculates the # live objects per region. Used
  1426 // for verification purposes during the cleanup pause.
  1427 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1428   CMBitMapRO* _bm;
  1429   size_t _region_marked_bytes;
  1431 public:
  1432   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1433                          BitMap* region_bm, BitMap* card_bm) :
  1434     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1435     _bm(bm), _region_marked_bytes(0) { }
  1437   bool doHeapRegion(HeapRegion* hr) {
  1439     if (hr->continuesHumongous()) {
  1440       // We will ignore these here and process them when their
  1441       // associated "starts humongous" region is processed (see
  1442       // set_bit_for_heap_region()). Note that we cannot rely on their
  1443       // associated "starts humongous" region to have their bit set to
  1444       // 1 since, due to the region chunking in the parallel region
  1445       // iteration, a "continues humongous" region might be visited
  1446       // before its associated "starts humongous".
  1447       return false;
  1450     HeapWord* ntams = hr->next_top_at_mark_start();
  1451     HeapWord* start = hr->bottom();
  1453     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1454            err_msg("Preconditions not met - "
  1455                    "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
  1456                    p2i(start), p2i(ntams), p2i(hr->end())));
  1458     // Find the first marked object at or after "start".
  1459     start = _bm->getNextMarkedWordAddress(start, ntams);
  1461     size_t marked_bytes = 0;
  1463     while (start < ntams) {
  1464       oop obj = oop(start);
  1465       int obj_sz = obj->size();
  1466       HeapWord* obj_end = start + obj_sz;
  1468       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1469       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1471       // Note: if we're looking at the last region in heap - obj_end
  1472       // could be actually just beyond the end of the heap; end_idx
  1473       // will then correspond to a (non-existent) card that is also
  1474       // just beyond the heap.
  1475       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1476         // end of object is not card aligned - increment to cover
  1477         // all the cards spanned by the object
  1478         end_idx += 1;
  1481       // Set the bits in the card BM for the cards spanned by this object.
  1482       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1484       // Add the size of this object to the number of marked bytes.
  1485       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1487       // Find the next marked object after this one.
  1488       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1491     // Mark the allocated-since-marking portion...
  1492     HeapWord* top = hr->top();
  1493     if (ntams < top) {
  1494       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1495       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1497       // Note: if we're looking at the last region in heap - top
  1498       // could be actually just beyond the end of the heap; end_idx
  1499       // will then correspond to a (non-existent) card that is also
  1500       // just beyond the heap.
  1501       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1502         // end of object is not card aligned - increment to cover
  1503         // all the cards spanned by the object
  1504         end_idx += 1;
  1506       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1508       // This definitely means the region has live objects.
  1509       set_bit_for_region(hr);
  1512     // Update the live region bitmap.
  1513     if (marked_bytes > 0) {
  1514       set_bit_for_region(hr);
  1517     // Set the marked bytes for the current region so that
  1518     // it can be queried by a calling verificiation routine
  1519     _region_marked_bytes = marked_bytes;
  1521     return false;
  1524   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1525 };
  1527 // Heap region closure used for verifying the counting data
  1528 // that was accumulated concurrently and aggregated during
  1529 // the remark pause. This closure is applied to the heap
  1530 // regions during the STW cleanup pause.
  1532 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1533   G1CollectedHeap* _g1h;
  1534   ConcurrentMark* _cm;
  1535   CalcLiveObjectsClosure _calc_cl;
  1536   BitMap* _region_bm;   // Region BM to be verified
  1537   BitMap* _card_bm;     // Card BM to be verified
  1538   bool _verbose;        // verbose output?
  1540   BitMap* _exp_region_bm; // Expected Region BM values
  1541   BitMap* _exp_card_bm;   // Expected card BM values
  1543   int _failures;
  1545 public:
  1546   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1547                                 BitMap* region_bm,
  1548                                 BitMap* card_bm,
  1549                                 BitMap* exp_region_bm,
  1550                                 BitMap* exp_card_bm,
  1551                                 bool verbose) :
  1552     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1553     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1554     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1555     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1556     _failures(0) { }
  1558   int failures() const { return _failures; }
  1560   bool doHeapRegion(HeapRegion* hr) {
  1561     if (hr->continuesHumongous()) {
  1562       // We will ignore these here and process them when their
  1563       // associated "starts humongous" region is processed (see
  1564       // set_bit_for_heap_region()). Note that we cannot rely on their
  1565       // associated "starts humongous" region to have their bit set to
  1566       // 1 since, due to the region chunking in the parallel region
  1567       // iteration, a "continues humongous" region might be visited
  1568       // before its associated "starts humongous".
  1569       return false;
  1572     int failures = 0;
  1574     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1575     // this region and set the corresponding bits in the expected region
  1576     // and card bitmaps.
  1577     bool res = _calc_cl.doHeapRegion(hr);
  1578     assert(res == false, "should be continuing");
  1580     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1581                     Mutex::_no_safepoint_check_flag);
  1583     // Verify the marked bytes for this region.
  1584     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1585     size_t act_marked_bytes = hr->next_marked_bytes();
  1587     // We're not OK if expected marked bytes > actual marked bytes. It means
  1588     // we have missed accounting some objects during the actual marking.
  1589     if (exp_marked_bytes > act_marked_bytes) {
  1590       if (_verbose) {
  1591         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1592                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1593                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
  1595       failures += 1;
  1598     // Verify the bit, for this region, in the actual and expected
  1599     // (which was just calculated) region bit maps.
  1600     // We're not OK if the bit in the calculated expected region
  1601     // bitmap is set and the bit in the actual region bitmap is not.
  1602     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
  1604     bool expected = _exp_region_bm->at(index);
  1605     bool actual = _region_bm->at(index);
  1606     if (expected && !actual) {
  1607       if (_verbose) {
  1608         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1609                                "expected: %s, actual: %s",
  1610                                hr->hrm_index(),
  1611                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1613       failures += 1;
  1616     // Verify that the card bit maps for the cards spanned by the current
  1617     // region match. We have an error if we have a set bit in the expected
  1618     // bit map and the corresponding bit in the actual bitmap is not set.
  1620     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1621     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1623     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1624       expected = _exp_card_bm->at(i);
  1625       actual = _card_bm->at(i);
  1627       if (expected && !actual) {
  1628         if (_verbose) {
  1629           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1630                                  "expected: %s, actual: %s",
  1631                                  hr->hrm_index(), i,
  1632                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1634         failures += 1;
  1638     if (failures > 0 && _verbose)  {
  1639       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1640                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1641                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
  1642                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1645     _failures += failures;
  1647     // We could stop iteration over the heap when we
  1648     // find the first violating region by returning true.
  1649     return false;
  1651 };
  1653 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1654 protected:
  1655   G1CollectedHeap* _g1h;
  1656   ConcurrentMark* _cm;
  1657   BitMap* _actual_region_bm;
  1658   BitMap* _actual_card_bm;
  1660   uint    _n_workers;
  1662   BitMap* _expected_region_bm;
  1663   BitMap* _expected_card_bm;
  1665   int  _failures;
  1666   bool _verbose;
  1668 public:
  1669   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1670                             BitMap* region_bm, BitMap* card_bm,
  1671                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1672     : AbstractGangTask("G1 verify final counting"),
  1673       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1674       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1675       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1676       _failures(0), _verbose(false),
  1677       _n_workers(0) {
  1678     assert(VerifyDuringGC, "don't call this otherwise");
  1680     // Use the value already set as the number of active threads
  1681     // in the call to run_task().
  1682     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1683       assert( _g1h->workers()->active_workers() > 0,
  1684         "Should have been previously set");
  1685       _n_workers = _g1h->workers()->active_workers();
  1686     } else {
  1687       _n_workers = 1;
  1690     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1691     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1693     _verbose = _cm->verbose_medium();
  1696   void work(uint worker_id) {
  1697     assert(worker_id < _n_workers, "invariant");
  1699     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1700                                             _actual_region_bm, _actual_card_bm,
  1701                                             _expected_region_bm,
  1702                                             _expected_card_bm,
  1703                                             _verbose);
  1705     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1706       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1707                                             worker_id,
  1708                                             _n_workers,
  1709                                             HeapRegion::VerifyCountClaimValue);
  1710     } else {
  1711       _g1h->heap_region_iterate(&verify_cl);
  1714     Atomic::add(verify_cl.failures(), &_failures);
  1717   int failures() const { return _failures; }
  1718 };
  1720 // Closure that finalizes the liveness counting data.
  1721 // Used during the cleanup pause.
  1722 // Sets the bits corresponding to the interval [NTAMS, top]
  1723 // (which contains the implicitly live objects) in the
  1724 // card liveness bitmap. Also sets the bit for each region,
  1725 // containing live data, in the region liveness bitmap.
  1727 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1728  public:
  1729   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1730                               BitMap* region_bm,
  1731                               BitMap* card_bm) :
  1732     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1734   bool doHeapRegion(HeapRegion* hr) {
  1736     if (hr->continuesHumongous()) {
  1737       // We will ignore these here and process them when their
  1738       // associated "starts humongous" region is processed (see
  1739       // set_bit_for_heap_region()). Note that we cannot rely on their
  1740       // associated "starts humongous" region to have their bit set to
  1741       // 1 since, due to the region chunking in the parallel region
  1742       // iteration, a "continues humongous" region might be visited
  1743       // before its associated "starts humongous".
  1744       return false;
  1747     HeapWord* ntams = hr->next_top_at_mark_start();
  1748     HeapWord* top   = hr->top();
  1750     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1752     // Mark the allocated-since-marking portion...
  1753     if (ntams < top) {
  1754       // This definitely means the region has live objects.
  1755       set_bit_for_region(hr);
  1757       // Now set the bits in the card bitmap for [ntams, top)
  1758       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1759       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1761       // Note: if we're looking at the last region in heap - top
  1762       // could be actually just beyond the end of the heap; end_idx
  1763       // will then correspond to a (non-existent) card that is also
  1764       // just beyond the heap.
  1765       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1766         // end of object is not card aligned - increment to cover
  1767         // all the cards spanned by the object
  1768         end_idx += 1;
  1771       assert(end_idx <= _card_bm->size(),
  1772              err_msg("oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
  1773                      end_idx, _card_bm->size()));
  1774       assert(start_idx < _card_bm->size(),
  1775              err_msg("oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
  1776                      start_idx, _card_bm->size()));
  1778       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1781     // Set the bit for the region if it contains live data
  1782     if (hr->next_marked_bytes() > 0) {
  1783       set_bit_for_region(hr);
  1786     return false;
  1788 };
  1790 class G1ParFinalCountTask: public AbstractGangTask {
  1791 protected:
  1792   G1CollectedHeap* _g1h;
  1793   ConcurrentMark* _cm;
  1794   BitMap* _actual_region_bm;
  1795   BitMap* _actual_card_bm;
  1797   uint    _n_workers;
  1799 public:
  1800   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1801     : AbstractGangTask("G1 final counting"),
  1802       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1803       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1804       _n_workers(0) {
  1805     // Use the value already set as the number of active threads
  1806     // in the call to run_task().
  1807     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1808       assert( _g1h->workers()->active_workers() > 0,
  1809         "Should have been previously set");
  1810       _n_workers = _g1h->workers()->active_workers();
  1811     } else {
  1812       _n_workers = 1;
  1816   void work(uint worker_id) {
  1817     assert(worker_id < _n_workers, "invariant");
  1819     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1820                                                 _actual_region_bm,
  1821                                                 _actual_card_bm);
  1823     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1824       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1825                                             worker_id,
  1826                                             _n_workers,
  1827                                             HeapRegion::FinalCountClaimValue);
  1828     } else {
  1829       _g1h->heap_region_iterate(&final_update_cl);
  1832 };
  1834 class G1ParNoteEndTask;
  1836 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1837   G1CollectedHeap* _g1;
  1838   size_t _max_live_bytes;
  1839   uint _regions_claimed;
  1840   size_t _freed_bytes;
  1841   FreeRegionList* _local_cleanup_list;
  1842   HeapRegionSetCount _old_regions_removed;
  1843   HeapRegionSetCount _humongous_regions_removed;
  1844   HRRSCleanupTask* _hrrs_cleanup_task;
  1845   double _claimed_region_time;
  1846   double _max_region_time;
  1848 public:
  1849   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1850                              FreeRegionList* local_cleanup_list,
  1851                              HRRSCleanupTask* hrrs_cleanup_task) :
  1852     _g1(g1),
  1853     _max_live_bytes(0), _regions_claimed(0),
  1854     _freed_bytes(0),
  1855     _claimed_region_time(0.0), _max_region_time(0.0),
  1856     _local_cleanup_list(local_cleanup_list),
  1857     _old_regions_removed(),
  1858     _humongous_regions_removed(),
  1859     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1861   size_t freed_bytes() { return _freed_bytes; }
  1862   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1863   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1865   bool doHeapRegion(HeapRegion *hr) {
  1866     if (hr->continuesHumongous()) {
  1867       return false;
  1869     // We use a claim value of zero here because all regions
  1870     // were claimed with value 1 in the FinalCount task.
