src/cpu/x86/vm/x86_32.ad

Sat, 07 Nov 2020 10:30:02 +0800

author
aoqi
date
Sat, 07 Nov 2020 10:30:02 +0800
changeset 10026
8c95980d0b66
parent 8856
ac27a9c85bea
permissions
-rw-r--r--

Added tag mips-jdk8u275-b01 for changeset d3b4d62f391f

     1 //
     2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for no registers (empty set).
   127 reg_class no_reg();
   129 // Class for all registers
   130 reg_class any_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   131 // Class for all registers (excluding EBP)
   132 reg_class any_reg_no_ebp(EAX, EDX, EDI, ESI, ECX, EBX, ESP);
   133 // Dynamic register class that selects at runtime between register classes
   134 // any_reg and any_no_ebp_reg (depending on the value of the flag PreserveFramePointer). 
   135 // Equivalent to: return PreserveFramePointer ? any_no_ebp_reg : any_reg;
   136 reg_class_dynamic any_reg(any_reg_no_ebp, any_reg_with_ebp, %{ PreserveFramePointer %});
   138 // Class for general registers
   139 reg_class int_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   140 // Class for general registers (excluding EBP).
   141 // This register class can be used for implicit null checks on win95.
   142 // It is also safe for use by tailjumps (we don't want to allocate in ebp).
   143 // Used also if the PreserveFramePointer flag is true.
   144 reg_class int_reg_no_ebp(EAX, EDX, EDI, ESI, ECX, EBX);
   145 // Dynamic register class that selects between int_reg and int_reg_no_ebp.
   146 reg_class_dynamic int_reg(int_reg_no_ebp, int_reg_with_ebp, %{ PreserveFramePointer %});
   148 // Class of "X" registers
   149 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   151 // Class of registers that can appear in an address with no offset.
   152 // EBP and ESP require an extra instruction byte for zero offset.
   153 // Used in fast-unlock
   154 reg_class p_reg(EDX, EDI, ESI, EBX);
   156 // Class for general registers excluding ECX
   157 reg_class ncx_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, EBX);
   158 // Class for general registers excluding ECX (and EBP)
   159 reg_class ncx_reg_no_ebp(EAX, EDX, EDI, ESI, EBX);
   160 // Dynamic register class that selects between ncx_reg and ncx_reg_no_ebp.
   161 reg_class_dynamic ncx_reg(ncx_reg_no_ebp, ncx_reg_with_ebp, %{ PreserveFramePointer %});
   163 // Class for general registers excluding EAX
   164 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   166 // Class for general registers excluding EAX and EBX.
   167 reg_class nabx_reg_with_ebp(EDX, EDI, ESI, ECX, EBP);
   168 // Class for general registers excluding EAX and EBX (and EBP)
   169 reg_class nabx_reg_no_ebp(EDX, EDI, ESI, ECX);
   170 // Dynamic register class that selects between nabx_reg and nabx_reg_no_ebp.
   171 reg_class_dynamic nabx_reg(nabx_reg_no_ebp, nabx_reg_with_ebp, %{ PreserveFramePointer %});
   173 // Class of EAX (for multiply and divide operations)
   174 reg_class eax_reg(EAX);
   176 // Class of EBX (for atomic add)
   177 reg_class ebx_reg(EBX);
   179 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   180 reg_class ecx_reg(ECX);
   182 // Class of EDX (for multiply and divide operations)
   183 reg_class edx_reg(EDX);
   185 // Class of EDI (for synchronization)
   186 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   191 // Singleton class for stack pointer
   192 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   197 // Class of integer register pairs
   198 reg_class long_reg_with_ebp( EAX,EDX, ECX,EBX, EBP,EDI );
   199 // Class of integer register pairs (excluding EBP and EDI);
   200 reg_class long_reg_no_ebp( EAX,EDX, ECX,EBX );
   201 // Dynamic register class that selects between long_reg and long_reg_no_ebp.
   202 reg_class_dynamic long_reg(long_reg_no_ebp, long_reg_with_ebp, %{ PreserveFramePointer %});
   204 // Class of integer register pairs that aligns with calling convention
   205 reg_class eadx_reg( EAX,EDX );
   206 reg_class ebcx_reg( ECX,EBX );
   208 // Not AX or DX, used in divides
   209 reg_class nadx_reg_with_ebp(EBX, ECX, ESI, EDI, EBP);
   210 // Not AX or DX (and neither EBP), used in divides
   211 reg_class nadx_reg_no_ebp(EBX, ECX, ESI, EDI);
   212 // Dynamic register class that selects between nadx_reg and nadx_reg_no_ebp.
   213 reg_class_dynamic nadx_reg(nadx_reg_no_ebp, nadx_reg_with_ebp, %{ PreserveFramePointer %});
   215 // Floating point registers.  Notice FPR0 is not a choice.
   216 // FPR0 is not ever allocated; we use clever encodings to fake
   217 // a 2-address instructions out of Intels FP stack.
   218 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   220 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   221                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   222                       FPR7L,FPR7H );
   224 reg_class fp_flt_reg0( FPR1L );
   225 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   226 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   227 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   228                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   230 %}
   233 //----------SOURCE BLOCK-------------------------------------------------------
   234 // This is a block of C++ code which provides values, functions, and
   235 // definitions necessary in the rest of the architecture description
   236 source_hpp %{
   237 // Must be visible to the DFA in dfa_x86_32.cpp
   238 extern bool is_operand_hi32_zero(Node* n);
   239 %}
   241 source %{
   242 #define   RELOC_IMM32    Assembler::imm_operand
   243 #define   RELOC_DISP32   Assembler::disp32_operand
   245 #define __ _masm.
   247 // How to find the high register of a Long pair, given the low register
   248 #define   HIGH_FROM_LOW(x) ((x)+2)
   250 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   251 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   252 // fast versions of NegF/NegD and AbsF/AbsD.
   254 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   255 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   256   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   257   // of 128-bits operands for SSE instructions.
   258   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   259   // Store the value to a 128-bits operand.
   260   operand[0] = lo;
   261   operand[1] = hi;
   262   return operand;
   263 }
   265 // Buffer for 128-bits masks used by SSE instructions.
   266 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   268 // Static initialization during VM startup.
   269 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   270 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   271 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   272 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   274 // Offset hacking within calls.
   275 static int pre_call_resets_size() {
   276   int size = 0;
   277   Compile* C = Compile::current();
   278   if (C->in_24_bit_fp_mode()) {
   279     size += 6; // fldcw
   280   }
   281   if (C->max_vector_size() > 16) {
   282     size += 3; // vzeroupper
   283   }
   284   return size;
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   return 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points  
   292 }
   294 int MachCallDynamicJavaNode::ret_addr_offset() {
   295   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
   296 }
   298 static int sizeof_FFree_Float_Stack_All = -1;
   300 int MachCallRuntimeNode::ret_addr_offset() {
   301   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   302   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
   303 }
   305 // Indicate if the safepoint node needs the polling page as an input.
   306 // Since x86 does have absolute addressing, it doesn't.
   307 bool SafePointNode::needs_polling_address_input() {
   308   return false;
   309 }
   311 //
   312 // Compute padding required for nodes which need alignment
   313 //
   315 // The address of the call instruction needs to be 4-byte aligned to
   316 // ensure that it does not span a cache line so that it can be patched.
   317 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   318   current_offset += pre_call_resets_size();  // skip fldcw, if any
   319   current_offset += 1;      // skip call opcode byte
   320   return round_to(current_offset, alignment_required()) - current_offset;
   321 }
   323 // The address of the call instruction needs to be 4-byte aligned to
   324 // ensure that it does not span a cache line so that it can be patched.
   325 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   326   current_offset += pre_call_resets_size();  // skip fldcw, if any
   327   current_offset += 5;      // skip MOV instruction
   328   current_offset += 1;      // skip call opcode byte
   329   return round_to(current_offset, alignment_required()) - current_offset;
   330 }
   332 // EMIT_RM()
   333 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   334   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   335   cbuf.insts()->emit_int8(c);
   336 }
   338 // EMIT_CC()
   339 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   340   unsigned char c = (unsigned char)( f1 | f2 );
   341   cbuf.insts()->emit_int8(c);
   342 }
   344 // EMIT_OPCODE()
   345 void emit_opcode(CodeBuffer &cbuf, int code) {
   346   cbuf.insts()->emit_int8((unsigned char) code);
   347 }
   349 // EMIT_OPCODE() w/ relocation information
   350 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   351   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   352   emit_opcode(cbuf, code);
   353 }
   355 // EMIT_D8()
   356 void emit_d8(CodeBuffer &cbuf, int d8) {
   357   cbuf.insts()->emit_int8((unsigned char) d8);
   358 }
   360 // EMIT_D16()
   361 void emit_d16(CodeBuffer &cbuf, int d16) {
   362   cbuf.insts()->emit_int16(d16);
   363 }
   365 // EMIT_D32()
   366 void emit_d32(CodeBuffer &cbuf, int d32) {
   367   cbuf.insts()->emit_int32(d32);
   368 }
   370 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   371 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   372         int format) {
   373   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   374   cbuf.insts()->emit_int32(d32);
   375 }
   377 // emit 32 bit value and construct relocation entry from RelocationHolder
   378 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   379         int format) {
   380 #ifdef ASSERT
   381   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   382     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   383   }
   384 #endif
   385   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   386   cbuf.insts()->emit_int32(d32);
   387 }
   389 // Access stack slot for load or store
   390 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   391   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   392   if( -128 <= disp && disp <= 127 ) {
   393     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   394     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   395     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   396   } else {
   397     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   398     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   399     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   400   }
   401 }
   403    // rRegI ereg, memory mem) %{    // emit_reg_mem
   404 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
   405   // There is no index & no scale, use form without SIB byte
   406   if ((index == 0x4) &&
   407       (scale == 0) && (base != ESP_enc)) {
   408     // If no displacement, mode is 0x0; unless base is [EBP]
   409     if ( (displace == 0) && (base != EBP_enc) ) {
   410       emit_rm(cbuf, 0x0, reg_encoding, base);
   411     }
   412     else {                    // If 8-bit displacement, mode 0x1
   413       if ((displace >= -128) && (displace <= 127)
   414           && (disp_reloc == relocInfo::none) ) {
   415         emit_rm(cbuf, 0x1, reg_encoding, base);
   416         emit_d8(cbuf, displace);
   417       }
   418       else {                  // If 32-bit displacement
   419         if (base == -1) { // Special flag for absolute address
   420           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   421           // (manual lies; no SIB needed here)
   422           if ( disp_reloc != relocInfo::none ) {
   423             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   424           } else {
   425             emit_d32      (cbuf, displace);
   426           }
   427         }
   428         else {                // Normal base + offset
   429           emit_rm(cbuf, 0x2, reg_encoding, base);
   430           if ( disp_reloc != relocInfo::none ) {
   431             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   432           } else {
   433             emit_d32      (cbuf, displace);
   434           }
   435         }
   436       }
   437     }
   438   }
   439   else {                      // Else, encode with the SIB byte
   440     // If no displacement, mode is 0x0; unless base is [EBP]
   441     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   442       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   443       emit_rm(cbuf, scale, index, base);
   444     }
   445     else {                    // If 8-bit displacement, mode 0x1
   446       if ((displace >= -128) && (displace <= 127)
   447           && (disp_reloc == relocInfo::none) ) {
   448         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   449         emit_rm(cbuf, scale, index, base);
   450         emit_d8(cbuf, displace);
   451       }
   452       else {                  // If 32-bit displacement
   453         if (base == 0x04 ) {
   454           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   455           emit_rm(cbuf, scale, index, 0x04);
   456         } else {
   457           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   458           emit_rm(cbuf, scale, index, base);
   459         }
   460         if ( disp_reloc != relocInfo::none ) {
   461           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   462         } else {
   463           emit_d32      (cbuf, displace);
   464         }
   465       }
   466     }
   467   }
   468 }
   471 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   472   if( dst_encoding == src_encoding ) {
   473     // reg-reg copy, use an empty encoding
   474   } else {
   475     emit_opcode( cbuf, 0x8B );
   476     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   477   }
   478 }
   480 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   481   Label exit;
   482   __ jccb(Assembler::noParity, exit);
   483   __ pushf();
   484   //
   485   // comiss/ucomiss instructions set ZF,PF,CF flags and
   486   // zero OF,AF,SF for NaN values.
   487   // Fixup flags by zeroing ZF,PF so that compare of NaN
   488   // values returns 'less than' result (CF is set).
   489   // Leave the rest of flags unchanged.
   490   //
   491   //    7 6 5 4 3 2 1 0
   492   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   493   //    0 0 1 0 1 0 1 1   (0x2B)
   494   //
   495   __ andl(Address(rsp, 0), 0xffffff2b);
   496   __ popf();
   497   __ bind(exit);
   498 }
   500 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   501   Label done;
   502   __ movl(dst, -1);
   503   __ jcc(Assembler::parity, done);
   504   __ jcc(Assembler::below, done);
   505   __ setb(Assembler::notEqual, dst);
   506   __ movzbl(dst, dst);
   507   __ bind(done);
   508 }
   511 //=============================================================================
   512 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   514 int Compile::ConstantTable::calculate_table_base_offset() const {
   515   return 0;  // absolute addressing, no offset
   516 }
   518 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
   519 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
   520   ShouldNotReachHere();
   521 }
   523 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   524   // Empty encoding
   525 }
   527 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   528   return 0;
   529 }
   531 #ifndef PRODUCT
   532 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   533   st->print("# MachConstantBaseNode (empty encoding)");
   534 }
   535 #endif
   538 //=============================================================================
   539 #ifndef PRODUCT
   540 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   541   Compile* C = ra_->C;
   543   int framesize = C->frame_size_in_bytes();
   544   int bangsize = C->bang_size_in_bytes();
   545   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   546   // Remove wordSize for return addr which is already pushed.
   547   framesize -= wordSize;
   549   if (C->need_stack_bang(bangsize)) {
   550     framesize -= wordSize;
   551     st->print("# stack bang (%d bytes)", bangsize);
   552     st->print("\n\t");
   553     st->print("PUSH   EBP\t# Save EBP");
   554     if (PreserveFramePointer) {
   555       st->print("\n\t");
   556       st->print("MOV    EBP, ESP\t# Save the caller's SP into EBP");
   557     }
   558     if (framesize) {
   559       st->print("\n\t");
   560       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   561     }
   562   } else {
   563     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   564     st->print("\n\t");
   565     framesize -= wordSize;
   566     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   567     if (PreserveFramePointer) {
   568       st->print("\n\t");
   569       st->print("MOV    EBP, ESP\t# Save the caller's SP into EBP");
   570       if (framesize > 0) {
   571         st->print("\n\t");
   572         st->print("ADD    EBP, #%d", framesize);
   573       }
   574     }
   575   }
   577   if (VerifyStackAtCalls) {
   578     st->print("\n\t");
   579     framesize -= wordSize;
   580     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   581   }
   583   if( C->in_24_bit_fp_mode() ) {
   584     st->print("\n\t");
   585     st->print("FLDCW  \t# load 24 bit fpu control word");
   586   }
   587   if (UseSSE >= 2 && VerifyFPU) {
   588     st->print("\n\t");
   589     st->print("# verify FPU stack (must be clean on entry)");
   590   }
   592 #ifdef ASSERT
   593   if (VerifyStackAtCalls) {
   594     st->print("\n\t");
   595     st->print("# stack alignment check");
   596   }
   597 #endif
   598   st->cr();
   599 }
   600 #endif
   603 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   604   Compile* C = ra_->C;
   605   MacroAssembler _masm(&cbuf);
   607   int framesize = C->frame_size_in_bytes();
   608   int bangsize = C->bang_size_in_bytes();
   610   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, C->in_24_bit_fp_mode());
   612   C->set_frame_complete(cbuf.insts_size());
   614   if (C->has_mach_constant_base_node()) {
   615     // NOTE: We set the table base offset here because users might be
   616     // emitted before MachConstantBaseNode.
   617     Compile::ConstantTable& constant_table = C->constant_table();
   618     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   619   }
   620 }
   622 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   623   return MachNode::size(ra_); // too many variables; just compute it the hard way
   624 }
   626 int MachPrologNode::reloc() const {
   627   return 0; // a large enough number
   628 }
   630 //=============================================================================
   631 #ifndef PRODUCT
   632 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   633   Compile *C = ra_->C;
   634   int framesize = C->frame_size_in_bytes();
   635   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   636   // Remove two words for return addr and rbp,
   637   framesize -= 2*wordSize;
   639   if (C->max_vector_size() > 16) {
   640     st->print("VZEROUPPER");
   641     st->cr(); st->print("\t");
   642   }
   643   if (C->in_24_bit_fp_mode()) {
   644     st->print("FLDCW  standard control word");
   645     st->cr(); st->print("\t");
   646   }
   647   if (framesize) {
   648     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   649     st->cr(); st->print("\t");
   650   }
   651   st->print_cr("POPL   EBP"); st->print("\t");
   652   if (do_polling() && C->is_method_compilation()) {
   653     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   654     st->cr(); st->print("\t");
   655   }
   656 }
   657 #endif
   659 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   660   Compile *C = ra_->C;
   662   if (C->max_vector_size() > 16) {
   663     // Clear upper bits of YMM registers when current compiled code uses
   664     // wide vectors to avoid AVX <-> SSE transition penalty during call.
   665     MacroAssembler masm(&cbuf);
   666     masm.vzeroupper();
   667   }
   668   // If method set FPU control word, restore to standard control word
   669   if (C->in_24_bit_fp_mode()) {
   670     MacroAssembler masm(&cbuf);
   671     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   672   }
   674   int framesize = C->frame_size_in_bytes();
   675   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   676   // Remove two words for return addr and rbp,
   677   framesize -= 2*wordSize;
   679   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   681   if (framesize >= 128) {
   682     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   683     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   684     emit_d32(cbuf, framesize);
   685   } else if (framesize) {
   686     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   687     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   688     emit_d8(cbuf, framesize);
   689   }
   691   emit_opcode(cbuf, 0x58 | EBP_enc);
   693   if (do_polling() && C->is_method_compilation()) {
   694     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   695     emit_opcode(cbuf,0x85);
   696     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   697     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   698   }
   699 }
   701 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   702   Compile *C = ra_->C;
   703   // If method set FPU control word, restore to standard control word
   704   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   705   if (C->max_vector_size() > 16) size += 3; // vzeroupper
   706   if (do_polling() && C->is_method_compilation()) size += 6;
   708   int framesize = C->frame_size_in_bytes();
   709   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   710   // Remove two words for return addr and rbp,
   711   framesize -= 2*wordSize;
   713   size++; // popl rbp,
   715   if (framesize >= 128) {
   716     size += 6;
   717   } else {
   718     size += framesize ? 3 : 0;
   719   }
   720   return size;
   721 }
   723 int MachEpilogNode::reloc() const {
   724   return 0; // a large enough number
   725 }
   727 const Pipeline * MachEpilogNode::pipeline() const {
   728   return MachNode::pipeline_class();
   729 }
   731 int MachEpilogNode::safepoint_offset() const { return 0; }
   733 //=============================================================================
   735 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   736 static enum RC rc_class( OptoReg::Name reg ) {
   738   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   739   if (OptoReg::is_stack(reg)) return rc_stack;
   741   VMReg r = OptoReg::as_VMReg(reg);
   742   if (r->is_Register()) return rc_int;
   743   if (r->is_FloatRegister()) {
   744     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   745     return rc_float;
   746   }
   747   assert(r->is_XMMRegister(), "must be");
   748   return rc_xmm;
   749 }
   751 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   752                         int opcode, const char *op_str, int size, outputStream* st ) {
   753   if( cbuf ) {
   754     emit_opcode  (*cbuf, opcode );
   755     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
   756 #ifndef PRODUCT
   757   } else if( !do_size ) {
   758     if( size != 0 ) st->print("\n\t");
   759     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   760       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   761       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   762     } else { // FLD, FST, PUSH, POP
   763       st->print("%s [ESP + #%d]",op_str,offset);
   764     }
   765 #endif
   766   }
   767   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   768   return size+3+offset_size;
   769 }
   771 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   772 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   773                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   774   if (cbuf) {
   775     MacroAssembler _masm(cbuf);
   776     if (reg_lo+1 == reg_hi) { // double move?
   777       if (is_load) {
   778         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   779       } else {
   780         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   781       }
   782     } else {
   783       if (is_load) {
   784         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   785       } else {
   786         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   787       }
   788     }
   789 #ifndef PRODUCT
   790   } else if (!do_size) {
   791     if (size != 0) st->print("\n\t");
   792     if (reg_lo+1 == reg_hi) { // double move?
   793       if (is_load) st->print("%s %s,[ESP + #%d]",
   794                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   795                               Matcher::regName[reg_lo], offset);
   796       else         st->print("MOVSD  [ESP + #%d],%s",
   797                               offset, Matcher::regName[reg_lo]);
   798     } else {
   799       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   800                               Matcher::regName[reg_lo], offset);
   801       else         st->print("MOVSS  [ESP + #%d],%s",
   802                               offset, Matcher::regName[reg_lo]);
   803     }
   804 #endif
   805   }
   806   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   807   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   808   return size+5+offset_size;
   809 }
   812 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   813                             int src_hi, int dst_hi, int size, outputStream* st ) {
   814   if (cbuf) {
   815     MacroAssembler _masm(cbuf);
   816     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   817       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   818                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   819     } else {
   820       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   821                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   822     }
   823 #ifndef PRODUCT
   824   } else if (!do_size) {
   825     if (size != 0) st->print("\n\t");
   826     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   827       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   828         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   829       } else {
   830         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   831       }
   832     } else {
   833       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   834         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   835       } else {
   836         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   837       }
   838     }
   839 #endif
   840   }
   841   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   842   // Only MOVAPS SSE prefix uses 1 byte.
   843   int sz = 4;
   844   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   845       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   846   return size + sz;
   847 }
   849 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   850                             int src_hi, int dst_hi, int size, outputStream* st ) {
   851   // 32-bit
   852   if (cbuf) {
   853     MacroAssembler _masm(cbuf);
   854     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   855              as_Register(Matcher::_regEncode[src_lo]));
   856 #ifndef PRODUCT
   857   } else if (!do_size) {
   858     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   859 #endif
   860   }
   861   return 4;
   862 }
   865 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   866                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   867   // 32-bit
   868   if (cbuf) {
   869     MacroAssembler _masm(cbuf);
   870     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   871              as_XMMRegister(Matcher::_regEncode[src_lo]));
   872 #ifndef PRODUCT
   873   } else if (!do_size) {
   874     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   875 #endif
   876   }
   877   return 4;
   878 }
   880 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   881   if( cbuf ) {
   882     emit_opcode(*cbuf, 0x8B );
   883     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   884 #ifndef PRODUCT
   885   } else if( !do_size ) {
   886     if( size != 0 ) st->print("\n\t");
   887     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   888 #endif
   889   }
   890   return size+2;
   891 }
   893 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   894                                  int offset, int size, outputStream* st ) {
   895   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   896     if( cbuf ) {
   897       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   898       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   899 #ifndef PRODUCT
   900     } else if( !do_size ) {
   901       if( size != 0 ) st->print("\n\t");
   902       st->print("FLD    %s",Matcher::regName[src_lo]);
   903 #endif
   904     }
   905     size += 2;
   906   }
   908   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   909   const char *op_str;
   910   int op;
   911   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   912     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   913     op = 0xDD;
   914   } else {                   // 32-bit store
   915     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   916     op = 0xD9;
   917     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   918   }
   920   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   921 }
   923 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   924 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   925                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   927 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   928                             int stack_offset, int reg, uint ireg, outputStream* st);
   930 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   931                                      int dst_offset, uint ireg, outputStream* st) {
   932   int calc_size = 0;
   933   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   934   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   935   switch (ireg) {
   936   case Op_VecS:
   937     calc_size = 3+src_offset_size + 3+dst_offset_size;
   938     break;
   939   case Op_VecD:
   940     calc_size = 3+src_offset_size + 3+dst_offset_size;
   941     src_offset += 4;
   942     dst_offset += 4;
   943     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   944     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   945     calc_size += 3+src_offset_size + 3+dst_offset_size;
   946     break;
   947   case Op_VecX:
   948     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   949     break;
   950   case Op_VecY:
   951     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   952     break;
   953   default:
   954     ShouldNotReachHere();
   955   }
   956   if (cbuf) {
   957     MacroAssembler _masm(cbuf);
   958     int offset = __ offset();
   959     switch (ireg) {
   960     case Op_VecS:
   961       __ pushl(Address(rsp, src_offset));
   962       __ popl (Address(rsp, dst_offset));
   963       break;
   964     case Op_VecD:
   965       __ pushl(Address(rsp, src_offset));
   966       __ popl (Address(rsp, dst_offset));
   967       __ pushl(Address(rsp, src_offset+4));
   968       __ popl (Address(rsp, dst_offset+4));
   969       break;
   970     case Op_VecX:
   971       __ movdqu(Address(rsp, -16), xmm0);
   972       __ movdqu(xmm0, Address(rsp, src_offset));
   973       __ movdqu(Address(rsp, dst_offset), xmm0);
   974       __ movdqu(xmm0, Address(rsp, -16));
   975       break;
   976     case Op_VecY:
   977       __ vmovdqu(Address(rsp, -32), xmm0);
   978       __ vmovdqu(xmm0, Address(rsp, src_offset));
   979       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   980       __ vmovdqu(xmm0, Address(rsp, -32));
   981       break;
   982     default:
   983       ShouldNotReachHere();
   984     }
   985     int size = __ offset() - offset;
   986     assert(size == calc_size, "incorrect size calculattion");
   987     return size;
   988 #ifndef PRODUCT
   989   } else if (!do_size) {
   990     switch (ireg) {
   991     case Op_VecS:
   992       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   993                 "popl    [rsp + #%d]",
   994                 src_offset, dst_offset);
   995       break;
   996     case Op_VecD:
   997       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   998                 "popq    [rsp + #%d]\n\t"
   999                 "pushl   [rsp + #%d]\n\t"
  1000                 "popq    [rsp + #%d]",
  1001                 src_offset, dst_offset, src_offset+4, dst_offset+4);
  1002       break;
  1003      case Op_VecX:
  1004       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
  1005                 "movdqu  xmm0, [rsp + #%d]\n\t"
  1006                 "movdqu  [rsp + #%d], xmm0\n\t"
  1007                 "movdqu  xmm0, [rsp - #16]",
  1008                 src_offset, dst_offset);
  1009       break;
  1010     case Op_VecY:
  1011       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
  1012                 "vmovdqu xmm0, [rsp + #%d]\n\t"
  1013                 "vmovdqu [rsp + #%d], xmm0\n\t"
  1014                 "vmovdqu xmm0, [rsp - #32]",
  1015                 src_offset, dst_offset);
  1016       break;
  1017     default:
  1018       ShouldNotReachHere();
  1020 #endif
  1022   return calc_size;
  1025 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
  1026   // Get registers to move
  1027   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1028   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1029   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1030   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1032   enum RC src_second_rc = rc_class(src_second);
  1033   enum RC src_first_rc = rc_class(src_first);
  1034   enum RC dst_second_rc = rc_class(dst_second);
  1035   enum RC dst_first_rc = rc_class(dst_first);
  1037   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1039   // Generate spill code!
  1040   int size = 0;
  1042   if( src_first == dst_first && src_second == dst_second )
  1043     return size;            // Self copy, no move
  1045   if (bottom_type()->isa_vect() != NULL) {
  1046     uint ireg = ideal_reg();
  1047     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
  1048     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
  1049     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
  1050     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1051       // mem -> mem
  1052       int src_offset = ra_->reg2offset(src_first);
  1053       int dst_offset = ra_->reg2offset(dst_first);
  1054       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
  1055     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1056       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
  1057     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1058       int stack_offset = ra_->reg2offset(dst_first);
  1059       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
  1060     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
  1061       int stack_offset = ra_->reg2offset(src_first);
  1062       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1063     } else {
  1064       ShouldNotReachHere();
  1068   // --------------------------------------
  1069   // Check for mem-mem move.  push/pop to move.
  1070   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1071     if( src_second == dst_first ) { // overlapping stack copy ranges
  1072       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1073       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1074       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1075       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1077     // move low bits
  1078     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1079     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1080     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1081       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1082       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1084     return size;
  1087   // --------------------------------------
  1088   // Check for integer reg-reg copy
  1089   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1090     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1092   // Check for integer store
  1093   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1094     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1096   // Check for integer load
  1097   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1098     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1100   // Check for integer reg-xmm reg copy
  1101   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1102     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1103             "no 64 bit integer-float reg moves" );
  1104     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1106   // --------------------------------------
  1107   // Check for float reg-reg copy
  1108   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1109     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1110             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1111     if( cbuf ) {
  1113       // Note the mucking with the register encode to compensate for the 0/1
  1114       // indexing issue mentioned in a comment in the reg_def sections
  1115       // for FPR registers many lines above here.
  1117       if( src_first != FPR1L_num ) {
  1118         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1119         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1120         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1121         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1122      } else {
  1123         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1124         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1126 #ifndef PRODUCT
  1127     } else if( !do_size ) {
  1128       if( size != 0 ) st->print("\n\t");
  1129       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1130       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1131 #endif
  1133     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1136   // Check for float store
  1137   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1138     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1141   // Check for float load
  1142   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1143     int offset = ra_->reg2offset(src_first);
  1144     const char *op_str;
  1145     int op;
  1146     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1147       op_str = "FLD_D";
  1148       op = 0xDD;
  1149     } else {                   // 32-bit load
  1150       op_str = "FLD_S";
  1151       op = 0xD9;
  1152       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1154     if( cbuf ) {
  1155       emit_opcode  (*cbuf, op );
  1156       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
  1157       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1158       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1159 #ifndef PRODUCT
  1160     } else if( !do_size ) {
  1161       if( size != 0 ) st->print("\n\t");
  1162       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1163 #endif
  1165     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1166     return size + 3+offset_size+2;
  1169   // Check for xmm reg-reg copy
  1170   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1171     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1172             (src_first+1 == src_second && dst_first+1 == dst_second),
  1173             "no non-adjacent float-moves" );
  1174     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1177   // Check for xmm reg-integer reg copy
  1178   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1179     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1180             "no 64 bit float-integer reg moves" );
  1181     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1184   // Check for xmm store
  1185   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1186     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1189   // Check for float xmm load
  1190   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1191     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1194   // Copy from float reg to xmm reg
  1195   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1196     // copy to the top of stack from floating point reg
  1197     // and use LEA to preserve flags
  1198     if( cbuf ) {
  1199       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1200       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1201       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1202       emit_d8(*cbuf,0xF8);
  1203 #ifndef PRODUCT
  1204     } else if( !do_size ) {
  1205       if( size != 0 ) st->print("\n\t");
  1206       st->print("LEA    ESP,[ESP-8]");
  1207 #endif
  1209     size += 4;
  1211     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1213     // Copy from the temp memory to the xmm reg.
  1214     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1216     if( cbuf ) {
  1217       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1218       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1219       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1220       emit_d8(*cbuf,0x08);
  1221 #ifndef PRODUCT
  1222     } else if( !do_size ) {
  1223       if( size != 0 ) st->print("\n\t");
  1224       st->print("LEA    ESP,[ESP+8]");
  1225 #endif
  1227     size += 4;
  1228     return size;
  1231   assert( size > 0, "missed a case" );
  1233   // --------------------------------------------------------------------
  1234   // Check for second bits still needing moving.
  1235   if( src_second == dst_second )
  1236     return size;               // Self copy; no move
  1237   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1239   // Check for second word int-int move
  1240   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1241     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1243   // Check for second word integer store
  1244   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1245     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1247   // Check for second word integer load
  1248   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1249     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1252   Unimplemented();
  1255 #ifndef PRODUCT
  1256 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1257   implementation( NULL, ra_, false, st );
  1259 #endif
  1261 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1262   implementation( &cbuf, ra_, false, NULL );
  1265 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1266   return implementation( NULL, ra_, true, NULL );
  1270 //=============================================================================
  1271 #ifndef PRODUCT
  1272 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1273   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1274   int reg = ra_->get_reg_first(this);
  1275   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1277 #endif
  1279 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1280   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1281   int reg = ra_->get_encode(this);
  1282   if( offset >= 128 ) {
  1283     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1284     emit_rm(cbuf, 0x2, reg, 0x04);
  1285     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1286     emit_d32(cbuf, offset);
  1288   else {
  1289     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1290     emit_rm(cbuf, 0x1, reg, 0x04);
  1291     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1292     emit_d8(cbuf, offset);
  1296 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1297   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1298   if( offset >= 128 ) {
  1299     return 7;
  1301   else {
  1302     return 4;
  1306 //=============================================================================
  1307 #ifndef PRODUCT
  1308 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1309   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1310   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1311   st->print_cr("\tNOP");
  1312   st->print_cr("\tNOP");
  1313   if( !OptoBreakpoint )
  1314     st->print_cr("\tNOP");
  1316 #endif
  1318 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1319   MacroAssembler masm(&cbuf);
  1320 #ifdef ASSERT
  1321   uint insts_size = cbuf.insts_size();
  1322 #endif
  1323   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1324   masm.jump_cc(Assembler::notEqual,
  1325                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1326   /* WARNING these NOPs are critical so that verified entry point is properly
  1327      aligned for patching by NativeJump::patch_verified_entry() */
  1328   int nops_cnt = 2;
  1329   if( !OptoBreakpoint ) // Leave space for int3
  1330      nops_cnt += 1;
  1331   masm.nop(nops_cnt);
  1333   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1336 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1337   return OptoBreakpoint ? 11 : 12;
  1341 //=============================================================================
  1343 int Matcher::regnum_to_fpu_offset(int regnum) {
  1344   return regnum - 32; // The FP registers are in the second chunk
  1347 // This is UltraSparc specific, true just means we have fast l2f conversion
  1348 const bool Matcher::convL2FSupported(void) {
  1349   return true;
  1352 // Is this branch offset short enough that a short branch can be used?