  1871     _g1->reset_gc_time_stamps(hr);
  1872     double start = os::elapsedTime();
  1873     _regions_claimed++;
  1874     hr->note_end_of_marking();
  1875     _max_live_bytes += hr->max_live_bytes();
  1877     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1878       _freed_bytes += hr->used();
  1879       hr->set_containing_set(NULL);
  1880       if (hr->isHumongous()) {
  1881         assert(hr->startsHumongous(), "we should only see starts humongous");
  1882         _humongous_regions_removed.increment(1u, hr->capacity());
  1883         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1884       } else {
  1885         _old_regions_removed.increment(1u, hr->capacity());
  1886         _g1->free_region(hr, _local_cleanup_list, true);
  1888     } else {
  1889       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1892     double region_time = (os::elapsedTime() - start);
  1893     _claimed_region_time += region_time;
  1894     if (region_time > _max_region_time) {
  1895       _max_region_time = region_time;
  1897     return false;
  1900   size_t max_live_bytes() { return _max_live_bytes; }
  1901   uint regions_claimed() { return _regions_claimed; }
  1902   double claimed_region_time_sec() { return _claimed_region_time; }
  1903   double max_region_time_sec() { return _max_region_time; }
  1904 };
  1906 class G1ParNoteEndTask: public AbstractGangTask {
  1907   friend class G1NoteEndOfConcMarkClosure;
  1909 protected:
  1910   G1CollectedHeap* _g1h;
  1911   size_t _max_live_bytes;
  1912   size_t _freed_bytes;
  1913   FreeRegionList* _cleanup_list;
  1915 public:
  1916   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1917                    FreeRegionList* cleanup_list) :
  1918     AbstractGangTask("G1 note end"), _g1h(g1h),
  1919     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1921   void work(uint worker_id) {
  1922     double start = os::elapsedTime();
  1923     FreeRegionList local_cleanup_list("Local Cleanup List");
  1924     HRRSCleanupTask hrrs_cleanup_task;
  1925     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
  1926                                            &hrrs_cleanup_task);
  1927     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1928       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1929                                             _g1h->workers()->active_workers(),
  1930                                             HeapRegion::NoteEndClaimValue);
  1931     } else {
  1932       _g1h->heap_region_iterate(&g1_note_end);
  1934     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1936     // Now update the lists
  1937     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1939       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1940       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1941       _max_live_bytes += g1_note_end.max_live_bytes();
  1942       _freed_bytes += g1_note_end.freed_bytes();
  1944       // If we iterate over the global cleanup list at the end of
  1945       // cleanup to do this printing we will not guarantee to only
  1946       // generate output for the newly-reclaimed regions (the list
  1947       // might not be empty at the beginning of cleanup; we might
  1948       // still be working on its previous contents). So we do the
  1949       // printing here, before we append the new regions to the global
  1950       // cleanup list.
  1952       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1953       if (hr_printer->is_active()) {
  1954         FreeRegionListIterator iter(&local_cleanup_list);
  1955         while (iter.more_available()) {
  1956           HeapRegion* hr = iter.get_next();
  1957           hr_printer->cleanup(hr);
  1961       _cleanup_list->add_ordered(&local_cleanup_list);
  1962       assert(local_cleanup_list.is_empty(), "post-condition");
  1964       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1967   size_t max_live_bytes() { return _max_live_bytes; }
  1968   size_t freed_bytes() { return _freed_bytes; }
  1969 };
  1971 class G1ParScrubRemSetTask: public AbstractGangTask {
  1972 protected:
  1973   G1RemSet* _g1rs;
  1974   BitMap* _region_bm;
  1975   BitMap* _card_bm;
  1976 public:
  1977   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1978                        BitMap* region_bm, BitMap* card_bm) :
  1979     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1980     _region_bm(region_bm), _card_bm(card_bm) { }
  1982   void work(uint worker_id) {
  1983     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1984       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1985                        HeapRegion::ScrubRemSetClaimValue);
  1986     } else {
  1987       _g1rs->scrub(_region_bm, _card_bm);
  1991 };
  1993 void ConcurrentMark::cleanup() {
  1994   // world is stopped at this checkpoint
  1995   assert(SafepointSynchronize::is_at_safepoint(),
  1996          "world should be stopped");
  1997   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1999   // If a full collection has happened, we shouldn't do this.
  2000   if (has_aborted()) {
  2001     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  2002     return;
  2005   g1h->verify_region_sets_optional();
  2007   if (VerifyDuringGC) {
  2008     HandleMark hm;  // handle scope
  2009     Universe::heap()->prepare_for_verify();
  2010     Universe::verify(VerifyOption_G1UsePrevMarking,
  2011                      " VerifyDuringGC:(before)");
  2013   g1h->check_bitmaps("Cleanup Start");
  2015   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2016   g1p->record_concurrent_mark_cleanup_start();
  2018   double start = os::elapsedTime();
  2020   HeapRegionRemSet::reset_for_cleanup_tasks();
  2022   uint n_workers;
  2024   // Do counting once more with the world stopped for good measure.
  2025   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2027   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2028    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2029            "sanity check");
  2031     g1h->set_par_threads();
  2032     n_workers = g1h->n_par_threads();
  2033     assert(g1h->n_par_threads() == n_workers,
  2034            "Should not have been reset");
  2035     g1h->workers()->run_task(&g1_par_count_task);
  2036     // Done with the parallel phase so reset to 0.
  2037     g1h->set_par_threads(0);
  2039     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2040            "sanity check");
  2041   } else {
  2042     n_workers = 1;
  2043     g1_par_count_task.work(0);
  2046   if (VerifyDuringGC) {
  2047     // Verify that the counting data accumulated during marking matches
  2048     // that calculated by walking the marking bitmap.
  2050     // Bitmaps to hold expected values
  2051     BitMap expected_region_bm(_region_bm.size(), true);
  2052     BitMap expected_card_bm(_card_bm.size(), true);
  2054     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2055                                                  &_region_bm,
  2056                                                  &_card_bm,
  2057                                                  &expected_region_bm,
  2058                                                  &expected_card_bm);
  2060     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2061       g1h->set_par_threads((int)n_workers);
  2062       g1h->workers()->run_task(&g1_par_verify_task);
  2063       // Done with the parallel phase so reset to 0.
  2064       g1h->set_par_threads(0);
  2066       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2067              "sanity check");
  2068     } else {
  2069       g1_par_verify_task.work(0);
  2072     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2075   size_t start_used_bytes = g1h->used();
  2076   g1h->set_marking_complete();
  2078   double count_end = os::elapsedTime();
  2079   double this_final_counting_time = (count_end - start);
  2080   _total_counting_time += this_final_counting_time;
  2082   if (G1PrintRegionLivenessInfo) {
  2083     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2084     _g1h->heap_region_iterate(&cl);
  2087   // Install newly created mark bitMap as "prev".
  2088   swapMarkBitMaps();
  2090   g1h->reset_gc_time_stamp();
  2092   // Note end of marking in all heap regions.
  2093   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2094   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2095     g1h->set_par_threads((int)n_workers);
  2096     g1h->workers()->run_task(&g1_par_note_end_task);
  2097     g1h->set_par_threads(0);
  2099     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2100            "sanity check");
  2101   } else {
  2102     g1_par_note_end_task.work(0);
  2104   g1h->check_gc_time_stamps();
  2106   if (!cleanup_list_is_empty()) {
  2107     // The cleanup list is not empty, so we'll have to process it
  2108     // concurrently. Notify anyone else that might be wanting free
  2109     // regions that there will be more free regions coming soon.
  2110     g1h->set_free_regions_coming();
  2113   // call below, since it affects the metric by which we sort the heap
  2114   // regions.
  2115   if (G1ScrubRemSets) {
  2116     double rs_scrub_start = os::elapsedTime();
  2117     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2118     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2119       g1h->set_par_threads((int)n_workers);
  2120       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2121       g1h->set_par_threads(0);
  2123       assert(g1h->check_heap_region_claim_values(
  2124                                             HeapRegion::ScrubRemSetClaimValue),
  2125              "sanity check");
  2126     } else {
  2127       g1_par_scrub_rs_task.work(0);
  2130     double rs_scrub_end = os::elapsedTime();
  2131     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2132     _total_rs_scrub_time += this_rs_scrub_time;
  2135   // this will also free any regions totally full of garbage objects,
  2136   // and sort the regions.
  2137   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2139   // Statistics.
  2140   double end = os::elapsedTime();
  2141   _cleanup_times.add((end - start) * 1000.0);
  2143   if (G1Log::fine()) {
  2144     g1h->print_size_transition(gclog_or_tty,
  2145                                start_used_bytes,
  2146                                g1h->used(),
  2147                                g1h->capacity());
  2150   // Clean up will have freed any regions completely full of garbage.
  2151   // Update the soft reference policy with the new heap occupancy.
  2152   Universe::update_heap_info_at_gc();
  2154   if (VerifyDuringGC) {
  2155     HandleMark hm;  // handle scope
  2156     Universe::heap()->prepare_for_verify();
  2157     Universe::verify(VerifyOption_G1UsePrevMarking,
  2158                      " VerifyDuringGC:(after)");
  2160   g1h->check_bitmaps("Cleanup End");
  2162   g1h->verify_region_sets_optional();
  2164   // We need to make this be a "collection" so any collection pause that
  2165   // races with it goes around and waits for completeCleanup to finish.
  2166   g1h->increment_total_collections();
  2168   // Clean out dead classes and update Metaspace sizes.
  2169   if (ClassUnloadingWithConcurrentMark) {
  2170     ClassLoaderDataGraph::purge();
  2172   MetaspaceGC::compute_new_size();
  2174   // We reclaimed old regions so we should calculate the sizes to make
  2175   // sure we update the old gen/space data.
  2176   g1h->g1mm()->update_sizes();
  2177   g1h->allocation_context_stats().update_after_mark();
  2179   g1h->trace_heap_after_concurrent_cycle();
  2182 void ConcurrentMark::completeCleanup() {
  2183   if (has_aborted()) return;
  2185   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2187   _cleanup_list.verify_optional();
  2188   FreeRegionList tmp_free_list("Tmp Free List");
  2190   if (G1ConcRegionFreeingVerbose) {
  2191     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2192                            "cleanup list has %u entries",
  2193                            _cleanup_list.length());
  2196   // No one else should be accessing the _cleanup_list at this point,
  2197   // so it is not necessary to take any locks
  2198   while (!_cleanup_list.is_empty()) {
  2199     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
  2200     assert(hr != NULL, "Got NULL from a non-empty list");
  2201     hr->par_clear();
  2202     tmp_free_list.add_ordered(hr);
  2204     // Instead of adding one region at a time to the secondary_free_list,
  2205     // we accumulate them in the local list and move them a few at a
  2206     // time. This also cuts down on the number of notify_all() calls
  2207     // we do during this process. We'll also append the local list when
  2208     // _cleanup_list is empty (which means we just removed the last
  2209     // region from the _cleanup_list).
  2210     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2211         _cleanup_list.is_empty()) {
  2212       if (G1ConcRegionFreeingVerbose) {
  2213         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2214                                "appending %u entries to the secondary_free_list, "
  2215                                "cleanup list still has %u entries",
  2216                                tmp_free_list.length(),
  2217                                _cleanup_list.length());
  2221         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2222         g1h->secondary_free_list_add(&tmp_free_list);
  2223         SecondaryFreeList_lock->notify_all();
  2226       if (G1StressConcRegionFreeing) {
  2227         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2228           os::sleep(Thread::current(), (jlong) 1, false);
  2233   assert(tmp_free_list.is_empty(), "post-condition");
  2236 // Supporting Object and Oop closures for reference discovery
  2237 // and processing in during marking
  2239 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2240   HeapWord* addr = (HeapWord*)obj;
  2241   return addr != NULL &&
  2242          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2245 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2246 // Uses the CMTask associated with a worker thread (for serial reference
  2247 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2248 // trace referent objects.
  2249 //
  2250 // Using the CMTask and embedded local queues avoids having the worker
  2251 // threads operating on the global mark stack. This reduces the risk
  2252 // of overflowing the stack - which we would rather avoid at this late
  2253 // state. Also using the tasks' local queues removes the potential
  2254 // of the workers interfering with each other that could occur if
  2255 // operating on the global stack.
  2257 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2258   ConcurrentMark* _cm;
  2259   CMTask*         _task;
  2260   int             _ref_counter_limit;
  2261   int             _ref_counter;
  2262   bool            _is_serial;
  2263  public:
  2264   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2265     _cm(cm), _task(task), _is_serial(is_serial),
  2266     _ref_counter_limit(G1RefProcDrainInterval) {
  2267     assert(_ref_counter_limit > 0, "sanity");
  2268     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2269     _ref_counter = _ref_counter_limit;
  2272   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2273   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2275   template <class T> void do_oop_work(T* p) {
  2276     if (!_cm->has_overflown()) {
  2277       oop obj = oopDesc::load_decode_heap_oop(p);
  2278       if (_cm->verbose_high()) {
  2279         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2280                                "*" PTR_FORMAT " = " PTR_FORMAT,
  2281                                _task->worker_id(), p2i(p), p2i((void*) obj));
  2284       _task->deal_with_reference(obj);
  2285       _ref_counter--;
  2287       if (_ref_counter == 0) {
  2288         // We have dealt with _ref_counter_limit references, pushing them
  2289         // and objects reachable from them on to the local stack (and
  2290         // possibly the global stack). Call CMTask::do_marking_step() to
  2291         // process these entries.
  2292         //
  2293         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2294         // there's nothing more to do (i.e. we're done with the entries that
  2295         // were pushed as a result of the CMTask::deal_with_reference() calls
  2296         // above) or we overflow.
  2297         //
  2298         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2299         // flag while there may still be some work to do. (See the comment at
  2300         // the beginning of CMTask::do_marking_step() for those conditions -
  2301         // one of which is reaching the specified time target.) It is only
  2302         // when CMTask::do_marking_step() returns without setting the
  2303         // has_aborted() flag that the marking step has completed.
  2304         do {
  2305           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2306           _task->do_marking_step(mark_step_duration_ms,
  2307                                  false      /* do_termination */,
  2308                                  _is_serial);
  2309         } while (_task->has_aborted() && !_cm->has_overflown());
  2310         _ref_counter = _ref_counter_limit;
  2312     } else {
  2313       if (_cm->verbose_high()) {
  2314          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2318 };
  2320 // 'Drain' oop closure used by both serial and parallel reference processing.