  1353 //
  1354 // NOTE: If the platform does not provide any short branch variants, then
  1355 //       this method should return false for offset 0.
  1356 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1357   // The passed offset is relative to address of the branch.
  1358   // On 86 a branch displacement is calculated relative to address
  1359   // of a next instruction.
  1360   offset -= br_size;
  1362   // the short version of jmpConUCF2 contains multiple branches,
  1363   // making the reach slightly less
  1364   if (rule == jmpConUCF2_rule)
  1365     return (-126 <= offset && offset <= 125);
  1366   return (-128 <= offset && offset <= 127);
  1369 const bool Matcher::isSimpleConstant64(jlong value) {
  1370   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1371   return false;
  1374 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1375 const bool Matcher::init_array_count_is_in_bytes = false;
  1377 // Threshold size for cleararray.
  1378 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1380 // Needs 2 CMOV's for longs.
  1381 const int Matcher::long_cmove_cost() { return 1; }
  1383 // No CMOVF/CMOVD with SSE/SSE2
  1384 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1386 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1387 const bool Matcher::require_postalloc_expand = false;
  1389 // Should the Matcher clone shifts on addressing modes, expecting them to
  1390 // be subsumed into complex addressing expressions or compute them into
  1391 // registers?  True for Intel but false for most RISCs
  1392 const bool Matcher::clone_shift_expressions = true;
  1394 // Do we need to mask the count passed to shift instructions or does
  1395 // the cpu only look at the lower 5/6 bits anyway?
  1396 const bool Matcher::need_masked_shift_count = false;
  1398 bool Matcher::narrow_oop_use_complex_address() {
  1399   ShouldNotCallThis();
  1400   return true;
  1403 bool Matcher::narrow_klass_use_complex_address() {
  1404   ShouldNotCallThis();
  1405   return true;
  1409 // Is it better to copy float constants, or load them directly from memory?
  1410 // Intel can load a float constant from a direct address, requiring no
  1411 // extra registers.  Most RISCs will have to materialize an address into a
  1412 // register first, so they would do better to copy the constant from stack.
  1413 const bool Matcher::rematerialize_float_constants = true;
  1415 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1416 // needed.  Else we split the double into 2 integer pieces and move it
  1417 // piece-by-piece.  Only happens when passing doubles into C code as the
  1418 // Java calling convention forces doubles to be aligned.
  1419 const bool Matcher::misaligned_doubles_ok = true;
  1422 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1423   // Get the memory operand from the node
  1424   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1425   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1426   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1427   uint opcnt     = 1;                 // First operand
  1428   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1429   while( idx >= skipped+num_edges ) {
  1430     skipped += num_edges;
  1431     opcnt++;                          // Bump operand count
  1432     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1433     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1436   MachOper *memory = node->_opnds[opcnt];
  1437   MachOper *new_memory = NULL;
  1438   switch (memory->opcode()) {
  1439   case DIRECT:
  1440   case INDOFFSET32X:
  1441     // No transformation necessary.
  1442     return;
  1443   case INDIRECT:
  1444     new_memory = new (C) indirect_win95_safeOper( );
  1445     break;
  1446   case INDOFFSET8:
  1447     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1448     break;
  1449   case INDOFFSET32:
  1450     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1451     break;
  1452   case INDINDEXOFFSET:
  1453     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1454     break;
  1455   case INDINDEXSCALE:
  1456     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1457     break;
  1458   case INDINDEXSCALEOFFSET:
  1459     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1460     break;
  1461   case LOAD_LONG_INDIRECT:
  1462   case LOAD_LONG_INDOFFSET32:
  1463     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1464     return;
  1465   default:
  1466     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1467     return;
  1469   node->_opnds[opcnt] = new_memory;
  1472 // Advertise here if the CPU requires explicit rounding operations
  1473 // to implement the UseStrictFP mode.
  1474 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1476 // Are floats conerted to double when stored to stack during deoptimization?
  1477 // On x32 it is stored with convertion only when FPU is used for floats.
  1478 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1480 // Do ints take an entire long register or just half?
  1481 const bool Matcher::int_in_long = false;
  1483 // Return whether or not this register is ever used as an argument.  This
  1484 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1485 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1486 // arguments in those registers not be available to the callee.
  1487 bool Matcher::can_be_java_arg( int reg ) {
  1488   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1489   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1490   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1491   return false;
  1494 bool Matcher::is_spillable_arg( int reg ) {
  1495   return can_be_java_arg(reg);
  1498 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1499   // Use hardware integer DIV instruction when
  1500   // it is faster than a code which use multiply.
  1501   // Only when constant divisor fits into 32 bit
  1502   // (min_jint is excluded to get only correct
  1503   // positive 32 bit values from negative).
  1504   return VM_Version::has_fast_idiv() &&
  1505          (divisor == (int)divisor && divisor != min_jint);
  1508 // Register for DIVI projection of divmodI
  1509 RegMask Matcher::divI_proj_mask() {
  1510   return EAX_REG_mask();
  1513 // Register for MODI projection of divmodI
  1514 RegMask Matcher::modI_proj_mask() {
  1515   return EDX_REG_mask();
  1518 // Register for DIVL projection of divmodL
  1519 RegMask Matcher::divL_proj_mask() {
  1520   ShouldNotReachHere();
  1521   return RegMask();
  1524 // Register for MODL projection of divmodL
  1525 RegMask Matcher::modL_proj_mask() {
  1526   ShouldNotReachHere();
  1527   return RegMask();
  1530 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1531   return NO_REG_mask();
  1534 // Returns true if the high 32 bits of the value is known to be zero.
  1535 bool is_operand_hi32_zero(Node* n) {
  1536   int opc = n->Opcode();
  1537   if (opc == Op_AndL) {
  1538     Node* o2 = n->in(2);
  1539     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1540       return true;
  1543   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1544     return true;
  1546   return false;
  1549 %}
  1551 //----------ENCODING BLOCK-----------------------------------------------------
  1552 // This block specifies the encoding classes used by the compiler to output
  1553 // byte streams.  Encoding classes generate functions which are called by
  1554 // Machine Instruction Nodes in order to generate the bit encoding of the
  1555 // instruction.  Operands specify their base encoding interface with the
  1556 // interface keyword.  There are currently supported four interfaces,
  1557 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1558 // operand to generate a function which returns its register number when
  1559 // queried.   CONST_INTER causes an operand to generate a function which
  1560 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1561 // operand to generate four functions which return the Base Register, the
  1562 // Index Register, the Scale Value, and the Offset Value of the operand when
  1563 // queried.  COND_INTER causes an operand to generate six functions which
  1564 // return the encoding code (ie - encoding bits for the instruction)
  1565 // associated with each basic boolean condition for a conditional instruction.
  1566 // Instructions specify two basic values for encoding.  They use the
  1567 // ins_encode keyword to specify their encoding class (which must be one of
  1568 // the class names specified in the encoding block), and they use the
  1569 // opcode keyword to specify, in order, their primary, secondary, and
  1570 // tertiary opcode.  Only the opcode sections which a particular instruction
  1571 // needs for encoding need to be specified.
  1572 encode %{
  1573   // Build emit functions for each basic byte or larger field in the intel
  1574   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1575   // code in the enc_class source block.  Emit functions will live in the
  1576   // main source block for now.  In future, we can generalize this by
  1577   // adding a syntax that specifies the sizes of fields in an order,
  1578   // so that the adlc can build the emit functions automagically
  1580   // Emit primary opcode
  1581   enc_class OpcP %{
  1582     emit_opcode(cbuf, $primary);
  1583   %}
  1585   // Emit secondary opcode
  1586   enc_class OpcS %{
  1587     emit_opcode(cbuf, $secondary);
  1588   %}
  1590   // Emit opcode directly
  1591   enc_class Opcode(immI d8) %{
  1592     emit_opcode(cbuf, $d8$$constant);
  1593   %}
  1595   enc_class SizePrefix %{
  1596     emit_opcode(cbuf,0x66);
  1597   %}
  1599   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1600     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1601   %}
  1603   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1604     emit_opcode(cbuf,$opcode$$constant);
  1605     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1606   %}
  1608   enc_class mov_r32_imm0( rRegI dst ) %{
  1609     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1610     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1611   %}
  1613   enc_class cdq_enc %{
  1614     // Full implementation of Java idiv and irem; checks for
  1615     // special case as described in JVM spec., p.243 & p.271.
  1616     //
  1617     //         normal case                           special case
  1618     //
  1619     // input : rax,: dividend                         min_int
  1620     //         reg: divisor                          -1
  1621     //
  1622     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1623     //         rdx: remainder (= rax, irem reg)       0
  1624     //
  1625     //  Code sequnce:
  1626     //
  1627     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1628     //  0F 85 0B 00 00 00    jne         normal_case
  1629     //  33 D2                xor         rdx,edx
  1630     //  83 F9 FF             cmp         rcx,0FFh
  1631     //  0F 84 03 00 00 00    je          done
  1632     //                  normal_case:
  1633     //  99                   cdq
  1634     //  F7 F9                idiv        rax,ecx
  1635     //                  done:
  1636     //
  1637     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1638     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1639     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1640     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1641     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1643     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1644     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1645     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1646     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1647     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1648     // normal_case:
  1649     emit_opcode(cbuf,0x99);                                         // cdq
  1650     // idiv (note: must be emitted by the user of this rule)
  1651     // normal:
  1652   %}
  1654   // Dense encoding for older common ops
  1655   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1656     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1657   %}
  1660   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1661   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1662     // Check for 8-bit immediate, and set sign extend bit in opcode
  1663     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1664       emit_opcode(cbuf, $primary | 0x02);
  1666     else {                          // If 32-bit immediate
  1667       emit_opcode(cbuf, $primary);
  1669   %}
  1671   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1672     // Emit primary opcode and set sign-extend bit
  1673     // Check for 8-bit immediate, and set sign extend bit in opcode
  1674     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1675       emit_opcode(cbuf, $primary | 0x02);    }
  1676     else {                          // If 32-bit immediate
  1677       emit_opcode(cbuf, $primary);
  1679     // Emit r/m byte with secondary opcode, after primary opcode.
  1680     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1681   %}
  1683   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1684     // Check for 8-bit immediate, and set sign extend bit in opcode
  1685     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1686       $$$emit8$imm$$constant;
  1688     else {                          // If 32-bit immediate
  1689       // Output immediate
  1690       $$$emit32$imm$$constant;
  1692   %}
  1694   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1695     // Emit primary opcode and set sign-extend bit
  1696     // Check for 8-bit immediate, and set sign extend bit in opcode
  1697     int con = (int)$imm$$constant; // Throw away top bits
  1698     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1699     // Emit r/m byte with secondary opcode, after primary opcode.
  1700     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1701     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1702     else                               emit_d32(cbuf,con);
  1703   %}
  1705   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1706     // Emit primary opcode and set sign-extend bit
  1707     // Check for 8-bit immediate, and set sign extend bit in opcode
  1708     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1709     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1710     // Emit r/m byte with tertiary opcode, after primary opcode.
  1711     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1712     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1713     else                               emit_d32(cbuf,con);
  1714   %}
  1716   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1717     emit_cc(cbuf, $secondary, $dst$$reg );
  1718   %}
  1720   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1721     int destlo = $dst$$reg;
  1722     int desthi = HIGH_FROM_LOW(destlo);
  1723     // bswap lo
  1724     emit_opcode(cbuf, 0x0F);
  1725     emit_cc(cbuf, 0xC8, destlo);
  1726     // bswap hi
  1727     emit_opcode(cbuf, 0x0F);
  1728     emit_cc(cbuf, 0xC8, desthi);
  1729     // xchg lo and hi
  1730     emit_opcode(cbuf, 0x87);
  1731     emit_rm(cbuf, 0x3, destlo, desthi);
  1732   %}
  1734   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1735     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1736   %}
  1738   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1739     $$$emit8$primary;
  1740     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1741   %}
  1743   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1744     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1745     emit_d8(cbuf, op >> 8 );
  1746     emit_d8(cbuf, op & 255);
  1747   %}
  1749   // emulate a CMOV with a conditional branch around a MOV
  1750   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1751     // Invert sense of branch from sense of CMOV
  1752     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1753     emit_d8( cbuf, $brOffs$$constant );
  1754   %}
  1756   enc_class enc_PartialSubtypeCheck( ) %{
  1757     Register Redi = as_Register(EDI_enc); // result register
  1758     Register Reax = as_Register(EAX_enc); // super class
  1759     Register Recx = as_Register(ECX_enc); // killed
  1760     Register Resi = as_Register(ESI_enc); // sub class
  1761     Label miss;
  1763     MacroAssembler _masm(&cbuf);
  1764     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1765                                      NULL, &miss,
  1766                                      /*set_cond_codes:*/ true);
  1767     if ($primary) {
  1768       __ xorptr(Redi, Redi);
  1770     __ bind(miss);
  1771   %}
  1773   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1774     MacroAssembler masm(&cbuf);
  1775     int start = masm.offset();
  1776     if (UseSSE >= 2) {
  1777       if (VerifyFPU) {
  1778         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1780     } else {
  1781       // External c_calling_convention expects the FPU stack to be 'clean'.
  1782       // Compiled code leaves it dirty.  Do cleanup now.
  1783       masm.empty_FPU_stack();
  1785     if (sizeof_FFree_Float_Stack_All == -1) {
  1786       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1787     } else {
  1788       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1790   %}
  1792   enc_class Verify_FPU_For_Leaf %{
  1793     if( VerifyFPU ) {
  1794       MacroAssembler masm(&cbuf);
  1795       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1797   %}
  1799   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1800     // This is the instruction starting address for relocation info.
  1801     cbuf.set_insts_mark();
  1802     $$$emit8$primary;
  1803     // CALL directly to the runtime
  1804     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1805                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1807     if (UseSSE >= 2) {
  1808       MacroAssembler _masm(&cbuf);
  1809       BasicType rt = tf()->return_type();
  1811       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1812         // A C runtime call where the return value is unused.  In SSE2+
  1813         // mode the result needs to be removed from the FPU stack.  It's
  1814         // likely that this function call could be removed by the
  1815         // optimizer if the C function is a pure function.
  1816         __ ffree(0);
  1817       } else if (rt == T_FLOAT) {
  1818         __ lea(rsp, Address(rsp, -4));
  1819         __ fstp_s(Address(rsp, 0));
  1820         __ movflt(xmm0, Address(rsp, 0));
  1821         __ lea(rsp, Address(rsp,  4));
  1822       } else if (rt == T_DOUBLE) {
  1823         __ lea(rsp, Address(rsp, -8));
  1824         __ fstp_d(Address(rsp, 0));
  1825         __ movdbl(xmm0, Address(rsp, 0));
  1826         __ lea(rsp, Address(rsp,  8));
  1829   %}
  1832   enc_class pre_call_resets %{
  1833     // If method sets FPU control word restore it here
  1834     debug_only(int off0 = cbuf.insts_size());
  1835     if (ra_->C->in_24_bit_fp_mode()) {
  1836       MacroAssembler _masm(&cbuf);
  1837       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1839     if (ra_->C->max_vector_size() > 16) {
  1840       // Clear upper bits of YMM registers when current compiled code uses
  1841       // wide vectors to avoid AVX <-> SSE transition penalty during call.
  1842       MacroAssembler _masm(&cbuf);
  1843       __ vzeroupper();
  1845     debug_only(int off1 = cbuf.insts_size());
  1846     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
  1847   %}
  1849   enc_class post_call_FPU %{
  1850     // If method sets FPU control word do it here also
  1851     if (Compile::current()->in_24_bit_fp_mode()) {
  1852       MacroAssembler masm(&cbuf);
  1853       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1855   %}
  1857   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1858     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1859     // who we intended to call.
  1860     cbuf.set_insts_mark();
  1861     $$$emit8$primary;
  1862     if (!_method) {
  1863       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1864                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1865     } else if (_optimized_virtual) {
  1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1867                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1868     } else {
  1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1870                      static_call_Relocation::spec(), RELOC_IMM32 );
  1872     if (_method) {  // Emit stub for static call.
  1873       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
  1874       if (stub == NULL) {
  1875         ciEnv::current()->record_failure("CodeCache is full");
  1876         return;
  1879   %}
  1881   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1882     MacroAssembler _masm(&cbuf);
  1883     __ ic_call((address)$meth$$method);
  1884   %}
  1886   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1887     int disp = in_bytes(Method::from_compiled_offset());
  1888     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1890     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
  1891     cbuf.set_insts_mark();
  1892     $$$emit8$primary;
  1893     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1894     emit_d8(cbuf, disp);             // Displacement
  1896   %}
  1898 //   Following encoding is no longer used, but may be restored if calling
  1899 //   convention changes significantly.
  1900 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1901 //
  1902 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1903 //     // int ic_reg     = Matcher::inline_cache_reg();
  1904 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1905 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1906 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1907 //
  1908 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1909 //     // // so we load it immediately before the call
  1910 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1911 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1912 //
  1913 //     // xor rbp,ebp
  1914 //     emit_opcode(cbuf, 0x33);
  1915 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1916 //
  1917 //     // CALL to interpreter.
  1918 //     cbuf.set_insts_mark();
  1919 //     $$$emit8$primary;
  1920 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1921 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1922 //   %}
  1924   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1925     $$$emit8$primary;
  1926     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1927     $$$emit8$shift$$constant;
  1928   %}
  1930   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1931     // Load immediate does not have a zero or sign extended version
  1932     // for 8-bit immediates
  1933     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1934     $$$emit32$src$$constant;
  1935   %}
  1937   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1938     // Load immediate does not have a zero or sign extended version
  1939     // for 8-bit immediates
  1940     emit_opcode(cbuf, $primary + $dst$$reg);
  1941     $$$emit32$src$$constant;
  1942   %}
  1944   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1945     // Load immediate does not have a zero or sign extended version
  1946     // for 8-bit immediates
  1947     int dst_enc = $dst$$reg;
  1948     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1949     if (src_con == 0) {
  1950       // xor dst, dst
  1951       emit_opcode(cbuf, 0x33);
  1952       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1953     } else {
  1954       emit_opcode(cbuf, $primary + dst_enc);
  1955       emit_d32(cbuf, src_con);
  1957   %}
  1959   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1960     // Load immediate does not have a zero or sign extended version
  1961     // for 8-bit immediates
  1962     int dst_enc = $dst$$reg + 2;
  1963     int src_con = ((julong)($src$$constant)) >> 32;
  1964     if (src_con == 0) {
  1965       // xor dst, dst
  1966       emit_opcode(cbuf, 0x33);
  1967       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1968     } else {
  1969       emit_opcode(cbuf, $primary + dst_enc);
  1970       emit_d32(cbuf, src_con);
  1972   %}
  1975   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1976   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  1977     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1978   %}
  1980   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  1981     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1982   %}
  1984   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1985     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1986   %}
  1988   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1989     $$$emit8$primary;
  1990     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1991   %}
  1993   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1994     $$$emit8$secondary;
  1995     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1996   %}
  1998   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1999     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2000   %}
  2002   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2003     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2004   %}
  2006   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  2007     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2008   %}
  2010   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2011     // Output immediate
  2012     $$$emit32$src$$constant;
  2013   %}
  2015   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2016     // Output Float immediate bits
  2017     jfloat jf = $src$$constant;
  2018     int    jf_as_bits = jint_cast( jf );
  2019     emit_d32(cbuf, jf_as_bits);
  2020   %}
  2022   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2023     // Output Float immediate bits
  2024     jfloat jf = $src$$constant;
  2025     int    jf_as_bits = jint_cast( jf );
  2026     emit_d32(cbuf, jf_as_bits);
  2027   %}
  2029   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2030     // Output immediate
  2031     $$$emit16$src$$constant;
  2032   %}
  2034   enc_class Con_d32(immI src) %{
  2035     emit_d32(cbuf,$src$$constant);
  2036   %}
  2038   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2039     // Output immediate memory reference
  2040     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2041     emit_d32(cbuf, 0x00);
  2042   %}
  2044   enc_class lock_prefix( ) %{
  2045     if( os::is_MP() )
  2046       emit_opcode(cbuf,0xF0);         // [Lock]
  2047   %}
  2049   // Cmp-xchg long value.
  2050   // Note: we need to swap rbx, and rcx before and after the
  2051   //       cmpxchg8 instruction because the instruction uses
  2052   //       rcx as the high order word of the new value to store but
  2053   //       our register encoding uses rbx,.
  2054   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2056     // XCHG  rbx,ecx
  2057     emit_opcode(cbuf,0x87);
  2058     emit_opcode(cbuf,0xD9);
  2059     // [Lock]
  2060     if( os::is_MP() )
  2061       emit_opcode(cbuf,0xF0);
  2062     // CMPXCHG8 [Eptr]
  2063     emit_opcode(cbuf,0x0F);
  2064     emit_opcode(cbuf,0xC7);
  2065     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2066     // XCHG  rbx,ecx
  2067     emit_opcode(cbuf,0x87);
  2068     emit_opcode(cbuf,0xD9);
  2069   %}
  2071   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2072     // [Lock]
  2073     if( os::is_MP() )
  2074       emit_opcode(cbuf,0xF0);
  2076     // CMPXCHG [Eptr]
  2077     emit_opcode(cbuf,0x0F);
  2078     emit_opcode(cbuf,0xB1);
  2079     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2080   %}
  2082   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2083     int res_encoding = $res$$reg;
  2085     // MOV  res,0
  2086     emit_opcode( cbuf, 0xB8 + res_encoding);
  2087     emit_d32( cbuf, 0 );
  2088     // JNE,s  fail
  2089     emit_opcode(cbuf,0x75);
  2090     emit_d8(cbuf, 5 );
  2091     // MOV  res,1
  2092     emit_opcode( cbuf, 0xB8 + res_encoding);
  2093     emit_d32( cbuf, 1 );
  2094     // fail:
  2095   %}
  2097   enc_class set_instruction_start( ) %{
  2098     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2099   %}
  2101   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2102     int reg_encoding = $ereg$$reg;
  2103     int base  = $mem$$base;
  2104     int index = $mem$$index;
  2105     int scale = $mem$$scale;
  2106     int displace = $mem$$disp;
  2107     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2108     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2109   %}
  2111   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2112     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2113     int base  = $mem$$base;
  2114     int index = $mem$$index;
  2115     int scale = $mem$$scale;
  2116     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2117     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
  2118     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
  2119   %}
  2121   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2122     int r1, r2;
  2123     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2124     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2125     emit_opcode(cbuf,0x0F);
  2126     emit_opcode(cbuf,$tertiary);
  2127     emit_rm(cbuf, 0x3, r1, r2);
  2128     emit_d8(cbuf,$cnt$$constant);
  2129     emit_d8(cbuf,$primary);
  2130     emit_rm(cbuf, 0x3, $secondary, r1);
  2131     emit_d8(cbuf,$cnt$$constant);
  2132   %}
  2134   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2135     emit_opcode( cbuf, 0x8B ); // Move
  2136     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2137     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2138       emit_d8(cbuf,$primary);
  2139       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2140       emit_d8(cbuf,$cnt$$constant-32);
  2142     emit_d8(cbuf,$primary);
  2143     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2144     emit_d8(cbuf,31);
  2145   %}
  2147   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2148     int r1, r2;
  2149     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2150     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2152     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2153     emit_rm(cbuf, 0x3, r1, r2);
  2154     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2155       emit_opcode(cbuf,$primary);
  2156       emit_rm(cbuf, 0x3, $secondary, r1);
  2157       emit_d8(cbuf,$cnt$$constant-32);
  2159     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2160     emit_rm(cbuf, 0x3, r2, r2);
  2161   %}
  2163   // Clone of RegMem but accepts an extra parameter to access each
  2164   // half of a double in memory; it never needs relocation info.
  2165   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2166     emit_opcode(cbuf,$opcode$$constant);
  2167     int reg_encoding = $rm_reg$$reg;
  2168     int base     = $mem$$base;
  2169     int index    = $mem$$index;
  2170     int scale    = $mem$$scale;
  2171     int displace = $mem$$disp + $disp_for_half$$constant;
  2172     relocInfo::relocType disp_reloc = relocInfo::none;
  2173     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2174   %}
  2176   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2177   //
  2178   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2179   // and it never needs relocation information.
  2180   // Frequently used to move data between FPU's Stack Top and memory.
  2181   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2182     int rm_byte_opcode = $rm_opcode$$constant;
  2183     int base     = $mem$$base;
  2184     int index    = $mem$$index;
  2185     int scale    = $mem$$scale;
  2186     int displace = $mem$$disp;
  2187     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
  2188     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
  2189   %}
  2191   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2192     int rm_byte_opcode = $rm_opcode$$constant;
  2193     int base     = $mem$$base;
  2194     int index    = $mem$$index;
  2195     int scale    = $mem$$scale;
  2196     int displace = $mem$$disp;
  2197     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2198     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  2199   %}
  2201   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2202     int reg_encoding = $dst$$reg;
  2203     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2204     int index        = 0x04;            // 0x04 indicates no index
  2205     int scale        = 0x00;            // 0x00 indicates no scale
  2206     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2207     relocInfo::relocType disp_reloc = relocInfo::none;
  2208     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2209   %}
  2211   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2212     // Compare dst,src
  2213     emit_opcode(cbuf,0x3B);
  2214     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2215     // jmp dst < src around move
  2216     emit_opcode(cbuf,0x7C);
  2217     emit_d8(cbuf,2);
  2218     // move dst,src
  2219     emit_opcode(cbuf,0x8B);
  2220     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2221   %}
  2223   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2224     // Compare dst,src
  2225     emit_opcode(cbuf,0x3B);
  2226     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2227     // jmp dst > src around move
  2228     emit_opcode(cbuf,0x7F);
  2229     emit_d8(cbuf,2);
  2230     // move dst,src
  2231     emit_opcode(cbuf,0x8B);
  2232     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2233   %}
  2235   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2236     // If src is FPR1, we can just FST to store it.
  2237     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2238     int reg_encoding = 0x2; // Just store
  2239     int base  = $mem$$base;
  2240     int index = $mem$$index;
  2241     int scale = $mem$$scale;
  2242     int displace = $mem$$disp;
  2243     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2244     if( $src$$reg != FPR1L_enc ) {
  2245       reg_encoding = 0x3;  // Store & pop
  2246       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2247       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2249     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2250     emit_opcode(cbuf,$primary);
  2251     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2252   %}
  2254   enc_class neg_reg(rRegI dst) %{
  2255     // NEG $dst
  2256     emit_opcode(cbuf,0xF7);
  2257     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2258   %}
  2260   enc_class setLT_reg(eCXRegI dst) %{
  2261     // SETLT $dst
  2262     emit_opcode(cbuf,0x0F);
  2263     emit_opcode(cbuf,0x9C);
  2264     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2265   %}
  2267   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2268     int tmpReg = $tmp$$reg;
  2270     // SUB $p,$q
  2271     emit_opcode(cbuf,0x2B);
  2272     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2273     // SBB $tmp,$tmp
  2274     emit_opcode(cbuf,0x1B);
  2275     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2276     // AND $tmp,$y
  2277     emit_opcode(cbuf,0x23);
  2278     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2279     // ADD $p,$tmp
  2280     emit_opcode(cbuf,0x03);
  2281     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2282   %}
  2284   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2285     // TEST shift,32
  2286     emit_opcode(cbuf,0xF7);
  2287     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2288     emit_d32(cbuf,0x20);
  2289     // JEQ,s small
  2290     emit_opcode(cbuf, 0x74);
  2291     emit_d8(cbuf, 0x04);
  2292     // MOV    $dst.hi,$dst.lo
  2293     emit_opcode( cbuf, 0x8B );
  2294     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2295     // CLR    $dst.lo
  2296     emit_opcode(cbuf, 0x33);
  2297     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2298 // small:
  2299     // SHLD   $dst.hi,$dst.lo,$shift
  2300     emit_opcode(cbuf,0x0F);
  2301     emit_opcode(cbuf,0xA5);
  2302     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2303     // SHL    $dst.lo,$shift"
  2304     emit_opcode(cbuf,0xD3);
  2305     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2306   %}
  2308   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2309     // TEST shift,32
  2310     emit_opcode(cbuf,0xF7);
  2311     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2312     emit_d32(cbuf,0x20);
  2313     // JEQ,s small
  2314     emit_opcode(cbuf, 0x74);
  2315     emit_d8(cbuf, 0x04);
  2316     // MOV    $dst.lo,$dst.hi
  2317     emit_opcode( cbuf, 0x8B );
  2318     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2319     // CLR    $dst.hi
  2320     emit_opcode(cbuf, 0x33);
  2321     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2322 // small:
  2323     // SHRD   $dst.lo,$dst.hi,$shift
  2324     emit_opcode(cbuf,0x0F);
  2325     emit_opcode(cbuf,0xAD);
  2326     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2327     // SHR    $dst.hi,$shift"
  2328     emit_opcode(cbuf,0xD3);
  2329     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2330   %}
  2332   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2333     // TEST shift,32
  2334     emit_opcode(cbuf,0xF7);
  2335     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2336     emit_d32(cbuf,0x20);
  2337     // JEQ,s small
  2338     emit_opcode(cbuf, 0x74);
  2339     emit_d8(cbuf, 0x05);
  2340     // MOV    $dst.lo,$dst.hi
  2341     emit_opcode( cbuf, 0x8B );
  2342     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2343     // SAR    $dst.hi,31
  2344     emit_opcode(cbuf, 0xC1);
  2345     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2346     emit_d8(cbuf, 0x1F );
  2347 // small:
  2348     // SHRD   $dst.lo,$dst.hi,$shift
  2349     emit_opcode(cbuf,0x0F);
  2350     emit_opcode(cbuf,0xAD);
  2351     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2352     // SAR    $dst.hi,$shift"
  2353     emit_opcode(cbuf,0xD3);
  2354     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2355   %}
  2358   // ----------------- Encodings for floating point unit -----------------
  2359   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2360   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2361     $$$emit8$primary;
  2362     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2363   %}
  2365   // Pop argument in FPR0 with FSTP ST(0)
  2366   enc_class PopFPU() %{
  2367     emit_opcode( cbuf, 0xDD );
  2368     emit_d8( cbuf, 0xD8 );
  2369   %}
  2371   // !!!!! equivalent to Pop_Reg_F
  2372   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2373     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2374     emit_d8( cbuf, 0xD8+$dst$$reg );
  2375   %}
  2377   enc_class Push_Reg_DPR( regDPR dst ) %{
  2378     emit_opcode( cbuf, 0xD9 );
  2379     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2380   %}
  2382   enc_class strictfp_bias1( regDPR dst ) %{
  2383     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2384     emit_opcode( cbuf, 0x2D );
  2385     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2386     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2387     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2388   %}
  2390   enc_class strictfp_bias2( regDPR dst ) %{
  2391     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2392     emit_opcode( cbuf, 0x2D );
  2393     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2394     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2395     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2396   %}
  2398   // Special case for moving an integer register to a stack slot.
  2399   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2400     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2401   %}
  2403   // Special case for moving a register to a stack slot.
  2404   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2405     // Opcode already emitted
  2406     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2407     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2408     emit_d32(cbuf, $dst$$disp);   // Displacement
  2409   %}
  2411   // Push the integer in stackSlot 'src' onto FP-stack
  2412   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2413     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2414   %}
  2416   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2417   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2418     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2419   %}
  2421   // Same as Pop_Mem_F except for opcode
  2422   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2423   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2424     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2425   %}
  2427   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2428     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2429     emit_d8( cbuf, 0xD8+$dst$$reg );
  2430   %}
  2432   enc_class Push_Reg_FPR( regFPR dst ) %{
  2433     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2434     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2435   %}
  2437   // Push FPU's float to a stack-slot, and pop FPU-stack
  2438   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2439     int pop = 0x02;
  2440     if ($src$$reg != FPR1L_enc) {
  2441       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2442       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2443       pop = 0x03;
  2445     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2446   %}
  2448   // Push FPU's double to a stack-slot, and pop FPU-stack
  2449   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2450     int pop = 0x02;
  2451     if ($src$$reg != FPR1L_enc) {
  2452       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2453       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2454       pop = 0x03;
  2456     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2457   %}
  2459   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2460   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2461     int pop = 0xD0 - 1; // -1 since we skip FLD
  2462     if ($src$$reg != FPR1L_enc) {
  2463       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2464       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2465       pop = 0xD8;
  2467     emit_opcode( cbuf, 0xDD );
  2468     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2469   %}
  2472   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2473     // load dst in FPR0
  2474     emit_opcode( cbuf, 0xD9 );
  2475     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2476     if ($src$$reg != FPR1L_enc) {
  2477       // fincstp
  2478       emit_opcode (cbuf, 0xD9);
  2479       emit_opcode (cbuf, 0xF7);
  2480       // swap src with FPR1:
  2481       // FXCH FPR1 with src
  2482       emit_opcode(cbuf, 0xD9);
  2483       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2484       // fdecstp
  2485       emit_opcode (cbuf, 0xD9);
  2486       emit_opcode (cbuf, 0xF6);
  2488   %}
  2490   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2491     MacroAssembler _masm(&cbuf);
  2492     __ subptr(rsp, 8);
  2493     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2494     __ fld_d(Address(rsp, 0));
  2495     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2496     __ fld_d(Address(rsp, 0));
  2497   %}
  2499   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2500     MacroAssembler _masm(&cbuf);
  2501     __ subptr(rsp, 4);
  2502     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2503     __ fld_s(Address(rsp, 0));
  2504     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2505     __ fld_s(Address(rsp, 0));
  2506   %}
  2508   enc_class Push_ResultD(regD dst) %{
  2509     MacroAssembler _masm(&cbuf);
  2510     __ fstp_d(Address(rsp, 0));
  2511     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2512     __ addptr(rsp, 8);
  2513   %}
  2515   enc_class Push_ResultF(regF dst, immI d8) %{
  2516     MacroAssembler _masm(&cbuf);
  2517     __ fstp_s(Address(rsp, 0));
  2518     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2519     __ addptr(rsp, $d8$$constant);
  2520   %}
  2522   enc_class Push_SrcD(regD src) %{
  2523     MacroAssembler _masm(&cbuf);
  2524     __ subptr(rsp, 8);
  2525     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2526     __ fld_d(Address(rsp, 0));
  2527   %}
  2529   enc_class push_stack_temp_qword() %{
  2530     MacroAssembler _masm(&cbuf);
  2531     __ subptr(rsp, 8);
  2532   %}
  2534   enc_class pop_stack_temp_qword() %{
  2535     MacroAssembler _masm(&cbuf);
  2536     __ addptr(rsp, 8);
  2537   %}
  2539   enc_class push_xmm_to_fpr1(regD src) %{
  2540     MacroAssembler _masm(&cbuf);
  2541     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2542     __ fld_d(Address(rsp, 0));
  2543   %}
  2545   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2546     if ($src$$reg != FPR1L_enc) {
  2547       // fincstp
  2548       emit_opcode (cbuf, 0xD9);
  2549       emit_opcode (cbuf, 0xF7);
  2550       // FXCH FPR1 with src
  2551       emit_opcode(cbuf, 0xD9);
  2552       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2553       // fdecstp
  2554       emit_opcode (cbuf, 0xD9);
  2555       emit_opcode (cbuf, 0xF6);
  2557     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2558     // // FSTP   FPR$dst$$reg
  2559     // emit_opcode( cbuf, 0xDD );
  2560     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2561   %}
  2563   enc_class fnstsw_sahf_skip_parity() %{
  2564     // fnstsw ax
  2565     emit_opcode( cbuf, 0xDF );
  2566     emit_opcode( cbuf, 0xE0 );
  2567     // sahf
  2568     emit_opcode( cbuf, 0x9E );
  2569     // jnp  ::skip
  2570     emit_opcode( cbuf, 0x7B );
  2571     emit_opcode( cbuf, 0x05 );
  2572   %}
  2574   enc_class emitModDPR() %{
  2575     // fprem must be iterative
  2576     // :: loop
  2577     // fprem
  2578     emit_opcode( cbuf, 0xD9 );
  2579     emit_opcode( cbuf, 0xF8 );
  2580     // wait
  2581     emit_opcode( cbuf, 0x9b );
  2582     // fnstsw ax
  2583     emit_opcode( cbuf, 0xDF );
  2584     emit_opcode( cbuf, 0xE0 );
  2585     // sahf
  2586     emit_opcode( cbuf, 0x9E );
  2587     // jp  ::loop
  2588     emit_opcode( cbuf, 0x0F );
  2589     emit_opcode( cbuf, 0x8A );
  2590     emit_opcode( cbuf, 0xF4 );
  2591     emit_opcode( cbuf, 0xFF );
  2592     emit_opcode( cbuf, 0xFF );
  2593     emit_opcode( cbuf, 0xFF );
  2594   %}
  2596   enc_class fpu_flags() %{
  2597     // fnstsw_ax
  2598     emit_opcode( cbuf, 0xDF);
  2599     emit_opcode( cbuf, 0xE0);
  2600     // test ax,0x0400
  2601     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2602     emit_opcode( cbuf, 0xA9 );
  2603     emit_d16   ( cbuf, 0x0400 );
  2604     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2605     // // test rax,0x0400
  2606     // emit_opcode( cbuf, 0xA9 );
  2607     // emit_d32   ( cbuf, 0x00000400 );
  2608     //
  2609     // jz exit (no unordered comparison)
  2610     emit_opcode( cbuf, 0x74 );
  2611     emit_d8    ( cbuf, 0x02 );
  2612     // mov ah,1 - treat as LT case (set carry flag)
  2613     emit_opcode( cbuf, 0xB4 );
  2614     emit_d8    ( cbuf, 0x01 );
  2615     // sahf
  2616     emit_opcode( cbuf, 0x9E);
  2617   %}
  2619   enc_class cmpF_P6_fixup() %{
  2620     // Fixup the integer flags in case comparison involved a NaN
  2621     //
  2622     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2623     emit_opcode( cbuf, 0x7B );
  2624     emit_d8    ( cbuf, 0x03 );
  2625     // MOV AH,1 - treat as LT case (set carry flag)
  2626     emit_opcode( cbuf, 0xB4 );
  2627     emit_d8    ( cbuf, 0x01 );
  2628     // SAHF
  2629     emit_opcode( cbuf, 0x9E);
  2630     // NOP     // target for branch to avoid branch to branch
  2631     emit_opcode( cbuf, 0x90);
  2632   %}
  2634 //     fnstsw_ax();
  2635 //     sahf();
  2636 //     movl(dst, nan_result);
  2637 //     jcc(Assembler::parity, exit);
  2638 //     movl(dst, less_result);
  2639 //     jcc(Assembler::below, exit);
  2640 //     movl(dst, equal_result);
  2641 //     jcc(Assembler::equal, exit);
  2642 //     movl(dst, greater_result);
  2644 // less_result     =  1;
  2645 // greater_result  = -1;
  2646 // equal_result    = 0;
  2647 // nan_result      = -1;
  2649   enc_class CmpF_Result(rRegI dst) %{
  2650     // fnstsw_ax();
  2651     emit_opcode( cbuf, 0xDF);
  2652     emit_opcode( cbuf, 0xE0);
  2653     // sahf
  2654     emit_opcode( cbuf, 0x9E);
  2655     // movl(dst, nan_result);
  2656     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2657     emit_d32( cbuf, -1 );
  2658     // jcc(Assembler::parity, exit);
  2659     emit_opcode( cbuf, 0x7A );
  2660     emit_d8    ( cbuf, 0x13 );
  2661     // movl(dst, less_result);
  2662     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2663     emit_d32( cbuf, -1 );
  2664     // jcc(Assembler::below, exit);
  2665     emit_opcode( cbuf, 0x72 );
  2666     emit_d8    ( cbuf, 0x0C );
  2667     // movl(dst, equal_result);
  2668     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2669     emit_d32( cbuf, 0 );
  2670     // jcc(Assembler::equal, exit);
  2671     emit_opcode( cbuf, 0x74 );
  2672     emit_d8    ( cbuf, 0x05 );
  2673     // movl(dst, greater_result);
  2674     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2675     emit_d32( cbuf, 1 );
  2676   %}
  2679   // Compare the longs and set flags
  2680   // BROKEN!  Do Not use as-is
  2681   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2682     // CMP    $src1.hi,$src2.hi
  2683     emit_opcode( cbuf, 0x3B );
  2684     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2685     // JNE,s  done
  2686     emit_opcode(cbuf,0x75);
  2687     emit_d8(cbuf, 2 );
  2688     // CMP    $src1.lo,$src2.lo
  2689     emit_opcode( cbuf, 0x3B );
  2690     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2691 // done:
  2692   %}
  2694   enc_class convert_int_long( regL dst, rRegI src ) %{
  2695     // mov $dst.lo,$src
  2696     int dst_encoding = $dst$$reg;
  2697     int src_encoding = $src$$reg;
  2698     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2699     // mov $dst.hi,$src
  2700     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2701     // sar $dst.hi,31
  2702     emit_opcode( cbuf, 0xC1 );
  2703     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2704     emit_d8(cbuf, 0x1F );
  2705   %}
  2707   enc_class convert_long_double( eRegL src ) %{
  2708     // push $src.hi
  2709     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2710     // push $src.lo
  2711     emit_opcode(cbuf, 0x50+$src$$reg  );
  2712     // fild 64-bits at [SP]
  2713     emit_opcode(cbuf,0xdf);
  2714     emit_d8(cbuf, 0x6C);
  2715     emit_d8(cbuf, 0x24);
  2716     emit_d8(cbuf, 0x00);
  2717     // pop stack
  2718     emit_opcode(cbuf, 0x83); // add  SP, #8
  2719     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2720     emit_d8(cbuf, 0x8);
  2721   %}
  2723   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2724     // IMUL   EDX:EAX,$src1
  2725     emit_opcode( cbuf, 0xF7 );
  2726     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2727     // SAR    EDX,$cnt-32
  2728     int shift_count = ((int)$cnt$$constant) - 32;
  2729     if (shift_count > 0) {
  2730       emit_opcode(cbuf, 0xC1);
  2731       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2732       emit_d8(cbuf, shift_count);
  2734   %}
  2736   // this version doesn't have add sp, 8
  2737   enc_class convert_long_double2( eRegL src ) %{
  2738     // push $src.hi
  2739     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2740     // push $src.lo
  2741     emit_opcode(cbuf, 0x50+$src$$reg  );
  2742     // fild 64-bits at [SP]
  2743     emit_opcode(cbuf,0xdf);
  2744     emit_d8(cbuf, 0x6C);
  2745     emit_d8(cbuf, 0x24);
  2746     emit_d8(cbuf, 0x00);
  2747   %}
  2749   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2750     // Basic idea: long = (long)int * (long)int
  2751     // IMUL EDX:EAX, src
  2752     emit_opcode( cbuf, 0xF7 );
  2753     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2754   %}
  2756   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2757     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2758     // MUL EDX:EAX, src
  2759     emit_opcode( cbuf, 0xF7 );
  2760     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2761   %}
  2763   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2764     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2765     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2766     // MOV    $tmp,$src.lo
  2767     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2768     // IMUL   $tmp,EDX
  2769     emit_opcode( cbuf, 0x0F );
  2770     emit_opcode( cbuf, 0xAF );
  2771     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2772     // MOV    EDX,$src.hi
  2773     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2774     // IMUL   EDX,EAX
  2775     emit_opcode( cbuf, 0x0F );
  2776     emit_opcode( cbuf, 0xAF );
  2777     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2778     // ADD    $tmp,EDX
  2779     emit_opcode( cbuf, 0x03 );
  2780     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2781     // MUL   EDX:EAX,$src.lo
  2782     emit_opcode( cbuf, 0xF7 );
  2783     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2784     // ADD    EDX,ESI
  2785     emit_opcode( cbuf, 0x03 );
  2786     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2787   %}
  2789   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2790     // Basic idea: lo(result) = lo(src * y_lo)
  2791     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2792     // IMUL   $tmp,EDX,$src
  2793     emit_opcode( cbuf, 0x6B );
  2794     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2795     emit_d8( cbuf, (int)$src$$constant );
  2796     // MOV    EDX,$src
  2797     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2798     emit_d32( cbuf, (int)$src$$constant );
  2799     // MUL   EDX:EAX,EDX
  2800     emit_opcode( cbuf, 0xF7 );
  2801     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2802     // ADD    EDX,ESI
  2803     emit_opcode( cbuf, 0x03 );
  2804     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2805   %}
  2807   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2808     // PUSH src1.hi
  2809     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2810     // PUSH src1.lo
  2811     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2812     // PUSH src2.hi
  2813     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2814     // PUSH src2.lo
  2815     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2816     // CALL directly to the runtime
  2817     cbuf.set_insts_mark();
  2818     emit_opcode(cbuf,0xE8);       // Call into runtime
  2819     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2820     // Restore stack
  2821     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2822     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2823     emit_d8(cbuf, 4*4);
  2824   %}
  2826   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2827     // PUSH src1.hi
  2828     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2829     // PUSH src1.lo
  2830     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2831     // PUSH src2.hi
  2832     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2833     // PUSH src2.lo
  2834     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2835     // CALL directly to the runtime
  2836     cbuf.set_insts_mark();
  2837     emit_opcode(cbuf,0xE8);       // Call into runtime
  2838     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2839     // Restore stack
  2840     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2841     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2842     emit_d8(cbuf, 4*4);
  2843   %}
  2845   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2846     // MOV   $tmp,$src.lo
  2847     emit_opcode(cbuf, 0x8B);
  2848     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2849     // OR    $tmp,$src.hi
  2850     emit_opcode(cbuf, 0x0B);
  2851     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2852   %}
  2854   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2855     // CMP    $src1.lo,$src2.lo
  2856     emit_opcode( cbuf, 0x3B );
  2857     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2858     // JNE,s  skip
  2859     emit_cc(cbuf, 0x70, 0x5);
  2860     emit_d8(cbuf,2);
  2861     // CMP    $src1.hi,$src2.hi
  2862     emit_opcode( cbuf, 0x3B );
  2863     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2864   %}
  2866   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2867     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2868     emit_opcode( cbuf, 0x3B );
  2869     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2870     // MOV    $tmp,$src1.hi
  2871     emit_opcode( cbuf, 0x8B );
  2872     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2873     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2874     emit_opcode( cbuf, 0x1B );
  2875     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2876   %}
  2878   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2879     // XOR    $tmp,$tmp
  2880     emit_opcode(cbuf,0x33);  // XOR
  2881     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2882     // CMP    $tmp,$src.lo
  2883     emit_opcode( cbuf, 0x3B );
  2884     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2885     // SBB    $tmp,$src.hi
  2886     emit_opcode( cbuf, 0x1B );
  2887     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2888   %}
  2890  // Sniff, sniff... smells like Gnu Superoptimizer
  2891   enc_class neg_long( eRegL dst ) %{
  2892     emit_opcode(cbuf,0xF7);    // NEG hi
  2893     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2894     emit_opcode(cbuf,0xF7);    // NEG lo
  2895     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2896     emit_opcode(cbuf,0x83);    // SBB hi,0
  2897     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2898     emit_d8    (cbuf,0 );
  2899   %}
  2901   enc_class enc_pop_rdx() %{
  2902     emit_opcode(cbuf,0x5A);
  2903   %}
  2905   enc_class enc_rethrow() %{
  2906     cbuf.set_insts_mark();
  2907     emit_opcode(cbuf, 0xE9);        // jmp    entry
  2908     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  2909                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  2910   %}
  2913   // Convert a double to an int.  Java semantics require we do complex
  2914   // manglelations in the corner cases.  So we set the rounding mode to
  2915   // 'zero', store the darned double down as an int, and reset the
  2916   // rounding mode to 'nearest'.  The hardware throws an exception which
  2917   // patches up the correct value directly to the stack.
  2918   enc_class DPR2I_encoding( regDPR src ) %{
  2919     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  2920     // exceptions here, so that a NAN or other corner-case value will
  2921     // thrown an exception (but normal values get converted at full speed).
  2922     // However, I2C adapters and other float-stack manglers leave pending
  2923     // invalid-op exceptions hanging.  We would have to clear them before
  2924     // enabling them and that is more expensive than just testing for the
  2925     // invalid value Intel stores down in the corner cases.
  2926     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2927     emit_opcode(cbuf,0x2D);
  2928     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2929     // Allocate a word
  2930     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2931     emit_opcode(cbuf,0xEC);
  2932     emit_d8(cbuf,0x04);
  2933     // Encoding assumes a double has been pushed into FPR0.
  2934     // Store down the double as an int, popping the FPU stack
  2935     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  2936     emit_opcode(cbuf,0x1C);
  2937     emit_d8(cbuf,0x24);
  2938     // Restore the rounding mode; mask the exception
  2939     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2940     emit_opcode(cbuf,0x2D);
  2941     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2942         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2943         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2945     // Load the converted int; adjust CPU stack
  2946     emit_opcode(cbuf,0x58);       // POP EAX
  2947     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  2948     emit_d32   (cbuf,0x80000000); //         0x80000000
  2949     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2950     emit_d8    (cbuf,0x07);       // Size of slow_call
  2951     // Push src onto stack slow-path
  2952     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2953     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2954     // CALL directly to the runtime
  2955     cbuf.set_insts_mark();
  2956     emit_opcode(cbuf,0xE8);       // Call into runtime
  2957     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2958     // Carry on here...
  2959   %}
  2961   enc_class DPR2L_encoding( regDPR src ) %{
  2962     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2963     emit_opcode(cbuf,0x2D);
  2964     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2965     // Allocate a word
  2966     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2967     emit_opcode(cbuf,0xEC);
  2968     emit_d8(cbuf,0x08);
  2969     // Encoding assumes a double has been pushed into FPR0.
  2970     // Store down the double as a long, popping the FPU stack
  2971     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  2972     emit_opcode(cbuf,0x3C);
  2973     emit_d8(cbuf,0x24);
  2974     // Restore the rounding mode; mask the exception
  2975     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2976     emit_opcode(cbuf,0x2D);
  2977     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2978         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2979         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2981     // Load the converted int; adjust CPU stack
  2982     emit_opcode(cbuf,0x58);       // POP EAX
  2983     emit_opcode(cbuf,0x5A);       // POP EDX
  2984     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  2985     emit_d8    (cbuf,0xFA);       // rdx
  2986     emit_d32   (cbuf,0x80000000); //         0x80000000
  2987     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2988     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  2989     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  2990     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  2991     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2992     emit_d8    (cbuf,0x07);       // Size of slow_call
  2993     // Push src onto stack slow-path
  2994     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2995     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2996     // CALL directly to the runtime
  2997     cbuf.set_insts_mark();
  2998     emit_opcode(cbuf,0xE8);       // Call into runtime
  2999     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3000     // Carry on here...
  3001   %}
  3003   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3004     // Operand was loaded from memory into fp ST (stack top)
  3005     // FMUL   ST,$src  /* D8 C8+i */
  3006     emit_opcode(cbuf, 0xD8);
  3007     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3008   %}
  3010   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3011     // FADDP  ST,src2  /* D8 C0+i */
  3012     emit_opcode(cbuf, 0xD8);
  3013     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3014     //could use FADDP  src2,fpST  /* DE C0+i */
  3015   %}
  3017   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3018     // FADDP  src2,ST  /* DE C0+i */
  3019     emit_opcode(cbuf, 0xDE);
  3020     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3021   %}
  3023   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3024     // Operand has been loaded into fp ST (stack top)
  3025       // FSUB   ST,$src1
  3026       emit_opcode(cbuf, 0xD8);
  3027       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3029       // FDIV
  3030       emit_opcode(cbuf, 0xD8);
  3031       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3032   %}
  3034   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3035     // Operand was loaded from memory into fp ST (stack top)
  3036     // FADD   ST,$src  /* D8 C0+i */
  3037     emit_opcode(cbuf, 0xD8);
  3038     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3040     // FMUL  ST,src2  /* D8 C*+i */
  3041     emit_opcode(cbuf, 0xD8);
  3042     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3043   %}
  3046   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3047     // Operand was loaded from memory into fp ST (stack top)
  3048     // FADD   ST,$src  /* D8 C0+i */
  3049     emit_opcode(cbuf, 0xD8);
  3050     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3052     // FMULP  src2,ST  /* DE C8+i */
  3053     emit_opcode(cbuf, 0xDE);
  3054     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3055   %}
  3057   // Atomically load the volatile long
  3058   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3059     emit_opcode(cbuf,0xDF);
  3060     int rm_byte_opcode = 0x05;
  3061     int base     = $mem$$base;
  3062     int index    = $mem$$index;
  3063     int scale    = $mem$$scale;
  3064     int displace = $mem$$disp;
  3065     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3066     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3067     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3068   %}
  3070   // Volatile Store Long.  Must be atomic, so move it into
  3071   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3072   // target address before the store (for null-ptr checks)
  3073   // so the memory operand is used twice in the encoding.
  3074   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3075     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3076     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3077     emit_opcode(cbuf,0xDF);
  3078     int rm_byte_opcode = 0x07;
  3079     int base     = $mem$$base;
  3080     int index    = $mem$$index;
  3081     int scale    = $mem$$scale;
  3082     int displace = $mem$$disp;
  3083     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3084     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3085   %}
  3087   // Safepoint Poll.  This polls the safepoint page, and causes an
  3088   // exception if it is not readable. Unfortunately, it kills the condition code
  3089   // in the process
  3090   // We current use TESTL [spp],EDI
  3091   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3093   enc_class Safepoint_Poll() %{
  3094     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3095     emit_opcode(cbuf,0x85);
  3096     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3097     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3098   %}
  3099 %}
  3102 //----------FRAME--------------------------------------------------------------
  3103 // Definition of frame structure and management information.
  3104 //
  3105 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3106 //                             |   (to get allocators register number
  3107 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3108 //  r   CALLER     |        |
  3109 //  o     |        +--------+      pad to even-align allocators stack-slot
  3110 //  w     V        |  pad0  |        numbers; owned by CALLER
  3111 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3112 //  h     ^        |   in   |  5
  3113 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3114 //  |     |        |        |  3
  3115 //  |     |        +--------+
  3116 //  V     |        | old out|      Empty on Intel, window on Sparc
  3117 //        |    old |preserve|      Must be even aligned.
  3118 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3119 //        |        |   in   |  3   area for Intel ret address
  3120 //     Owned by    |preserve|      Empty on Sparc.
  3121 //       SELF      +--------+
  3122 //        |        |  pad2  |  2   pad to align old SP
  3123 //        |        +--------+  1
  3124 //        |        | locks  |  0
  3125 //        |        +--------+----> OptoReg::stack0(), even aligned
  3126 //        |        |  pad1  | 11   pad to align new SP
  3127 //        |        +--------+
  3128 //        |        |        | 10
  3129 //        |        | spills |  9   spills
  3130 //        V        |        |  8   (pad0 slot for callee)
  3131 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3132 //        ^        |  out   |  7
  3133 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3134 //     Owned by    +--------+
  3135 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3136 //        |    new |preserve|      Must be even-aligned.
  3137 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3138 //        |        |        |
  3139 //
  3140 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3141 //         known from SELF's arguments and the Java calling convention.
  3142 //         Region 6-7 is determined per call site.
  3143 // Note 2: If the calling convention leaves holes in the incoming argument
  3144 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3145 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3146 //         incoming area, as the Java calling convention is completely under
  3147 //         the control of the AD file.  Doubles can be sorted and packed to
  3148 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3149 //         varargs C calling conventions.
  3150 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3151 //         even aligned with pad0 as needed.
  3152 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3153 //         region 6-11 is even aligned; it may be padded out more so that
  3154 //         the region from SP to FP meets the minimum stack alignment.
  3156 frame %{
  3157   // What direction does stack grow in (assumed to be same for C & Java)
  3158   stack_direction(TOWARDS_LOW);
  3160   // These three registers define part of the calling convention
  3161   // between compiled code and the interpreter.
  3162   inline_cache_reg(EAX);                // Inline Cache Register
  3163   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3165   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3166   cisc_spilling_operand_name(indOffset32);
  3168   // Number of stack slots consumed by locking an object
  3169   sync_stack_slots(1);
  3171   // Compiled code's Frame Pointer
  3172   frame_pointer(ESP);
  3173   // Interpreter stores its frame pointer in a register which is
  3174   // stored to the stack by I2CAdaptors.
  3175   // I2CAdaptors convert from interpreted java to compiled java.
  3176   interpreter_frame_pointer(EBP);
  3178   // Stack alignment requirement
  3179   // Alignment size in bytes (128-bit -> 16 bytes)
  3180   stack_alignment(StackAlignmentInBytes);
  3182   // Number of stack slots between incoming argument block and the start of
  3183   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3184   // EPILOG must remove this many slots.  Intel needs one slot for
  3185   // return address and one for rbp, (must save rbp)
  3186   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3188   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3189   // for calls to C.  Supports the var-args backing area for register parms.
  3190   varargs_C_out_slots_killed(0);
  3192   // The after-PROLOG location of the return address.  Location of
  3193   // return address specifies a type (REG or STACK) and a number
  3194   // representing the register number (i.e. - use a register name) or
  3195   // stack slot.
  3196   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3197   // Otherwise, it is above the locks and verification slot and alignment word
  3198   return_addr(STACK - 1 +
  3199               round_to((Compile::current()->in_preserve_stack_slots() +
  3200                         Compile::current()->fixed_slots()),
  3201                        stack_alignment_in_slots()));
  3203   // Body of function which returns an integer array locating
  3204   // arguments either in registers or in stack slots.  Passed an array
  3205   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3206   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3207   // arguments for a CALLEE.  Incoming stack arguments are
  3208   // automatically biased by the preserve_stack_slots field above.
  3209   calling_convention %{
  3210     // No difference between ingoing/outgoing just pass false
  3211     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3212   %}
  3215   // Body of function which returns an integer array locating
  3216   // arguments either in registers or in stack slots.  Passed an array
  3217   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3218   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3219   // arguments for a CALLEE.  Incoming stack arguments are
  3220   // automatically biased by the preserve_stack_slots field above.
  3221   c_calling_convention %{
  3222     // This is obviously always outgoing
  3223     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3224   %}
  3226   // Location of C & interpreter return values
  3227   c_return_value %{
  3228     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3229     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3230     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3232     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3233     // that C functions return float and double results in XMM0.
  3234     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3235       return OptoRegPair(XMM0b_num,XMM0_num);
  3236     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3237       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3239     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3240   %}
  3242   // Location of return values
  3243   return_value %{
  3244     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3245     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3246     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3247     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3248       return OptoRegPair(XMM0b_num,XMM0_num);
  3249     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3250       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3251     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3252   %}
  3254 %}
  3256 //----------ATTRIBUTES---------------------------------------------------------
  3257 //----------Operand Attributes-------------------------------------------------
  3258 op_attrib op_cost(0);        // Required cost attribute
  3260 //----------Instruction Attributes---------------------------------------------
  3261 ins_attrib ins_cost(100);       // Required cost attribute
  3262 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3263 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3264                                 // non-matching short branch variant of some
  3265                                                             // long branch?
  3266 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3267                                 // specifies the alignment that some part of the instruction (not
  3268                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3269                                 // function must be provided for the instruction
  3271 //----------OPERANDS-----------------------------------------------------------
  3272 // Operand definitions must precede instruction definitions for correct parsing
  3273 // in the ADLC because operands constitute user defined types which are used in
  3274 // instruction definitions.
  3276 //----------Simple Operands----------------------------------------------------
  3277 // Immediate Operands
  3278 // Integer Immediate
  3279 operand immI() %{
  3280   match(ConI);
  3282   op_cost(10);
  3283   format %{ %}
  3284   interface(CONST_INTER);
  3285 %}
  3287 // Constant for test vs zero
  3288 operand immI0() %{
  3289   predicate(n->get_int() == 0);
  3290   match(ConI);
  3292   op_cost(0);
  3293   format %{ %}
  3294   interface(CONST_INTER);
  3295 %}
  3297 // Constant for increment
  3298 operand immI1() %{
  3299   predicate(n->get_int() == 1);
  3300   match(ConI);
  3302   op_cost(0);
  3303   format %{ %}
  3304   interface(CONST_INTER);
  3305 %}
  3307 // Constant for decrement
  3308 operand immI_M1() %{
  3309   predicate(n->get_int() == -1);
  3310   match(ConI);
  3312   op_cost(0);
  3313   format %{ %}
  3314   interface(CONST_INTER);
  3315 %}
  3317 // Valid scale values for addressing modes
  3318 operand immI2() %{
  3319   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3320   match(ConI);
  3322   format %{ %}
  3323   interface(CONST_INTER);
  3324 %}
  3326 operand immI8() %{
  3327   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3328   match(ConI);
  3330   op_cost(5);
  3331   format %{ %}
  3332   interface(CONST_INTER);
  3333 %}
  3335 operand immI16() %{
  3336   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3337   match(ConI);
  3339   op_cost(10);
  3340   format %{ %}
  3341   interface(CONST_INTER);
  3342 %}
  3344 // Int Immediate non-negative
  3345 operand immU31()
  3346 %{
  3347   predicate(n->get_int() >= 0);
  3348   match(ConI);
  3350   op_cost(0);
  3351   format %{ %}
  3352   interface(CONST_INTER);
  3353 %}
  3355 // Constant for long shifts
  3356 operand immI_32() %{
  3357   predicate( n->get_int() == 32 );
  3358   match(ConI);
  3360   op_cost(0);
  3361   format %{ %}
  3362   interface(CONST_INTER);
  3363 %}
  3365 operand immI_1_31() %{
  3366   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3367   match(ConI);
  3369   op_cost(0);
  3370   format %{ %}
  3371   interface(CONST_INTER);
  3372 %}
  3374 operand immI_32_63() %{
  3375   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3376   match(ConI);
  3377   op_cost(0);
  3379   format %{ %}
  3380   interface(CONST_INTER);
  3381 %}
  3383 operand immI_1() %{
  3384   predicate( n->get_int() == 1 );
  3385   match(ConI);
  3387   op_cost(0);
  3388   format %{ %}
  3389   interface(CONST_INTER);
  3390 %}
  3392 operand immI_2() %{
  3393   predicate( n->get_int() == 2 );
  3394   match(ConI);
  3396   op_cost(0);
  3397   format %{ %}
  3398   interface(CONST_INTER);
  3399 %}
  3401 operand immI_3() %{
  3402   predicate( n->get_int() == 3 );
  3403   match(ConI);
  3405   op_cost(0);
  3406   format %{ %}
  3407   interface(CONST_INTER);
  3408 %}
  3410 // Pointer Immediate
  3411 operand immP() %{
  3412   match(ConP);
  3414   op_cost(10);
  3415   format %{ %}
  3416   interface(CONST_INTER);
  3417 %}
  3419 // NULL Pointer Immediate
  3420 operand immP0() %{
  3421   predicate( n->get_ptr() == 0 );
  3422   match(ConP);
  3423   op_cost(0);
  3425   format %{ %}
  3426   interface(CONST_INTER);
  3427 %}
  3429 // Long Immediate
  3430 operand immL() %{
  3431   match(ConL);
  3433   op_cost(20);
  3434   format %{ %}
  3435   interface(CONST_INTER);
  3436 %}
  3438 // Long Immediate zero
  3439 operand immL0() %{
  3440   predicate( n->get_long() == 0L );
  3441   match(ConL);
  3442   op_cost(0);
  3444   format %{ %}
  3445   interface(CONST_INTER);
  3446 %}
  3448 // Long Immediate zero
  3449 operand immL_M1() %{
  3450   predicate( n->get_long() == -1L );
  3451   match(ConL);
  3452   op_cost(0);
  3454   format %{ %}
  3455   interface(CONST_INTER);
  3456 %}
  3458 // Long immediate from 0 to 127.
  3459 // Used for a shorter form of long mul by 10.
  3460 operand immL_127() %{
  3461   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3462   match(ConL);
  3463   op_cost(0);
  3465   format %{ %}
  3466   interface(CONST_INTER);
  3467 %}
  3469 // Long Immediate: low 32-bit mask
  3470 operand immL_32bits() %{
  3471   predicate(n->get_long() == 0xFFFFFFFFL);
  3472   match(ConL);
  3473   op_cost(0);
  3475   format %{ %}
  3476   interface(CONST_INTER);
  3477 %}
  3479 // Long Immediate: low 32-bit mask
  3480 operand immL32() %{
  3481   predicate(n->get_long() == (int)(n->get_long()));
  3482   match(ConL);
  3483   op_cost(20);
  3485   format %{ %}
  3486   interface(CONST_INTER);
  3487 %}
  3489 //Double Immediate zero
  3490 operand immDPR0() %{
  3491   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3492   // bug that generates code such that NaNs compare equal to 0.0
  3493   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  3494   match(ConD);
  3496   op_cost(5);
  3497   format %{ %}
  3498   interface(CONST_INTER);
  3499 %}
  3501 // Double Immediate one
  3502 operand immDPR1() %{
  3503   predicate( UseSSE<=1 && n->getd() == 1.0 );
  3504   match(ConD);
  3506   op_cost(5);
  3507   format %{ %}
  3508   interface(CONST_INTER);
  3509 %}
  3511 // Double Immediate
  3512 operand immDPR() %{
  3513   predicate(UseSSE<=1);
  3514   match(ConD);
  3516   op_cost(5);
  3517   format %{ %}
  3518   interface(CONST_INTER);
  3519 %}
  3521 operand immD() %{
  3522   predicate(UseSSE>=2);
  3523   match(ConD);
  3525   op_cost(5);
  3526   format %{ %}
  3527   interface(CONST_INTER);
  3528 %}
  3530 // Double Immediate zero
  3531 operand immD0() %{
  3532   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3533   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  3534   // compare equal to -0.0.