  2321 // Uses the CMTask associated with a given worker thread (for serial
  2322 // reference processing the CMtask for worker 0 is used). Calls the
  2323 // do_marking_step routine, with an unbelievably large timeout value,
  2324 // to drain the marking data structures of the remaining entries
  2325 // added by the 'keep alive' oop closure above.
  2327 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2328   ConcurrentMark* _cm;
  2329   CMTask*         _task;
  2330   bool            _is_serial;
  2331  public:
  2332   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2333     _cm(cm), _task(task), _is_serial(is_serial) {
  2334     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2337   void do_void() {
  2338     do {
  2339       if (_cm->verbose_high()) {
  2340         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2341                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2344       // We call CMTask::do_marking_step() to completely drain the local
  2345       // and global marking stacks of entries pushed by the 'keep alive'
  2346       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2347       //
  2348       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2349       // if there's nothing more to do (i.e. we'completely drained the
  2350       // entries that were pushed as a a result of applying the 'keep alive'
  2351       // closure to the entries on the discovered ref lists) or we overflow
  2352       // the global marking stack.
  2353       //
  2354       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2355       // flag while there may still be some work to do. (See the comment at
  2356       // the beginning of CMTask::do_marking_step() for those conditions -
  2357       // one of which is reaching the specified time target.) It is only
  2358       // when CMTask::do_marking_step() returns without setting the
  2359       // has_aborted() flag that the marking step has completed.
  2361       _task->do_marking_step(1000000000.0 /* something very large */,
  2362                              true         /* do_termination */,
  2363                              _is_serial);
  2364     } while (_task->has_aborted() && !_cm->has_overflown());
  2366 };
  2368 // Implementation of AbstractRefProcTaskExecutor for parallel
  2369 // reference processing at the end of G1 concurrent marking
  2371 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2372 private:
  2373   G1CollectedHeap* _g1h;
  2374   ConcurrentMark*  _cm;
  2375   WorkGang*        _workers;
  2376   int              _active_workers;
  2378 public:
  2379   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2380                         ConcurrentMark* cm,
  2381                         WorkGang* workers,
  2382                         int n_workers) :
  2383     _g1h(g1h), _cm(cm),
  2384     _workers(workers), _active_workers(n_workers) { }
  2386   // Executes the given task using concurrent marking worker threads.
  2387   virtual void execute(ProcessTask& task);
  2388   virtual void execute(EnqueueTask& task);
  2389 };
  2391 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2392   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2393   ProcessTask&     _proc_task;
  2394   G1CollectedHeap* _g1h;
  2395   ConcurrentMark*  _cm;
  2397 public:
  2398   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2399                      G1CollectedHeap* g1h,
  2400                      ConcurrentMark* cm) :
  2401     AbstractGangTask("Process reference objects in parallel"),
  2402     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2403     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2404     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2407   virtual void work(uint worker_id) {
  2408     ResourceMark rm;
  2409     HandleMark hm;
  2410     CMTask* task = _cm->task(worker_id);
  2411     G1CMIsAliveClosure g1_is_alive(_g1h);
  2412     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2413     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2415     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2417 };
  2419 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2420   assert(_workers != NULL, "Need parallel worker threads.");
  2421   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2423   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2425   // We need to reset the concurrency level before each
  2426   // proxy task execution, so that the termination protocol
  2427   // and overflow handling in CMTask::do_marking_step() knows
  2428   // how many workers to wait for.
  2429   _cm->set_concurrency(_active_workers);
  2430   _g1h->set_par_threads(_active_workers);
  2431   _workers->run_task(&proc_task_proxy);
  2432   _g1h->set_par_threads(0);
  2435 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2436   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2437   EnqueueTask& _enq_task;
  2439 public:
  2440   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2441     AbstractGangTask("Enqueue reference objects in parallel"),
  2442     _enq_task(enq_task) { }
  2444   virtual void work(uint worker_id) {
  2445     _enq_task.work(worker_id);
  2447 };
  2449 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2450   assert(_workers != NULL, "Need parallel worker threads.");
  2451   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2453   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2455   // Not strictly necessary but...
  2456   //
  2457   // We need to reset the concurrency level before each
  2458   // proxy task execution, so that the termination protocol
  2459   // and overflow handling in CMTask::do_marking_step() knows
  2460   // how many workers to wait for.
  2461   _cm->set_concurrency(_active_workers);
  2462   _g1h->set_par_threads(_active_workers);
  2463   _workers->run_task(&enq_task_proxy);
  2464   _g1h->set_par_threads(0);
  2467 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  2468   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
  2471 // Helper class to get rid of some boilerplate code.
  2472 class G1RemarkGCTraceTime : public GCTraceTime {
  2473   static bool doit_and_prepend(bool doit) {
  2474     if (doit) {
  2475       gclog_or_tty->put(' ');
  2477     return doit;
  2480  public:
  2481   G1RemarkGCTraceTime(const char* title, bool doit)
  2482     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
  2483         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  2485 };
  2487 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2488   if (has_overflown()) {
  2489     // Skip processing the discovered references if we have
  2490     // overflown the global marking stack. Reference objects
  2491     // only get discovered once so it is OK to not
  2492     // de-populate the discovered reference lists. We could have,
  2493     // but the only benefit would be that, when marking restarts,
  2494     // less reference objects are discovered.
  2495     return;
  2498   ResourceMark rm;
  2499   HandleMark   hm;
  2501   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2503   // Is alive closure.
  2504   G1CMIsAliveClosure g1_is_alive(g1h);
  2506   // Inner scope to exclude the cleaning of the string and symbol
  2507   // tables from the displayed time.
  2509     if (G1Log::finer()) {
  2510       gclog_or_tty->put(' ');
  2512     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
  2514     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2516     // See the comment in G1CollectedHeap::ref_processing_init()
  2517     // about how reference processing currently works in G1.
  2519     // Set the soft reference policy
  2520     rp->setup_policy(clear_all_soft_refs);
  2521     assert(_markStack.isEmpty(), "mark stack should be empty");
  2523     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2524     // in serial reference processing. Note these closures are also
  2525     // used for serially processing (by the the current thread) the
  2526     // JNI references during parallel reference processing.
  2527     //
  2528     // These closures do not need to synchronize with the worker
  2529     // threads involved in parallel reference processing as these
  2530     // instances are executed serially by the current thread (e.g.
  2531     // reference processing is not multi-threaded and is thus
  2532     // performed by the current thread instead of a gang worker).
  2533     //
  2534     // The gang tasks involved in parallel reference procssing create
  2535     // their own instances of these closures, which do their own
  2536     // synchronization among themselves.
  2537     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2538     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2540     // We need at least one active thread. If reference processing
  2541     // is not multi-threaded we use the current (VMThread) thread,
  2542     // otherwise we use the work gang from the G1CollectedHeap and
  2543     // we utilize all the worker threads we can.
  2544     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2545     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2546     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2548     // Parallel processing task executor.
  2549     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2550                                               g1h->workers(), active_workers);
  2551     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2553     // Set the concurrency level. The phase was already set prior to
  2554     // executing the remark task.
  2555     set_concurrency(active_workers);
  2557     // Set the degree of MT processing here.  If the discovery was done MT,
  2558     // the number of threads involved during discovery could differ from
  2559     // the number of active workers.  This is OK as long as the discovered
  2560     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2561     rp->set_active_mt_degree(active_workers);
  2563     // Process the weak references.
  2564     const ReferenceProcessorStats& stats =
  2565         rp->process_discovered_references(&g1_is_alive,
  2566                                           &g1_keep_alive,
  2567                                           &g1_drain_mark_stack,
  2568                                           executor,
  2569                                           g1h->gc_timer_cm(),
  2570                                           concurrent_gc_id());
  2571     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2573     // The do_oop work routines of the keep_alive and drain_marking_stack
  2574     // oop closures will set the has_overflown flag if we overflow the
  2575     // global marking stack.
  2577     assert(_markStack.overflow() || _markStack.isEmpty(),
  2578             "mark stack should be empty (unless it overflowed)");
  2580     if (_markStack.overflow()) {
  2581       // This should have been done already when we tried to push an
  2582       // entry on to the global mark stack. But let's do it again.
  2583       set_has_overflown();
  2586     assert(rp->num_q() == active_workers, "why not");
  2588     rp->enqueue_discovered_references(executor);
  2590     rp->verify_no_references_recorded();
  2591     assert(!rp->discovery_enabled(), "Post condition");
  2594   if (has_overflown()) {
  2595     // We can not trust g1_is_alive if the marking stack overflowed
  2596     return;
  2599   assert(_markStack.isEmpty(), "Marking should have completed");
  2601   // Unload Klasses, String, Symbols, Code Cache, etc.
  2603     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
  2605     if (ClassUnloadingWithConcurrentMark) {
  2606       // Cleaning of klasses depends on correct information from MetadataMarkOnStack. The CodeCache::mark_on_stack
  2607       // part is too slow to be done serially, so it is handled during the weakRefsWorkParallelPart phase.
  2608       // Defer the cleaning until we have complete on_stack data.
  2609       MetadataOnStackMark md_on_stack(false /* Don't visit the code cache at this point */);
  2611       bool purged_classes;
  2614         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
  2615         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
  2619         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
  2620         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
  2624         G1RemarkGCTraceTime trace("Deallocate Metadata", G1Log::finest());
  2625         ClassLoaderDataGraph::free_deallocate_lists();
  2629     if (G1StringDedup::is_enabled()) {
  2630       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
  2631       G1StringDedup::unlink(&g1_is_alive);
  2636 void ConcurrentMark::swapMarkBitMaps() {
  2637   CMBitMapRO* temp = _prevMarkBitMap;
  2638   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2639   _nextMarkBitMap  = (CMBitMap*)  temp;
  2642 // Closure for marking entries in SATB buffers.
  2643 class CMSATBBufferClosure : public SATBBufferClosure {
  2644 private:
  2645   CMTask* _task;
  2646   G1CollectedHeap* _g1h;
  2648   // This is very similar to CMTask::deal_with_reference, but with
  2649   // more relaxed requirements for the argument, so this must be more
  2650   // circumspect about treating the argument as an object.
  2651   void do_entry(void* entry) const {
  2652     _task->increment_refs_reached();
  2653     HeapRegion* hr = _g1h->heap_region_containing_raw(entry);
  2654     if (entry < hr->next_top_at_mark_start()) {
  2655       // Until we get here, we don't know whether entry refers to a valid
  2656       // object; it could instead have been a stale reference.
  2657       oop obj = static_cast<oop>(entry);
  2658       assert(obj->is_oop(true /* ignore mark word */),
  2659              err_msg("Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj)));
  2660       _task->make_reference_grey(obj, hr);
  2664 public:
  2665   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
  2666     : _task(task), _g1h(g1h) { }
  2668   virtual void do_buffer(void** buffer, size_t size) {
  2669     for (size_t i = 0; i < size; ++i) {
  2670       do_entry(buffer[i]);
  2673 };
  2675 class G1RemarkThreadsClosure : public ThreadClosure {
  2676   CMSATBBufferClosure _cm_satb_cl;
  2677   G1CMOopClosure _cm_cl;
  2678   MarkingCodeBlobClosure _code_cl;
  2679   int _thread_parity;
  2680   bool _is_par;
  2682  public:
  2683   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
  2684     _cm_satb_cl(task, g1h),
  2685     _cm_cl(g1h, g1h->concurrent_mark(), task),
  2686     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
  2687     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
  2689   void do_thread(Thread* thread) {
  2690     if (thread->is_Java_thread()) {
  2691       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2692         JavaThread* jt = (JavaThread*)thread;
  2694         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
  2695         // however the liveness of oops reachable from nmethods have very complex lifecycles:
  2696         // * Alive if on the stack of an executing method
  2697         // * Weakly reachable otherwise
  2698         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
  2699         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
  2700         jt->nmethods_do(&_code_cl);
  2702         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
  2704     } else if (thread->is_VM_thread()) {
  2705       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2706         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
  2710 };
  2712 class CMRemarkTask: public AbstractGangTask {
  2713 private:
  2714   ConcurrentMark* _cm;
  2715   bool            _is_serial;
  2716 public:
  2717   void work(uint worker_id) {
  2718     // Since all available tasks are actually started, we should
  2719     // only proceed if we're supposed to be actived.
  2720     if (worker_id < _cm->active_tasks()) {
  2721       CMTask* task = _cm->task(worker_id);
  2722       task->record_start_time();
  2724         ResourceMark rm;
  2725         HandleMark hm;
  2727         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
  2728         Threads::threads_do(&threads_f);
  2731       do {
  2732         task->do_marking_step(1000000000.0 /* something very large */,
  2733                               true         /* do_termination       */,
  2734                               _is_serial);
  2735       } while (task->has_aborted() && !_cm->has_overflown());
  2736       // If we overflow, then we do not want to restart. We instead
  2737       // want to abort remark and do concurrent marking again.
  2738       task->record_end_time();
  2742   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2743     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2744     _cm->terminator()->reset_for_reuse(active_workers);
  2746 };
  2748 void ConcurrentMark::checkpointRootsFinalWork() {
  2749   ResourceMark rm;
  2750   HandleMark   hm;
  2751   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2753   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
  2755   g1h->ensure_parsability(false);
  2757   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2758     G1CollectedHeap::StrongRootsScope srs(g1h);
  2759     // this is remark, so we'll use up all active threads
  2760     uint active_workers = g1h->workers()->active_workers();
  2761     if (active_workers == 0) {
  2762       assert(active_workers > 0, "Should have been set earlier");
  2763       active_workers = (uint) ParallelGCThreads;
  2764       g1h->workers()->set_active_workers(active_workers);
  2766     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2767     // Leave _parallel_marking_threads at it's
  2768     // value originally calculated in the ConcurrentMark
  2769     // constructor and pass values of the active workers
  2770     // through the gang in the task.