  3535   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  3536   match(ConD);
  3538   format %{ %}
  3539   interface(CONST_INTER);
  3540 %}
  3542 // Float Immediate zero
  3543 operand immFPR0() %{
  3544   predicate(UseSSE == 0 && n->getf() == 0.0F);
  3545   match(ConF);
  3547   op_cost(5);
  3548   format %{ %}
  3549   interface(CONST_INTER);
  3550 %}
  3552 // Float Immediate one
  3553 operand immFPR1() %{
  3554   predicate(UseSSE == 0 && n->getf() == 1.0F);
  3555   match(ConF);
  3557   op_cost(5);
  3558   format %{ %}
  3559   interface(CONST_INTER);
  3560 %}
  3562 // Float Immediate
  3563 operand immFPR() %{
  3564   predicate( UseSSE == 0 );
  3565   match(ConF);
  3567   op_cost(5);
  3568   format %{ %}
  3569   interface(CONST_INTER);
  3570 %}
  3572 // Float Immediate
  3573 operand immF() %{
  3574   predicate(UseSSE >= 1);
  3575   match(ConF);
  3577   op_cost(5);
  3578   format %{ %}
  3579   interface(CONST_INTER);
  3580 %}
  3582 // Float Immediate zero.  Zero and not -0.0
  3583 operand immF0() %{
  3584   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  3585   match(ConF);
  3587   op_cost(5);
  3588   format %{ %}
  3589   interface(CONST_INTER);
  3590 %}
  3592 // Immediates for special shifts (sign extend)
  3594 // Constants for increment
  3595 operand immI_16() %{
  3596   predicate( n->get_int() == 16 );
  3597   match(ConI);
  3599   format %{ %}
  3600   interface(CONST_INTER);
  3601 %}
  3603 operand immI_24() %{
  3604   predicate( n->get_int() == 24 );
  3605   match(ConI);
  3607   format %{ %}
  3608   interface(CONST_INTER);
  3609 %}
  3611 // Constant for byte-wide masking
  3612 operand immI_255() %{
  3613   predicate( n->get_int() == 255 );
  3614   match(ConI);
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3620 // Constant for short-wide masking
  3621 operand immI_65535() %{
  3622   predicate(n->get_int() == 65535);
  3623   match(ConI);
  3625   format %{ %}
  3626   interface(CONST_INTER);
  3627 %}
  3629 // Register Operands
  3630 // Integer Register
  3631 operand rRegI() %{
  3632   constraint(ALLOC_IN_RC(int_reg));
  3633   match(RegI);
  3634   match(xRegI);
  3635   match(eAXRegI);
  3636   match(eBXRegI);
  3637   match(eCXRegI);
  3638   match(eDXRegI);
  3639   match(eDIRegI);
  3640   match(eSIRegI);
  3642   format %{ %}
  3643   interface(REG_INTER);
  3644 %}
  3646 // Subset of Integer Register
  3647 operand xRegI(rRegI reg) %{
  3648   constraint(ALLOC_IN_RC(int_x_reg));
  3649   match(reg);
  3650   match(eAXRegI);
  3651   match(eBXRegI);
  3652   match(eCXRegI);
  3653   match(eDXRegI);
  3655   format %{ %}
  3656   interface(REG_INTER);
  3657 %}
  3659 // Special Registers
  3660 operand eAXRegI(xRegI reg) %{
  3661   constraint(ALLOC_IN_RC(eax_reg));
  3662   match(reg);
  3663   match(rRegI);
  3665   format %{ "EAX" %}
  3666   interface(REG_INTER);
  3667 %}
  3669 // Special Registers
  3670 operand eBXRegI(xRegI reg) %{
  3671   constraint(ALLOC_IN_RC(ebx_reg));
  3672   match(reg);
  3673   match(rRegI);
  3675   format %{ "EBX" %}
  3676   interface(REG_INTER);
  3677 %}
  3679 operand eCXRegI(xRegI reg) %{
  3680   constraint(ALLOC_IN_RC(ecx_reg));
  3681   match(reg);
  3682   match(rRegI);
  3684   format %{ "ECX" %}
  3685   interface(REG_INTER);
  3686 %}
  3688 operand eDXRegI(xRegI reg) %{
  3689   constraint(ALLOC_IN_RC(edx_reg));
  3690   match(reg);
  3691   match(rRegI);
  3693   format %{ "EDX" %}
  3694   interface(REG_INTER);
  3695 %}
  3697 operand eDIRegI(xRegI reg) %{
  3698   constraint(ALLOC_IN_RC(edi_reg));
  3699   match(reg);
  3700   match(rRegI);
  3702   format %{ "EDI" %}
  3703   interface(REG_INTER);
  3704 %}
  3706 operand naxRegI() %{
  3707   constraint(ALLOC_IN_RC(nax_reg));
  3708   match(RegI);
  3709   match(eCXRegI);
  3710   match(eDXRegI);
  3711   match(eSIRegI);
  3712   match(eDIRegI);
  3714   format %{ %}
  3715   interface(REG_INTER);
  3716 %}
  3718 operand nadxRegI() %{
  3719   constraint(ALLOC_IN_RC(nadx_reg));
  3720   match(RegI);
  3721   match(eBXRegI);
  3722   match(eCXRegI);
  3723   match(eSIRegI);
  3724   match(eDIRegI);
  3726   format %{ %}
  3727   interface(REG_INTER);
  3728 %}
  3730 operand ncxRegI() %{
  3731   constraint(ALLOC_IN_RC(ncx_reg));
  3732   match(RegI);
  3733   match(eAXRegI);
  3734   match(eDXRegI);
  3735   match(eSIRegI);
  3736   match(eDIRegI);
  3738   format %{ %}
  3739   interface(REG_INTER);
  3740 %}
  3742 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  3743 // //
  3744 operand eSIRegI(xRegI reg) %{
  3745    constraint(ALLOC_IN_RC(esi_reg));
  3746    match(reg);
  3747    match(rRegI);
  3749    format %{ "ESI" %}
  3750    interface(REG_INTER);
  3751 %}
  3753 // Pointer Register
  3754 operand anyRegP() %{
  3755   constraint(ALLOC_IN_RC(any_reg));
  3756   match(RegP);
  3757   match(eAXRegP);
  3758   match(eBXRegP);
  3759   match(eCXRegP);
  3760   match(eDIRegP);
  3761   match(eRegP);
  3763   format %{ %}
  3764   interface(REG_INTER);
  3765 %}
  3767 operand eRegP() %{
  3768   constraint(ALLOC_IN_RC(int_reg));
  3769   match(RegP);
  3770   match(eAXRegP);
  3771   match(eBXRegP);
  3772   match(eCXRegP);
  3773   match(eDIRegP);
  3775   format %{ %}
  3776   interface(REG_INTER);
  3777 %}
  3779 // On windows95, EBP is not safe to use for implicit null tests.
  3780 operand eRegP_no_EBP() %{
  3781   constraint(ALLOC_IN_RC(int_reg_no_ebp));
  3782   match(RegP);
  3783   match(eAXRegP);
  3784   match(eBXRegP);
  3785   match(eCXRegP);
  3786   match(eDIRegP);
  3788   op_cost(100);
  3789   format %{ %}
  3790   interface(REG_INTER);
  3791 %}
  3793 operand naxRegP() %{
  3794   constraint(ALLOC_IN_RC(nax_reg));
  3795   match(RegP);
  3796   match(eBXRegP);
  3797   match(eDXRegP);
  3798   match(eCXRegP);
  3799   match(eSIRegP);
  3800   match(eDIRegP);
  3802   format %{ %}
  3803   interface(REG_INTER);
  3804 %}
  3806 operand nabxRegP() %{
  3807   constraint(ALLOC_IN_RC(nabx_reg));
  3808   match(RegP);
  3809   match(eCXRegP);
  3810   match(eDXRegP);
  3811   match(eSIRegP);
  3812   match(eDIRegP);
  3814   format %{ %}
  3815   interface(REG_INTER);
  3816 %}
  3818 operand pRegP() %{
  3819   constraint(ALLOC_IN_RC(p_reg));
  3820   match(RegP);
  3821   match(eBXRegP);
  3822   match(eDXRegP);
  3823   match(eSIRegP);
  3824   match(eDIRegP);
  3826   format %{ %}
  3827   interface(REG_INTER);
  3828 %}
  3830 // Special Registers
  3831 // Return a pointer value
  3832 operand eAXRegP(eRegP reg) %{
  3833   constraint(ALLOC_IN_RC(eax_reg));
  3834   match(reg);
  3835   format %{ "EAX" %}
  3836   interface(REG_INTER);
  3837 %}
  3839 // Used in AtomicAdd
  3840 operand eBXRegP(eRegP reg) %{
  3841   constraint(ALLOC_IN_RC(ebx_reg));
  3842   match(reg);
  3843   format %{ "EBX" %}
  3844   interface(REG_INTER);
  3845 %}
  3847 // Tail-call (interprocedural jump) to interpreter
  3848 operand eCXRegP(eRegP reg) %{
  3849   constraint(ALLOC_IN_RC(ecx_reg));
  3850   match(reg);
  3851   format %{ "ECX" %}
  3852   interface(REG_INTER);
  3853 %}
  3855 operand eSIRegP(eRegP reg) %{
  3856   constraint(ALLOC_IN_RC(esi_reg));
  3857   match(reg);
  3858   format %{ "ESI" %}
  3859   interface(REG_INTER);
  3860 %}
  3862 // Used in rep stosw
  3863 operand eDIRegP(eRegP reg) %{
  3864   constraint(ALLOC_IN_RC(edi_reg));
  3865   match(reg);
  3866   format %{ "EDI" %}
  3867   interface(REG_INTER);
  3868 %}
  3870 operand eRegL() %{
  3871   constraint(ALLOC_IN_RC(long_reg));
  3872   match(RegL);
  3873   match(eADXRegL);
  3875   format %{ %}
  3876   interface(REG_INTER);
  3877 %}
  3879 operand eADXRegL( eRegL reg ) %{
  3880   constraint(ALLOC_IN_RC(eadx_reg));
  3881   match(reg);
  3883   format %{ "EDX:EAX" %}
  3884   interface(REG_INTER);
  3885 %}
  3887 operand eBCXRegL( eRegL reg ) %{
  3888   constraint(ALLOC_IN_RC(ebcx_reg));
  3889   match(reg);
  3891   format %{ "EBX:ECX" %}
  3892   interface(REG_INTER);
  3893 %}
  3895 // Special case for integer high multiply
  3896 operand eADXRegL_low_only() %{
  3897   constraint(ALLOC_IN_RC(eadx_reg));
  3898   match(RegL);
  3900   format %{ "EAX" %}
  3901   interface(REG_INTER);
  3902 %}
  3904 // Flags register, used as output of compare instructions
  3905 operand eFlagsReg() %{
  3906   constraint(ALLOC_IN_RC(int_flags));
  3907   match(RegFlags);
  3909   format %{ "EFLAGS" %}
  3910   interface(REG_INTER);
  3911 %}
  3913 // Flags register, used as output of FLOATING POINT compare instructions
  3914 operand eFlagsRegU() %{
  3915   constraint(ALLOC_IN_RC(int_flags));
  3916   match(RegFlags);
  3918   format %{ "EFLAGS_U" %}
  3919   interface(REG_INTER);
  3920 %}
  3922 operand eFlagsRegUCF() %{
  3923   constraint(ALLOC_IN_RC(int_flags));
  3924   match(RegFlags);
  3925   predicate(false);
  3927   format %{ "EFLAGS_U_CF" %}
  3928   interface(REG_INTER);
  3929 %}
  3931 // Condition Code Register used by long compare
  3932 operand flagsReg_long_LTGE() %{
  3933   constraint(ALLOC_IN_RC(int_flags));
  3934   match(RegFlags);
  3935   format %{ "FLAGS_LTGE" %}
  3936   interface(REG_INTER);
  3937 %}
  3938 operand flagsReg_long_EQNE() %{
  3939   constraint(ALLOC_IN_RC(int_flags));
  3940   match(RegFlags);
  3941   format %{ "FLAGS_EQNE" %}
  3942   interface(REG_INTER);
  3943 %}
  3944 operand flagsReg_long_LEGT() %{
  3945   constraint(ALLOC_IN_RC(int_flags));
  3946   match(RegFlags);
  3947   format %{ "FLAGS_LEGT" %}
  3948   interface(REG_INTER);
  3949 %}
  3951 // Condition Code Register used by unsigned long compare
  3952 operand flagsReg_ulong_LTGE() %{
  3953   constraint(ALLOC_IN_RC(int_flags));
  3954   match(RegFlags);
  3955   format %{ "FLAGS_U_LTGE" %}
  3956   interface(REG_INTER);
  3957 %}
  3958 operand flagsReg_ulong_EQNE() %{
  3959   constraint(ALLOC_IN_RC(int_flags));
  3960   match(RegFlags);
  3961   format %{ "FLAGS_U_EQNE" %}
  3962   interface(REG_INTER);
  3963 %}
  3964 operand flagsReg_ulong_LEGT() %{
  3965   constraint(ALLOC_IN_RC(int_flags));
  3966   match(RegFlags);
  3967   format %{ "FLAGS_U_LEGT" %}
  3968   interface(REG_INTER);
  3969 %}
  3971 // Float register operands
  3972 operand regDPR() %{
  3973   predicate( UseSSE < 2 );
  3974   constraint(ALLOC_IN_RC(fp_dbl_reg));
  3975   match(RegD);
  3976   match(regDPR1);
  3977   match(regDPR2);
  3978   format %{ %}
  3979   interface(REG_INTER);
  3980 %}
  3982 operand regDPR1(regDPR reg) %{
  3983   predicate( UseSSE < 2 );
  3984   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  3985   match(reg);
  3986   format %{ "FPR1" %}
  3987   interface(REG_INTER);
  3988 %}
  3990 operand regDPR2(regDPR reg) %{
  3991   predicate( UseSSE < 2 );
  3992   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  3993   match(reg);
  3994   format %{ "FPR2" %}
  3995   interface(REG_INTER);
  3996 %}
  3998 operand regnotDPR1(regDPR reg) %{
  3999   predicate( UseSSE < 2 );
  4000   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  4001   match(reg);
  4002   format %{ %}
  4003   interface(REG_INTER);
  4004 %}
  4006 // Float register operands
  4007 operand regFPR() %{
  4008   predicate( UseSSE < 2 );
  4009   constraint(ALLOC_IN_RC(fp_flt_reg));
  4010   match(RegF);
  4011   match(regFPR1);
  4012   format %{ %}
  4013   interface(REG_INTER);
  4014 %}
  4016 // Float register operands
  4017 operand regFPR1(regFPR reg) %{
  4018   predicate( UseSSE < 2 );
  4019   constraint(ALLOC_IN_RC(fp_flt_reg0));
  4020   match(reg);
  4021   format %{ "FPR1" %}
  4022   interface(REG_INTER);
  4023 %}
  4025 // XMM Float register operands
  4026 operand regF() %{
  4027   predicate( UseSSE>=1 );
  4028   constraint(ALLOC_IN_RC(float_reg));
  4029   match(RegF);
  4030   format %{ %}
  4031   interface(REG_INTER);
  4032 %}
  4034 // XMM Double register operands
  4035 operand regD() %{
  4036   predicate( UseSSE>=2 );
  4037   constraint(ALLOC_IN_RC(double_reg));
  4038   match(RegD);
  4039   format %{ %}
  4040   interface(REG_INTER);
  4041 %}
  4044 //----------Memory Operands----------------------------------------------------
  4045 // Direct Memory Operand
  4046 operand direct(immP addr) %{
  4047   match(addr);
  4049   format %{ "[$addr]" %}
  4050   interface(MEMORY_INTER) %{
  4051     base(0xFFFFFFFF);
  4052     index(0x4);
  4053     scale(0x0);
  4054     disp($addr);
  4055   %}
  4056 %}
  4058 // Indirect Memory Operand
  4059 operand indirect(eRegP reg) %{
  4060   constraint(ALLOC_IN_RC(int_reg));
  4061   match(reg);
  4063   format %{ "[$reg]" %}
  4064   interface(MEMORY_INTER) %{
  4065     base($reg);
  4066     index(0x4);
  4067     scale(0x0);
  4068     disp(0x0);
  4069   %}
  4070 %}
  4072 // Indirect Memory Plus Short Offset Operand
  4073 operand indOffset8(eRegP reg, immI8 off) %{
  4074   match(AddP reg off);
  4076   format %{ "[$reg + $off]" %}
  4077   interface(MEMORY_INTER) %{
  4078     base($reg);
  4079     index(0x4);
  4080     scale(0x0);
  4081     disp($off);
  4082   %}
  4083 %}
  4085 // Indirect Memory Plus Long Offset Operand
  4086 operand indOffset32(eRegP reg, immI off) %{
  4087   match(AddP reg off);
  4089   format %{ "[$reg + $off]" %}
  4090   interface(MEMORY_INTER) %{
  4091     base($reg);
  4092     index(0x4);
  4093     scale(0x0);
  4094     disp($off);
  4095   %}
  4096 %}
  4098 // Indirect Memory Plus Long Offset Operand
  4099 operand indOffset32X(rRegI reg, immP off) %{
  4100   match(AddP off reg);
  4102   format %{ "[$reg + $off]" %}
  4103   interface(MEMORY_INTER) %{
  4104     base($reg);
  4105     index(0x4);
  4106     scale(0x0);
  4107     disp($off);
  4108   %}
  4109 %}
  4111 // Indirect Memory Plus Index Register Plus Offset Operand
  4112 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4113   match(AddP (AddP reg ireg) off);
  4115   op_cost(10);
  4116   format %{"[$reg + $off + $ireg]" %}
  4117   interface(MEMORY_INTER) %{
  4118     base($reg);
  4119     index($ireg);
  4120     scale(0x0);
  4121     disp($off);
  4122   %}
  4123 %}
  4125 // Indirect Memory Plus Index Register Plus Offset Operand
  4126 operand indIndex(eRegP reg, rRegI ireg) %{
  4127   match(AddP reg ireg);
  4129   op_cost(10);
  4130   format %{"[$reg + $ireg]" %}
  4131   interface(MEMORY_INTER) %{
  4132     base($reg);
  4133     index($ireg);
  4134     scale(0x0);
  4135     disp(0x0);
  4136   %}
  4137 %}
  4139 // // -------------------------------------------------------------------------
  4140 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4141 // // -------------------------------------------------------------------------
  4142 // // Scaled Memory Operands
  4143 // // Indirect Memory Times Scale Plus Offset Operand
  4144 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4145 //   match(AddP off (LShiftI ireg scale));
  4146 //
  4147 //   op_cost(10);
  4148 //   format %{"[$off + $ireg << $scale]" %}
  4149 //   interface(MEMORY_INTER) %{
  4150 //     base(0x4);
  4151 //     index($ireg);
  4152 //     scale($scale);
  4153 //     disp($off);
  4154 //   %}
  4155 // %}
  4157 // Indirect Memory Times Scale Plus Index Register
  4158 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4159   match(AddP reg (LShiftI ireg scale));
  4161   op_cost(10);
  4162   format %{"[$reg + $ireg << $scale]" %}
  4163   interface(MEMORY_INTER) %{
  4164     base($reg);
  4165     index($ireg);
  4166     scale($scale);
  4167     disp(0x0);
  4168   %}
  4169 %}
  4171 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4172 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4173   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4175   op_cost(10);
  4176   format %{"[$reg + $off + $ireg << $scale]" %}
  4177   interface(MEMORY_INTER) %{
  4178     base($reg);
  4179     index($ireg);
  4180     scale($scale);
  4181     disp($off);
  4182   %}
  4183 %}
  4185 //----------Load Long Memory Operands------------------------------------------
  4186 // The load-long idiom will use it's address expression again after loading
  4187 // the first word of the long.  If the load-long destination overlaps with
  4188 // registers used in the addressing expression, the 2nd half will be loaded
  4189 // from a clobbered address.  Fix this by requiring that load-long use
  4190 // address registers that do not overlap with the load-long target.
  4192 // load-long support
  4193 operand load_long_RegP() %{
  4194   constraint(ALLOC_IN_RC(esi_reg));
  4195   match(RegP);
  4196   match(eSIRegP);
  4197   op_cost(100);
  4198   format %{  %}
  4199   interface(REG_INTER);
  4200 %}
  4202 // Indirect Memory Operand Long
  4203 operand load_long_indirect(load_long_RegP reg) %{
  4204   constraint(ALLOC_IN_RC(esi_reg));
  4205   match(reg);
  4207   format %{ "[$reg]" %}
  4208   interface(MEMORY_INTER) %{
  4209     base($reg);
  4210     index(0x4);
  4211     scale(0x0);
  4212     disp(0x0);
  4213   %}
  4214 %}
  4216 // Indirect Memory Plus Long Offset Operand
  4217 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4218   match(AddP reg off);
  4220   format %{ "[$reg + $off]" %}
  4221   interface(MEMORY_INTER) %{
  4222     base($reg);
  4223     index(0x4);
  4224     scale(0x0);
  4225     disp($off);
  4226   %}
  4227 %}
  4229 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4232 //----------Special Memory Operands--------------------------------------------
  4233 // Stack Slot Operand - This operand is used for loading and storing temporary
  4234 //                      values on the stack where a match requires a value to
  4235 //                      flow through memory.
  4236 operand stackSlotP(sRegP reg) %{
  4237   constraint(ALLOC_IN_RC(stack_slots));
  4238   // No match rule because this operand is only generated in matching
  4239   format %{ "[$reg]" %}
  4240   interface(MEMORY_INTER) %{
  4241     base(0x4);   // ESP
  4242     index(0x4);  // No Index
  4243     scale(0x0);  // No Scale
  4244     disp($reg);  // Stack Offset
  4245   %}
  4246 %}
  4248 operand stackSlotI(sRegI reg) %{
  4249   constraint(ALLOC_IN_RC(stack_slots));
  4250   // No match rule because this operand is only generated in matching
  4251   format %{ "[$reg]" %}
  4252   interface(MEMORY_INTER) %{
  4253     base(0x4);   // ESP
  4254     index(0x4);  // No Index
  4255     scale(0x0);  // No Scale
  4256     disp($reg);  // Stack Offset
  4257   %}
  4258 %}
  4260 operand stackSlotF(sRegF reg) %{
  4261   constraint(ALLOC_IN_RC(stack_slots));
  4262   // No match rule because this operand is only generated in matching
  4263   format %{ "[$reg]" %}
  4264   interface(MEMORY_INTER) %{
  4265     base(0x4);   // ESP
  4266     index(0x4);  // No Index
  4267     scale(0x0);  // No Scale
  4268     disp($reg);  // Stack Offset
  4269   %}
  4270 %}
  4272 operand stackSlotD(sRegD reg) %{
  4273   constraint(ALLOC_IN_RC(stack_slots));
  4274   // No match rule because this operand is only generated in matching
  4275   format %{ "[$reg]" %}
  4276   interface(MEMORY_INTER) %{
  4277     base(0x4);   // ESP
  4278     index(0x4);  // No Index
  4279     scale(0x0);  // No Scale
  4280     disp($reg);  // Stack Offset
  4281   %}
  4282 %}
  4284 operand stackSlotL(sRegL reg) %{
  4285   constraint(ALLOC_IN_RC(stack_slots));
  4286   // No match rule because this operand is only generated in matching
  4287   format %{ "[$reg]" %}
  4288   interface(MEMORY_INTER) %{
  4289     base(0x4);   // ESP
  4290     index(0x4);  // No Index
  4291     scale(0x0);  // No Scale
  4292     disp($reg);  // Stack Offset
  4293   %}
  4294 %}
  4296 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4297 // Indirect Memory Operand
  4298 operand indirect_win95_safe(eRegP_no_EBP reg)
  4299 %{
  4300   constraint(ALLOC_IN_RC(int_reg));
  4301   match(reg);
  4303   op_cost(100);
  4304   format %{ "[$reg]" %}
  4305   interface(MEMORY_INTER) %{
  4306     base($reg);
  4307     index(0x4);
  4308     scale(0x0);
  4309     disp(0x0);
  4310   %}
  4311 %}
  4313 // Indirect Memory Plus Short Offset Operand
  4314 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4315 %{
  4316   match(AddP reg off);
  4318   op_cost(100);
  4319   format %{ "[$reg + $off]" %}
  4320   interface(MEMORY_INTER) %{
  4321     base($reg);
  4322     index(0x4);
  4323     scale(0x0);
  4324     disp($off);
  4325   %}
  4326 %}
  4328 // Indirect Memory Plus Long Offset Operand
  4329 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4330 %{
  4331   match(AddP reg off);
  4333   op_cost(100);
  4334   format %{ "[$reg + $off]" %}
  4335   interface(MEMORY_INTER) %{
  4336     base($reg);
  4337     index(0x4);
  4338     scale(0x0);
  4339     disp($off);
  4340   %}
  4341 %}
  4343 // Indirect Memory Plus Index Register Plus Offset Operand
  4344 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4345 %{
  4346   match(AddP (AddP reg ireg) off);
  4348   op_cost(100);
  4349   format %{"[$reg + $off + $ireg]" %}
  4350   interface(MEMORY_INTER) %{
  4351     base($reg);
  4352     index($ireg);
  4353     scale(0x0);
  4354     disp($off);
  4355   %}
  4356 %}
  4358 // Indirect Memory Times Scale Plus Index Register
  4359 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4360 %{
  4361   match(AddP reg (LShiftI ireg scale));
  4363   op_cost(100);
  4364   format %{"[$reg + $ireg << $scale]" %}
  4365   interface(MEMORY_INTER) %{
  4366     base($reg);
  4367     index($ireg);
  4368     scale($scale);
  4369     disp(0x0);
  4370   %}
  4371 %}
  4373 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4374 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4375 %{
  4376   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4378   op_cost(100);
  4379   format %{"[$reg + $off + $ireg << $scale]" %}
  4380   interface(MEMORY_INTER) %{
  4381     base($reg);
  4382     index($ireg);
  4383     scale($scale);
  4384     disp($off);
  4385   %}
  4386 %}
  4388 //----------Conditional Branch Operands----------------------------------------
  4389 // Comparison Op  - This is the operation of the comparison, and is limited to
  4390 //                  the following set of codes:
  4391 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4392 //
  4393 // Other attributes of the comparison, such as unsignedness, are specified
  4394 // by the comparison instruction that sets a condition code flags register.
  4395 // That result is represented by a flags operand whose subtype is appropriate
  4396 // to the unsignedness (etc.) of the comparison.
  4397 //
  4398 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4399 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4400 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4402 // Comparision Code
  4403 operand cmpOp() %{
  4404   match(Bool);
  4406   format %{ "" %}
  4407   interface(COND_INTER) %{
  4408     equal(0x4, "e");
  4409     not_equal(0x5, "ne");
  4410     less(0xC, "l");
  4411     greater_equal(0xD, "ge");
  4412     less_equal(0xE, "le");
  4413     greater(0xF, "g");
  4414     overflow(0x0, "o");
  4415     no_overflow(0x1, "no");
  4416   %}
  4417 %}
  4419 // Comparison Code, unsigned compare.  Used by FP also, with
  4420 // C2 (unordered) turned into GT or LT already.  The other bits
  4421 // C0 and C3 are turned into Carry & Zero flags.
  4422 operand cmpOpU() %{
  4423   match(Bool);
  4425   format %{ "" %}
  4426   interface(COND_INTER) %{
  4427     equal(0x4, "e");
  4428     not_equal(0x5, "ne");
  4429     less(0x2, "b");
  4430     greater_equal(0x3, "nb");
  4431     less_equal(0x6, "be");
  4432     greater(0x7, "nbe");
  4433     overflow(0x0, "o");
  4434     no_overflow(0x1, "no");
  4435   %}
  4436 %}
  4438 // Floating comparisons that don't require any fixup for the unordered case
  4439 operand cmpOpUCF() %{
  4440   match(Bool);
  4441   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4442             n->as_Bool()->_test._test == BoolTest::ge ||
  4443             n->as_Bool()->_test._test == BoolTest::le ||
  4444             n->as_Bool()->_test._test == BoolTest::gt);
  4445   format %{ "" %}
  4446   interface(COND_INTER) %{
  4447     equal(0x4, "e");
  4448     not_equal(0x5, "ne");
  4449     less(0x2, "b");
  4450     greater_equal(0x3, "nb");
  4451     less_equal(0x6, "be");
  4452     greater(0x7, "nbe");
  4453     overflow(0x0, "o");
  4454     no_overflow(0x1, "no");
  4455   %}
  4456 %}
  4459 // Floating comparisons that can be fixed up with extra conditional jumps
  4460 operand cmpOpUCF2() %{
  4461   match(Bool);
  4462   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  4463             n->as_Bool()->_test._test == BoolTest::eq);
  4464   format %{ "" %}
  4465   interface(COND_INTER) %{
  4466     equal(0x4, "e");
  4467     not_equal(0x5, "ne");
  4468     less(0x2, "b");
  4469     greater_equal(0x3, "nb");
  4470     less_equal(0x6, "be");
  4471     greater(0x7, "nbe");
  4472     overflow(0x0, "o");
  4473     no_overflow(0x1, "no");
  4474   %}
  4475 %}
  4477 // Comparison Code for FP conditional move
  4478 operand cmpOp_fcmov() %{
  4479   match(Bool);
  4481   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4482             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4483   format %{ "" %}
  4484   interface(COND_INTER) %{
  4485     equal        (0x0C8);
  4486     not_equal    (0x1C8);
  4487     less         (0x0C0);
  4488     greater_equal(0x1C0);
  4489     less_equal   (0x0D0);
  4490     greater      (0x1D0);
  4491     overflow(0x0, "o"); // not really supported by the instruction
  4492     no_overflow(0x1, "no"); // not really supported by the instruction
  4493   %}
  4494 %}
  4496 // Comparison Code used in long compares
  4497 operand cmpOp_commute() %{
  4498   match(Bool);
  4500   format %{ "" %}
  4501   interface(COND_INTER) %{
  4502     equal(0x4, "e");
  4503     not_equal(0x5, "ne");
  4504     less(0xF, "g");
  4505     greater_equal(0xE, "le");
  4506     less_equal(0xD, "ge");
  4507     greater(0xC, "l");
  4508     overflow(0x0, "o");
  4509     no_overflow(0x1, "no");
  4510   %}
  4511 %}
  4513 // Comparison Code used in unsigned long compares
  4514 operand cmpOpU_commute() %{
  4515   match(Bool);
  4517   format %{ "" %}
  4518   interface(COND_INTER) %{
  4519     equal(0x4, "e");
  4520     not_equal(0x5, "ne");
  4521     less(0x7, "nbe");
  4522     greater_equal(0x6, "be");
  4523     less_equal(0x3, "nb");
  4524     greater(0x2, "b");
  4525     overflow(0x0, "o");
  4526     no_overflow(0x1, "no");
  4527   %}
  4528 %}
  4530 //----------OPERAND CLASSES----------------------------------------------------
  4531 // Operand Classes are groups of operands that are used as to simplify
  4532 // instruction definitions by not requiring the AD writer to specify separate
  4533 // instructions for every form of operand when the instruction accepts
  4534 // multiple operand types with the same basic encoding and format.  The classic
  4535 // case of this is memory operands.
  4537 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  4538                indIndex, indIndexScale, indIndexScaleOffset);
  4540 // Long memory operations are encoded in 2 instructions and a +4 offset.
  4541 // This means some kind of offset is always required and you cannot use
  4542 // an oop as the offset (done when working on static globals).
  4543 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  4544                     indIndex, indIndexScale, indIndexScaleOffset);
  4547 //----------PIPELINE-----------------------------------------------------------
  4548 // Rules which define the behavior of the target architectures pipeline.
  4549 pipeline %{
  4551 //----------ATTRIBUTES---------------------------------------------------------
  4552 attributes %{
  4553   variable_size_instructions;        // Fixed size instructions
  4554   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  4555   instruction_unit_size = 1;         // An instruction is 1 bytes long
  4556   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4557   instruction_fetch_units = 1;       // of 16 bytes
  4559   // List of nop instructions
  4560   nops( MachNop );
  4561 %}
  4563 //----------RESOURCES----------------------------------------------------------
  4564 // Resources are the functional units available to the machine
  4566 // Generic P2/P3 pipeline
  4567 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  4568 // 3 instructions decoded per cycle.
  4569 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  4570 // 2 ALU op, only ALU0 handles mul/div instructions.
  4571 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  4572            MS0, MS1, MEM = MS0 | MS1,
  4573            BR, FPU,
  4574            ALU0, ALU1, ALU = ALU0 | ALU1 );
  4576 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4577 // Pipeline Description specifies the stages in the machine's pipeline
  4579 // Generic P2/P3 pipeline
  4580 pipe_desc(S0, S1, S2, S3, S4, S5);
  4582 //----------PIPELINE CLASSES---------------------------------------------------
  4583 // Pipeline Classes describe the stages in which input and output are
  4584 // referenced by the hardware pipeline.
  4586 // Naming convention: ialu or fpu
  4587 // Then: _reg
  4588 // Then: _reg if there is a 2nd register
  4589 // Then: _long if it's a pair of instructions implementing a long
  4590 // Then: _fat if it requires the big decoder
  4591 //   Or: _mem if it requires the big decoder and a memory unit.