  2772     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2773     // We will start all available threads, even if we decide that the
  2774     // active_workers will be fewer. The extra ones will just bail out
  2775     // immediately.
  2776     g1h->set_par_threads(active_workers);
  2777     g1h->workers()->run_task(&remarkTask);
  2778     g1h->set_par_threads(0);
  2779   } else {
  2780     G1CollectedHeap::StrongRootsScope srs(g1h);
  2781     uint active_workers = 1;
  2782     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2784     // Note - if there's no work gang then the VMThread will be
  2785     // the thread to execute the remark - serially. We have
  2786     // to pass true for the is_serial parameter so that
  2787     // CMTask::do_marking_step() doesn't enter the sync
  2788     // barriers in the event of an overflow. Doing so will
  2789     // cause an assert that the current thread is not a
  2790     // concurrent GC thread.
  2791     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2792     remarkTask.work(0);
  2794   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2795   guarantee(has_overflown() ||
  2796             satb_mq_set.completed_buffers_num() == 0,
  2797             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2798                     BOOL_TO_STR(has_overflown()),
  2799                     satb_mq_set.completed_buffers_num()));
  2801   print_stats();
  2804 #ifndef PRODUCT
  2806 class PrintReachableOopClosure: public OopClosure {
  2807 private:
  2808   G1CollectedHeap* _g1h;
  2809   outputStream*    _out;
  2810   VerifyOption     _vo;
  2811   bool             _all;
  2813 public:
  2814   PrintReachableOopClosure(outputStream* out,
  2815                            VerifyOption  vo,
  2816                            bool          all) :
  2817     _g1h(G1CollectedHeap::heap()),
  2818     _out(out), _vo(vo), _all(all) { }
  2820   void do_oop(narrowOop* p) { do_oop_work(p); }
  2821   void do_oop(      oop* p) { do_oop_work(p); }
  2823   template <class T> void do_oop_work(T* p) {
  2824     oop         obj = oopDesc::load_decode_heap_oop(p);
  2825     const char* str = NULL;
  2826     const char* str2 = "";
  2828     if (obj == NULL) {
  2829       str = "";
  2830     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2831       str = " O";
  2832     } else {
  2833       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2834       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2835       bool marked = _g1h->is_marked(obj, _vo);
  2837       if (over_tams) {
  2838         str = " >";
  2839         if (marked) {
  2840           str2 = " AND MARKED";
  2842       } else if (marked) {
  2843         str = " M";
  2844       } else {
  2845         str = " NOT";
  2849     _out->print_cr("  " PTR_FORMAT ": " PTR_FORMAT "%s%s",
  2850                    p2i(p), p2i((void*) obj), str, str2);
  2852 };
  2854 class PrintReachableObjectClosure : public ObjectClosure {
  2855 private:
  2856   G1CollectedHeap* _g1h;
  2857   outputStream*    _out;
  2858   VerifyOption     _vo;
  2859   bool             _all;
  2860   HeapRegion*      _hr;
  2862 public:
  2863   PrintReachableObjectClosure(outputStream* out,
  2864                               VerifyOption  vo,
  2865                               bool          all,
  2866                               HeapRegion*   hr) :
  2867     _g1h(G1CollectedHeap::heap()),
  2868     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2870   void do_object(oop o) {
  2871     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2872     bool marked = _g1h->is_marked(o, _vo);
  2873     bool print_it = _all || over_tams || marked;
  2875     if (print_it) {
  2876       _out->print_cr(" " PTR_FORMAT "%s",
  2877                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
  2878       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2879       o->oop_iterate_no_header(&oopCl);
  2882 };
  2884 class PrintReachableRegionClosure : public HeapRegionClosure {
  2885 private:
  2886   G1CollectedHeap* _g1h;
  2887   outputStream*    _out;
  2888   VerifyOption     _vo;
  2889   bool             _all;
  2891 public:
  2892   bool doHeapRegion(HeapRegion* hr) {
  2893     HeapWord* b = hr->bottom();
  2894     HeapWord* e = hr->end();
  2895     HeapWord* t = hr->top();
  2896     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2897     _out->print_cr("** [" PTR_FORMAT ", " PTR_FORMAT "] top: " PTR_FORMAT " "
  2898                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
  2899     _out->cr();
  2901     HeapWord* from = b;
  2902     HeapWord* to   = t;
  2904     if (to > from) {
  2905       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
  2906       _out->cr();
  2907       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2908       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2909       _out->cr();
  2912     return false;
  2915   PrintReachableRegionClosure(outputStream* out,
  2916                               VerifyOption  vo,
  2917                               bool          all) :
  2918     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2919 };
  2921 void ConcurrentMark::print_reachable(const char* str,
  2922                                      VerifyOption vo,
  2923                                      bool all) {
  2924   gclog_or_tty->cr();
  2925   gclog_or_tty->print_cr("== Doing heap dump... ");
  2927   if (G1PrintReachableBaseFile == NULL) {
  2928     gclog_or_tty->print_cr("  #### error: no base file defined");
  2929     return;
  2932   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2933       (JVM_MAXPATHLEN - 1)) {
  2934     gclog_or_tty->print_cr("  #### error: file name too long");
  2935     return;
  2938   char file_name[JVM_MAXPATHLEN];
  2939   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2940   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2942   fileStream fout(file_name);
  2943   if (!fout.is_open()) {
  2944     gclog_or_tty->print_cr("  #### error: could not open file");
  2945     return;
  2948   outputStream* out = &fout;
  2949   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2950   out->cr();
  2952   out->print_cr("--- ITERATING OVER REGIONS");
  2953   out->cr();
  2954   PrintReachableRegionClosure rcl(out, vo, all);
  2955   _g1h->heap_region_iterate(&rcl);
  2956   out->cr();
  2958   gclog_or_tty->print_cr("  done");
  2959   gclog_or_tty->flush();
  2962 #endif // PRODUCT
  2964 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2965   // Note we are overriding the read-only view of the prev map here, via
  2966   // the cast.
  2967   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2970 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2971   _nextMarkBitMap->clearRange(mr);
  2974 HeapRegion*
  2975 ConcurrentMark::claim_region(uint worker_id) {
  2976   // "checkpoint" the finger
  2977   HeapWord* finger = _finger;
  2979   // _heap_end will not change underneath our feet; it only changes at
  2980   // yield points.
  2981   while (finger < _heap_end) {
  2982     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2984     // Note on how this code handles humongous regions. In the
  2985     // normal case the finger will reach the start of a "starts
  2986     // humongous" (SH) region. Its end will either be the end of the
  2987     // last "continues humongous" (CH) region in the sequence, or the
  2988     // standard end of the SH region (if the SH is the only region in
  2989     // the sequence). That way claim_region() will skip over the CH
  2990     // regions. However, there is a subtle race between a CM thread
  2991     // executing this method and a mutator thread doing a humongous
  2992     // object allocation. The two are not mutually exclusive as the CM
  2993     // thread does not need to hold the Heap_lock when it gets
  2994     // here. So there is a chance that claim_region() will come across
  2995     // a free region that's in the progress of becoming a SH or a CH
  2996     // region. In the former case, it will either
  2997     //   a) Miss the update to the region's end, in which case it will
  2998     //      visit every subsequent CH region, will find their bitmaps
  2999     //      empty, and do nothing, or
  3000     //   b) Will observe the update of the region's end (in which case
  3001     //      it will skip the subsequent CH regions).
  3002     // If it comes across a region that suddenly becomes CH, the
  3003     // scenario will be similar to b). So, the race between
  3004     // claim_region() and a humongous object allocation might force us
  3005     // to do a bit of unnecessary work (due to some unnecessary bitmap
  3006     // iterations) but it should not introduce and correctness issues.
  3007     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
  3009     // Above heap_region_containing_raw may return NULL as we always scan claim
  3010     // until the end of the heap. In this case, just jump to the next region.
  3011     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
  3013     // Is the gap between reading the finger and doing the CAS too long?
  3014     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  3015     if (res == finger && curr_region != NULL) {
  3016       // we succeeded
  3017       HeapWord*   bottom        = curr_region->bottom();
  3018       HeapWord*   limit         = curr_region->next_top_at_mark_start();
  3020       if (verbose_low()) {
  3021         gclog_or_tty->print_cr("[%u] curr_region = " PTR_FORMAT " "
  3022                                "[" PTR_FORMAT ", " PTR_FORMAT "), "
  3023                                "limit = " PTR_FORMAT,
  3024                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
  3027       // notice that _finger == end cannot be guaranteed here since,
  3028       // someone else might have moved the finger even further
  3029       assert(_finger >= end, "the finger should have moved forward");
  3031       if (verbose_low()) {
  3032         gclog_or_tty->print_cr("[%u] we were successful with region = "
  3033                                PTR_FORMAT, worker_id, p2i(curr_region));
  3036       if (limit > bottom) {
  3037         if (verbose_low()) {
  3038           gclog_or_tty->print_cr("[%u] region " PTR_FORMAT " is not empty, "
  3039                                  "returning it ", worker_id, p2i(curr_region));
  3041         return curr_region;
  3042       } else {
  3043         assert(limit == bottom,
  3044                "the region limit should be at bottom");
  3045         if (verbose_low()) {
  3046           gclog_or_tty->print_cr("[%u] region " PTR_FORMAT " is empty, "
  3047                                  "returning NULL", worker_id, p2i(curr_region));
  3049         // we return NULL and the caller should try calling
  3050         // claim_region() again.
  3051         return NULL;
  3053     } else {
  3054       assert(_finger > finger, "the finger should have moved forward");
  3055       if (verbose_low()) {
  3056         if (curr_region == NULL) {
  3057           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
  3058                                  "global finger = " PTR_FORMAT ", "
  3059                                  "our finger = " PTR_FORMAT,
  3060                                  worker_id, p2i(_finger), p2i(finger));
  3061         } else {
  3062           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  3063                                  "global finger = " PTR_FORMAT ", "
  3064                                  "our finger = " PTR_FORMAT,
  3065                                  worker_id, p2i(_finger), p2i(finger));
  3069       // read it again
  3070       finger = _finger;
  3074   return NULL;
  3077 #ifndef PRODUCT
  3078 enum VerifyNoCSetOopsPhase {
  3079   VerifyNoCSetOopsStack,
  3080   VerifyNoCSetOopsQueues
  3081 };
  3083 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3084 private:
  3085   G1CollectedHeap* _g1h;
  3086   VerifyNoCSetOopsPhase _phase;
  3087   int _info;
  3089   const char* phase_str() {
  3090     switch (_phase) {
  3091     case VerifyNoCSetOopsStack:         return "Stack";
  3092     case VerifyNoCSetOopsQueues:        return "Queue";
  3093     default:                            ShouldNotReachHere();
  3095     return NULL;
  3098   void do_object_work(oop obj) {
  3099     guarantee(G1CMObjArrayProcessor::is_array_slice(obj) || obj->is_oop(),
  3100               err_msg("Non-oop " PTR_FORMAT ", phase: %s, info: %d",
  3101                       p2i((void*) obj), phase_str(), _info));
  3102     guarantee(G1CMObjArrayProcessor::is_array_slice(obj) || !_g1h->obj_in_cs(obj),
  3103               err_msg("obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
  3104                       p2i((void*) obj), phase_str(), _info));
  3107 public:
  3108   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3110   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3111     _phase = phase;
  3112     _info = info;
  3115   virtual void do_oop(oop* p) {
  3116     oop obj = oopDesc::load_decode_heap_oop(p);
  3117     do_object_work(obj);
  3120   virtual void do_oop(narrowOop* p) {
  3121     // We should not come across narrow oops while scanning marking
  3122     // stacks
  3123     ShouldNotReachHere();
  3126   virtual void do_object(oop obj) {
  3127     do_object_work(obj);
  3129 };
  3131 void ConcurrentMark::verify_no_cset_oops() {
  3132   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3133   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3134     return;
  3137   VerifyNoCSetOopsClosure cl;
  3139   // Verify entries on the global mark stack
  3140   cl.set_phase(VerifyNoCSetOopsStack);
  3141   _markStack.oops_do(&cl);
  3143   // Verify entries on the task queues
  3144   for (uint i = 0; i < _max_worker_id; i += 1) {
  3145     cl.set_phase(VerifyNoCSetOopsQueues, i);
  3146     CMTaskQueue* queue = _task_queues->queue(i);
  3147     queue->oops_do(&cl);
  3150   // Verify the global finger
  3151   HeapWord* global_finger = finger();
  3152   if (global_finger != NULL && global_finger < _heap_end) {
  3153     // The global finger always points to a heap region boundary. We
  3154     // use heap_region_containing_raw() to get the containing region
  3155     // given that the global finger could be pointing to a free region
  3156     // which subsequently becomes continues humongous. If that
  3157     // happens, heap_region_containing() will return the bottom of the
  3158     // corresponding starts humongous region and the check below will
  3159     // not hold any more.
  3160     // Since we always iterate over all regions, we might get a NULL HeapRegion
  3161     // here.
  3162     HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3163     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
  3164               err_msg("global finger: " PTR_FORMAT " region: " HR_FORMAT,
  3165                       p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
  3168   // Verify the task fingers
  3169   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3170   for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3171     CMTask* task = _tasks[i];
  3172     HeapWord* task_finger = task->finger();
  3173     if (task_finger != NULL && task_finger < _heap_end) {
  3174       // See above note on the global finger verification.
  3175       HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3176       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
  3177                 !task_hr->in_collection_set(),
  3178                 err_msg("task finger: " PTR_FORMAT " region: " HR_FORMAT,
  3179                         p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
  3183 #endif // PRODUCT
  3185 // Aggregate the counting data that was constructed concurrently
  3186 // with marking.