  4593 // Integer ALU reg operation
  4594 pipe_class ialu_reg(rRegI dst) %{
  4595     single_instruction;
  4596     dst    : S4(write);
  4597     dst    : S3(read);
  4598     DECODE : S0;        // any decoder
  4599     ALU    : S3;        // any alu
  4600 %}
  4602 // Long ALU reg operation
  4603 pipe_class ialu_reg_long(eRegL dst) %{
  4604     instruction_count(2);
  4605     dst    : S4(write);
  4606     dst    : S3(read);
  4607     DECODE : S0(2);     // any 2 decoders
  4608     ALU    : S3(2);     // both alus
  4609 %}
  4611 // Integer ALU reg operation using big decoder
  4612 pipe_class ialu_reg_fat(rRegI dst) %{
  4613     single_instruction;
  4614     dst    : S4(write);
  4615     dst    : S3(read);
  4616     D0     : S0;        // big decoder only
  4617     ALU    : S3;        // any alu
  4618 %}
  4620 // Long ALU reg operation using big decoder
  4621 pipe_class ialu_reg_long_fat(eRegL dst) %{
  4622     instruction_count(2);
  4623     dst    : S4(write);
  4624     dst    : S3(read);
  4625     D0     : S0(2);     // big decoder only; twice
  4626     ALU    : S3(2);     // any 2 alus
  4627 %}
  4629 // Integer ALU reg-reg operation
  4630 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  4631     single_instruction;
  4632     dst    : S4(write);
  4633     src    : S3(read);
  4634     DECODE : S0;        // any decoder
  4635     ALU    : S3;        // any alu
  4636 %}
  4638 // Long ALU reg-reg operation
  4639 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  4640     instruction_count(2);
  4641     dst    : S4(write);
  4642     src    : S3(read);
  4643     DECODE : S0(2);     // any 2 decoders
  4644     ALU    : S3(2);     // both alus
  4645 %}
  4647 // Integer ALU reg-reg operation
  4648 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  4649     single_instruction;
  4650     dst    : S4(write);
  4651     src    : S3(read);
  4652     D0     : S0;        // big decoder only
  4653     ALU    : S3;        // any alu
  4654 %}
  4656 // Long ALU reg-reg operation
  4657 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  4658     instruction_count(2);
  4659     dst    : S4(write);
  4660     src    : S3(read);
  4661     D0     : S0(2);     // big decoder only; twice
  4662     ALU    : S3(2);     // both alus
  4663 %}
  4665 // Integer ALU reg-mem operation
  4666 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  4667     single_instruction;
  4668     dst    : S5(write);
  4669     mem    : S3(read);
  4670     D0     : S0;        // big decoder only
  4671     ALU    : S4;        // any alu
  4672     MEM    : S3;        // any mem
  4673 %}
  4675 // Long ALU reg-mem operation
  4676 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  4677     instruction_count(2);
  4678     dst    : S5(write);
  4679     mem    : S3(read);
  4680     D0     : S0(2);     // big decoder only; twice
  4681     ALU    : S4(2);     // any 2 alus
  4682     MEM    : S3(2);     // both mems
  4683 %}
  4685 // Integer mem operation (prefetch)
  4686 pipe_class ialu_mem(memory mem)
  4687 %{
  4688     single_instruction;
  4689     mem    : S3(read);
  4690     D0     : S0;        // big decoder only
  4691     MEM    : S3;        // any mem
  4692 %}
  4694 // Integer Store to Memory
  4695 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  4696     single_instruction;
  4697     mem    : S3(read);
  4698     src    : S5(read);
  4699     D0     : S0;        // big decoder only
  4700     ALU    : S4;        // any alu
  4701     MEM    : S3;
  4702 %}
  4704 // Long Store to Memory
  4705 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  4706     instruction_count(2);
  4707     mem    : S3(read);
  4708     src    : S5(read);
  4709     D0     : S0(2);     // big decoder only; twice
  4710     ALU    : S4(2);     // any 2 alus
  4711     MEM    : S3(2);     // Both mems
  4712 %}
  4714 // Integer Store to Memory
  4715 pipe_class ialu_mem_imm(memory mem) %{
  4716     single_instruction;
  4717     mem    : S3(read);
  4718     D0     : S0;        // big decoder only
  4719     ALU    : S4;        // any alu
  4720     MEM    : S3;
  4721 %}
  4723 // Integer ALU0 reg-reg operation
  4724 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  4725     single_instruction;
  4726     dst    : S4(write);
  4727     src    : S3(read);
  4728     D0     : S0;        // Big decoder only
  4729     ALU0   : S3;        // only alu0
  4730 %}
  4732 // Integer ALU0 reg-mem operation
  4733 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  4734     single_instruction;
  4735     dst    : S5(write);
  4736     mem    : S3(read);
  4737     D0     : S0;        // big decoder only
  4738     ALU0   : S4;        // ALU0 only
  4739     MEM    : S3;        // any mem
  4740 %}
  4742 // Integer ALU reg-reg operation
  4743 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  4744     single_instruction;
  4745     cr     : S4(write);
  4746     src1   : S3(read);
  4747     src2   : S3(read);
  4748     DECODE : S0;        // any decoder
  4749     ALU    : S3;        // any alu
  4750 %}
  4752 // Integer ALU reg-imm operation
  4753 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  4754     single_instruction;
  4755     cr     : S4(write);
  4756     src1   : S3(read);
  4757     DECODE : S0;        // any decoder
  4758     ALU    : S3;        // any alu
  4759 %}
  4761 // Integer ALU reg-mem operation
  4762 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  4763     single_instruction;
  4764     cr     : S4(write);
  4765     src1   : S3(read);
  4766     src2   : S3(read);
  4767     D0     : S0;        // big decoder only
  4768     ALU    : S4;        // any alu
  4769     MEM    : S3;
  4770 %}
  4772 // Conditional move reg-reg
  4773 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  4774     instruction_count(4);
  4775     y      : S4(read);
  4776     q      : S3(read);
  4777     p      : S3(read);
  4778     DECODE : S0(4);     // any decoder
  4779 %}
  4781 // Conditional move reg-reg
  4782 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  4783     single_instruction;
  4784     dst    : S4(write);
  4785     src    : S3(read);
  4786     cr     : S3(read);
  4787     DECODE : S0;        // any decoder
  4788 %}
  4790 // Conditional move reg-mem
  4791 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  4792     single_instruction;
  4793     dst    : S4(write);
  4794     src    : S3(read);
  4795     cr     : S3(read);
  4796     DECODE : S0;        // any decoder
  4797     MEM    : S3;
  4798 %}
  4800 // Conditional move reg-reg long
  4801 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  4802     single_instruction;
  4803     dst    : S4(write);
  4804     src    : S3(read);
  4805     cr     : S3(read);
  4806     DECODE : S0(2);     // any 2 decoders
  4807 %}
  4809 // Conditional move double reg-reg
  4810 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  4811     single_instruction;
  4812     dst    : S4(write);
  4813     src    : S3(read);
  4814     cr     : S3(read);
  4815     DECODE : S0;        // any decoder
  4816 %}
  4818 // Float reg-reg operation
  4819 pipe_class fpu_reg(regDPR dst) %{
  4820     instruction_count(2);
  4821     dst    : S3(read);
  4822     DECODE : S0(2);     // any 2 decoders
  4823     FPU    : S3;
  4824 %}
  4826 // Float reg-reg operation
  4827 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  4828     instruction_count(2);
  4829     dst    : S4(write);
  4830     src    : S3(read);
  4831     DECODE : S0(2);     // any 2 decoders
  4832     FPU    : S3;
  4833 %}
  4835 // Float reg-reg operation
  4836 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  4837     instruction_count(3);
  4838     dst    : S4(write);
  4839     src1   : S3(read);
  4840     src2   : S3(read);
  4841     DECODE : S0(3);     // any 3 decoders
  4842     FPU    : S3(2);
  4843 %}
  4845 // Float reg-reg operation
  4846 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  4847     instruction_count(4);
  4848     dst    : S4(write);
  4849     src1   : S3(read);
  4850     src2   : S3(read);
  4851     src3   : S3(read);
  4852     DECODE : S0(4);     // any 3 decoders
  4853     FPU    : S3(2);
  4854 %}
  4856 // Float reg-reg operation
  4857 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  4858     instruction_count(4);
  4859     dst    : S4(write);
  4860     src1   : S3(read);
  4861     src2   : S3(read);
  4862     src3   : S3(read);
  4863     DECODE : S1(3);     // any 3 decoders
  4864     D0     : S0;        // Big decoder only
  4865     FPU    : S3(2);
  4866     MEM    : S3;
  4867 %}
  4869 // Float reg-mem operation
  4870 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  4871     instruction_count(2);
  4872     dst    : S5(write);
  4873     mem    : S3(read);
  4874     D0     : S0;        // big decoder only
  4875     DECODE : S1;        // any decoder for FPU POP
  4876     FPU    : S4;
  4877     MEM    : S3;        // any mem
  4878 %}
  4880 // Float reg-mem operation
  4881 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  4882     instruction_count(3);
  4883     dst    : S5(write);
  4884     src1   : S3(read);
  4885     mem    : S3(read);
  4886     D0     : S0;        // big decoder only
  4887     DECODE : S1(2);     // any decoder for FPU POP
  4888     FPU    : S4;
  4889     MEM    : S3;        // any mem
  4890 %}
  4892 // Float mem-reg operation
  4893 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  4894     instruction_count(2);
  4895     src    : S5(read);
  4896     mem    : S3(read);
  4897     DECODE : S0;        // any decoder for FPU PUSH
  4898     D0     : S1;        // big decoder only
  4899     FPU    : S4;
  4900     MEM    : S3;        // any mem
  4901 %}
  4903 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  4904     instruction_count(3);
  4905     src1   : S3(read);
  4906     src2   : S3(read);
  4907     mem    : S3(read);
  4908     DECODE : S0(2);     // any decoder for FPU PUSH
  4909     D0     : S1;        // big decoder only
  4910     FPU    : S4;
  4911     MEM    : S3;        // any mem
  4912 %}
  4914 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  4915     instruction_count(3);
  4916     src1   : S3(read);
  4917     src2   : S3(read);
  4918     mem    : S4(read);
  4919     DECODE : S0;        // any decoder for FPU PUSH
  4920     D0     : S0(2);     // big decoder only
  4921     FPU    : S4;
  4922     MEM    : S3(2);     // any mem
  4923 %}
  4925 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  4926     instruction_count(2);
  4927     src1   : S3(read);
  4928     dst    : S4(read);
  4929     D0     : S0(2);     // big decoder only
  4930     MEM    : S3(2);     // any mem
  4931 %}
  4933 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  4934     instruction_count(3);
  4935     src1   : S3(read);
  4936     src2   : S3(read);
  4937     dst    : S4(read);
  4938     D0     : S0(3);     // big decoder only
  4939     FPU    : S4;
  4940     MEM    : S3(3);     // any mem
  4941 %}
  4943 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  4944     instruction_count(3);
  4945     src1   : S4(read);
  4946     mem    : S4(read);
  4947     DECODE : S0;        // any decoder for FPU PUSH
  4948     D0     : S0(2);     // big decoder only
  4949     FPU    : S4;
  4950     MEM    : S3(2);     // any mem
  4951 %}
  4953 // Float load constant
  4954 pipe_class fpu_reg_con(regDPR dst) %{
  4955     instruction_count(2);
  4956     dst    : S5(write);
  4957     D0     : S0;        // big decoder only for the load
  4958     DECODE : S1;        // any decoder for FPU POP
  4959     FPU    : S4;
  4960     MEM    : S3;        // any mem
  4961 %}
  4963 // Float load constant
  4964 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  4965     instruction_count(3);
  4966     dst    : S5(write);
  4967     src    : S3(read);
  4968     D0     : S0;        // big decoder only for the load
  4969     DECODE : S1(2);     // any decoder for FPU POP
  4970     FPU    : S4;
  4971     MEM    : S3;        // any mem
  4972 %}
  4974 // UnConditional branch
  4975 pipe_class pipe_jmp( label labl ) %{
  4976     single_instruction;
  4977     BR   : S3;
  4978 %}
  4980 // Conditional branch
  4981 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  4982     single_instruction;
  4983     cr    : S1(read);
  4984     BR    : S3;
  4985 %}
  4987 // Allocation idiom
  4988 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  4989     instruction_count(1); force_serialization;
  4990     fixed_latency(6);
  4991     heap_ptr : S3(read);
  4992     DECODE   : S0(3);
  4993     D0       : S2;
  4994     MEM      : S3;
  4995     ALU      : S3(2);
  4996     dst      : S5(write);
  4997     BR       : S5;
  4998 %}
  5000 // Generic big/slow expanded idiom
  5001 pipe_class pipe_slow(  ) %{
  5002     instruction_count(10); multiple_bundles; force_serialization;
  5003     fixed_latency(100);
  5004     D0  : S0(2);
  5005     MEM : S3(2);
  5006 %}
  5008 // The real do-nothing guy
  5009 pipe_class empty( ) %{
  5010     instruction_count(0);
  5011 %}
  5013 // Define the class for the Nop node
  5014 define %{
  5015    MachNop = empty;
  5016 %}
  5018 %}
  5020 //----------INSTRUCTIONS-------------------------------------------------------
  5021 //
  5022 // match      -- States which machine-independent subtree may be replaced
  5023 //               by this instruction.
  5024 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5025 //               selection to identify a minimum cost tree of machine
  5026 //               instructions that matches a tree of machine-independent
  5027 //               instructions.
  5028 // format     -- A string providing the disassembly for this instruction.
  5029 //               The value of an instruction's operand may be inserted
  5030 //               by referring to it with a '$' prefix.
  5031 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5032 //               to within an encode class as $primary, $secondary, and $tertiary
  5033 //               respectively.  The primary opcode is commonly used to
  5034 //               indicate the type of machine instruction, while secondary
  5035 //               and tertiary are often used for prefix options or addressing
  5036 //               modes.
  5037 // ins_encode -- A list of encode classes with parameters. The encode class
  5038 //               name must have been defined in an 'enc_class' specification
  5039 //               in the encode section of the architecture description.
  5041 //----------BSWAP-Instruction--------------------------------------------------
  5042 instruct bytes_reverse_int(rRegI dst) %{
  5043   match(Set dst (ReverseBytesI dst));
  5045   format %{ "BSWAP  $dst" %}
  5046   opcode(0x0F, 0xC8);
  5047   ins_encode( OpcP, OpcSReg(dst) );
  5048   ins_pipe( ialu_reg );
  5049 %}
  5051 instruct bytes_reverse_long(eRegL dst) %{
  5052   match(Set dst (ReverseBytesL dst));
  5054   format %{ "BSWAP  $dst.lo\n\t"
  5055             "BSWAP  $dst.hi\n\t"
  5056             "XCHG   $dst.lo $dst.hi" %}
  5058   ins_cost(125);
  5059   ins_encode( bswap_long_bytes(dst) );
  5060   ins_pipe( ialu_reg_reg);
  5061 %}
  5063 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  5064   match(Set dst (ReverseBytesUS dst));
  5065   effect(KILL cr);
  5067   format %{ "BSWAP  $dst\n\t" 
  5068             "SHR    $dst,16\n\t" %}
  5069   ins_encode %{
  5070     __ bswapl($dst$$Register);
  5071     __ shrl($dst$$Register, 16); 
  5072   %}
  5073   ins_pipe( ialu_reg );
  5074 %}
  5076 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5077   match(Set dst (ReverseBytesS dst));
  5078   effect(KILL cr);
  5080   format %{ "BSWAP  $dst\n\t" 
  5081             "SAR    $dst,16\n\t" %}
  5082   ins_encode %{
  5083     __ bswapl($dst$$Register);
  5084     __ sarl($dst$$Register, 16); 
  5085   %}
  5086   ins_pipe( ialu_reg );
  5087 %}
  5090 //---------- Zeros Count Instructions ------------------------------------------
  5092 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5093   predicate(UseCountLeadingZerosInstruction);
  5094   match(Set dst (CountLeadingZerosI src));
  5095   effect(KILL cr);
  5097   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5098   ins_encode %{
  5099     __ lzcntl($dst$$Register, $src$$Register);
  5100   %}
  5101   ins_pipe(ialu_reg);
  5102 %}
  5104 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5105   predicate(!UseCountLeadingZerosInstruction);
  5106   match(Set dst (CountLeadingZerosI src));
  5107   effect(KILL cr);
  5109   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5110             "JNZ    skip\n\t"
  5111             "MOV    $dst, -1\n"
  5112       "skip:\n\t"
  5113             "NEG    $dst\n\t"
  5114             "ADD    $dst, 31" %}
  5115   ins_encode %{
  5116     Register Rdst = $dst$$Register;
  5117     Register Rsrc = $src$$Register;
  5118     Label skip;
  5119     __ bsrl(Rdst, Rsrc);
  5120     __ jccb(Assembler::notZero, skip);
  5121     __ movl(Rdst, -1);
  5122     __ bind(skip);
  5123     __ negl(Rdst);
  5124     __ addl(Rdst, BitsPerInt - 1);
  5125   %}
  5126   ins_pipe(ialu_reg);
  5127 %}
  5129 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5130   predicate(UseCountLeadingZerosInstruction);
  5131   match(Set dst (CountLeadingZerosL src));
  5132   effect(TEMP dst, KILL cr);
  5134   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5135             "JNC    done\n\t"
  5136             "LZCNT  $dst, $src.lo\n\t"
  5137             "ADD    $dst, 32\n"
  5138       "done:" %}
  5139   ins_encode %{
  5140     Register Rdst = $dst$$Register;
  5141     Register Rsrc = $src$$Register;
  5142     Label done;
  5143     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5144     __ jccb(Assembler::carryClear, done);
  5145     __ lzcntl(Rdst, Rsrc);
  5146     __ addl(Rdst, BitsPerInt);
  5147     __ bind(done);
  5148   %}
  5149   ins_pipe(ialu_reg);
  5150 %}
  5152 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5153   predicate(!UseCountLeadingZerosInstruction);
  5154   match(Set dst (CountLeadingZerosL src));
  5155   effect(TEMP dst, KILL cr);
  5157   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5158             "JZ     msw_is_zero\n\t"
  5159             "ADD    $dst, 32\n\t"
  5160             "JMP    not_zero\n"
  5161       "msw_is_zero:\n\t"
  5162             "BSR    $dst, $src.lo\n\t"
  5163             "JNZ    not_zero\n\t"
  5164             "MOV    $dst, -1\n"
  5165       "not_zero:\n\t"
  5166             "NEG    $dst\n\t"
  5167             "ADD    $dst, 63\n" %}
  5168  ins_encode %{
  5169     Register Rdst = $dst$$Register;
  5170     Register Rsrc = $src$$Register;
  5171     Label msw_is_zero;
  5172     Label not_zero;
  5173     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5174     __ jccb(Assembler::zero, msw_is_zero);
  5175     __ addl(Rdst, BitsPerInt);
  5176     __ jmpb(not_zero);
  5177     __ bind(msw_is_zero);
  5178     __ bsrl(Rdst, Rsrc);
  5179     __ jccb(Assembler::notZero, not_zero);
  5180     __ movl(Rdst, -1);
  5181     __ bind(not_zero);
  5182     __ negl(Rdst);
  5183     __ addl(Rdst, BitsPerLong - 1);
  5184   %}
  5185   ins_pipe(ialu_reg);
  5186 %}
  5188 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5189   predicate(UseCountTrailingZerosInstruction);
  5190   match(Set dst (CountTrailingZerosI src));
  5191   effect(KILL cr);
  5193   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)" %}
  5194   ins_encode %{
  5195     __ tzcntl($dst$$Register, $src$$Register);
  5196   %}
  5197   ins_pipe(ialu_reg);
  5198 %}
  5200 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
  5201   predicate(!UseCountTrailingZerosInstruction);
  5202   match(Set dst (CountTrailingZerosI src));
  5203   effect(KILL cr);
  5205   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5206             "JNZ    done\n\t"
  5207             "MOV    $dst, 32\n"
  5208       "done:" %}
  5209   ins_encode %{
  5210     Register Rdst = $dst$$Register;
  5211     Label done;
  5212     __ bsfl(Rdst, $src$$Register);
  5213     __ jccb(Assembler::notZero, done);
  5214     __ movl(Rdst, BitsPerInt);
  5215     __ bind(done);
  5216   %}
  5217   ins_pipe(ialu_reg);
  5218 %}
  5220 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5221   predicate(UseCountTrailingZerosInstruction);
  5222   match(Set dst (CountTrailingZerosL src));
  5223   effect(TEMP dst, KILL cr);
  5225   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
  5226             "JNC    done\n\t"
  5227             "TZCNT  $dst, $src.hi\n\t"
  5228             "ADD    $dst, 32\n"
  5229             "done:" %}
  5230   ins_encode %{
  5231     Register Rdst = $dst$$Register;
  5232     Register Rsrc = $src$$Register;
  5233     Label done;
  5234     __ tzcntl(Rdst, Rsrc);
  5235     __ jccb(Assembler::carryClear, done);
  5236     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5237     __ addl(Rdst, BitsPerInt);
  5238     __ bind(done);
  5239   %}
  5240   ins_pipe(ialu_reg);
  5241 %}
  5243 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
  5244   predicate(!UseCountTrailingZerosInstruction);
  5245   match(Set dst (CountTrailingZerosL src));
  5246   effect(TEMP dst, KILL cr);
  5248   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5249             "JNZ    done\n\t"
  5250             "BSF    $dst, $src.hi\n\t"
  5251             "JNZ    msw_not_zero\n\t"
  5252             "MOV    $dst, 32\n"
  5253       "msw_not_zero:\n\t"
  5254             "ADD    $dst, 32\n"
  5255       "done:" %}
  5256   ins_encode %{
  5257     Register Rdst = $dst$$Register;
  5258     Register Rsrc = $src$$Register;
  5259     Label msw_not_zero;
  5260     Label done;
  5261     __ bsfl(Rdst, Rsrc);
  5262     __ jccb(Assembler::notZero, done);
  5263     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5264     __ jccb(Assembler::notZero, msw_not_zero);
  5265     __ movl(Rdst, BitsPerInt);
  5266     __ bind(msw_not_zero);
  5267     __ addl(Rdst, BitsPerInt);
  5268     __ bind(done);
  5269   %}
  5270   ins_pipe(ialu_reg);
  5271 %}
  5274 //---------- Population Count Instructions -------------------------------------
  5276 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5277   predicate(UsePopCountInstruction);
  5278   match(Set dst (PopCountI src));
  5279   effect(KILL cr);
  5281   format %{ "POPCNT $dst, $src" %}
  5282   ins_encode %{
  5283     __ popcntl($dst$$Register, $src$$Register);
  5284   %}
  5285   ins_pipe(ialu_reg);
  5286 %}
  5288 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5289   predicate(UsePopCountInstruction);
  5290   match(Set dst (PopCountI (LoadI mem)));
  5291   effect(KILL cr);
  5293   format %{ "POPCNT $dst, $mem" %}
  5294   ins_encode %{
  5295     __ popcntl($dst$$Register, $mem$$Address);
  5296   %}
  5297   ins_pipe(ialu_reg);
  5298 %}
  5300 // Note: Long.bitCount(long) returns an int.
  5301 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5302   predicate(UsePopCountInstruction);
  5303   match(Set dst (PopCountL src));
  5304   effect(KILL cr, TEMP tmp, TEMP dst);
  5306   format %{ "POPCNT $dst, $src.lo\n\t"
  5307             "POPCNT $tmp, $src.hi\n\t"
  5308             "ADD    $dst, $tmp" %}
  5309   ins_encode %{
  5310     __ popcntl($dst$$Register, $src$$Register);
  5311     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5312     __ addl($dst$$Register, $tmp$$Register);
  5313   %}
  5314   ins_pipe(ialu_reg);
  5315 %}
  5317 // Note: Long.bitCount(long) returns an int.
  5318 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5319   predicate(UsePopCountInstruction);
  5320   match(Set dst (PopCountL (LoadL mem)));
  5321   effect(KILL cr, TEMP tmp, TEMP dst);
  5323   format %{ "POPCNT $dst, $mem\n\t"
  5324             "POPCNT $tmp, $mem+4\n\t"
  5325             "ADD    $dst, $tmp" %}
  5326   ins_encode %{
  5327     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5328     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5329     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
  5330     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
  5331     __ addl($dst$$Register, $tmp$$Register);
  5332   %}
  5333   ins_pipe(ialu_reg);
  5334 %}
  5337 //----------Load/Store/Move Instructions---------------------------------------
  5338 //----------Load Instructions--------------------------------------------------
  5339 // Load Byte (8bit signed)
  5340 instruct loadB(xRegI dst, memory mem) %{
  5341   match(Set dst (LoadB mem));
  5343   ins_cost(125);
  5344   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5346   ins_encode %{
  5347     __ movsbl($dst$$Register, $mem$$Address);
  5348   %}
  5350   ins_pipe(ialu_reg_mem);
  5351 %}
  5353 // Load Byte (8bit signed) into Long Register
  5354 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5355   match(Set dst (ConvI2L (LoadB mem)));
  5356   effect(KILL cr);
  5358   ins_cost(375);
  5359   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5360             "MOV    $dst.hi,$dst.lo\n\t"
  5361             "SAR    $dst.hi,7" %}
  5363   ins_encode %{
  5364     __ movsbl($dst$$Register, $mem$$Address);
  5365     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5366     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5367   %}
  5369   ins_pipe(ialu_reg_mem);
  5370 %}
  5372 // Load Unsigned Byte (8bit UNsigned)
  5373 instruct loadUB(xRegI dst, memory mem) %{
  5374   match(Set dst (LoadUB mem));
  5376   ins_cost(125);
  5377   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5379   ins_encode %{
  5380     __ movzbl($dst$$Register, $mem$$Address);
  5381   %}
  5383   ins_pipe(ialu_reg_mem);
  5384 %}
  5386 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5387 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5388   match(Set dst (ConvI2L (LoadUB mem)));
  5389   effect(KILL cr);
  5391   ins_cost(250);
  5392   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5393             "XOR    $dst.hi,$dst.hi" %}
  5395   ins_encode %{
  5396     Register Rdst = $dst$$Register;
  5397     __ movzbl(Rdst, $mem$$Address);
  5398     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5399   %}
  5401   ins_pipe(ialu_reg_mem);
  5402 %}
  5404 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5405 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5406   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5407   effect(KILL cr);
  5409   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5410             "XOR    $dst.hi,$dst.hi\n\t"
  5411             "AND    $dst.lo,$mask" %}
  5412   ins_encode %{
  5413     Register Rdst = $dst$$Register;
  5414     __ movzbl(Rdst, $mem$$Address);
  5415     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5416     __ andl(Rdst, $mask$$constant);
  5417   %}
  5418   ins_pipe(ialu_reg_mem);
  5419 %}
  5421 // Load Short (16bit signed)
  5422 instruct loadS(rRegI dst, memory mem) %{
  5423   match(Set dst (LoadS mem));
  5425   ins_cost(125);
  5426   format %{ "MOVSX  $dst,$mem\t# short" %}
  5428   ins_encode %{
  5429     __ movswl($dst$$Register, $mem$$Address);
  5430   %}
  5432   ins_pipe(ialu_reg_mem);
  5433 %}
  5435 // Load Short (16 bit signed) to Byte (8 bit signed)
  5436 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5437   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5439   ins_cost(125);
  5440   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5441   ins_encode %{
  5442     __ movsbl($dst$$Register, $mem$$Address);
  5443   %}
  5444   ins_pipe(ialu_reg_mem);
  5445 %}
  5447 // Load Short (16bit signed) into Long Register
  5448 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5449   match(Set dst (ConvI2L (LoadS mem)));
  5450   effect(KILL cr);
  5452   ins_cost(375);
  5453   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5454             "MOV    $dst.hi,$dst.lo\n\t"
  5455             "SAR    $dst.hi,15" %}
  5457   ins_encode %{
  5458     __ movswl($dst$$Register, $mem$$Address);
  5459     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5460     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5461   %}
  5463   ins_pipe(ialu_reg_mem);
  5464 %}
  5466 // Load Unsigned Short/Char (16bit unsigned)
  5467 instruct loadUS(rRegI dst, memory mem) %{
  5468   match(Set dst (LoadUS mem));
  5470   ins_cost(125);
  5471   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5473   ins_encode %{
  5474     __ movzwl($dst$$Register, $mem$$Address);
  5475   %}
  5477   ins_pipe(ialu_reg_mem);
  5478 %}
  5480 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5481 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5482   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5484   ins_cost(125);
  5485   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5486   ins_encode %{
  5487     __ movsbl($dst$$Register, $mem$$Address);
  5488   %}
  5489   ins_pipe(ialu_reg_mem);
  5490 %}
  5492 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5493 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5494   match(Set dst (ConvI2L (LoadUS mem)));
  5495   effect(KILL cr);
  5497   ins_cost(250);
  5498   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5499             "XOR    $dst.hi,$dst.hi" %}
  5501   ins_encode %{
  5502     __ movzwl($dst$$Register, $mem$$Address);
  5503     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5504   %}
  5506   ins_pipe(ialu_reg_mem);
  5507 %}
  5509 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5510 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5511   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5512   effect(KILL cr);
  5514   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5515             "XOR    $dst.hi,$dst.hi" %}
  5516   ins_encode %{
  5517     Register Rdst = $dst$$Register;
  5518     __ movzbl(Rdst, $mem$$Address);
  5519     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5520   %}
  5521   ins_pipe(ialu_reg_mem);
  5522 %}
  5524 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  5525 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  5526   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5527   effect(KILL cr);
  5529   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  5530             "XOR    $dst.hi,$dst.hi\n\t"
  5531             "AND    $dst.lo,$mask" %}
  5532   ins_encode %{
  5533     Register Rdst = $dst$$Register;
  5534     __ movzwl(Rdst, $mem$$Address);
  5535     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5536     __ andl(Rdst, $mask$$constant);
  5537   %}
  5538   ins_pipe(ialu_reg_mem);
  5539 %}
  5541 // Load Integer
  5542 instruct loadI(rRegI dst, memory mem) %{
  5543   match(Set dst (LoadI mem));
  5545   ins_cost(125);
  5546   format %{ "MOV    $dst,$mem\t# int" %}
  5548   ins_encode %{
  5549     __ movl($dst$$Register, $mem$$Address);
  5550   %}
  5552   ins_pipe(ialu_reg_mem);
  5553 %}
  5555 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5556 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5557   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5559   ins_cost(125);
  5560   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  5561   ins_encode %{
  5562     __ movsbl($dst$$Register, $mem$$Address);
  5563   %}
  5564   ins_pipe(ialu_reg_mem);
  5565 %}
  5567 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5568 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  5569   match(Set dst (AndI (LoadI mem) mask));
  5571   ins_cost(125);
  5572   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  5573   ins_encode %{
  5574     __ movzbl($dst$$Register, $mem$$Address);
  5575   %}
  5576   ins_pipe(ialu_reg_mem);
  5577 %}
  5579 // Load Integer (32 bit signed) to Short (16 bit signed)
  5580 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  5581   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5583   ins_cost(125);
  5584   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  5585   ins_encode %{
  5586     __ movswl($dst$$Register, $mem$$Address);
  5587   %}
  5588   ins_pipe(ialu_reg_mem);
  5589 %}
  5591 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  5592 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  5593   match(Set dst (AndI (LoadI mem) mask));
  5595   ins_cost(125);
  5596   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  5597   ins_encode %{
  5598     __ movzwl($dst$$Register, $mem$$Address);
  5599   %}
  5600   ins_pipe(ialu_reg_mem);
  5601 %}
  5603 // Load Integer into Long Register
  5604 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5605   match(Set dst (ConvI2L (LoadI mem)));
  5606   effect(KILL cr);
  5608   ins_cost(375);
  5609   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  5610             "MOV    $dst.hi,$dst.lo\n\t"
  5611             "SAR    $dst.hi,31" %}
  5613   ins_encode %{
  5614     __ movl($dst$$Register, $mem$$Address);
  5615     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5616     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  5617   %}
  5619   ins_pipe(ialu_reg_mem);
  5620 %}
  5622 // Load Integer with mask 0xFF into Long Register
  5623 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5624   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5625   effect(KILL cr);
  5627   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  5628             "XOR    $dst.hi,$dst.hi" %}
  5629   ins_encode %{
  5630     Register Rdst = $dst$$Register;
  5631     __ movzbl(Rdst, $mem$$Address);
  5632     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5633   %}
  5634   ins_pipe(ialu_reg_mem);
  5635 %}
  5637 // Load Integer with mask 0xFFFF into Long Register
  5638 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  5639   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5640   effect(KILL cr);
  5642   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  5643             "XOR    $dst.hi,$dst.hi" %}
  5644   ins_encode %{
  5645     Register Rdst = $dst$$Register;
  5646     __ movzwl(Rdst, $mem$$Address);
  5647     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5648   %}
  5649   ins_pipe(ialu_reg_mem);
  5650 %}
  5652 // Load Integer with 31-bit mask into Long Register
  5653 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
  5654   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5655   effect(KILL cr);
  5657   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
  5658             "XOR    $dst.hi,$dst.hi\n\t"
  5659             "AND    $dst.lo,$mask" %}
  5660   ins_encode %{
  5661     Register Rdst = $dst$$Register;
  5662     __ movl(Rdst, $mem$$Address);
  5663     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5664     __ andl(Rdst, $mask$$constant);
  5665   %}
  5666   ins_pipe(ialu_reg_mem);
  5667 %}
  5669 // Load Unsigned Integer into Long Register
  5670 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
  5671   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5672   effect(KILL cr);
  5674   ins_cost(250);
  5675   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  5676             "XOR    $dst.hi,$dst.hi" %}
  5678   ins_encode %{
  5679     __ movl($dst$$Register, $mem$$Address);
  5680     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5681   %}
  5683   ins_pipe(ialu_reg_mem);
  5684 %}
  5686 // Load Long.  Cannot clobber address while loading, so restrict address
  5687 // register to ESI
  5688 instruct loadL(eRegL dst, load_long_memory mem) %{
  5689   predicate(!((LoadLNode*)n)->require_atomic_access());
  5690   match(Set dst (LoadL mem));
  5692   ins_cost(250);
  5693   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  5694             "MOV    $dst.hi,$mem+4" %}
  5696   ins_encode %{
  5697     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
  5698     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
  5699     __ movl($dst$$Register, Amemlo);
  5700     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  5701   %}
  5703   ins_pipe(ialu_reg_long_mem);
  5704 %}
  5706 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  5707 // then store it down to the stack and reload on the int
  5708 // side.