  3187 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3188   G1CollectedHeap* _g1h;
  3189   ConcurrentMark* _cm;
  3190   CardTableModRefBS* _ct_bs;
  3191   BitMap* _cm_card_bm;
  3192   uint _max_worker_id;
  3194  public:
  3195   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3196                               BitMap* cm_card_bm,
  3197                               uint max_worker_id) :
  3198     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3199     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3200     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3202   bool doHeapRegion(HeapRegion* hr) {
  3203     if (hr->continuesHumongous()) {
  3204       // We will ignore these here and process them when their
  3205       // associated "starts humongous" region is processed.
  3206       // Note that we cannot rely on their associated
  3207       // "starts humongous" region to have their bit set to 1
  3208       // since, due to the region chunking in the parallel region
  3209       // iteration, a "continues humongous" region might be visited
  3210       // before its associated "starts humongous".
  3211       return false;
  3214     HeapWord* start = hr->bottom();
  3215     HeapWord* limit = hr->next_top_at_mark_start();
  3216     HeapWord* end = hr->end();
  3218     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3219            err_msg("Preconditions not met - "
  3220                    "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
  3221                    "top: " PTR_FORMAT ", end: " PTR_FORMAT,
  3222                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
  3224     assert(hr->next_marked_bytes() == 0, "Precondition");
  3226     if (start == limit) {
  3227       // NTAMS of this region has not been set so nothing to do.
  3228       return false;
  3231     // 'start' should be in the heap.
  3232     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3233     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3234     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3236     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3237     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3238     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3240     // If ntams is not card aligned then we bump card bitmap index
  3241     // for limit so that we get the all the cards spanned by
  3242     // the object ending at ntams.
  3243     // Note: if this is the last region in the heap then ntams
  3244     // could be actually just beyond the end of the the heap;
  3245     // limit_idx will then  correspond to a (non-existent) card
  3246     // that is also outside the heap.
  3247     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3248       limit_idx += 1;
  3251     assert(limit_idx <= end_idx, "or else use atomics");
  3253     // Aggregate the "stripe" in the count data associated with hr.
  3254     uint hrm_index = hr->hrm_index();
  3255     size_t marked_bytes = 0;
  3257     for (uint i = 0; i < _max_worker_id; i += 1) {
  3258       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3259       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3261       // Fetch the marked_bytes in this region for task i and
  3262       // add it to the running total for this region.
  3263       marked_bytes += marked_bytes_array[hrm_index];
  3265       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3266       // into the global card bitmap.
  3267       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3269       while (scan_idx < limit_idx) {
  3270         assert(task_card_bm->at(scan_idx) == true, "should be");
  3271         _cm_card_bm->set_bit(scan_idx);
  3272         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3274         // BitMap::get_next_one_offset() can handle the case when
  3275         // its left_offset parameter is greater than its right_offset
  3276         // parameter. It does, however, have an early exit if
  3277         // left_offset == right_offset. So let's limit the value
  3278         // passed in for left offset here.
  3279         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3280         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3284     // Update the marked bytes for this region.
  3285     hr->add_to_marked_bytes(marked_bytes);
  3287     // Next heap region
  3288     return false;
  3290 };
  3292 class G1AggregateCountDataTask: public AbstractGangTask {
  3293 protected:
  3294   G1CollectedHeap* _g1h;
  3295   ConcurrentMark* _cm;
  3296   BitMap* _cm_card_bm;
  3297   uint _max_worker_id;
  3298   int _active_workers;
  3300 public:
  3301   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3302                            ConcurrentMark* cm,
  3303                            BitMap* cm_card_bm,
  3304                            uint max_worker_id,
  3305                            int n_workers) :
  3306     AbstractGangTask("Count Aggregation"),
  3307     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3308     _max_worker_id(max_worker_id),
  3309     _active_workers(n_workers) { }
  3311   void work(uint worker_id) {
  3312     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3314     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3315       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3316                                             _active_workers,
  3317                                             HeapRegion::AggregateCountClaimValue);
  3318     } else {
  3319       _g1h->heap_region_iterate(&cl);
  3322 };
  3325 void ConcurrentMark::aggregate_count_data() {
  3326   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3327                         _g1h->workers()->active_workers() :
  3328                         1);
  3330   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3331                                            _max_worker_id, n_workers);
  3333   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3334     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3335            "sanity check");
  3336     _g1h->set_par_threads(n_workers);
  3337     _g1h->workers()->run_task(&g1_par_agg_task);
  3338     _g1h->set_par_threads(0);
  3340     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3341            "sanity check");
  3342     _g1h->reset_heap_region_claim_values();
  3343   } else {
  3344     g1_par_agg_task.work(0);
  3348 // Clear the per-worker arrays used to store the per-region counting data
  3349 void ConcurrentMark::clear_all_count_data() {
  3350   // Clear the global card bitmap - it will be filled during
  3351   // liveness count aggregation (during remark) and the
  3352   // final counting task.
  3353   _card_bm.clear();
  3355   // Clear the global region bitmap - it will be filled as part
  3356   // of the final counting task.
  3357   _region_bm.clear();
  3359   uint max_regions = _g1h->max_regions();
  3360   assert(_max_worker_id > 0, "uninitialized");
  3362   for (uint i = 0; i < _max_worker_id; i += 1) {
  3363     BitMap* task_card_bm = count_card_bitmap_for(i);
  3364     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3366     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3367     assert(marked_bytes_array != NULL, "uninitialized");
  3369     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3370     task_card_bm->clear();
  3374 void ConcurrentMark::print_stats() {
  3375   if (verbose_stats()) {
  3376     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3377     for (size_t i = 0; i < _active_tasks; ++i) {
  3378       _tasks[i]->print_stats();
  3379       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3384 // abandon current marking iteration due to a Full GC
  3385 void ConcurrentMark::abort() {
  3386   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
  3387   // concurrent bitmap clearing.
  3388   _nextMarkBitMap->clearAll();
  3390   // Note we cannot clear the previous marking bitmap here
  3391   // since VerifyDuringGC verifies the objects marked during
  3392   // a full GC against the previous bitmap.
  3394   // Clear the liveness counting data
  3395   clear_all_count_data();
  3396   // Empty mark stack
  3397   reset_marking_state();
  3398   for (uint i = 0; i < _max_worker_id; ++i) {
  3399     _tasks[i]->clear_region_fields();
  3401   _first_overflow_barrier_sync.abort();
  3402   _second_overflow_barrier_sync.abort();
  3403   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  3404   if (!gc_id.is_undefined()) {
  3405     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
  3406     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
  3407     _aborted_gc_id = gc_id;
  3409   _has_aborted = true;
  3411   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3412   satb_mq_set.abandon_partial_marking();
  3413   // This can be called either during or outside marking, we'll read
  3414   // the expected_active value from the SATB queue set.
  3415   satb_mq_set.set_active_all_threads(
  3416                                  false, /* new active value */
  3417                                  satb_mq_set.is_active() /* expected_active */);
  3419   _g1h->trace_heap_after_concurrent_cycle();
  3420   _g1h->register_concurrent_cycle_end();
  3423 const GCId& ConcurrentMark::concurrent_gc_id() {
  3424   if (has_aborted()) {
  3425     return _aborted_gc_id;
  3427   return _g1h->gc_tracer_cm()->gc_id();
  3430 static void print_ms_time_info(const char* prefix, const char* name,
  3431                                NumberSeq& ns) {
  3432   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3433                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3434   if (ns.num() > 0) {
  3435     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3436                            prefix, ns.sd(), ns.maximum());
  3440 void ConcurrentMark::print_summary_info() {
  3441   gclog_or_tty->print_cr(" Concurrent marking:");
  3442   print_ms_time_info("  ", "init marks", _init_times);
  3443   print_ms_time_info("  ", "remarks", _remark_times);
  3445     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3446     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3449   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3450   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3451                          _total_counting_time,
  3452                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3453                           (double)_cleanup_times.num()
  3454                          : 0.0));
  3455   if (G1ScrubRemSets) {
  3456     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3457                            _total_rs_scrub_time,
  3458                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3459                             (double)_cleanup_times.num()
  3460                            : 0.0));
  3462   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3463                          (_init_times.sum() + _remark_times.sum() +
  3464                           _cleanup_times.sum())/1000.0);
  3465   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3466                 "(%8.2f s marking).",
  3467                 cmThread()->vtime_accum(),
  3468                 cmThread()->vtime_mark_accum());
  3471 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3472   if (use_parallel_marking_threads()) {
  3473     _parallel_workers->print_worker_threads_on(st);
  3477 void ConcurrentMark::print_on_error(outputStream* st) const {
  3478   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3479       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
  3480   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3481   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3484 // We take a break if someone is trying to stop the world.
  3485 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3486   if (SuspendibleThreadSet::should_yield()) {
  3487     if (worker_id == 0) {
  3488       _g1h->g1_policy()->record_concurrent_pause();
  3490     SuspendibleThreadSet::yield();
  3491     return true;
  3492   } else {
  3493     return false;
  3497 #ifndef PRODUCT
  3498 // for debugging purposes
  3499 void ConcurrentMark::print_finger() {
  3500   gclog_or_tty->print_cr("heap [" PTR_FORMAT ", " PTR_FORMAT "), global finger = " PTR_FORMAT,
  3501                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
  3502   for (uint i = 0; i < _max_worker_id; ++i) {
  3503     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
  3505   gclog_or_tty->cr();
  3507 #endif
  3509 template<bool scan>
  3510 inline void CMTask::process_grey_object(oop obj) {
  3511   assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
  3513   if (_cm->verbose_high()) {
  3514     gclog_or_tty->print_cr("[%u] processing grey object " PTR_FORMAT,
  3515                            _worker_id, p2i((void*) obj));
  3518   assert(G1CMObjArrayProcessor::is_array_slice(obj) || _nextMarkBitMap->isMarked((HeapWord*) obj),
  3519          "Any stolen object should be a slice or marked");
  3521   if (scan) {
  3522     if (G1CMObjArrayProcessor::is_array_slice(obj)) {
  3523       _words_scanned += _objArray_processor.process_slice(obj);
  3524     } else if (G1CMObjArrayProcessor::should_be_sliced(obj)) {
  3525       _words_scanned += _objArray_processor.process_obj(obj);
  3526     } else {
  3527       size_t obj_size = obj->size();
  3528       _words_scanned += obj_size;
  3529       obj->oop_iterate(_cm_oop_closure);;
  3532   statsOnly( ++_objs_scanned );
  3533   check_limits();
  3536 template void CMTask::process_grey_object<true>(oop);
  3537 template void CMTask::process_grey_object<false>(oop);
  3539 // Closure for iteration over bitmaps
  3540 class CMBitMapClosure : public BitMapClosure {
  3541 private:
  3542   // the bitmap that is being iterated over
  3543   CMBitMap*                   _nextMarkBitMap;
  3544   ConcurrentMark*             _cm;
  3545   CMTask*                     _task;
  3547 public:
  3548   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3549     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3551   bool do_bit(size_t offset) {
  3552     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3553     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3554     assert( addr < _cm->finger(), "invariant");
  3556     statsOnly( _task->increase_objs_found_on_bitmap() );
  3557     assert(addr >= _task->finger(), "invariant");
  3559     // We move that task's local finger along.
  3560     _task->move_finger_to(addr);
  3562     _task->scan_object(oop(addr));
  3563     // we only partially drain the local queue and global stack
  3564     _task->drain_local_queue(true);
  3565     _task->drain_global_stack(true);
  3567     // if the has_aborted flag has been raised, we need to bail out of
  3568     // the iteration
  3569     return !_task->has_aborted();
  3571 };
  3573 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3574                                ConcurrentMark* cm,
  3575                                CMTask* task)
  3576   : _g1h(g1h), _cm(cm), _task(task) {
  3577   assert(_ref_processor == NULL, "should be initialized to NULL");
  3579   if (G1UseConcMarkReferenceProcessing) {
  3580     _ref_processor = g1h->ref_processor_cm();
  3581     assert(_ref_processor != NULL, "should not be NULL");
  3585 void CMTask::setup_for_region(HeapRegion* hr) {
  3586   assert(hr != NULL,
  3587         "claim_region() should have filtered out NULL regions");
  3588   assert(!hr->continuesHumongous(),
  3589         "claim_region() should have filtered out continues humongous regions");
  3591   if (_cm->verbose_low()) {
  3592     gclog_or_tty->print_cr("[%u] setting up for region " PTR_FORMAT,
  3593                            _worker_id, p2i(hr));
  3596   _curr_region  = hr;
  3597   _finger       = hr->bottom();
  3598   update_region_limit();
  3601 void CMTask::update_region_limit() {
  3602   HeapRegion* hr            = _curr_region;
  3603   HeapWord* bottom          = hr->bottom();
  3604   HeapWord* limit           = hr->next_top_at_mark_start();
  3606   if (limit == bottom) {
  3607     if (_cm->verbose_low()) {
  3608       gclog_or_tty->print_cr("[%u] found an empty region "
  3609                              "[" PTR_FORMAT ", " PTR_FORMAT ")",
  3610                              _worker_id, p2i(bottom), p2i(limit));
  3612     // The region was collected underneath our feet.
  3613     // We set the finger to bottom to ensure that the bitmap
  3614     // iteration that will follow this will not do anything.
  3615     // (this is not a condition that holds when we set the region up,
  3616     // as the region is not supposed to be empty in the first place)
  3617     _finger = bottom;
  3618   } else if (limit >= _region_limit) {
  3619     assert(limit >= _finger, "peace of mind");
  3620   } else {
  3621     assert(limit < _region_limit, "only way to get here");
  3622     // This can happen under some pretty unusual circumstances.  An
  3623     // evacuation pause empties the region underneath our feet (NTAMS
  3624     // at bottom). We then do some allocation in the region (NTAMS
  3625     // stays at bottom), followed by the region being used as a GC
  3626     // alloc region (NTAMS will move to top() and the objects
  3627     // originally below it will be grayed). All objects now marked in
  3628     // the region are explicitly grayed, if below the global finger,
  3629     // and we do not need in fact to scan anything else. So, we simply
  3630     // set _finger to be limit to ensure that the bitmap iteration
  3631     // doesn't do anything.