  5709 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  5710   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  5711   match(Set dst (LoadL mem));
  5713   ins_cost(200);
  5714   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  5715             "FISTp  $dst" %}
  5716   ins_encode(enc_loadL_volatile(mem,dst));
  5717   ins_pipe( fpu_reg_mem );
  5718 %}
  5720 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  5721   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5722   match(Set dst (LoadL mem));
  5723   effect(TEMP tmp);
  5724   ins_cost(180);
  5725   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5726             "MOVSD  $dst,$tmp" %}
  5727   ins_encode %{
  5728     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5729     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  5730   %}
  5731   ins_pipe( pipe_slow );
  5732 %}
  5734 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  5735   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5736   match(Set dst (LoadL mem));
  5737   effect(TEMP tmp);
  5738   ins_cost(160);
  5739   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5740             "MOVD   $dst.lo,$tmp\n\t"
  5741             "PSRLQ  $tmp,32\n\t"
  5742             "MOVD   $dst.hi,$tmp" %}
  5743   ins_encode %{
  5744     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5745     __ movdl($dst$$Register, $tmp$$XMMRegister);
  5746     __ psrlq($tmp$$XMMRegister, 32);
  5747     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  5748   %}
  5749   ins_pipe( pipe_slow );
  5750 %}
  5752 // Load Range
  5753 instruct loadRange(rRegI dst, memory mem) %{
  5754   match(Set dst (LoadRange mem));
  5756   ins_cost(125);
  5757   format %{ "MOV    $dst,$mem" %}
  5758   opcode(0x8B);
  5759   ins_encode( OpcP, RegMem(dst,mem));
  5760   ins_pipe( ialu_reg_mem );
  5761 %}
  5764 // Load Pointer
  5765 instruct loadP(eRegP dst, memory mem) %{
  5766   match(Set dst (LoadP mem));
  5768   ins_cost(125);
  5769   format %{ "MOV    $dst,$mem" %}
  5770   opcode(0x8B);
  5771   ins_encode( OpcP, RegMem(dst,mem));
  5772   ins_pipe( ialu_reg_mem );
  5773 %}
  5775 // Load Klass Pointer
  5776 instruct loadKlass(eRegP dst, memory mem) %{
  5777   match(Set dst (LoadKlass mem));
  5779   ins_cost(125);
  5780   format %{ "MOV    $dst,$mem" %}
  5781   opcode(0x8B);
  5782   ins_encode( OpcP, RegMem(dst,mem));
  5783   ins_pipe( ialu_reg_mem );
  5784 %}
  5786 // Load Double
  5787 instruct loadDPR(regDPR dst, memory mem) %{
  5788   predicate(UseSSE<=1);
  5789   match(Set dst (LoadD mem));
  5791   ins_cost(150);
  5792   format %{ "FLD_D  ST,$mem\n\t"
  5793             "FSTP   $dst" %}
  5794   opcode(0xDD);               /* DD /0 */
  5795   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5796               Pop_Reg_DPR(dst) );
  5797   ins_pipe( fpu_reg_mem );
  5798 %}
  5800 // Load Double to XMM
  5801 instruct loadD(regD dst, memory mem) %{
  5802   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  5803   match(Set dst (LoadD mem));
  5804   ins_cost(145);
  5805   format %{ "MOVSD  $dst,$mem" %}
  5806   ins_encode %{
  5807     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5808   %}
  5809   ins_pipe( pipe_slow );
  5810 %}
  5812 instruct loadD_partial(regD dst, memory mem) %{
  5813   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  5814   match(Set dst (LoadD mem));
  5815   ins_cost(145);
  5816   format %{ "MOVLPD $dst,$mem" %}
  5817   ins_encode %{
  5818     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5819   %}
  5820   ins_pipe( pipe_slow );
  5821 %}
  5823 // Load to XMM register (single-precision floating point)
  5824 // MOVSS instruction
  5825 instruct loadF(regF dst, memory mem) %{
  5826   predicate(UseSSE>=1);
  5827   match(Set dst (LoadF mem));
  5828   ins_cost(145);
  5829   format %{ "MOVSS  $dst,$mem" %}
  5830   ins_encode %{
  5831     __ movflt ($dst$$XMMRegister, $mem$$Address);
  5832   %}
  5833   ins_pipe( pipe_slow );
  5834 %}
  5836 // Load Float
  5837 instruct loadFPR(regFPR dst, memory mem) %{
  5838   predicate(UseSSE==0);
  5839   match(Set dst (LoadF mem));
  5841   ins_cost(150);
  5842   format %{ "FLD_S  ST,$mem\n\t"
  5843             "FSTP   $dst" %}
  5844   opcode(0xD9);               /* D9 /0 */
  5845   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5846               Pop_Reg_FPR(dst) );
  5847   ins_pipe( fpu_reg_mem );
  5848 %}
  5850 // Load Effective Address
  5851 instruct leaP8(eRegP dst, indOffset8 mem) %{
  5852   match(Set dst mem);
  5854   ins_cost(110);
  5855   format %{ "LEA    $dst,$mem" %}
  5856   opcode(0x8D);
  5857   ins_encode( OpcP, RegMem(dst,mem));
  5858   ins_pipe( ialu_reg_reg_fat );
  5859 %}
  5861 instruct leaP32(eRegP dst, indOffset32 mem) %{
  5862   match(Set dst mem);
  5864   ins_cost(110);
  5865   format %{ "LEA    $dst,$mem" %}
  5866   opcode(0x8D);
  5867   ins_encode( OpcP, RegMem(dst,mem));
  5868   ins_pipe( ialu_reg_reg_fat );
  5869 %}
  5871 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  5872   match(Set dst mem);
  5874   ins_cost(110);
  5875   format %{ "LEA    $dst,$mem" %}
  5876   opcode(0x8D);
  5877   ins_encode( OpcP, RegMem(dst,mem));
  5878   ins_pipe( ialu_reg_reg_fat );
  5879 %}
  5881 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  5882   match(Set dst mem);
  5884   ins_cost(110);
  5885   format %{ "LEA    $dst,$mem" %}
  5886   opcode(0x8D);
  5887   ins_encode( OpcP, RegMem(dst,mem));
  5888   ins_pipe( ialu_reg_reg_fat );
  5889 %}
  5891 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  5892   match(Set dst mem);
  5894   ins_cost(110);
  5895   format %{ "LEA    $dst,$mem" %}
  5896   opcode(0x8D);
  5897   ins_encode( OpcP, RegMem(dst,mem));
  5898   ins_pipe( ialu_reg_reg_fat );
  5899 %}
  5901 // Load Constant
  5902 instruct loadConI(rRegI dst, immI src) %{
  5903   match(Set dst src);
  5905   format %{ "MOV    $dst,$src" %}
  5906   ins_encode( LdImmI(dst, src) );
  5907   ins_pipe( ialu_reg_fat );
  5908 %}
  5910 // Load Constant zero
  5911 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  5912   match(Set dst src);
  5913   effect(KILL cr);
  5915   ins_cost(50);
  5916   format %{ "XOR    $dst,$dst" %}
  5917   opcode(0x33);  /* + rd */
  5918   ins_encode( OpcP, RegReg( dst, dst ) );
  5919   ins_pipe( ialu_reg );
  5920 %}
  5922 instruct loadConP(eRegP dst, immP src) %{
  5923   match(Set dst src);
  5925   format %{ "MOV    $dst,$src" %}
  5926   opcode(0xB8);  /* + rd */
  5927   ins_encode( LdImmP(dst, src) );
  5928   ins_pipe( ialu_reg_fat );
  5929 %}
  5931 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  5932   match(Set dst src);
  5933   effect(KILL cr);
  5934   ins_cost(200);
  5935   format %{ "MOV    $dst.lo,$src.lo\n\t"
  5936             "MOV    $dst.hi,$src.hi" %}
  5937   opcode(0xB8);
  5938   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  5939   ins_pipe( ialu_reg_long_fat );
  5940 %}
  5942 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  5943   match(Set dst src);
  5944   effect(KILL cr);
  5945   ins_cost(150);
  5946   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  5947             "XOR    $dst.hi,$dst.hi" %}
  5948   opcode(0x33,0x33);
  5949   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  5950   ins_pipe( ialu_reg_long );
  5951 %}
  5953 // The instruction usage is guarded by predicate in operand immFPR().
  5954 instruct loadConFPR(regFPR dst, immFPR con) %{
  5955   match(Set dst con);
  5956   ins_cost(125);
  5957   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  5958             "FSTP   $dst" %}
  5959   ins_encode %{
  5960     __ fld_s($constantaddress($con));
  5961     __ fstp_d($dst$$reg);
  5962   %}
  5963   ins_pipe(fpu_reg_con);
  5964 %}
  5966 // The instruction usage is guarded by predicate in operand immFPR0().
  5967 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  5968   match(Set dst con);
  5969   ins_cost(125);
  5970   format %{ "FLDZ   ST\n\t"
  5971             "FSTP   $dst" %}
  5972   ins_encode %{
  5973     __ fldz();
  5974     __ fstp_d($dst$$reg);
  5975   %}
  5976   ins_pipe(fpu_reg_con);
  5977 %}
  5979 // The instruction usage is guarded by predicate in operand immFPR1().
  5980 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  5981   match(Set dst con);
  5982   ins_cost(125);
  5983   format %{ "FLD1   ST\n\t"
  5984             "FSTP   $dst" %}
  5985   ins_encode %{
  5986     __ fld1();
  5987     __ fstp_d($dst$$reg);
  5988   %}
  5989   ins_pipe(fpu_reg_con);
  5990 %}
  5992 // The instruction usage is guarded by predicate in operand immF().
  5993 instruct loadConF(regF dst, immF con) %{
  5994   match(Set dst con);
  5995   ins_cost(125);
  5996   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  5997   ins_encode %{
  5998     __ movflt($dst$$XMMRegister, $constantaddress($con));
  5999   %}
  6000   ins_pipe(pipe_slow);
  6001 %}
  6003 // The instruction usage is guarded by predicate in operand immF0().
  6004 instruct loadConF0(regF dst, immF0 src) %{
  6005   match(Set dst src);
  6006   ins_cost(100);
  6007   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6008   ins_encode %{
  6009     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6010   %}
  6011   ins_pipe(pipe_slow);
  6012 %}
  6014 // The instruction usage is guarded by predicate in operand immDPR().
  6015 instruct loadConDPR(regDPR dst, immDPR con) %{
  6016   match(Set dst con);
  6017   ins_cost(125);
  6019   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6020             "FSTP   $dst" %}
  6021   ins_encode %{
  6022     __ fld_d($constantaddress($con));
  6023     __ fstp_d($dst$$reg);
  6024   %}
  6025   ins_pipe(fpu_reg_con);
  6026 %}
  6028 // The instruction usage is guarded by predicate in operand immDPR0().
  6029 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6030   match(Set dst con);
  6031   ins_cost(125);
  6033   format %{ "FLDZ   ST\n\t"
  6034             "FSTP   $dst" %}
  6035   ins_encode %{
  6036     __ fldz();
  6037     __ fstp_d($dst$$reg);
  6038   %}
  6039   ins_pipe(fpu_reg_con);
  6040 %}
  6042 // The instruction usage is guarded by predicate in operand immDPR1().
  6043 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6044   match(Set dst con);
  6045   ins_cost(125);
  6047   format %{ "FLD1   ST\n\t"
  6048             "FSTP   $dst" %}
  6049   ins_encode %{
  6050     __ fld1();
  6051     __ fstp_d($dst$$reg);
  6052   %}
  6053   ins_pipe(fpu_reg_con);
  6054 %}
  6056 // The instruction usage is guarded by predicate in operand immD().
  6057 instruct loadConD(regD dst, immD con) %{
  6058   match(Set dst con);
  6059   ins_cost(125);
  6060   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6061   ins_encode %{
  6062     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6063   %}
  6064   ins_pipe(pipe_slow);
  6065 %}
  6067 // The instruction usage is guarded by predicate in operand immD0().
  6068 instruct loadConD0(regD dst, immD0 src) %{
  6069   match(Set dst src);
  6070   ins_cost(100);
  6071   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6072   ins_encode %{
  6073     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6074   %}
  6075   ins_pipe( pipe_slow );
  6076 %}
  6078 // Load Stack Slot
  6079 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6080   match(Set dst src);
  6081   ins_cost(125);
  6083   format %{ "MOV    $dst,$src" %}
  6084   opcode(0x8B);
  6085   ins_encode( OpcP, RegMem(dst,src));
  6086   ins_pipe( ialu_reg_mem );
  6087 %}
  6089 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6090   match(Set dst src);
  6092   ins_cost(200);
  6093   format %{ "MOV    $dst,$src.lo\n\t"
  6094             "MOV    $dst+4,$src.hi" %}
  6095   opcode(0x8B, 0x8B);
  6096   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6097   ins_pipe( ialu_mem_long_reg );
  6098 %}
  6100 // Load Stack Slot
  6101 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6102   match(Set dst src);
  6103   ins_cost(125);
  6105   format %{ "MOV    $dst,$src" %}
  6106   opcode(0x8B);
  6107   ins_encode( OpcP, RegMem(dst,src));
  6108   ins_pipe( ialu_reg_mem );
  6109 %}
  6111 // Load Stack Slot
  6112 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6113   match(Set dst src);
  6114   ins_cost(125);
  6116   format %{ "FLD_S  $src\n\t"
  6117             "FSTP   $dst" %}
  6118   opcode(0xD9);               /* D9 /0, FLD m32real */
  6119   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6120               Pop_Reg_FPR(dst) );
  6121   ins_pipe( fpu_reg_mem );
  6122 %}
  6124 // Load Stack Slot
  6125 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6126   match(Set dst src);
  6127   ins_cost(125);
  6129   format %{ "FLD_D  $src\n\t"
  6130             "FSTP   $dst" %}
  6131   opcode(0xDD);               /* DD /0, FLD m64real */
  6132   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6133               Pop_Reg_DPR(dst) );
  6134   ins_pipe( fpu_reg_mem );
  6135 %}
  6137 // Prefetch instructions.
  6138 // Must be safe to execute with invalid address (cannot fault).
  6140 instruct prefetchr0( memory mem ) %{
  6141   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6142   match(PrefetchRead mem);
  6143   ins_cost(0);
  6144   size(0);
  6145   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6146   ins_encode();
  6147   ins_pipe(empty);
  6148 %}
  6150 instruct prefetchr( memory mem ) %{
  6151   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6152   match(PrefetchRead mem);
  6153   ins_cost(100);
  6155   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6156   ins_encode %{
  6157     __ prefetchr($mem$$Address);
  6158   %}
  6159   ins_pipe(ialu_mem);
  6160 %}
  6162 instruct prefetchrNTA( memory mem ) %{
  6163   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6164   match(PrefetchRead mem);
  6165   ins_cost(100);
  6167   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6168   ins_encode %{
  6169     __ prefetchnta($mem$$Address);
  6170   %}
  6171   ins_pipe(ialu_mem);
  6172 %}
  6174 instruct prefetchrT0( memory mem ) %{
  6175   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6176   match(PrefetchRead mem);
  6177   ins_cost(100);
  6179   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6180   ins_encode %{
  6181     __ prefetcht0($mem$$Address);
  6182   %}
  6183   ins_pipe(ialu_mem);
  6184 %}
  6186 instruct prefetchrT2( memory mem ) %{
  6187   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6188   match(PrefetchRead mem);
  6189   ins_cost(100);
  6191   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6192   ins_encode %{
  6193     __ prefetcht2($mem$$Address);
  6194   %}
  6195   ins_pipe(ialu_mem);
  6196 %}
  6198 instruct prefetchw0( memory mem ) %{
  6199   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6200   match(PrefetchWrite mem);
  6201   ins_cost(0);
  6202   size(0);
  6203   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6204   ins_encode();
  6205   ins_pipe(empty);
  6206 %}
  6208 instruct prefetchw( memory mem ) %{
  6209   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6210   match( PrefetchWrite mem );
  6211   ins_cost(100);
  6213   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6214   ins_encode %{
  6215     __ prefetchw($mem$$Address);
  6216   %}
  6217   ins_pipe(ialu_mem);
  6218 %}
  6220 instruct prefetchwNTA( memory mem ) %{
  6221   predicate(UseSSE>=1);
  6222   match(PrefetchWrite mem);
  6223   ins_cost(100);
  6225   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6226   ins_encode %{
  6227     __ prefetchnta($mem$$Address);
  6228   %}
  6229   ins_pipe(ialu_mem);
  6230 %}
  6232 // Prefetch instructions for allocation.
  6234 instruct prefetchAlloc0( memory mem ) %{
  6235   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6236   match(PrefetchAllocation mem);
  6237   ins_cost(0);
  6238   size(0);
  6239   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6240   ins_encode();
  6241   ins_pipe(empty);
  6242 %}
  6244 instruct prefetchAlloc( memory mem ) %{
  6245   predicate(AllocatePrefetchInstr==3);
  6246   match( PrefetchAllocation mem );
  6247   ins_cost(100);
  6249   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6250   ins_encode %{
  6251     __ prefetchw($mem$$Address);
  6252   %}
  6253   ins_pipe(ialu_mem);
  6254 %}
  6256 instruct prefetchAllocNTA( memory mem ) %{
  6257   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6258   match(PrefetchAllocation mem);
  6259   ins_cost(100);
  6261   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6262   ins_encode %{
  6263     __ prefetchnta($mem$$Address);
  6264   %}
  6265   ins_pipe(ialu_mem);
  6266 %}
  6268 instruct prefetchAllocT0( memory mem ) %{
  6269   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6270   match(PrefetchAllocation mem);
  6271   ins_cost(100);
  6273   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6274   ins_encode %{
  6275     __ prefetcht0($mem$$Address);
  6276   %}
  6277   ins_pipe(ialu_mem);
  6278 %}
  6280 instruct prefetchAllocT2( memory mem ) %{
  6281   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6282   match(PrefetchAllocation mem);
  6283   ins_cost(100);
  6285   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6286   ins_encode %{
  6287     __ prefetcht2($mem$$Address);
  6288   %}
  6289   ins_pipe(ialu_mem);
  6290 %}
  6292 //----------Store Instructions-------------------------------------------------
  6294 // Store Byte
  6295 instruct storeB(memory mem, xRegI src) %{
  6296   match(Set mem (StoreB mem src));
  6298   ins_cost(125);
  6299   format %{ "MOV8   $mem,$src" %}
  6300   opcode(0x88);
  6301   ins_encode( OpcP, RegMem( src, mem ) );
  6302   ins_pipe( ialu_mem_reg );
  6303 %}
  6305 // Store Char/Short
  6306 instruct storeC(memory mem, rRegI src) %{
  6307   match(Set mem (StoreC mem src));
  6309   ins_cost(125);
  6310   format %{ "MOV16  $mem,$src" %}
  6311   opcode(0x89, 0x66);
  6312   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6313   ins_pipe( ialu_mem_reg );
  6314 %}
  6316 // Store Integer
  6317 instruct storeI(memory mem, rRegI src) %{
  6318   match(Set mem (StoreI mem src));
  6320   ins_cost(125);
  6321   format %{ "MOV    $mem,$src" %}
  6322   opcode(0x89);
  6323   ins_encode( OpcP, RegMem( src, mem ) );
  6324   ins_pipe( ialu_mem_reg );
  6325 %}
  6327 // Store Long
  6328 instruct storeL(long_memory mem, eRegL src) %{
  6329   predicate(!((StoreLNode*)n)->require_atomic_access());
  6330   match(Set mem (StoreL mem src));
  6332   ins_cost(200);
  6333   format %{ "MOV    $mem,$src.lo\n\t"
  6334             "MOV    $mem+4,$src.hi" %}
  6335   opcode(0x89, 0x89);
  6336   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6337   ins_pipe( ialu_mem_long_reg );
  6338 %}
  6340 // Store Long to Integer
  6341 instruct storeL2I(memory mem, eRegL src) %{
  6342   match(Set mem (StoreI mem (ConvL2I src)));
  6344   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6345   ins_encode %{
  6346     __ movl($mem$$Address, $src$$Register);
  6347   %}
  6348   ins_pipe(ialu_mem_reg);
  6349 %}
  6351 // Volatile Store Long.  Must be atomic, so move it into
  6352 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6353 // target address before the store (for null-ptr checks)
  6354 // so the memory operand is used twice in the encoding.
  6355 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6356   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6357   match(Set mem (StoreL mem src));
  6358   effect( KILL cr );
  6359   ins_cost(400);
  6360   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6361             "FILD   $src\n\t"
  6362             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6363   opcode(0x3B);
  6364   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6365   ins_pipe( fpu_reg_mem );
  6366 %}
  6368 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6369   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6370   match(Set mem (StoreL mem src));
  6371   effect( TEMP tmp, KILL cr );
  6372   ins_cost(380);
  6373   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6374             "MOVSD  $tmp,$src\n\t"
  6375             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6376   ins_encode %{
  6377     __ cmpl(rax, $mem$$Address);
  6378     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6379     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6380   %}
  6381   ins_pipe( pipe_slow );
  6382 %}
  6384 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6385   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6386   match(Set mem (StoreL mem src));
  6387   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6388   ins_cost(360);
  6389   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6390             "MOVD   $tmp,$src.lo\n\t"
  6391             "MOVD   $tmp2,$src.hi\n\t"
  6392             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6393             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6394   ins_encode %{
  6395     __ cmpl(rax, $mem$$Address);
  6396     __ movdl($tmp$$XMMRegister, $src$$Register);
  6397     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6398     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6399     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6400   %}
  6401   ins_pipe( pipe_slow );
  6402 %}
  6404 // Store Pointer; for storing unknown oops and raw pointers
  6405 instruct storeP(memory mem, anyRegP src) %{
  6406   match(Set mem (StoreP mem src));
  6408   ins_cost(125);
  6409   format %{ "MOV    $mem,$src" %}
  6410   opcode(0x89);
  6411   ins_encode( OpcP, RegMem( src, mem ) );
  6412   ins_pipe( ialu_mem_reg );
  6413 %}
  6415 // Store Integer Immediate
  6416 instruct storeImmI(memory mem, immI src) %{
  6417   match(Set mem (StoreI mem src));
  6419   ins_cost(150);
  6420   format %{ "MOV    $mem,$src" %}
  6421   opcode(0xC7);               /* C7 /0 */
  6422   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6423   ins_pipe( ialu_mem_imm );
  6424 %}
  6426 // Store Short/Char Immediate
  6427 instruct storeImmI16(memory mem, immI16 src) %{
  6428   predicate(UseStoreImmI16);
  6429   match(Set mem (StoreC mem src));
  6431   ins_cost(150);
  6432   format %{ "MOV16  $mem,$src" %}
  6433   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6434   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6435   ins_pipe( ialu_mem_imm );
  6436 %}
  6438 // Store Pointer Immediate; null pointers or constant oops that do not
  6439 // need card-mark barriers.
  6440 instruct storeImmP(memory mem, immP src) %{
  6441   match(Set mem (StoreP mem src));
  6443   ins_cost(150);
  6444   format %{ "MOV    $mem,$src" %}
  6445   opcode(0xC7);               /* C7 /0 */
  6446   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6447   ins_pipe( ialu_mem_imm );
  6448 %}
  6450 // Store Byte Immediate
  6451 instruct storeImmB(memory mem, immI8 src) %{
  6452   match(Set mem (StoreB mem src));
  6454   ins_cost(150);
  6455   format %{ "MOV8   $mem,$src" %}
  6456   opcode(0xC6);               /* C6 /0 */
  6457   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6458   ins_pipe( ialu_mem_imm );
  6459 %}
  6461 // Store CMS card-mark Immediate
  6462 instruct storeImmCM(memory mem, immI8 src) %{
  6463   match(Set mem (StoreCM mem src));
  6465   ins_cost(150);
  6466   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6467   opcode(0xC6);               /* C6 /0 */
  6468   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6469   ins_pipe( ialu_mem_imm );
  6470 %}
  6472 // Store Double
  6473 instruct storeDPR( memory mem, regDPR1 src) %{
  6474   predicate(UseSSE<=1);
  6475   match(Set mem (StoreD mem src));
  6477   ins_cost(100);
  6478   format %{ "FST_D  $mem,$src" %}
  6479   opcode(0xDD);       /* DD /2 */
  6480   ins_encode( enc_FPR_store(mem,src) );
  6481   ins_pipe( fpu_mem_reg );
  6482 %}
  6484 // Store double does rounding on x86
  6485 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6486   predicate(UseSSE<=1);
  6487   match(Set mem (StoreD mem (RoundDouble src)));
  6489   ins_cost(100);
  6490   format %{ "FST_D  $mem,$src\t# round" %}
  6491   opcode(0xDD);       /* DD /2 */
  6492   ins_encode( enc_FPR_store(mem,src) );
  6493   ins_pipe( fpu_mem_reg );
  6494 %}
  6496 // Store XMM register to memory (double-precision floating points)
  6497 // MOVSD instruction
  6498 instruct storeD(memory mem, regD src) %{
  6499   predicate(UseSSE>=2);
  6500   match(Set mem (StoreD mem src));
  6501   ins_cost(95);
  6502   format %{ "MOVSD  $mem,$src" %}
  6503   ins_encode %{
  6504     __ movdbl($mem$$Address, $src$$XMMRegister);
  6505   %}
  6506   ins_pipe( pipe_slow );
  6507 %}
  6509 // Store XMM register to memory (single-precision floating point)
  6510 // MOVSS instruction
  6511 instruct storeF(memory mem, regF src) %{
  6512   predicate(UseSSE>=1);
  6513   match(Set mem (StoreF mem src));
  6514   ins_cost(95);
  6515   format %{ "MOVSS  $mem,$src" %}
  6516   ins_encode %{
  6517     __ movflt($mem$$Address, $src$$XMMRegister);
  6518   %}
  6519   ins_pipe( pipe_slow );
  6520 %}
  6522 // Store Float
  6523 instruct storeFPR( memory mem, regFPR1 src) %{
  6524   predicate(UseSSE==0);
  6525   match(Set mem (StoreF mem src));
  6527   ins_cost(100);
  6528   format %{ "FST_S  $mem,$src" %}
  6529   opcode(0xD9);       /* D9 /2 */
  6530   ins_encode( enc_FPR_store(mem,src) );
  6531   ins_pipe( fpu_mem_reg );
  6532 %}
  6534 // Store Float does rounding on x86
  6535 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  6536   predicate(UseSSE==0);
  6537   match(Set mem (StoreF mem (RoundFloat src)));
  6539   ins_cost(100);
  6540   format %{ "FST_S  $mem,$src\t# round" %}
  6541   opcode(0xD9);       /* D9 /2 */
  6542   ins_encode( enc_FPR_store(mem,src) );
  6543   ins_pipe( fpu_mem_reg );
  6544 %}
  6546 // Store Float does rounding on x86
  6547 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  6548   predicate(UseSSE<=1);
  6549   match(Set mem (StoreF mem (ConvD2F src)));
  6551   ins_cost(100);
  6552   format %{ "FST_S  $mem,$src\t# D-round" %}
  6553   opcode(0xD9);       /* D9 /2 */
  6554   ins_encode( enc_FPR_store(mem,src) );
  6555   ins_pipe( fpu_mem_reg );
  6556 %}
  6558 // Store immediate Float value (it is faster than store from FPU register)
  6559 // The instruction usage is guarded by predicate in operand immFPR().
  6560 instruct storeFPR_imm( memory mem, immFPR src) %{
  6561   match(Set mem (StoreF mem src));
  6563   ins_cost(50);
  6564   format %{ "MOV    $mem,$src\t# store float" %}
  6565   opcode(0xC7);               /* C7 /0 */
  6566   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  6567   ins_pipe( ialu_mem_imm );
  6568 %}
  6570 // Store immediate Float value (it is faster than store from XMM register)
  6571 // The instruction usage is guarded by predicate in operand immF().
  6572 instruct storeF_imm( memory mem, immF src) %{
  6573   match(Set mem (StoreF mem src));
  6575   ins_cost(50);
  6576   format %{ "MOV    $mem,$src\t# store float" %}
  6577   opcode(0xC7);               /* C7 /0 */
  6578   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  6579   ins_pipe( ialu_mem_imm );
  6580 %}
  6582 // Store Integer to stack slot
  6583 instruct storeSSI(stackSlotI dst, rRegI src) %{
  6584   match(Set dst src);
  6586   ins_cost(100);
  6587   format %{ "MOV    $dst,$src" %}
  6588   opcode(0x89);
  6589   ins_encode( OpcPRegSS( dst, src ) );
  6590   ins_pipe( ialu_mem_reg );
  6591 %}
  6593 // Store Integer to stack slot
  6594 instruct storeSSP(stackSlotP dst, eRegP src) %{
  6595   match(Set dst src);
  6597   ins_cost(100);
  6598   format %{ "MOV    $dst,$src" %}
  6599   opcode(0x89);
  6600   ins_encode( OpcPRegSS( dst, src ) );
  6601   ins_pipe( ialu_mem_reg );
  6602 %}
  6604 // Store Long to stack slot
  6605 instruct storeSSL(stackSlotL dst, eRegL src) %{
  6606   match(Set dst src);
  6608   ins_cost(200);
  6609   format %{ "MOV    $dst,$src.lo\n\t"
  6610             "MOV    $dst+4,$src.hi" %}
  6611   opcode(0x89, 0x89);
  6612   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  6613   ins_pipe( ialu_mem_long_reg );
  6614 %}
  6616 //----------MemBar Instructions-----------------------------------------------
  6617 // Memory barrier flavors
  6619 instruct membar_acquire() %{
  6620   match(MemBarAcquire);
  6621   match(LoadFence);
  6622   ins_cost(400);
  6624   size(0);
  6625   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  6626   ins_encode();
  6627   ins_pipe(empty);
  6628 %}
  6630 instruct membar_acquire_lock() %{
  6631   match(MemBarAcquireLock);
  6632   ins_cost(0);
  6634   size(0);
  6635   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  6636   ins_encode( );
  6637   ins_pipe(empty);
  6638 %}
  6640 instruct membar_release() %{
  6641   match(MemBarRelease);
  6642   match(StoreFence);
  6643   ins_cost(400);
  6645   size(0);
  6646   format %{ "MEMBAR-release ! (empty encoding)" %}
  6647   ins_encode( );
  6648   ins_pipe(empty);
  6649 %}
  6651 instruct membar_release_lock() %{
  6652   match(MemBarReleaseLock);
  6653   ins_cost(0);
  6655   size(0);
  6656   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  6657   ins_encode( );
  6658   ins_pipe(empty);
  6659 %}
  6661 instruct membar_volatile(eFlagsReg cr) %{
  6662   match(MemBarVolatile);
  6663   effect(KILL cr);
  6664   ins_cost(400);
  6666   format %{ 
  6667     $$template
  6668     if (os::is_MP()) {
  6669       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  6670     } else {
  6671       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  6673   %}
  6674   ins_encode %{
  6675     __ membar(Assembler::StoreLoad);
  6676   %}
  6677   ins_pipe(pipe_slow);
  6678 %}
  6680 instruct unnecessary_membar_volatile() %{
  6681   match(MemBarVolatile);
  6682   predicate(Matcher::post_store_load_barrier(n));
  6683   ins_cost(0);
  6685   size(0);
  6686   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  6687   ins_encode( );
  6688   ins_pipe(empty);
  6689 %}
  6691 instruct membar_storestore() %{
  6692   match(MemBarStoreStore);
  6693   ins_cost(0);
  6695   size(0);
  6696   format %{ "MEMBAR-storestore (empty encoding)" %}
  6697   ins_encode( );
  6698   ins_pipe(empty);
  6699 %}
  6701 //----------Move Instructions--------------------------------------------------
  6702 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  6703   match(Set dst (CastX2P src));
  6704   format %{ "# X2P  $dst, $src" %}
  6705   ins_encode( /*empty encoding*/ );
  6706   ins_cost(0);
  6707   ins_pipe(empty);
  6708 %}
  6710 instruct castP2X(rRegI dst, eRegP src ) %{
  6711   match(Set dst (CastP2X src));
  6712   ins_cost(50);
  6713   format %{ "MOV    $dst, $src\t# CastP2X" %}
  6714   ins_encode( enc_Copy( dst, src) );
  6715   ins_pipe( ialu_reg_reg );
  6716 %}
  6718 //----------Conditional Move---------------------------------------------------
  6719 // Conditional move
  6720 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  6721   predicate(!VM_Version::supports_cmov() );
  6722   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6723   ins_cost(200);
  6724   format %{ "J$cop,us skip\t# signed cmove\n\t"
  6725             "MOV    $dst,$src\n"
  6726       "skip:" %}
  6727   ins_encode %{
  6728     Label Lskip;
  6729     // Invert sense of branch from sense of CMOV
  6730     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6731     __ movl($dst$$Register, $src$$Register);
  6732     __ bind(Lskip);
  6733   %}
  6734   ins_pipe( pipe_cmov_reg );
  6735 %}
  6737 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  6738   predicate(!VM_Version::supports_cmov() );
  6739   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6740   ins_cost(200);
  6741   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  6742             "MOV    $dst,$src\n"
  6743       "skip:" %}
  6744   ins_encode %{
  6745     Label Lskip;
  6746     // Invert sense of branch from sense of CMOV
  6747     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6748     __ movl($dst$$Register, $src$$Register);
  6749     __ bind(Lskip);
  6750   %}
  6751   ins_pipe( pipe_cmov_reg );
  6752 %}
  6754 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  6755   predicate(VM_Version::supports_cmov() );
  6756   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6757   ins_cost(200);
  6758   format %{ "CMOV$cop $dst,$src" %}
  6759   opcode(0x0F,0x40);
  6760   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6761   ins_pipe( pipe_cmov_reg );
  6762 %}
  6764 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  6765   predicate(VM_Version::supports_cmov() );
  6766   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6767   ins_cost(200);
  6768   format %{ "CMOV$cop $dst,$src" %}
  6769   opcode(0x0F,0x40);
  6770   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6771   ins_pipe( pipe_cmov_reg );
  6772 %}
  6774 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  6775   predicate(VM_Version::supports_cmov() );
  6776   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6777   ins_cost(200);
  6778   expand %{
  6779     cmovI_regU(cop, cr, dst, src);
  6780   %}
  6781 %}
  6783 // Conditional move
  6784 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  6785   predicate(VM_Version::supports_cmov() );
  6786   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6787   ins_cost(250);
  6788   format %{ "CMOV$cop $dst,$src" %}
  6789   opcode(0x0F,0x40);
  6790   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6791   ins_pipe( pipe_cmov_mem );
  6792 %}
  6794 // Conditional move
  6795 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  6796   predicate(VM_Version::supports_cmov() );
  6797   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6798   ins_cost(250);
  6799   format %{ "CMOV$cop $dst,$src" %}
  6800   opcode(0x0F,0x40);
  6801   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6802   ins_pipe( pipe_cmov_mem );
  6803 %}
  6805 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  6806   predicate(VM_Version::supports_cmov() );
  6807   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6808   ins_cost(250);
  6809   expand %{
  6810     cmovI_memU(cop, cr, dst, src);
  6811   %}
  6812 %}
  6814 // Conditional move
  6815 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6816   predicate(VM_Version::supports_cmov() );
  6817   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6818   ins_cost(200);
  6819   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6820   opcode(0x0F,0x40);
  6821   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6822   ins_pipe( pipe_cmov_reg );
  6823 %}
  6825 // Conditional move (non-P6 version)
  6826 // Note:  a CMoveP is generated for  stubs and native wrappers
  6827 //        regardless of whether we are on a P6, so we
  6828 //        emulate a cmov here
  6829 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6830   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6831   ins_cost(300);
  6832   format %{ "Jn$cop   skip\n\t"
  6833           "MOV    $dst,$src\t# pointer\n"
  6834       "skip:" %}
  6835   opcode(0x8b);
  6836   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  6837   ins_pipe( pipe_cmov_reg );
  6838 %}
  6840 // Conditional move
  6841 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  6842   predicate(VM_Version::supports_cmov() );
  6843   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6844   ins_cost(200);
  6845   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6846   opcode(0x0F,0x40);
  6847   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6848   ins_pipe( pipe_cmov_reg );
  6849 %}
  6851 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  6852   predicate(VM_Version::supports_cmov() );
  6853   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6854   ins_cost(200);
  6855   expand %{
  6856     cmovP_regU(cop, cr, dst, src);
  6857   %}
  6858 %}
  6860 // DISABLED: Requires the ADLC to emit a bottom_type call that
  6861 // correctly meets the two pointer arguments; one is an incoming
  6862 // register but the other is a memory operand.  ALSO appears to
  6863 // be buggy with implicit null checks.