  3632     _finger = limit;
  3635   _region_limit = limit;
  3638 void CMTask::giveup_current_region() {
  3639   assert(_curr_region != NULL, "invariant");
  3640   if (_cm->verbose_low()) {
  3641     gclog_or_tty->print_cr("[%u] giving up region " PTR_FORMAT,
  3642                            _worker_id, p2i(_curr_region));
  3644   clear_region_fields();
  3647 void CMTask::clear_region_fields() {
  3648   // Values for these three fields that indicate that we're not
  3649   // holding on to a region.
  3650   _curr_region   = NULL;
  3651   _finger        = NULL;
  3652   _region_limit  = NULL;
  3655 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3656   if (cm_oop_closure == NULL) {
  3657     assert(_cm_oop_closure != NULL, "invariant");
  3658   } else {
  3659     assert(_cm_oop_closure == NULL, "invariant");
  3661   _cm_oop_closure = cm_oop_closure;
  3664 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3665   guarantee(nextMarkBitMap != NULL, "invariant");
  3667   if (_cm->verbose_low()) {
  3668     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3671   _nextMarkBitMap                = nextMarkBitMap;
  3672   clear_region_fields();
  3674   _calls                         = 0;
  3675   _elapsed_time_ms               = 0.0;
  3676   _termination_time_ms           = 0.0;
  3677   _termination_start_time_ms     = 0.0;
  3679 #if _MARKING_STATS_
  3680   _local_pushes                  = 0;
  3681   _local_pops                    = 0;
  3682   _local_max_size                = 0;
  3683   _objs_scanned                  = 0;
  3684   _global_pushes                 = 0;
  3685   _global_pops                   = 0;
  3686   _global_max_size               = 0;
  3687   _global_transfers_to           = 0;
  3688   _global_transfers_from         = 0;
  3689   _regions_claimed               = 0;
  3690   _objs_found_on_bitmap          = 0;
  3691   _satb_buffers_processed        = 0;
  3692   _steal_attempts                = 0;
  3693   _steals                        = 0;
  3694   _aborted                       = 0;
  3695   _aborted_overflow              = 0;
  3696   _aborted_cm_aborted            = 0;
  3697   _aborted_yield                 = 0;
  3698   _aborted_timed_out             = 0;
  3699   _aborted_satb                  = 0;
  3700   _aborted_termination           = 0;
  3701 #endif // _MARKING_STATS_
  3704 bool CMTask::should_exit_termination() {
  3705   regular_clock_call();
  3706   // This is called when we are in the termination protocol. We should
  3707   // quit if, for some reason, this task wants to abort or the global
  3708   // stack is not empty (this means that we can get work from it).
  3709   return !_cm->mark_stack_empty() || has_aborted();
  3712 void CMTask::reached_limit() {
  3713   assert(_words_scanned >= _words_scanned_limit ||
  3714          _refs_reached >= _refs_reached_limit ,
  3715          "shouldn't have been called otherwise");
  3716   regular_clock_call();
  3719 void CMTask::regular_clock_call() {
  3720   if (has_aborted()) return;
  3722   // First, we need to recalculate the words scanned and refs reached
  3723   // limits for the next clock call.
  3724   recalculate_limits();
  3726   // During the regular clock call we do the following
  3728   // (1) If an overflow has been flagged, then we abort.
  3729   if (_cm->has_overflown()) {
  3730     set_has_aborted();
  3731     return;
  3734   // If we are not concurrent (i.e. we're doing remark) we don't need
  3735   // to check anything else. The other steps are only needed during
  3736   // the concurrent marking phase.
  3737   if (!concurrent()) return;
  3739   // (2) If marking has been aborted for Full GC, then we also abort.
  3740   if (_cm->has_aborted()) {
  3741     set_has_aborted();
  3742     statsOnly( ++_aborted_cm_aborted );
  3743     return;
  3746   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3748   // (3) If marking stats are enabled, then we update the step history.
  3749 #if _MARKING_STATS_
  3750   if (_words_scanned >= _words_scanned_limit) {
  3751     ++_clock_due_to_scanning;
  3753   if (_refs_reached >= _refs_reached_limit) {
  3754     ++_clock_due_to_marking;
  3757   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3758   _interval_start_time_ms = curr_time_ms;
  3759   _all_clock_intervals_ms.add(last_interval_ms);
  3761   if (_cm->verbose_medium()) {
  3762       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3763                         "scanned = " SIZE_FORMAT "%s, refs reached = " SIZE_FORMAT "%s",
  3764                         _worker_id, last_interval_ms,
  3765                         _words_scanned,
  3766                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3767                         _refs_reached,
  3768                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3770 #endif // _MARKING_STATS_
  3772   // (4) We check whether we should yield. If we have to, then we abort.
  3773   if (SuspendibleThreadSet::should_yield()) {
  3774     // We should yield. To do this we abort the task. The caller is
  3775     // responsible for yielding.
  3776     set_has_aborted();
  3777     statsOnly( ++_aborted_yield );
  3778     return;
  3781   // (5) We check whether we've reached our time quota. If we have,
  3782   // then we abort.
  3783   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3784   if (elapsed_time_ms > _time_target_ms) {
  3785     set_has_aborted();
  3786     _has_timed_out = true;
  3787     statsOnly( ++_aborted_timed_out );
  3788     return;
  3791   // (6) Finally, we check whether there are enough completed STAB
  3792   // buffers available for processing. If there are, we abort.
  3793   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3794   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3795     if (_cm->verbose_low()) {
  3796       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3797                              _worker_id);
  3799     // we do need to process SATB buffers, we'll abort and restart
  3800     // the marking task to do so
  3801     set_has_aborted();
  3802     statsOnly( ++_aborted_satb );
  3803     return;
  3807 void CMTask::recalculate_limits() {
  3808   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3809   _words_scanned_limit      = _real_words_scanned_limit;
  3811   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3812   _refs_reached_limit       = _real_refs_reached_limit;
  3815 void CMTask::decrease_limits() {
  3816   // This is called when we believe that we're going to do an infrequent
  3817   // operation which will increase the per byte scanned cost (i.e. move
  3818   // entries to/from the global stack). It basically tries to decrease the
  3819   // scanning limit so that the clock is called earlier.
  3821   if (_cm->verbose_medium()) {
  3822     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3825   _words_scanned_limit = _real_words_scanned_limit -
  3826     3 * words_scanned_period / 4;
  3827   _refs_reached_limit  = _real_refs_reached_limit -
  3828     3 * refs_reached_period / 4;
  3831 void CMTask::move_entries_to_global_stack() {
  3832   // local array where we'll store the entries that will be popped
  3833   // from the local queue
  3834   oop buffer[global_stack_transfer_size];
  3836   int n = 0;
  3837   oop obj;
  3838   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3839     buffer[n] = obj;
  3840     ++n;
  3843   if (n > 0) {
  3844     // we popped at least one entry from the local queue
  3846     statsOnly( ++_global_transfers_to; _local_pops += n );
  3848     if (!_cm->mark_stack_push(buffer, n)) {
  3849       if (_cm->verbose_low()) {
  3850         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3851                                _worker_id);
  3853       set_has_aborted();
  3854     } else {
  3855       // the transfer was successful
  3857       if (_cm->verbose_medium()) {
  3858         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3859                                _worker_id, n);
  3861       statsOnly( int tmp_size = _cm->mark_stack_size();
  3862                  if (tmp_size > _global_max_size) {
  3863                    _global_max_size = tmp_size;
  3865                  _global_pushes += n );
  3869   // this operation was quite expensive, so decrease the limits
  3870   decrease_limits();
  3873 void CMTask::get_entries_from_global_stack() {
  3874   // local array where we'll store the entries that will be popped
  3875   // from the global stack.
  3876   oop buffer[global_stack_transfer_size];
  3877   int n;
  3878   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3879   assert(n <= global_stack_transfer_size,
  3880          "we should not pop more than the given limit");
  3881   if (n > 0) {
  3882     // yes, we did actually pop at least one entry
  3884     statsOnly( ++_global_transfers_from; _global_pops += n );
  3885     if (_cm->verbose_medium()) {
  3886       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3887                              _worker_id, n);
  3889     for (int i = 0; i < n; ++i) {
  3890       assert(G1CMObjArrayProcessor::is_array_slice(buffer[i]) || buffer[i]->is_oop(),
  3891              err_msg("Element " PTR_FORMAT " must be an array slice or oop", p2i(buffer[i])));
  3892       bool success = _task_queue->push(buffer[i]);
  3893       // We only call this when the local queue is empty or under a
  3894       // given target limit. So, we do not expect this push to fail.
  3895       assert(success, "invariant");
  3898     statsOnly( int tmp_size = _task_queue->size();
  3899                if (tmp_size > _local_max_size) {
  3900                  _local_max_size = tmp_size;
  3902                _local_pushes += n );
  3905   // this operation was quite expensive, so decrease the limits
  3906   decrease_limits();
  3909 void CMTask::drain_local_queue(bool partially) {
  3910   if (has_aborted()) {
  3911     return;
  3914   // Decide what the target size is, depending whether we're going to
  3915   // drain it partially (so that other tasks can steal if they run out
  3916   // of things to do) or totally (at the very end).
  3917   size_t target_size;
  3918   if (partially) {
  3919     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3920   } else {
  3921     target_size = 0;
  3924   if (_task_queue->size() > target_size) {
  3925     if (_cm->verbose_high()) {
  3926       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
  3927                              _worker_id, target_size);
  3930     oop obj;
  3931     bool ret = _task_queue->pop_local(obj);
  3932     while (ret) {
  3933       statsOnly( ++_local_pops );
  3935       if (_cm->verbose_high()) {
  3936         gclog_or_tty->print_cr("[%u] popped " PTR_FORMAT, _worker_id,
  3937                                p2i((void*) obj));
  3940       scan_object(obj);
  3942       if (_task_queue->size() <= target_size || has_aborted()) {
  3943         ret = false;
  3944       } else {
  3945         ret = _task_queue->pop_local(obj);
  3949     if (_cm->verbose_high()) {
  3950       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3951                              _worker_id, _task_queue->size());
  3956 void CMTask::drain_global_stack(bool partially) {
  3957   if (has_aborted()) return;
  3959   // We have a policy to drain the local queue before we attempt to
  3960   // drain the global stack.
  3961   assert(partially || _task_queue->size() == 0, "invariant");
  3963   // Decide what the target size is, depending whether we're going to
  3964   // drain it partially (so that other tasks can steal if they run out
  3965   // of things to do) or totally (at the very end).  Notice that,
  3966   // because we move entries from the global stack in chunks or
  3967   // because another task might be doing the same, we might in fact
  3968   // drop below the target. But, this is not a problem.
  3969   size_t target_size;
  3970   if (partially) {
  3971     target_size = _cm->partial_mark_stack_size_target();
  3972   } else {
  3973     target_size = 0;
  3976   if (_cm->mark_stack_size() > target_size) {
  3977     if (_cm->verbose_low()) {
  3978       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
  3979                              _worker_id, target_size);
  3982     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3983       get_entries_from_global_stack();
  3984       drain_local_queue(partially);
  3987     if (_cm->verbose_low()) {
  3988       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
  3989                              _worker_id, _cm->mark_stack_size());
  3994 // SATB Queue has several assumptions on whether to call the par or
  3995 // non-par versions of the methods. this is why some of the code is
  3996 // replicated. We should really get rid of the single-threaded version
  3997 // of the code to simplify things.
  3998 void CMTask::drain_satb_buffers() {
  3999   if (has_aborted()) return;
  4001   // We set this so that the regular clock knows that we're in the
  4002   // middle of draining buffers and doesn't set the abort flag when it
  4003   // notices that SATB buffers are available for draining. It'd be
  4004   // very counter productive if it did that. :-)
  4005   _draining_satb_buffers = true;
  4007   CMSATBBufferClosure satb_cl(this, _g1h);
  4008   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  4010   // This keeps claiming and applying the closure to completed buffers
  4011   // until we run out of buffers or we need to abort.
  4012   while (!has_aborted() &&
  4013          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
  4014     if (_cm->verbose_medium()) {
  4015       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4017     statsOnly( ++_satb_buffers_processed );
  4018     regular_clock_call();
  4021   _draining_satb_buffers = false;
  4023   assert(has_aborted() ||
  4024          concurrent() ||
  4025          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4027   // again, this was a potentially expensive operation, decrease the
  4028   // limits to get the regular clock call early
  4029   decrease_limits();
  4032 void CMTask::print_stats() {
  4033   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  4034                          _worker_id, _calls);
  4035   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4036                          _elapsed_time_ms, _termination_time_ms);
  4037   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4038                          _step_times_ms.num(), _step_times_ms.avg(),
  4039                          _step_times_ms.sd());
  4040   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4041                          _step_times_ms.maximum(), _step_times_ms.sum());
  4043 #if _MARKING_STATS_
  4044   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4045                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4046                          _all_clock_intervals_ms.sd());
  4047   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4048                          _all_clock_intervals_ms.maximum(),
  4049                          _all_clock_intervals_ms.sum());
  4050   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4051                          _clock_due_to_scanning, _clock_due_to_marking);
  4052   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4053                          _objs_scanned, _objs_found_on_bitmap);
  4054   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4055                          _local_pushes, _local_pops, _local_max_size);
  4056   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4057                          _global_pushes, _global_pops, _global_max_size);
  4058   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4059                          _global_transfers_to,_global_transfers_from);
  4060   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  4061   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4062   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4063                          _steal_attempts, _steals);
  4064   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4065   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4066                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4067   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4068                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4069 #endif // _MARKING_STATS_
  4072 /*****************************************************************************
  4074     The do_marking_step(time_target_ms, ...) method is the building
  4075     block of the parallel marking framework. It can be called in parallel
  4076     with other invocations of do_marking_step() on different tasks
  4077     (but only one per task, obviously) and concurrently with the
  4078     mutator threads, or during remark, hence it eliminates the need
  4079     for two versions of the code. When called during remark, it will
  4080     pick up from where the task left off during the concurrent marking
  4081     phase. Interestingly, tasks are also claimable during evacuation
  4082     pauses too, since do_marking_step() ensures that it aborts before
  4083     it needs to yield.