  6864 //
  6865 //// Conditional move
  6866 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  6867 //  predicate(VM_Version::supports_cmov() );
  6868 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6869 //  ins_cost(250);
  6870 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6871 //  opcode(0x0F,0x40);
  6872 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6873 //  ins_pipe( pipe_cmov_mem );
  6874 //%}
  6875 //
  6876 //// Conditional move
  6877 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  6878 //  predicate(VM_Version::supports_cmov() );
  6879 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6880 //  ins_cost(250);
  6881 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6882 //  opcode(0x0F,0x40);
  6883 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6884 //  ins_pipe( pipe_cmov_mem );
  6885 //%}
  6887 // Conditional move
  6888 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  6889   predicate(UseSSE<=1);
  6890   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6891   ins_cost(200);
  6892   format %{ "FCMOV$cop $dst,$src\t# double" %}
  6893   opcode(0xDA);
  6894   ins_encode( enc_cmov_dpr(cop,src) );
  6895   ins_pipe( pipe_cmovDPR_reg );
  6896 %}
  6898 // Conditional move
  6899 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  6900   predicate(UseSSE==0);
  6901   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6902   ins_cost(200);
  6903   format %{ "FCMOV$cop $dst,$src\t# float" %}
  6904   opcode(0xDA);
  6905   ins_encode( enc_cmov_dpr(cop,src) );
  6906   ins_pipe( pipe_cmovDPR_reg );
  6907 %}
  6909 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6910 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  6911   predicate(UseSSE<=1);
  6912   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6913   ins_cost(200);
  6914   format %{ "Jn$cop   skip\n\t"
  6915             "MOV    $dst,$src\t# double\n"
  6916       "skip:" %}
  6917   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6918   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  6919   ins_pipe( pipe_cmovDPR_reg );
  6920 %}
  6922 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6923 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  6924   predicate(UseSSE==0);
  6925   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6926   ins_cost(200);
  6927   format %{ "Jn$cop    skip\n\t"
  6928             "MOV    $dst,$src\t# float\n"
  6929       "skip:" %}
  6930   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6931   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  6932   ins_pipe( pipe_cmovDPR_reg );
  6933 %}
  6935 // No CMOVE with SSE/SSE2
  6936 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  6937   predicate (UseSSE>=1);
  6938   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6939   ins_cost(200);
  6940   format %{ "Jn$cop   skip\n\t"
  6941             "MOVSS  $dst,$src\t# float\n"
  6942       "skip:" %}
  6943   ins_encode %{
  6944     Label skip;
  6945     // Invert sense of branch from sense of CMOV
  6946     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6947     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6948     __ bind(skip);
  6949   %}
  6950   ins_pipe( pipe_slow );
  6951 %}
  6953 // No CMOVE with SSE/SSE2
  6954 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  6955   predicate (UseSSE>=2);
  6956   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6957   ins_cost(200);
  6958   format %{ "Jn$cop   skip\n\t"
  6959             "MOVSD  $dst,$src\t# float\n"
  6960       "skip:" %}
  6961   ins_encode %{
  6962     Label skip;
  6963     // Invert sense of branch from sense of CMOV
  6964     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6965     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  6966     __ bind(skip);
  6967   %}
  6968   ins_pipe( pipe_slow );
  6969 %}
  6971 // unsigned version
  6972 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  6973   predicate (UseSSE>=1);
  6974   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6975   ins_cost(200);
  6976   format %{ "Jn$cop   skip\n\t"
  6977             "MOVSS  $dst,$src\t# float\n"
  6978       "skip:" %}
  6979   ins_encode %{
  6980     Label skip;
  6981     // Invert sense of branch from sense of CMOV
  6982     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6983     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6984     __ bind(skip);
  6985   %}
  6986   ins_pipe( pipe_slow );
  6987 %}
  6989 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  6990   predicate (UseSSE>=1);
  6991   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6992   ins_cost(200);
  6993   expand %{
  6994     fcmovF_regU(cop, cr, dst, src);
  6995   %}
  6996 %}
  6998 // unsigned version
  6999 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7000   predicate (UseSSE>=2);
  7001   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7002   ins_cost(200);
  7003   format %{ "Jn$cop   skip\n\t"
  7004             "MOVSD  $dst,$src\t# float\n"
  7005       "skip:" %}
  7006   ins_encode %{
  7007     Label skip;
  7008     // Invert sense of branch from sense of CMOV
  7009     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7010     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7011     __ bind(skip);
  7012   %}
  7013   ins_pipe( pipe_slow );
  7014 %}
  7016 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7017   predicate (UseSSE>=2);
  7018   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7019   ins_cost(200);
  7020   expand %{
  7021     fcmovD_regU(cop, cr, dst, src);
  7022   %}
  7023 %}
  7025 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7026   predicate(VM_Version::supports_cmov() );
  7027   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7028   ins_cost(200);
  7029   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7030             "CMOV$cop $dst.hi,$src.hi" %}
  7031   opcode(0x0F,0x40);
  7032   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7033   ins_pipe( pipe_cmov_reg_long );
  7034 %}
  7036 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7037   predicate(VM_Version::supports_cmov() );
  7038   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7039   ins_cost(200);
  7040   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7041             "CMOV$cop $dst.hi,$src.hi" %}
  7042   opcode(0x0F,0x40);
  7043   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7044   ins_pipe( pipe_cmov_reg_long );
  7045 %}
  7047 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7048   predicate(VM_Version::supports_cmov() );
  7049   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7050   ins_cost(200);
  7051   expand %{
  7052     cmovL_regU(cop, cr, dst, src);
  7053   %}
  7054 %}
  7056 //----------Arithmetic Instructions--------------------------------------------
  7057 //----------Addition Instructions----------------------------------------------
  7059 // Integer Addition Instructions
  7060 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7061   match(Set dst (AddI dst src));
  7062   effect(KILL cr);
  7064   size(2);
  7065   format %{ "ADD    $dst,$src" %}
  7066   opcode(0x03);
  7067   ins_encode( OpcP, RegReg( dst, src) );
  7068   ins_pipe( ialu_reg_reg );
  7069 %}
  7071 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7072   match(Set dst (AddI dst src));
  7073   effect(KILL cr);
  7075   format %{ "ADD    $dst,$src" %}
  7076   opcode(0x81, 0x00); /* /0 id */
  7077   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7078   ins_pipe( ialu_reg );
  7079 %}
  7081 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7082   predicate(UseIncDec);
  7083   match(Set dst (AddI dst src));
  7084   effect(KILL cr);
  7086   size(1);
  7087   format %{ "INC    $dst" %}
  7088   opcode(0x40); /*  */
  7089   ins_encode( Opc_plus( primary, dst ) );
  7090   ins_pipe( ialu_reg );
  7091 %}
  7093 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7094   match(Set dst (AddI src0 src1));
  7095   ins_cost(110);
  7097   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7098   opcode(0x8D); /* 0x8D /r */
  7099   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7100   ins_pipe( ialu_reg_reg );
  7101 %}
  7103 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7104   match(Set dst (AddP src0 src1));
  7105   ins_cost(110);
  7107   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7108   opcode(0x8D); /* 0x8D /r */
  7109   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7110   ins_pipe( ialu_reg_reg );
  7111 %}
  7113 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7114   predicate(UseIncDec);
  7115   match(Set dst (AddI dst src));
  7116   effect(KILL cr);
  7118   size(1);
  7119   format %{ "DEC    $dst" %}
  7120   opcode(0x48); /*  */
  7121   ins_encode( Opc_plus( primary, dst ) );
  7122   ins_pipe( ialu_reg );
  7123 %}
  7125 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7126   match(Set dst (AddP dst src));
  7127   effect(KILL cr);
  7129   size(2);
  7130   format %{ "ADD    $dst,$src" %}
  7131   opcode(0x03);
  7132   ins_encode( OpcP, RegReg( dst, src) );
  7133   ins_pipe( ialu_reg_reg );
  7134 %}
  7136 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7137   match(Set dst (AddP dst src));
  7138   effect(KILL cr);
  7140   format %{ "ADD    $dst,$src" %}
  7141   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7142   // ins_encode( RegImm( dst, src) );
  7143   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7144   ins_pipe( ialu_reg );
  7145 %}
  7147 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7148   match(Set dst (AddI dst (LoadI src)));
  7149   effect(KILL cr);
  7151   ins_cost(125);
  7152   format %{ "ADD    $dst,$src" %}
  7153   opcode(0x03);
  7154   ins_encode( OpcP, RegMem( dst, src) );
  7155   ins_pipe( ialu_reg_mem );
  7156 %}
  7158 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7159   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7160   effect(KILL cr);
  7162   ins_cost(150);
  7163   format %{ "ADD    $dst,$src" %}
  7164   opcode(0x01);  /* Opcode 01 /r */
  7165   ins_encode( OpcP, RegMem( src, dst ) );
  7166   ins_pipe( ialu_mem_reg );
  7167 %}
  7169 // Add Memory with Immediate
  7170 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7171   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7172   effect(KILL cr);
  7174   ins_cost(125);
  7175   format %{ "ADD    $dst,$src" %}
  7176   opcode(0x81);               /* Opcode 81 /0 id */
  7177   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7178   ins_pipe( ialu_mem_imm );
  7179 %}
  7181 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7182   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7183   effect(KILL cr);
  7185   ins_cost(125);
  7186   format %{ "INC    $dst" %}
  7187   opcode(0xFF);               /* Opcode FF /0 */
  7188   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7189   ins_pipe( ialu_mem_imm );
  7190 %}
  7192 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7193   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7194   effect(KILL cr);
  7196   ins_cost(125);
  7197   format %{ "DEC    $dst" %}
  7198   opcode(0xFF);               /* Opcode FF /1 */
  7199   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7200   ins_pipe( ialu_mem_imm );
  7201 %}
  7204 instruct checkCastPP( eRegP dst ) %{
  7205   match(Set dst (CheckCastPP dst));
  7207   size(0);
  7208   format %{ "#checkcastPP of $dst" %}
  7209   ins_encode( /*empty encoding*/ );
  7210   ins_pipe( empty );
  7211 %}
  7213 instruct castPP( eRegP dst ) %{
  7214   match(Set dst (CastPP dst));
  7215   format %{ "#castPP of $dst" %}
  7216   ins_encode( /*empty encoding*/ );
  7217   ins_pipe( empty );
  7218 %}
  7220 instruct castII( rRegI dst ) %{
  7221   match(Set dst (CastII dst));
  7222   format %{ "#castII of $dst" %}
  7223   ins_encode( /*empty encoding*/ );
  7224   ins_cost(0);
  7225   ins_pipe( empty );
  7226 %}
  7229 // Load-locked - same as a regular pointer load when used with compare-swap
  7230 instruct loadPLocked(eRegP dst, memory mem) %{
  7231   match(Set dst (LoadPLocked mem));
  7233   ins_cost(125);
  7234   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7235   opcode(0x8B);
  7236   ins_encode( OpcP, RegMem(dst,mem));
  7237   ins_pipe( ialu_reg_mem );
  7238 %}
  7240 // Conditional-store of the updated heap-top.
  7241 // Used during allocation of the shared heap.
  7242 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7243 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7244   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7245   // EAX is killed if there is contention, but then it's also unused.
  7246   // In the common case of no contention, EAX holds the new oop address.
  7247   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7248   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7249   ins_pipe( pipe_cmpxchg );
  7250 %}
  7252 // Conditional-store of an int value.
  7253 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7254 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7255   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7256   effect(KILL oldval);
  7257   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7258   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7259   ins_pipe( pipe_cmpxchg );
  7260 %}
  7262 // Conditional-store of a long value.
  7263 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7264 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7265   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7266   effect(KILL oldval);
  7267   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7268             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7269             "XCHG   EBX,ECX"
  7270   %}
  7271   ins_encode %{
  7272     // Note: we need to swap rbx, and rcx before and after the
  7273     //       cmpxchg8 instruction because the instruction uses
  7274     //       rcx as the high order word of the new value to store but
  7275     //       our register encoding uses rbx.
  7276     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7277     if( os::is_MP() )
  7278       __ lock();
  7279     __ cmpxchg8($mem$$Address);
  7280     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7281   %}
  7282   ins_pipe( pipe_cmpxchg );
  7283 %}
  7285 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7287 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7288   predicate(VM_Version::supports_cx8());
  7289   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7290   effect(KILL cr, KILL oldval);
  7291   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7292             "MOV    $res,0\n\t"
  7293             "JNE,s  fail\n\t"
  7294             "MOV    $res,1\n"
  7295           "fail:" %}
  7296   ins_encode( enc_cmpxchg8(mem_ptr),
  7297               enc_flags_ne_to_boolean(res) );
  7298   ins_pipe( pipe_cmpxchg );
  7299 %}
  7301 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7302   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7303   effect(KILL cr, KILL oldval);
  7304   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7305             "MOV    $res,0\n\t"
  7306             "JNE,s  fail\n\t"
  7307             "MOV    $res,1\n"
  7308           "fail:" %}
  7309   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7310   ins_pipe( pipe_cmpxchg );
  7311 %}
  7313 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7314   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7315   effect(KILL cr, KILL oldval);
  7316   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7317             "MOV    $res,0\n\t"
  7318             "JNE,s  fail\n\t"
  7319             "MOV    $res,1\n"
  7320           "fail:" %}
  7321   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7322   ins_pipe( pipe_cmpxchg );
  7323 %}
  7325 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
  7326   predicate(n->as_LoadStore()->result_not_used());
  7327   match(Set dummy (GetAndAddI mem add));
  7328   effect(KILL cr);
  7329   format %{ "ADDL  [$mem],$add" %}
  7330   ins_encode %{
  7331     if (os::is_MP()) { __ lock(); }
  7332     __ addl($mem$$Address, $add$$constant);
  7333   %}
  7334   ins_pipe( pipe_cmpxchg );
  7335 %}
  7337 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
  7338   match(Set newval (GetAndAddI mem newval));
  7339   effect(KILL cr);
  7340   format %{ "XADDL  [$mem],$newval" %}
  7341   ins_encode %{
  7342     if (os::is_MP()) { __ lock(); }
  7343     __ xaddl($mem$$Address, $newval$$Register);
  7344   %}
  7345   ins_pipe( pipe_cmpxchg );
  7346 %}
  7348 instruct xchgI( memory mem, rRegI newval) %{
  7349   match(Set newval (GetAndSetI mem newval));
  7350   format %{ "XCHGL  $newval,[$mem]" %}
  7351   ins_encode %{
  7352     __ xchgl($newval$$Register, $mem$$Address);
  7353   %}
  7354   ins_pipe( pipe_cmpxchg );
  7355 %}
  7357 instruct xchgP( memory mem, pRegP newval) %{
  7358   match(Set newval (GetAndSetP mem newval));
  7359   format %{ "XCHGL  $newval,[$mem]" %}
  7360   ins_encode %{
  7361     __ xchgl($newval$$Register, $mem$$Address);
  7362   %}
  7363   ins_pipe( pipe_cmpxchg );
  7364 %}
  7366 //----------Subtraction Instructions-------------------------------------------
  7368 // Integer Subtraction Instructions
  7369 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7370   match(Set dst (SubI dst src));
  7371   effect(KILL cr);
  7373   size(2);
  7374   format %{ "SUB    $dst,$src" %}
  7375   opcode(0x2B);
  7376   ins_encode( OpcP, RegReg( dst, src) );
  7377   ins_pipe( ialu_reg_reg );
  7378 %}
  7380 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7381   match(Set dst (SubI dst src));
  7382   effect(KILL cr);
  7384   format %{ "SUB    $dst,$src" %}
  7385   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7386   // ins_encode( RegImm( dst, src) );
  7387   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7388   ins_pipe( ialu_reg );
  7389 %}
  7391 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7392   match(Set dst (SubI dst (LoadI src)));
  7393   effect(KILL cr);
  7395   ins_cost(125);
  7396   format %{ "SUB    $dst,$src" %}
  7397   opcode(0x2B);
  7398   ins_encode( OpcP, RegMem( dst, src) );
  7399   ins_pipe( ialu_reg_mem );
  7400 %}
  7402 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7403   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7404   effect(KILL cr);
  7406   ins_cost(150);
  7407   format %{ "SUB    $dst,$src" %}
  7408   opcode(0x29);  /* Opcode 29 /r */
  7409   ins_encode( OpcP, RegMem( src, dst ) );
  7410   ins_pipe( ialu_mem_reg );
  7411 %}
  7413 // Subtract from a pointer
  7414 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7415   match(Set dst (AddP dst (SubI zero src)));
  7416   effect(KILL cr);
  7418   size(2);
  7419   format %{ "SUB    $dst,$src" %}
  7420   opcode(0x2B);
  7421   ins_encode( OpcP, RegReg( dst, src) );
  7422   ins_pipe( ialu_reg_reg );
  7423 %}
  7425 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7426   match(Set dst (SubI zero dst));
  7427   effect(KILL cr);
  7429   size(2);
  7430   format %{ "NEG    $dst" %}
  7431   opcode(0xF7,0x03);  // Opcode F7 /3
  7432   ins_encode( OpcP, RegOpc( dst ) );
  7433   ins_pipe( ialu_reg );
  7434 %}
  7436 //----------Multiplication/Division Instructions-------------------------------
  7437 // Integer Multiplication Instructions
  7438 // Multiply Register
  7439 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7440   match(Set dst (MulI dst src));
  7441   effect(KILL cr);
  7443   size(3);
  7444   ins_cost(300);
  7445   format %{ "IMUL   $dst,$src" %}
  7446   opcode(0xAF, 0x0F);
  7447   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  7448   ins_pipe( ialu_reg_reg_alu0 );
  7449 %}
  7451 // Multiply 32-bit Immediate
  7452 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  7453   match(Set dst (MulI src imm));
  7454   effect(KILL cr);
  7456   ins_cost(300);
  7457   format %{ "IMUL   $dst,$src,$imm" %}
  7458   opcode(0x69);  /* 69 /r id */
  7459   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  7460   ins_pipe( ialu_reg_reg_alu0 );
  7461 %}
  7463 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  7464   match(Set dst src);
  7465   effect(KILL cr);
  7467   // Note that this is artificially increased to make it more expensive than loadConL
  7468   ins_cost(250);
  7469   format %{ "MOV    EAX,$src\t// low word only" %}
  7470   opcode(0xB8);
  7471   ins_encode( LdImmL_Lo(dst, src) );
  7472   ins_pipe( ialu_reg_fat );
  7473 %}
  7475 // Multiply by 32-bit Immediate, taking the shifted high order results
  7476 //  (special case for shift by 32)
  7477 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  7478   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7479   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7480              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7481              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7482   effect(USE src1, KILL cr);
  7484   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7485   ins_cost(0*100 + 1*400 - 150);
  7486   format %{ "IMUL   EDX:EAX,$src1" %}
  7487   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7488   ins_pipe( pipe_slow );
  7489 %}
  7491 // Multiply by 32-bit Immediate, taking the shifted high order results
  7492 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  7493   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7494   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7495              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7496              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7497   effect(USE src1, KILL cr);
  7499   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7500   ins_cost(1*100 + 1*400 - 150);
  7501   format %{ "IMUL   EDX:EAX,$src1\n\t"
  7502             "SAR    EDX,$cnt-32" %}
  7503   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7504   ins_pipe( pipe_slow );
  7505 %}
  7507 // Multiply Memory 32-bit Immediate
  7508 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  7509   match(Set dst (MulI (LoadI src) imm));
  7510   effect(KILL cr);
  7512   ins_cost(300);
  7513   format %{ "IMUL   $dst,$src,$imm" %}
  7514   opcode(0x69);  /* 69 /r id */
  7515   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  7516   ins_pipe( ialu_reg_mem_alu0 );
  7517 %}
  7519 // Multiply Memory
  7520 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  7521   match(Set dst (MulI dst (LoadI src)));
  7522   effect(KILL cr);
  7524   ins_cost(350);
  7525   format %{ "IMUL   $dst,$src" %}
  7526   opcode(0xAF, 0x0F);
  7527   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  7528   ins_pipe( ialu_reg_mem_alu0 );
  7529 %}
  7531 // Multiply Register Int to Long
  7532 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  7533   // Basic Idea: long = (long)int * (long)int
  7534   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  7535   effect(DEF dst, USE src, USE src1, KILL flags);
  7537   ins_cost(300);
  7538   format %{ "IMUL   $dst,$src1" %}
  7540   ins_encode( long_int_multiply( dst, src1 ) );
  7541   ins_pipe( ialu_reg_reg_alu0 );
  7542 %}
  7544 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  7545   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  7546   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  7547   effect(KILL flags);
  7549   ins_cost(300);
  7550   format %{ "MUL    $dst,$src1" %}
  7552   ins_encode( long_uint_multiply(dst, src1) );
  7553   ins_pipe( ialu_reg_reg_alu0 );
  7554 %}
  7556 // Multiply Register Long
  7557 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7558   match(Set dst (MulL dst src));
  7559   effect(KILL cr, TEMP tmp);
  7560   ins_cost(4*100+3*400);
  7561 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7562 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  7563   format %{ "MOV    $tmp,$src.lo\n\t"
  7564             "IMUL   $tmp,EDX\n\t"
  7565             "MOV    EDX,$src.hi\n\t"
  7566             "IMUL   EDX,EAX\n\t"
  7567             "ADD    $tmp,EDX\n\t"
  7568             "MUL    EDX:EAX,$src.lo\n\t"
  7569             "ADD    EDX,$tmp" %}
  7570   ins_encode( long_multiply( dst, src, tmp ) );
  7571   ins_pipe( pipe_slow );
  7572 %}
  7574 // Multiply Register Long where the left operand's high 32 bits are zero
  7575 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7576   predicate(is_operand_hi32_zero(n->in(1)));
  7577   match(Set dst (MulL dst src));
  7578   effect(KILL cr, TEMP tmp);
  7579   ins_cost(2*100+2*400);
  7580 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7581 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  7582   format %{ "MOV    $tmp,$src.hi\n\t"
  7583             "IMUL   $tmp,EAX\n\t"
  7584             "MUL    EDX:EAX,$src.lo\n\t"
  7585             "ADD    EDX,$tmp" %}
  7586   ins_encode %{
  7587     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  7588     __ imull($tmp$$Register, rax);
  7589     __ mull($src$$Register);
  7590     __ addl(rdx, $tmp$$Register);
  7591   %}
  7592   ins_pipe( pipe_slow );
  7593 %}
  7595 // Multiply Register Long where the right operand's high 32 bits are zero
  7596 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7597   predicate(is_operand_hi32_zero(n->in(2)));
  7598   match(Set dst (MulL dst src));
  7599   effect(KILL cr, TEMP tmp);
  7600   ins_cost(2*100+2*400);
  7601 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7602 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  7603   format %{ "MOV    $tmp,$src.lo\n\t"
  7604             "IMUL   $tmp,EDX\n\t"
  7605             "MUL    EDX:EAX,$src.lo\n\t"
  7606             "ADD    EDX,$tmp" %}
  7607   ins_encode %{
  7608     __ movl($tmp$$Register, $src$$Register);
  7609     __ imull($tmp$$Register, rdx);
  7610     __ mull($src$$Register);
  7611     __ addl(rdx, $tmp$$Register);
  7612   %}
  7613   ins_pipe( pipe_slow );
  7614 %}
  7616 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  7617 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  7618   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  7619   match(Set dst (MulL dst src));
  7620   effect(KILL cr);
  7621   ins_cost(1*400);
  7622 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7623 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  7624   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  7625   ins_encode %{
  7626     __ mull($src$$Register);
  7627   %}
  7628   ins_pipe( pipe_slow );
  7629 %}
  7631 // Multiply Register Long by small constant
  7632 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  7633   match(Set dst (MulL dst src));
  7634   effect(KILL cr, TEMP tmp);
  7635   ins_cost(2*100+2*400);
  7636   size(12);
  7637 // Basic idea: lo(result) = lo(src * EAX)
  7638 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  7639   format %{ "IMUL   $tmp,EDX,$src\n\t"
  7640             "MOV    EDX,$src\n\t"
  7641             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  7642             "ADD    EDX,$tmp" %}
  7643   ins_encode( long_multiply_con( dst, src, tmp ) );
  7644   ins_pipe( pipe_slow );
  7645 %}
  7647 // Integer DIV with Register
  7648 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7649   match(Set rax (DivI rax div));
  7650   effect(KILL rdx, KILL cr);
  7651   size(26);
  7652   ins_cost(30*100+10*100);
  7653   format %{ "CMP    EAX,0x80000000\n\t"
  7654             "JNE,s  normal\n\t"
  7655             "XOR    EDX,EDX\n\t"
  7656             "CMP    ECX,-1\n\t"
  7657             "JE,s   done\n"
  7658     "normal: CDQ\n\t"
  7659             "IDIV   $div\n\t"
  7660     "done:"        %}
  7661   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7662   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7663   ins_pipe( ialu_reg_reg_alu0 );
  7664 %}
  7666 // Divide Register Long
  7667 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7668   match(Set dst (DivL src1 src2));
  7669   effect( KILL cr, KILL cx, KILL bx );
  7670   ins_cost(10000);
  7671   format %{ "PUSH   $src1.hi\n\t"
  7672             "PUSH   $src1.lo\n\t"
  7673             "PUSH   $src2.hi\n\t"
  7674             "PUSH   $src2.lo\n\t"
  7675             "CALL   SharedRuntime::ldiv\n\t"
  7676             "ADD    ESP,16" %}
  7677   ins_encode( long_div(src1,src2) );
  7678   ins_pipe( pipe_slow );
  7679 %}
  7681 // Integer DIVMOD with Register, both quotient and mod results
  7682 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7683   match(DivModI rax div);
  7684   effect(KILL cr);
  7685   size(26);
  7686   ins_cost(30*100+10*100);
  7687   format %{ "CMP    EAX,0x80000000\n\t"
  7688             "JNE,s  normal\n\t"
  7689             "XOR    EDX,EDX\n\t"
  7690             "CMP    ECX,-1\n\t"
  7691             "JE,s   done\n"
  7692     "normal: CDQ\n\t"
  7693             "IDIV   $div\n\t"
  7694     "done:"        %}
  7695   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7696   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7697   ins_pipe( pipe_slow );
  7698 %}
  7700 // Integer MOD with Register
  7701 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  7702   match(Set rdx (ModI rax div));
  7703   effect(KILL rax, KILL cr);
  7705   size(26);
  7706   ins_cost(300);
  7707   format %{ "CDQ\n\t"
  7708             "IDIV   $div" %}
  7709   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7710   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7711   ins_pipe( ialu_reg_reg_alu0 );
  7712 %}
  7714 // Remainder Register Long
  7715 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7716   match(Set dst (ModL src1 src2));
  7717   effect( KILL cr, KILL cx, KILL bx );
  7718   ins_cost(10000);
  7719   format %{ "PUSH   $src1.hi\n\t"
  7720             "PUSH   $src1.lo\n\t"
  7721             "PUSH   $src2.hi\n\t"
  7722             "PUSH   $src2.lo\n\t"
  7723             "CALL   SharedRuntime::lrem\n\t"
  7724             "ADD    ESP,16" %}
  7725   ins_encode( long_mod(src1,src2) );
  7726   ins_pipe( pipe_slow );
  7727 %}
  7729 // Divide Register Long (no special case since divisor != -1)
  7730 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7731   match(Set dst (DivL dst imm));
  7732   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7733   ins_cost(1000);
  7734   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  7735             "XOR    $tmp2,$tmp2\n\t"
  7736             "CMP    $tmp,EDX\n\t"
  7737             "JA,s   fast\n\t"
  7738             "MOV    $tmp2,EAX\n\t"
  7739             "MOV    EAX,EDX\n\t"
  7740             "MOV    EDX,0\n\t"
  7741             "JLE,s  pos\n\t"
  7742             "LNEG   EAX : $tmp2\n\t"
  7743             "DIV    $tmp # unsigned division\n\t"
  7744             "XCHG   EAX,$tmp2\n\t"
  7745             "DIV    $tmp\n\t"
  7746             "LNEG   $tmp2 : EAX\n\t"
  7747             "JMP,s  done\n"
  7748     "pos:\n\t"
  7749             "DIV    $tmp\n\t"
  7750             "XCHG   EAX,$tmp2\n"
  7751     "fast:\n\t"
  7752             "DIV    $tmp\n"
  7753     "done:\n\t"
  7754             "MOV    EDX,$tmp2\n\t"
  7755             "NEG    EDX:EAX # if $imm < 0" %}
  7756   ins_encode %{
  7757     int con = (int)$imm$$constant;
  7758     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7759     int pcon = (con > 0) ? con : -con;
  7760     Label Lfast, Lpos, Ldone;
  7762     __ movl($tmp$$Register, pcon);
  7763     __ xorl($tmp2$$Register,$tmp2$$Register);
  7764     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7765     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  7767     __ movl($tmp2$$Register, $dst$$Register); // save
  7768     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7769     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7770     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7772     // Negative dividend.