  4085     The data structures that it uses to do marking work are the
  4086     following:
  4088       (1) Marking Bitmap. If there are gray objects that appear only
  4089       on the bitmap (this happens either when dealing with an overflow
  4090       or when the initial marking phase has simply marked the roots
  4091       and didn't push them on the stack), then tasks claim heap
  4092       regions whose bitmap they then scan to find gray objects. A
  4093       global finger indicates where the end of the last claimed region
  4094       is. A local finger indicates how far into the region a task has
  4095       scanned. The two fingers are used to determine how to gray an
  4096       object (i.e. whether simply marking it is OK, as it will be
  4097       visited by a task in the future, or whether it needs to be also
  4098       pushed on a stack).
  4100       (2) Local Queue. The local queue of the task which is accessed
  4101       reasonably efficiently by the task. Other tasks can steal from
  4102       it when they run out of work. Throughout the marking phase, a
  4103       task attempts to keep its local queue short but not totally
  4104       empty, so that entries are available for stealing by other
  4105       tasks. Only when there is no more work, a task will totally
  4106       drain its local queue.
  4108       (3) Global Mark Stack. This handles local queue overflow. During
  4109       marking only sets of entries are moved between it and the local
  4110       queues, as access to it requires a mutex and more fine-grain
  4111       interaction with it which might cause contention. If it
  4112       overflows, then the marking phase should restart and iterate
  4113       over the bitmap to identify gray objects. Throughout the marking
  4114       phase, tasks attempt to keep the global mark stack at a small
  4115       length but not totally empty, so that entries are available for
  4116       popping by other tasks. Only when there is no more work, tasks
  4117       will totally drain the global mark stack.
  4119       (4) SATB Buffer Queue. This is where completed SATB buffers are
  4120       made available. Buffers are regularly removed from this queue
  4121       and scanned for roots, so that the queue doesn't get too
  4122       long. During remark, all completed buffers are processed, as
  4123       well as the filled in parts of any uncompleted buffers.
  4125     The do_marking_step() method tries to abort when the time target
  4126     has been reached. There are a few other cases when the
  4127     do_marking_step() method also aborts:
  4129       (1) When the marking phase has been aborted (after a Full GC).
  4131       (2) When a global overflow (on the global stack) has been
  4132       triggered. Before the task aborts, it will actually sync up with
  4133       the other tasks to ensure that all the marking data structures
  4134       (local queues, stacks, fingers etc.)  are re-initialized so that
  4135       when do_marking_step() completes, the marking phase can
  4136       immediately restart.
  4138       (3) When enough completed SATB buffers are available. The
  4139       do_marking_step() method only tries to drain SATB buffers right
  4140       at the beginning. So, if enough buffers are available, the
  4141       marking step aborts and the SATB buffers are processed at
  4142       the beginning of the next invocation.
  4144       (4) To yield. when we have to yield then we abort and yield
  4145       right at the end of do_marking_step(). This saves us from a lot
  4146       of hassle as, by yielding we might allow a Full GC. If this
  4147       happens then objects will be compacted underneath our feet, the
  4148       heap might shrink, etc. We save checking for this by just
  4149       aborting and doing the yield right at the end.
  4151     From the above it follows that the do_marking_step() method should
  4152     be called in a loop (or, otherwise, regularly) until it completes.
  4154     If a marking step completes without its has_aborted() flag being
  4155     true, it means it has completed the current marking phase (and
  4156     also all other marking tasks have done so and have all synced up).
  4158     A method called regular_clock_call() is invoked "regularly" (in
  4159     sub ms intervals) throughout marking. It is this clock method that
  4160     checks all the abort conditions which were mentioned above and
  4161     decides when the task should abort. A work-based scheme is used to
  4162     trigger this clock method: when the number of object words the
  4163     marking phase has scanned or the number of references the marking
  4164     phase has visited reach a given limit. Additional invocations to
  4165     the method clock have been planted in a few other strategic places
  4166     too. The initial reason for the clock method was to avoid calling
  4167     vtime too regularly, as it is quite expensive. So, once it was in
  4168     place, it was natural to piggy-back all the other conditions on it
  4169     too and not constantly check them throughout the code.
  4171     If do_termination is true then do_marking_step will enter its
  4172     termination protocol.
  4174     The value of is_serial must be true when do_marking_step is being
  4175     called serially (i.e. by the VMThread) and do_marking_step should
  4176     skip any synchronization in the termination and overflow code.
  4177     Examples include the serial remark code and the serial reference
  4178     processing closures.
  4180     The value of is_serial must be false when do_marking_step is
  4181     being called by any of the worker threads in a work gang.
  4182     Examples include the concurrent marking code (CMMarkingTask),
  4183     the MT remark code, and the MT reference processing closures.
  4185  *****************************************************************************/
  4187 void CMTask::do_marking_step(double time_target_ms,
  4188                              bool do_termination,
  4189                              bool is_serial) {
  4190   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4191   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4193   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4194   assert(_task_queues != NULL, "invariant");
  4195   assert(_task_queue != NULL, "invariant");
  4196   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4198   assert(!_claimed,
  4199          "only one thread should claim this task at any one time");
  4201   // OK, this doesn't safeguard again all possible scenarios, as it is
  4202   // possible for two threads to set the _claimed flag at the same
  4203   // time. But it is only for debugging purposes anyway and it will
  4204   // catch most problems.
  4205   _claimed = true;
  4207   _start_time_ms = os::elapsedVTime() * 1000.0;
  4208   statsOnly( _interval_start_time_ms = _start_time_ms );
  4210   // If do_stealing is true then do_marking_step will attempt to
  4211   // steal work from the other CMTasks. It only makes sense to
  4212   // enable stealing when the termination protocol is enabled
  4213   // and do_marking_step() is not being called serially.
  4214   bool do_stealing = do_termination && !is_serial;
  4216   double diff_prediction_ms =
  4217     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4218   _time_target_ms = time_target_ms - diff_prediction_ms;
  4220   // set up the variables that are used in the work-based scheme to
  4221   // call the regular clock method
  4222   _words_scanned = 0;
  4223   _refs_reached  = 0;
  4224   recalculate_limits();
  4226   // clear all flags
  4227   clear_has_aborted();
  4228   _has_timed_out = false;
  4229   _draining_satb_buffers = false;
  4231   ++_calls;
  4233   if (_cm->verbose_low()) {
  4234     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4235                            "target = %1.2lfms >>>>>>>>>>",
  4236                            _worker_id, _calls, _time_target_ms);
  4239   // Set up the bitmap and oop closures. Anything that uses them is
  4240   // eventually called from this method, so it is OK to allocate these
  4241   // statically.
  4242   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4243   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4244   set_cm_oop_closure(&cm_oop_closure);
  4246   if (_cm->has_overflown()) {
  4247     // This can happen if the mark stack overflows during a GC pause
  4248     // and this task, after a yield point, restarts. We have to abort
  4249     // as we need to get into the overflow protocol which happens
  4250     // right at the end of this task.
  4251     set_has_aborted();
  4254   // First drain any available SATB buffers. After this, we will not
  4255   // look at SATB buffers before the next invocation of this method.
  4256   // If enough completed SATB buffers are queued up, the regular clock
  4257   // will abort this task so that it restarts.
  4258   drain_satb_buffers();
  4259   // ...then partially drain the local queue and the global stack
  4260   drain_local_queue(true);
  4261   drain_global_stack(true);
  4263   do {
  4264     if (!has_aborted() && _curr_region != NULL) {
  4265       // This means that we're already holding on to a region.
  4266       assert(_finger != NULL, "if region is not NULL, then the finger "
  4267              "should not be NULL either");
  4269       // We might have restarted this task after an evacuation pause
  4270       // which might have evacuated the region we're holding on to
  4271       // underneath our feet. Let's read its limit again to make sure
  4272       // that we do not iterate over a region of the heap that
  4273       // contains garbage (update_region_limit() will also move
  4274       // _finger to the start of the region if it is found empty).
  4275       update_region_limit();
  4276       // We will start from _finger not from the start of the region,
  4277       // as we might be restarting this task after aborting half-way
  4278       // through scanning this region. In this case, _finger points to
  4279       // the address where we last found a marked object. If this is a
  4280       // fresh region, _finger points to start().
  4281       MemRegion mr = MemRegion(_finger, _region_limit);
  4283       if (_cm->verbose_low()) {
  4284         gclog_or_tty->print_cr("[%u] we're scanning part "
  4285                                "[" PTR_FORMAT ", " PTR_FORMAT ") "
  4286                                "of region " HR_FORMAT,
  4287                                _worker_id, p2i(_finger), p2i(_region_limit),
  4288                                HR_FORMAT_PARAMS(_curr_region));
  4291       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4292              "humongous regions should go around loop once only");
  4294       // Some special cases:
  4295       // If the memory region is empty, we can just give up the region.
  4296       // If the current region is humongous then we only need to check
  4297       // the bitmap for the bit associated with the start of the object,
  4298       // scan the object if it's live, and give up the region.
  4299       // Otherwise, let's iterate over the bitmap of the part of the region
  4300       // that is left.
  4301       // If the iteration is successful, give up the region.
  4302       if (mr.is_empty()) {
  4303         giveup_current_region();
  4304         regular_clock_call();
  4305       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4306         if (_nextMarkBitMap->isMarked(mr.start())) {
  4307           // The object is marked - apply the closure
  4308           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4309           bitmap_closure.do_bit(offset);
  4311         // Even if this task aborted while scanning the humongous object
  4312         // we can (and should) give up the current region.
  4313         giveup_current_region();
  4314         regular_clock_call();
  4315       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4316         giveup_current_region();
  4317         regular_clock_call();
  4318       } else {
  4319         assert(has_aborted(), "currently the only way to do so");
  4320         // The only way to abort the bitmap iteration is to return
  4321         // false from the do_bit() method. However, inside the
  4322         // do_bit() method we move the _finger to point to the
  4323         // object currently being looked at. So, if we bail out, we
  4324         // have definitely set _finger to something non-null.
  4325         assert(_finger != NULL, "invariant");
  4327         // Region iteration was actually aborted. So now _finger
  4328         // points to the address of the object we last scanned. If we
  4329         // leave it there, when we restart this task, we will rescan
  4330         // the object. It is easy to avoid this. We move the finger by
  4331         // enough to point to the next possible object header (the
  4332         // bitmap knows by how much we need to move it as it knows its
  4333         // granularity).
  4334         assert(_finger < _region_limit, "invariant");
  4335         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4336         // Check if bitmap iteration was aborted while scanning the last object
  4337         if (new_finger >= _region_limit) {
  4338           giveup_current_region();
  4339         } else {
  4340           move_finger_to(new_finger);
  4344     // At this point we have either completed iterating over the
  4345     // region we were holding on to, or we have aborted.
  4347     // We then partially drain the local queue and the global stack.
  4348     // (Do we really need this?)
  4349     drain_local_queue(true);
  4350     drain_global_stack(true);
  4352     // Read the note on the claim_region() method on why it might
  4353     // return NULL with potentially more regions available for
  4354     // claiming and why we have to check out_of_regions() to determine
  4355     // whether we're done or not.
  4356     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4357       // We are going to try to claim a new region. We should have
  4358       // given up on the previous one.
  4359       // Separated the asserts so that we know which one fires.
  4360       assert(_curr_region  == NULL, "invariant");
  4361       assert(_finger       == NULL, "invariant");
  4362       assert(_region_limit == NULL, "invariant");
  4363       if (_cm->verbose_low()) {
  4364         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4366       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4367       if (claimed_region != NULL) {
  4368         // Yes, we managed to claim one
  4369         statsOnly( ++_regions_claimed );
  4371         if (_cm->verbose_low()) {
  4372           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4373                                  "region " PTR_FORMAT,
  4374                                  _worker_id, p2i(claimed_region));
  4377         setup_for_region(claimed_region);
  4378         assert(_curr_region == claimed_region, "invariant");
  4380       // It is important to call the regular clock here. It might take
  4381       // a while to claim a region if, for example, we hit a large
  4382       // block of empty regions. So we need to call the regular clock
  4383       // method once round the loop to make sure it's called
  4384       // frequently enough.
  4385       regular_clock_call();
  4388     if (!has_aborted() && _curr_region == NULL) {
  4389       assert(_cm->out_of_regions(),
  4390              "at this point we should be out of regions");
  4392   } while ( _curr_region != NULL && !has_aborted());
  4394   if (!has_aborted()) {
  4395     // We cannot check whether the global stack is empty, since other
  4396     // tasks might be pushing objects to it concurrently.
  4397     assert(_cm->out_of_regions(),
  4398            "at this point we should be out of regions");
  4400     if (_cm->verbose_low()) {
  4401       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4404     // Try to reduce the number of available SATB buffers so that
  4405     // remark has less work to do.
  4406     drain_satb_buffers();
  4409   // Since we've done everything else, we can now totally drain the
  4410   // local queue and global stack.
  4411   drain_local_queue(false);
  4412   drain_global_stack(false);
  4414   // Attempt at work stealing from other task's queues.
  4415   if (do_stealing && !has_aborted()) {
  4416     // We have not aborted. This means that we have finished all that
  4417     // we could. Let's try to do some stealing...
  4419     // We cannot check whether the global stack is empty, since other
  4420     // tasks might be pushing objects to it concurrently.
  4421     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4422            "only way to reach here");
  4424     if (_cm->verbose_low()) {
  4425       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4428     while (!has_aborted()) {
  4429       oop obj;
  4430       statsOnly( ++_steal_attempts );
  4432       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4433         if (_cm->verbose_medium()) {
  4434           gclog_or_tty->print_cr("[%u] stolen " PTR_FORMAT " successfully",
  4435                                  _worker_id, p2i((void*) obj));
  4438         statsOnly( ++_steals );
  4440         scan_object(obj);
  4442         // And since we're towards the end, let's totally drain the
  4443         // local queue and global stack.
  4444         drain_local_queue(false);
  4445         drain_global_stack(false);
  4446       } else {
  4447         break;
  4452   // If we are about to wrap up and go into termination, check if we
  4453   // should raise the overflow flag.
  4454   if (do_termination && !has_aborted()) {
  4455     if (_cm->force_overflow()->should_force()) {
  4456       _cm->set_has_overflown();
  4457       regular_clock_call();
  4461   // We still haven't aborted. Now, let's try to get into the
  4462   // termination protocol.
  4463   if (do_termination && !has_aborted()) {
  4464     // We cannot check whether the global stack is empty, since other
  4465     // tasks might be concurrently pushing objects on it.
  4466     // Separated the asserts so that we know which one fires.
  4467     assert(_cm->out_of_regions(), "only way to reach here");
  4468     assert(_task_queue->size() == 0, "only way to reach here");
  4470     if (_cm->verbose_low()) {
  4471       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4474     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4476     // The CMTask class also extends the TerminatorTerminator class,
  4477     // hence its should_exit_termination() method will also decide
  4478     // whether to exit the termination protocol or not.
  4479     bool finished = (is_serial ||
  4480                      _cm->terminator()->offer_termination(this));
  4481     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4482     _termination_time_ms +=
  4483       termination_end_time_ms - _termination_start_time_ms;
  4485     if (finished) {
  4486       // We're all done.
  4488       if (_worker_id == 0) {
  4489         // let's allow task 0 to do this
  4490         if (concurrent()) {
  4491           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4492           // we need to set this to false before the next
  4493           // safepoint. This way we ensure that the marking phase
  4494           // doesn't observe any more heap expansions.
  4495           _cm->clear_concurrent_marking_in_progress();
  4499       // We can now guarantee that the global stack is empty, since
  4500       // all other tasks have finished. We separated the guarantees so
  4501       // that, if a condition is false, we can immediately find out
  4502       // which one.
  4503       guarantee(_cm->out_of_regions(), "only way to reach here");
  4504       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4505       guarantee(_task_queue->size() == 0, "only way to reach here");
  4506       guarantee(!_cm->has_overflown(), "only way to reach here");
  4507       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4509       if (_cm->verbose_low()) {
  4510         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4512     } else {
  4513       // Apparently there's more work to do. Let's abort this task. It
  4514       // will restart it and we can hopefully find more things to do.
  4516       if (_cm->verbose_low()) {
  4517         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4518                                _worker_id);
  4521       set_has_aborted();
  4522       statsOnly( ++_aborted_termination );
  4526   // Mainly for debugging purposes to make sure that a pointer to the
  4527   // closure which was statically allocated in this frame doesn't
  4528   // escape it by accident.
  4529   set_cm_oop_closure(NULL);
  4530   double end_time_ms = os::elapsedVTime() * 1000.0;
  4531   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4532   // Update the step history.
  4533   _step_times_ms.add(elapsed_time_ms);
  4535   if (has_aborted()) {
  4536     // The task was aborted for some reason.
  4538     statsOnly( ++_aborted );
  4540     if (_has_timed_out) {
  4541       double diff_ms = elapsed_time_ms - _time_target_ms;
  4542       // Keep statistics of how well we did with respect to hitting
  4543       // our target only if we actually timed out (if we aborted for
  4544       // other reasons, then the results might get skewed).
  4545       _marking_step_diffs_ms.add(diff_ms);
  4548     if (_cm->has_overflown()) {
  4549       // This is the interesting one. We aborted because a global
  4550       // overflow was raised. This means we have to restart the
  4551       // marking phase and start iterating over regions. However, in
  4552       // order to do this we have to make sure that all tasks stop
  4553       // what they are doing and re-initialise in a safe manner. We
  4554       // will achieve this with the use of two barrier sync points.
  4556       if (_cm->verbose_low()) {
  4557         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4560       if (!is_serial) {
  4561         // We only need to enter the sync barrier if being called
  4562         // from a parallel context
  4563         _cm->enter_first_sync_barrier(_worker_id);
  4565         // When we exit this sync barrier we know that all tasks have
  4566         // stopped doing marking work. So, it's now safe to
  4567         // re-initialise our data structures. At the end of this method,
  4568         // task 0 will clear the global data structures.
  4571       statsOnly( ++_aborted_overflow );
  4573       // We clear the local state of this task...
  4574       clear_region_fields();
  4576       if (!is_serial) {
  4577         // ...and enter the second barrier.
  4578         _cm->enter_second_sync_barrier(_worker_id);
  4580       // At this point, if we're during the concurrent phase of
  4581       // marking, everything has been re-initialized and we're
  4582       // ready to restart.
  4585     if (_cm->verbose_low()) {
  4586       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4587                              "elapsed = %1.2lfms <<<<<<<<<<",
  4588                              _worker_id, _time_target_ms, elapsed_time_ms);
  4589       if (_cm->has_aborted()) {
  4590         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4591                                _worker_id);
  4594   } else {
  4595     if (_cm->verbose_low()) {
  4596       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4597                              "elapsed = %1.2lfms <<<<<<<<<<",
  4598                              _worker_id, _time_target_ms, elapsed_time_ms);
  4602   _claimed = false;
  4605 CMTask::CMTask(uint worker_id,
  4606                ConcurrentMark* cm,
  4607                size_t* marked_bytes,
  4608                BitMap* card_bm,
  4609                CMTaskQueue* task_queue,
  4610                CMTaskQueueSet* task_queues)
  4611   : _g1h(G1CollectedHeap::heap()),
  4612     _worker_id(worker_id), _cm(cm),
  4613     _objArray_processor(this),
  4614     _claimed(false),
  4615     _nextMarkBitMap(NULL), _hash_seed(17),
  4616     _task_queue(task_queue),
  4617     _task_queues(task_queues),
  4618     _cm_oop_closure(NULL),
  4619     _marked_bytes_array(marked_bytes),
  4620     _card_bm(card_bm) {
  4621   guarantee(task_queue != NULL, "invariant");
  4622   guarantee(task_queues != NULL, "invariant");
  4624   statsOnly( _clock_due_to_scanning = 0;
  4625              _clock_due_to_marking  = 0 );
  4627   _marking_step_diffs_ms.add(0.5);
  4630 // These are formatting macros that are used below to ensure
  4631 // consistent formatting. The *_H_* versions are used to format the
  4632 // header for a particular value and they should be kept consistent
  4633 // with the corresponding macro. Also note that most of the macros add
  4634 // the necessary white space (as a prefix) which makes them a bit
  4635 // easier to compose.
  4637 // All the output lines are prefixed with this string to be able to
  4638 // identify them easily in a large log file.
  4639 #define G1PPRL_LINE_PREFIX            "###"
  4641 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
  4642 #ifdef _LP64
  4643 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4644 #else // _LP64
  4645 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4646 #endif // _LP64
  4648 // For per-region info
  4649 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4650 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4651 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
  4652 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4653 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4654 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4656 // For summary info
  4657 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
  4658 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
  4659 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
  4660 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
  4662 G1PrintRegionLivenessInfoClosure::
  4663 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4664   : _out(out),
  4665     _total_used_bytes(0), _total_capacity_bytes(0),
  4666     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4667     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4668     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4669     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4670   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4671   MemRegion g1_reserved = g1h->g1_reserved();
  4672   double now = os::elapsedTime();
  4674   // Print the header of the output.
  4675   _out->cr();
  4676   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4677   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4678                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4679                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4680                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
  4681                  HeapRegion::GrainBytes);
  4682   _out->print_cr(G1PPRL_LINE_PREFIX);
  4683   _out->print_cr(G1PPRL_LINE_PREFIX
  4684                 G1PPRL_TYPE_H_FORMAT
  4685                 G1PPRL_ADDR_BASE_H_FORMAT
  4686                 G1PPRL_BYTE_H_FORMAT
  4687                 G1PPRL_BYTE_H_FORMAT
  4688                 G1PPRL_BYTE_H_FORMAT
  4689                 G1PPRL_DOUBLE_H_FORMAT
  4690                 G1PPRL_BYTE_H_FORMAT
  4691                 G1PPRL_BYTE_H_FORMAT,
  4692                 "type", "address-range",
  4693                 "used", "prev-live", "next-live", "gc-eff",
  4694                 "remset", "code-roots");
  4695   _out->print_cr(G1PPRL_LINE_PREFIX
  4696                 G1PPRL_TYPE_H_FORMAT
  4697                 G1PPRL_ADDR_BASE_H_FORMAT
  4698                 G1PPRL_BYTE_H_FORMAT
  4699                 G1PPRL_BYTE_H_FORMAT
  4700                 G1PPRL_BYTE_H_FORMAT
  4701                 G1PPRL_DOUBLE_H_FORMAT
  4702                 G1PPRL_BYTE_H_FORMAT
  4703                 G1PPRL_BYTE_H_FORMAT,
  4704                 "", "",
  4705                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4706                 "(bytes)", "(bytes)");
  4709 // It takes as a parameter a reference to one of the _hum_* fields, it
  4710 // deduces the corresponding value for a region in a humongous region
  4711 // series (either the region size, or what's left if the _hum_* field
  4712 // is < the region size), and updates the _hum_* field accordingly.
  4713 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4714   size_t bytes = 0;
  4715   // The > 0 check is to deal with the prev and next live bytes which
  4716   // could be 0.
  4717   if (*hum_bytes > 0) {
  4718     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4719     *hum_bytes -= bytes;
  4721   return bytes;
  4724 // It deduces the values for a region in a humongous region series
  4725 // from the _hum_* fields and updates those accordingly. It assumes
  4726 // that that _hum_* fields have already been set up from the "starts
  4727 // humongous" region and we visit the regions in address order.
  4728 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4729                                                      size_t* capacity_bytes,
  4730                                                      size_t* prev_live_bytes,
  4731                                                      size_t* next_live_bytes) {
  4732   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4733   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4734   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4735   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4736   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4739 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4740   const char* type       = r->get_type_str();
  4741   HeapWord* bottom       = r->bottom();
  4742   HeapWord* end          = r->end();
  4743   size_t capacity_bytes  = r->capacity();
  4744   size_t used_bytes      = r->used();
  4745   size_t prev_live_bytes = r->live_bytes();
  4746   size_t next_live_bytes = r->next_live_bytes();
  4747   double gc_eff          = r->gc_efficiency();
  4748   size_t remset_bytes    = r->rem_set()->mem_size();
  4749   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4751   if (r->startsHumongous()) {
  4752     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4753            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4754            "they should have been zeroed after the last time we used them");
  4755     // Set up the _hum_* fields.
  4756     _hum_capacity_bytes  = capacity_bytes;
  4757     _hum_used_bytes      = used_bytes;
  4758     _hum_prev_live_bytes = prev_live_bytes;
  4759     _hum_next_live_bytes = next_live_bytes;
  4760     get_hum_bytes(&used_bytes, &capacity_bytes,
  4761                   &prev_live_bytes, &next_live_bytes);
  4762     end = bottom + HeapRegion::GrainWords;
  4763   } else if (r->continuesHumongous()) {
  4764     get_hum_bytes(&used_bytes, &capacity_bytes,
  4765                   &prev_live_bytes, &next_live_bytes);
  4766     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4769   _total_used_bytes      += used_bytes;
  4770   _total_capacity_bytes  += capacity_bytes;
  4771   _total_prev_live_bytes += prev_live_bytes;
  4772   _total_next_live_bytes += next_live_bytes;
  4773   _total_remset_bytes    += remset_bytes;
  4774   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4776   // Print a line for this particular region.
  4777   _out->print_cr(G1PPRL_LINE_PREFIX
  4778                  G1PPRL_TYPE_FORMAT
  4779                  G1PPRL_ADDR_BASE_FORMAT
  4780                  G1PPRL_BYTE_FORMAT
  4781                  G1PPRL_BYTE_FORMAT
  4782                  G1PPRL_BYTE_FORMAT
  4783                  G1PPRL_DOUBLE_FORMAT
  4784                  G1PPRL_BYTE_FORMAT
  4785                  G1PPRL_BYTE_FORMAT,
  4786                  type, p2i(bottom), p2i(end),
  4787                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4788                  remset_bytes, strong_code_roots_bytes);
  4790   return false;
  4793 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4794   // add static memory usages to remembered set sizes
  4795   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4796   // Print the footer of the output.
  4797   _out->print_cr(G1PPRL_LINE_PREFIX);
  4798   _out->print_cr(G1PPRL_LINE_PREFIX
  4799                  " SUMMARY"
  4800                  G1PPRL_SUM_MB_FORMAT("capacity")
  4801                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4802                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4803                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4804                  G1PPRL_SUM_MB_FORMAT("remset")
  4805                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4806                  bytes_to_mb(_total_capacity_bytes),
  4807                  bytes_to_mb(_total_used_bytes),
  4808                  perc(_total_used_bytes, _total_capacity_bytes),
  4809                  bytes_to_mb(_total_prev_live_bytes),
  4810                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4811                  bytes_to_mb(_total_next_live_bytes),
  4812                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4813                  bytes_to_mb(_total_remset_bytes),
  4814                  bytes_to_mb(_total_strong_code_roots_bytes));
  4815   _out->cr();

mercurial