  7773     // convert value to positive to use unsigned division
  7774     __ lneg($dst$$Register, $tmp2$$Register);
  7775     __ divl($tmp$$Register);
  7776     __ xchgl($dst$$Register, $tmp2$$Register);
  7777     __ divl($tmp$$Register);
  7778     // revert result back to negative
  7779     __ lneg($tmp2$$Register, $dst$$Register);
  7780     __ jmpb(Ldone);
  7782     __ bind(Lpos);
  7783     __ divl($tmp$$Register); // Use unsigned division
  7784     __ xchgl($dst$$Register, $tmp2$$Register);
  7785     // Fallthrow for final divide, tmp2 has 32 bit hi result
  7787     __ bind(Lfast);
  7788     // fast path: src is positive
  7789     __ divl($tmp$$Register); // Use unsigned division
  7791     __ bind(Ldone);
  7792     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  7793     if (con < 0) {
  7794       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  7796   %}
  7797   ins_pipe( pipe_slow );
  7798 %}
  7800 // Remainder Register Long (remainder fit into 32 bits)
  7801 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7802   match(Set dst (ModL dst imm));
  7803   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7804   ins_cost(1000);
  7805   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  7806             "CMP    $tmp,EDX\n\t"
  7807             "JA,s   fast\n\t"
  7808             "MOV    $tmp2,EAX\n\t"
  7809             "MOV    EAX,EDX\n\t"
  7810             "MOV    EDX,0\n\t"
  7811             "JLE,s  pos\n\t"
  7812             "LNEG   EAX : $tmp2\n\t"
  7813             "DIV    $tmp # unsigned division\n\t"
  7814             "MOV    EAX,$tmp2\n\t"
  7815             "DIV    $tmp\n\t"
  7816             "NEG    EDX\n\t"
  7817             "JMP,s  done\n"
  7818     "pos:\n\t"
  7819             "DIV    $tmp\n\t"
  7820             "MOV    EAX,$tmp2\n"
  7821     "fast:\n\t"
  7822             "DIV    $tmp\n"
  7823     "done:\n\t"
  7824             "MOV    EAX,EDX\n\t"
  7825             "SAR    EDX,31\n\t" %}
  7826   ins_encode %{
  7827     int con = (int)$imm$$constant;
  7828     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7829     int pcon = (con > 0) ? con : -con;
  7830     Label  Lfast, Lpos, Ldone;
  7832     __ movl($tmp$$Register, pcon);
  7833     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7834     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  7836     __ movl($tmp2$$Register, $dst$$Register); // save
  7837     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7838     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7839     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7841     // Negative dividend.
  7842     // convert value to positive to use unsigned division
  7843     __ lneg($dst$$Register, $tmp2$$Register);
  7844     __ divl($tmp$$Register);
  7845     __ movl($dst$$Register, $tmp2$$Register);
  7846     __ divl($tmp$$Register);
  7847     // revert remainder back to negative
  7848     __ negl(HIGH_FROM_LOW($dst$$Register));
  7849     __ jmpb(Ldone);
  7851     __ bind(Lpos);
  7852     __ divl($tmp$$Register);
  7853     __ movl($dst$$Register, $tmp2$$Register);
  7855     __ bind(Lfast);
  7856     // fast path: src is positive
  7857     __ divl($tmp$$Register);
  7859     __ bind(Ldone);
  7860     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7861     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  7863   %}
  7864   ins_pipe( pipe_slow );
  7865 %}
  7867 // Integer Shift Instructions
  7868 // Shift Left by one
  7869 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7870   match(Set dst (LShiftI dst shift));
  7871   effect(KILL cr);
  7873   size(2);
  7874   format %{ "SHL    $dst,$shift" %}
  7875   opcode(0xD1, 0x4);  /* D1 /4 */
  7876   ins_encode( OpcP, RegOpc( dst ) );
  7877   ins_pipe( ialu_reg );
  7878 %}
  7880 // Shift Left by 8-bit immediate
  7881 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7882   match(Set dst (LShiftI dst shift));
  7883   effect(KILL cr);
  7885   size(3);
  7886   format %{ "SHL    $dst,$shift" %}
  7887   opcode(0xC1, 0x4);  /* C1 /4 ib */
  7888   ins_encode( RegOpcImm( dst, shift) );
  7889   ins_pipe( ialu_reg );
  7890 %}
  7892 // Shift Left by variable
  7893 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7894   match(Set dst (LShiftI dst shift));
  7895   effect(KILL cr);
  7897   size(2);
  7898   format %{ "SHL    $dst,$shift" %}
  7899   opcode(0xD3, 0x4);  /* D3 /4 */
  7900   ins_encode( OpcP, RegOpc( dst ) );
  7901   ins_pipe( ialu_reg_reg );
  7902 %}
  7904 // Arithmetic shift right by one
  7905 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7906   match(Set dst (RShiftI dst shift));
  7907   effect(KILL cr);
  7909   size(2);
  7910   format %{ "SAR    $dst,$shift" %}
  7911   opcode(0xD1, 0x7);  /* D1 /7 */
  7912   ins_encode( OpcP, RegOpc( dst ) );
  7913   ins_pipe( ialu_reg );
  7914 %}
  7916 // Arithmetic shift right by one
  7917 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  7918   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7919   effect(KILL cr);
  7920   format %{ "SAR    $dst,$shift" %}
  7921   opcode(0xD1, 0x7);  /* D1 /7 */
  7922   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  7923   ins_pipe( ialu_mem_imm );
  7924 %}
  7926 // Arithmetic Shift Right by 8-bit immediate
  7927 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7928   match(Set dst (RShiftI dst shift));
  7929   effect(KILL cr);
  7931   size(3);
  7932   format %{ "SAR    $dst,$shift" %}
  7933   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7934   ins_encode( RegOpcImm( dst, shift ) );
  7935   ins_pipe( ialu_mem_imm );
  7936 %}
  7938 // Arithmetic Shift Right by 8-bit immediate
  7939 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  7940   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7941   effect(KILL cr);
  7943   format %{ "SAR    $dst,$shift" %}
  7944   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7945   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  7946   ins_pipe( ialu_mem_imm );
  7947 %}
  7949 // Arithmetic Shift Right by variable
  7950 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7951   match(Set dst (RShiftI dst shift));
  7952   effect(KILL cr);
  7954   size(2);
  7955   format %{ "SAR    $dst,$shift" %}
  7956   opcode(0xD3, 0x7);  /* D3 /7 */
  7957   ins_encode( OpcP, RegOpc( dst ) );
  7958   ins_pipe( ialu_reg_reg );
  7959 %}
  7961 // Logical shift right by one
  7962 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7963   match(Set dst (URShiftI dst shift));
  7964   effect(KILL cr);
  7966   size(2);
  7967   format %{ "SHR    $dst,$shift" %}
  7968   opcode(0xD1, 0x5);  /* D1 /5 */
  7969   ins_encode( OpcP, RegOpc( dst ) );
  7970   ins_pipe( ialu_reg );
  7971 %}
  7973 // Logical Shift Right by 8-bit immediate
  7974 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7975   match(Set dst (URShiftI dst shift));
  7976   effect(KILL cr);
  7978   size(3);
  7979   format %{ "SHR    $dst,$shift" %}
  7980   opcode(0xC1, 0x5);  /* C1 /5 ib */
  7981   ins_encode( RegOpcImm( dst, shift) );
  7982   ins_pipe( ialu_reg );
  7983 %}
  7986 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  7987 // This idiom is used by the compiler for the i2b bytecode.
  7988 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  7989   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  7991   size(3);
  7992   format %{ "MOVSX  $dst,$src :8" %}
  7993   ins_encode %{
  7994     __ movsbl($dst$$Register, $src$$Register);
  7995   %}
  7996   ins_pipe(ialu_reg_reg);
  7997 %}
  7999 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8000 // This idiom is used by the compiler the i2s bytecode.
  8001 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  8002   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8004   size(3);
  8005   format %{ "MOVSX  $dst,$src :16" %}
  8006   ins_encode %{
  8007     __ movswl($dst$$Register, $src$$Register);
  8008   %}
  8009   ins_pipe(ialu_reg_reg);
  8010 %}
  8013 // Logical Shift Right by variable
  8014 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8015   match(Set dst (URShiftI dst shift));
  8016   effect(KILL cr);
  8018   size(2);
  8019   format %{ "SHR    $dst,$shift" %}
  8020   opcode(0xD3, 0x5);  /* D3 /5 */
  8021   ins_encode( OpcP, RegOpc( dst ) );
  8022   ins_pipe( ialu_reg_reg );
  8023 %}
  8026 //----------Logical Instructions-----------------------------------------------
  8027 //----------Integer Logical Instructions---------------------------------------
  8028 // And Instructions
  8029 // And Register with Register
  8030 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8031   match(Set dst (AndI dst src));
  8032   effect(KILL cr);
  8034   size(2);
  8035   format %{ "AND    $dst,$src" %}
  8036   opcode(0x23);
  8037   ins_encode( OpcP, RegReg( dst, src) );
  8038   ins_pipe( ialu_reg_reg );
  8039 %}
  8041 // And Register with Immediate
  8042 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8043   match(Set dst (AndI dst src));
  8044   effect(KILL cr);
  8046   format %{ "AND    $dst,$src" %}
  8047   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8048   // ins_encode( RegImm( dst, src) );
  8049   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8050   ins_pipe( ialu_reg );
  8051 %}
  8053 // And Register with Memory
  8054 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8055   match(Set dst (AndI dst (LoadI src)));
  8056   effect(KILL cr);
  8058   ins_cost(125);
  8059   format %{ "AND    $dst,$src" %}
  8060   opcode(0x23);
  8061   ins_encode( OpcP, RegMem( dst, src) );
  8062   ins_pipe( ialu_reg_mem );
  8063 %}
  8065 // And Memory with Register
  8066 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8067   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8068   effect(KILL cr);
  8070   ins_cost(150);
  8071   format %{ "AND    $dst,$src" %}
  8072   opcode(0x21);  /* Opcode 21 /r */
  8073   ins_encode( OpcP, RegMem( src, dst ) );
  8074   ins_pipe( ialu_mem_reg );
  8075 %}
  8077 // And Memory with Immediate
  8078 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8079   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8080   effect(KILL cr);
  8082   ins_cost(125);
  8083   format %{ "AND    $dst,$src" %}
  8084   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8085   // ins_encode( MemImm( dst, src) );
  8086   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8087   ins_pipe( ialu_mem_imm );
  8088 %}
  8090 // BMI1 instructions
  8091 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
  8092   match(Set dst (AndI (XorI src1 minus_1) src2));
  8093   predicate(UseBMI1Instructions);
  8094   effect(KILL cr);
  8096   format %{ "ANDNL  $dst, $src1, $src2" %}
  8098   ins_encode %{
  8099     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
  8100   %}
  8101   ins_pipe(ialu_reg);
  8102 %}
  8104 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
  8105   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
  8106   predicate(UseBMI1Instructions);
  8107   effect(KILL cr);
  8109   ins_cost(125);
  8110   format %{ "ANDNL  $dst, $src1, $src2" %}
  8112   ins_encode %{
  8113     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
  8114   %}
  8115   ins_pipe(ialu_reg_mem);
  8116 %}
  8118 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
  8119   match(Set dst (AndI (SubI imm_zero src) src));
  8120   predicate(UseBMI1Instructions);
  8121   effect(KILL cr);
  8123   format %{ "BLSIL  $dst, $src" %}
  8125   ins_encode %{
  8126     __ blsil($dst$$Register, $src$$Register);
  8127   %}
  8128   ins_pipe(ialu_reg);
  8129 %}
  8131 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
  8132   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
  8133   predicate(UseBMI1Instructions);
  8134   effect(KILL cr);
  8136   ins_cost(125);
  8137   format %{ "BLSIL  $dst, $src" %}
  8139   ins_encode %{
  8140     __ blsil($dst$$Register, $src$$Address);
  8141   %}
  8142   ins_pipe(ialu_reg_mem);
  8143 %}
  8145 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8146 %{
  8147   match(Set dst (XorI (AddI src minus_1) src));
  8148   predicate(UseBMI1Instructions);
  8149   effect(KILL cr);
  8151   format %{ "BLSMSKL $dst, $src" %}
  8153   ins_encode %{
  8154     __ blsmskl($dst$$Register, $src$$Register);
  8155   %}
  8157   ins_pipe(ialu_reg);
  8158 %}
  8160 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8161 %{
  8162   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
  8163   predicate(UseBMI1Instructions);
  8164   effect(KILL cr);
  8166   ins_cost(125);
  8167   format %{ "BLSMSKL $dst, $src" %}
  8169   ins_encode %{
  8170     __ blsmskl($dst$$Register, $src$$Address);
  8171   %}
  8173   ins_pipe(ialu_reg_mem);
  8174 %}
  8176 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8177 %{
  8178   match(Set dst (AndI (AddI src minus_1) src) );
  8179   predicate(UseBMI1Instructions);
  8180   effect(KILL cr);
  8182   format %{ "BLSRL  $dst, $src" %}
  8184   ins_encode %{
  8185     __ blsrl($dst$$Register, $src$$Register);
  8186   %}
  8188   ins_pipe(ialu_reg);
  8189 %}
  8191 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8192 %{
  8193   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
  8194   predicate(UseBMI1Instructions);
  8195   effect(KILL cr);
  8197   ins_cost(125);
  8198   format %{ "BLSRL  $dst, $src" %}
  8200   ins_encode %{
  8201     __ blsrl($dst$$Register, $src$$Address);
  8202   %}
  8204   ins_pipe(ialu_reg_mem);
  8205 %}
  8207 // Or Instructions
  8208 // Or Register with Register
  8209 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8210   match(Set dst (OrI dst src));
  8211   effect(KILL cr);
  8213   size(2);
  8214   format %{ "OR     $dst,$src" %}
  8215   opcode(0x0B);
  8216   ins_encode( OpcP, RegReg( dst, src) );
  8217   ins_pipe( ialu_reg_reg );
  8218 %}
  8220 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8221   match(Set dst (OrI dst (CastP2X src)));
  8222   effect(KILL cr);
  8224   size(2);
  8225   format %{ "OR     $dst,$src" %}
  8226   opcode(0x0B);
  8227   ins_encode( OpcP, RegReg( dst, src) );
  8228   ins_pipe( ialu_reg_reg );
  8229 %}
  8232 // Or Register with Immediate
  8233 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8234   match(Set dst (OrI dst src));
  8235   effect(KILL cr);
  8237   format %{ "OR     $dst,$src" %}
  8238   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8239   // ins_encode( RegImm( dst, src) );
  8240   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8241   ins_pipe( ialu_reg );
  8242 %}
  8244 // Or Register with Memory
  8245 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8246   match(Set dst (OrI dst (LoadI src)));
  8247   effect(KILL cr);
  8249   ins_cost(125);
  8250   format %{ "OR     $dst,$src" %}
  8251   opcode(0x0B);
  8252   ins_encode( OpcP, RegMem( dst, src) );
  8253   ins_pipe( ialu_reg_mem );
  8254 %}
  8256 // Or Memory with Register
  8257 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8258   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8259   effect(KILL cr);
  8261   ins_cost(150);
  8262   format %{ "OR     $dst,$src" %}
  8263   opcode(0x09);  /* Opcode 09 /r */
  8264   ins_encode( OpcP, RegMem( src, dst ) );
  8265   ins_pipe( ialu_mem_reg );
  8266 %}
  8268 // Or Memory with Immediate
  8269 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8270   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8271   effect(KILL cr);
  8273   ins_cost(125);
  8274   format %{ "OR     $dst,$src" %}
  8275   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8276   // ins_encode( MemImm( dst, src) );
  8277   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8278   ins_pipe( ialu_mem_imm );
  8279 %}
  8281 // ROL/ROR
  8282 // ROL expand
  8283 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8284   effect(USE_DEF dst, USE shift, KILL cr);
  8286   format %{ "ROL    $dst, $shift" %}
  8287   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8288   ins_encode( OpcP, RegOpc( dst ));
  8289   ins_pipe( ialu_reg );
  8290 %}
  8292 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8293   effect(USE_DEF dst, USE shift, KILL cr);
  8295   format %{ "ROL    $dst, $shift" %}
  8296   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8297   ins_encode( RegOpcImm(dst, shift) );
  8298   ins_pipe(ialu_reg);
  8299 %}
  8301 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8302   effect(USE_DEF dst, USE shift, KILL cr);
  8304   format %{ "ROL    $dst, $shift" %}
  8305   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8306   ins_encode(OpcP, RegOpc(dst));
  8307   ins_pipe( ialu_reg_reg );
  8308 %}
  8309 // end of ROL expand
  8311 // ROL 32bit by one once
  8312 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8313   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8315   expand %{
  8316     rolI_eReg_imm1(dst, lshift, cr);
  8317   %}
  8318 %}
  8320 // ROL 32bit var by imm8 once
  8321 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8322   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8323   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8325   expand %{
  8326     rolI_eReg_imm8(dst, lshift, cr);
  8327   %}
  8328 %}
  8330 // ROL 32bit var by var once
  8331 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8332   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8334   expand %{
  8335     rolI_eReg_CL(dst, shift, cr);
  8336   %}
  8337 %}
  8339 // ROL 32bit var by var once
  8340 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8341   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8343   expand %{
  8344     rolI_eReg_CL(dst, shift, cr);
  8345   %}
  8346 %}
  8348 // ROR expand
  8349 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8350   effect(USE_DEF dst, USE shift, KILL cr);
  8352   format %{ "ROR    $dst, $shift" %}
  8353   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8354   ins_encode( OpcP, RegOpc( dst ) );
  8355   ins_pipe( ialu_reg );
  8356 %}
  8358 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8359   effect (USE_DEF dst, USE shift, KILL cr);
  8361   format %{ "ROR    $dst, $shift" %}
  8362   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8363   ins_encode( RegOpcImm(dst, shift) );
  8364   ins_pipe( ialu_reg );
  8365 %}
  8367 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8368   effect(USE_DEF dst, USE shift, KILL cr);
  8370   format %{ "ROR    $dst, $shift" %}
  8371   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8372   ins_encode(OpcP, RegOpc(dst));
  8373   ins_pipe( ialu_reg_reg );
  8374 %}
  8375 // end of ROR expand
  8377 // ROR right once
  8378 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8379   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8381   expand %{
  8382     rorI_eReg_imm1(dst, rshift, cr);
  8383   %}
  8384 %}
  8386 // ROR 32bit by immI8 once
  8387 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8388   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8389   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8391   expand %{
  8392     rorI_eReg_imm8(dst, rshift, cr);
  8393   %}
  8394 %}
  8396 // ROR 32bit var by var once
  8397 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8398   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8400   expand %{
  8401     rorI_eReg_CL(dst, shift, cr);
  8402   %}
  8403 %}
  8405 // ROR 32bit var by var once
  8406 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8407   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8409   expand %{
  8410     rorI_eReg_CL(dst, shift, cr);
  8411   %}
  8412 %}
  8414 // Xor Instructions
  8415 // Xor Register with Register
  8416 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8417   match(Set dst (XorI dst src));
  8418   effect(KILL cr);
  8420   size(2);
  8421   format %{ "XOR    $dst,$src" %}
  8422   opcode(0x33);
  8423   ins_encode( OpcP, RegReg( dst, src) );
  8424   ins_pipe( ialu_reg_reg );
  8425 %}
  8427 // Xor Register with Immediate -1
  8428 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8429   match(Set dst (XorI dst imm));  
  8431   size(2);
  8432   format %{ "NOT    $dst" %}  
  8433   ins_encode %{
  8434      __ notl($dst$$Register);
  8435   %}
  8436   ins_pipe( ialu_reg );
  8437 %}
  8439 // Xor Register with Immediate
  8440 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8441   match(Set dst (XorI dst src));
  8442   effect(KILL cr);
  8444   format %{ "XOR    $dst,$src" %}
  8445   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8446   // ins_encode( RegImm( dst, src) );
  8447   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8448   ins_pipe( ialu_reg );
  8449 %}
  8451 // Xor Register with Memory
  8452 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8453   match(Set dst (XorI dst (LoadI src)));
  8454   effect(KILL cr);
  8456   ins_cost(125);
  8457   format %{ "XOR    $dst,$src" %}
  8458   opcode(0x33);
  8459   ins_encode( OpcP, RegMem(dst, src) );
  8460   ins_pipe( ialu_reg_mem );
  8461 %}
  8463 // Xor Memory with Register
  8464 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8465   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8466   effect(KILL cr);
  8468   ins_cost(150);
  8469   format %{ "XOR    $dst,$src" %}
  8470   opcode(0x31);  /* Opcode 31 /r */
  8471   ins_encode( OpcP, RegMem( src, dst ) );
  8472   ins_pipe( ialu_mem_reg );
  8473 %}
  8475 // Xor Memory with Immediate
  8476 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8477   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8478   effect(KILL cr);
  8480   ins_cost(125);
  8481   format %{ "XOR    $dst,$src" %}
  8482   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8483   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8484   ins_pipe( ialu_mem_imm );
  8485 %}
  8487 //----------Convert Int to Boolean---------------------------------------------
  8489 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8490   effect( DEF dst, USE src );
  8491   format %{ "MOV    $dst,$src" %}
  8492   ins_encode( enc_Copy( dst, src) );
  8493   ins_pipe( ialu_reg_reg );
  8494 %}
  8496 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8497   effect( USE_DEF dst, USE src, KILL cr );
  8499   size(4);
  8500   format %{ "NEG    $dst\n\t"
  8501             "ADC    $dst,$src" %}
  8502   ins_encode( neg_reg(dst),
  8503               OpcRegReg(0x13,dst,src) );
  8504   ins_pipe( ialu_reg_reg_long );
  8505 %}
  8507 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8508   match(Set dst (Conv2B src));
  8510   expand %{
  8511     movI_nocopy(dst,src);
  8512     ci2b(dst,src,cr);
  8513   %}
  8514 %}
  8516 instruct movP_nocopy(rRegI dst, eRegP src) %{
  8517   effect( DEF dst, USE src );
  8518   format %{ "MOV    $dst,$src" %}
  8519   ins_encode( enc_Copy( dst, src) );
  8520   ins_pipe( ialu_reg_reg );
  8521 %}
  8523 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8524   effect( USE_DEF dst, USE src, KILL cr );
  8525   format %{ "NEG    $dst\n\t"
  8526             "ADC    $dst,$src" %}
  8527   ins_encode( neg_reg(dst),
  8528               OpcRegReg(0x13,dst,src) );
  8529   ins_pipe( ialu_reg_reg_long );
  8530 %}
  8532 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8533   match(Set dst (Conv2B src));
  8535   expand %{
  8536     movP_nocopy(dst,src);
  8537     cp2b(dst,src,cr);
  8538   %}
  8539 %}
  8541 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
  8542   match(Set dst (CmpLTMask p q));
  8543   effect(KILL cr);
  8544   ins_cost(400);
  8546   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8547   format %{ "XOR    $dst,$dst\n\t"
  8548             "CMP    $p,$q\n\t"
  8549             "SETlt  $dst\n\t"
  8550             "NEG    $dst" %}
  8551   ins_encode %{
  8552     Register Rp = $p$$Register;
  8553     Register Rq = $q$$Register;
  8554     Register Rd = $dst$$Register;
  8555     Label done;
  8556     __ xorl(Rd, Rd);
  8557     __ cmpl(Rp, Rq);
  8558     __ setb(Assembler::less, Rd);
  8559     __ negl(Rd);
  8560   %}
  8562   ins_pipe(pipe_slow);
  8563 %}
  8565 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
  8566   match(Set dst (CmpLTMask dst zero));
  8567   effect(DEF dst, KILL cr);
  8568   ins_cost(100);
  8570   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
  8571   ins_encode %{
  8572   __ sarl($dst$$Register, 31);
  8573   %}
  8574   ins_pipe(ialu_reg);
  8575 %}
  8577 /* better to save a register than avoid a branch */
  8578 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8579   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8580   effect(KILL cr);
  8581   ins_cost(400);
  8582   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
  8583             "JGE    done\n\t"
  8584             "ADD    $p,$y\n"
  8585             "done:  " %}
  8586   ins_encode %{
  8587     Register Rp = $p$$Register;
  8588     Register Rq = $q$$Register;
  8589     Register Ry = $y$$Register;
  8590     Label done;
  8591     __ subl(Rp, Rq);
  8592     __ jccb(Assembler::greaterEqual, done);
  8593     __ addl(Rp, Ry);
  8594     __ bind(done);
  8595   %}
  8597   ins_pipe(pipe_cmplt);
  8598 %}
  8600 /* better to save a register than avoid a branch */
  8601 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8602   match(Set y (AndI (CmpLTMask p q) y));
  8603   effect(KILL cr);
  8605   ins_cost(300);
  8607   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
  8608             "JLT      done\n\t"
  8609             "XORL     $y, $y\n"
  8610             "done:  " %}
  8611   ins_encode %{
  8612     Register Rp = $p$$Register;
  8613     Register Rq = $q$$Register;
  8614     Register Ry = $y$$Register;
  8615     Label done;
  8616     __ cmpl(Rp, Rq);
  8617     __ jccb(Assembler::less, done);
  8618     __ xorl(Ry, Ry);
  8619     __ bind(done);
  8620   %}
  8622   ins_pipe(pipe_cmplt);
  8623 %}
  8625 /* If I enable this, I encourage spilling in the inner loop of compress.
  8626 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
  8627   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  8628 */
  8629 //----------Overflow Math Instructions-----------------------------------------
  8631 instruct overflowAddI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8632 %{
  8633   match(Set cr (OverflowAddI op1 op2));
  8634   effect(DEF cr, USE_KILL op1, USE op2);
  8636   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8638   ins_encode %{
  8639     __ addl($op1$$Register, $op2$$Register);
  8640   %}
  8641   ins_pipe(ialu_reg_reg);
  8642 %}
  8644 instruct overflowAddI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
  8645 %{
  8646   match(Set cr (OverflowAddI op1 op2));
  8647   effect(DEF cr, USE_KILL op1, USE op2);
  8649   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8651   ins_encode %{
  8652     __ addl($op1$$Register, $op2$$constant);
  8653   %}
  8654   ins_pipe(ialu_reg_reg);
  8655 %}
  8657 instruct overflowSubI_rReg(eFlagsReg cr, rRegI op1, rRegI op2)
  8658 %{
  8659   match(Set cr (OverflowSubI op1 op2));
  8661   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8662   ins_encode %{
  8663     __ cmpl($op1$$Register, $op2$$Register);
  8664   %}
  8665   ins_pipe(ialu_reg_reg);
  8666 %}
  8668 instruct overflowSubI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2)
  8669 %{
  8670   match(Set cr (OverflowSubI op1 op2));
  8672   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8673   ins_encode %{
  8674     __ cmpl($op1$$Register, $op2$$constant);
  8675   %}
  8676   ins_pipe(ialu_reg_reg);
  8677 %}
  8679 instruct overflowNegI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
  8680 %{
  8681   match(Set cr (OverflowSubI zero op2));
  8682   effect(DEF cr, USE_KILL op2);
  8684   format %{ "NEG    $op2\t# overflow check int" %}
  8685   ins_encode %{
  8686     __ negl($op2$$Register);
  8687   %}
  8688   ins_pipe(ialu_reg_reg);
  8689 %}
  8691 instruct overflowMulI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8692 %{
  8693   match(Set cr (OverflowMulI op1 op2));
  8694   effect(DEF cr, USE_KILL op1, USE op2);
  8696   format %{ "IMUL    $op1, $op2\t# overflow check int" %}
  8697   ins_encode %{
  8698     __ imull($op1$$Register, $op2$$Register);
  8699   %}
  8700   ins_pipe(ialu_reg_reg_alu0);
  8701 %}
  8703 instruct overflowMulI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
  8704 %{
  8705   match(Set cr (OverflowMulI op1 op2));
  8706   effect(DEF cr, TEMP tmp, USE op1, USE op2);
  8708   format %{ "IMUL    $tmp, $op1, $op2\t# overflow check int" %}
  8709   ins_encode %{
  8710     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
  8711   %}
  8712   ins_pipe(ialu_reg_reg_alu0);
  8713 %}
  8715 //----------Long Instructions------------------------------------------------
  8716 // Add Long Register with Register
  8717 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8718   match(Set dst (AddL dst src));
  8719   effect(KILL cr);
  8720   ins_cost(200);
  8721   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8722             "ADC    $dst.hi,$src.hi" %}
  8723   opcode(0x03, 0x13);
  8724   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8725   ins_pipe( ialu_reg_reg_long );
  8726 %}
  8728 // Add Long Register with Immediate
  8729 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8730   match(Set dst (AddL dst src));
  8731   effect(KILL cr);
  8732   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8733             "ADC    $dst.hi,$src.hi" %}
  8734   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  8735   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8736   ins_pipe( ialu_reg_long );
  8737 %}
  8739 // Add Long Register with Memory
  8740 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8741   match(Set dst (AddL dst (LoadL mem)));
  8742   effect(KILL cr);
  8743   ins_cost(125);
  8744   format %{ "ADD    $dst.lo,$mem\n\t"
  8745             "ADC    $dst.hi,$mem+4" %}
  8746   opcode(0x03, 0x13);
  8747   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8748   ins_pipe( ialu_reg_long_mem );
  8749 %}
  8751 // Subtract Long Register with Register.
  8752 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8753   match(Set dst (SubL dst src));
  8754   effect(KILL cr);
  8755   ins_cost(200);
  8756   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8757             "SBB    $dst.hi,$src.hi" %}
  8758   opcode(0x2B, 0x1B);
  8759   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8760   ins_pipe( ialu_reg_reg_long );
  8761 %}
  8763 // Subtract Long Register with Immediate
  8764 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8765   match(Set dst (SubL dst src));
  8766   effect(KILL cr);
  8767   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8768             "SBB    $dst.hi,$src.hi" %}
  8769   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  8770   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8771   ins_pipe( ialu_reg_long );
  8772 %}
  8774 // Subtract Long Register with Memory
  8775 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8776   match(Set dst (SubL dst (LoadL mem)));
  8777   effect(KILL cr);
  8778   ins_cost(125);
  8779   format %{ "SUB    $dst.lo,$mem\n\t"
  8780             "SBB    $dst.hi,$mem+4" %}
  8781   opcode(0x2B, 0x1B);
  8782   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8783   ins_pipe( ialu_reg_long_mem );
  8784 %}
  8786 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  8787   match(Set dst (SubL zero dst));
  8788   effect(KILL cr);
  8789   ins_cost(300);
  8790   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  8791   ins_encode( neg_long(dst) );
  8792   ins_pipe( ialu_reg_reg_long );
  8793 %}
  8795 // And Long Register with Register
  8796 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8797   match(Set dst (AndL dst src));
  8798   effect(KILL cr);
  8799   format %{ "AND    $dst.lo,$src.lo\n\t"
  8800             "AND    $dst.hi,$src.hi" %}
  8801   opcode(0x23,0x23);
  8802   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  8803   ins_pipe( ialu_reg_reg_long );
  8804 %}
  8806 // And Long Register with Immediate
  8807 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8808   match(Set dst (AndL dst src));
  8809   effect(KILL cr);
  8810   format %{ "AND    $dst.lo,$src.lo\n\t"
  8811             "AND    $dst.hi,$src.hi" %}
  8812   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  8813   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8814   ins_pipe( ialu_reg_long );
  8815 %}
  8817 // And Long Register with Memory
  8818 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8819   match(Set dst (AndL dst (LoadL mem)));
  8820   effect(KILL cr);
  8821   ins_cost(125);
  8822   format %{ "AND    $dst.lo,$mem\n\t"
  8823             "AND    $dst.hi,$mem+4" %}
  8824   opcode(0x23, 0x23);
  8825   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8826   ins_pipe( ialu_reg_long_mem );
  8827 %}
  8829 // BMI1 instructions
  8830 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
  8831   match(Set dst (AndL (XorL src1 minus_1) src2));
  8832   predicate(UseBMI1Instructions);
  8833   effect(KILL cr, TEMP dst);
  8835   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
  8836             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
  8837          %}
  8839   ins_encode %{
  8840     Register Rdst = $dst$$Register;
  8841     Register Rsrc1 = $src1$$Register;
  8842     Register Rsrc2 = $src2$$Register;
  8843     __ andnl(Rdst, Rsrc1, Rsrc2);
  8844     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
  8845   %}
  8846   ins_pipe(ialu_reg_reg_long);
  8847 %}
  8849 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
  8850   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
  8851   predicate(UseBMI1Instructions);
  8852   effect(KILL cr, TEMP dst);
  8854   ins_cost(125);
  8855   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
  8856             "ANDNL  $dst.hi, $src1.hi, $src2+4"
  8857          %}
  8859   ins_encode %{
  8860     Register Rdst = $dst$$Register;
  8861     Register Rsrc1 = $src1$$Register;
  8862     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
  8864     __ andnl(Rdst, Rsrc1, $src2$$Address);
  8865     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
  8866   %}
  8867   ins_pipe(ialu_reg_mem);
  8868 %}
  8870 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
  8871   match(Set dst (AndL (SubL imm_zero src) src));
  8872   predicate(UseBMI1Instructions);
  8873   effect(KILL cr, TEMP dst);
  8875   format %{ "MOVL   $dst.hi, 0\n\t"
  8876             "BLSIL  $dst.lo, $src.lo\n\t"
  8877             "JNZ    done\n\t"
  8878             "BLSIL  $dst.hi, $src.hi\n"
  8879             "done:"
  8880          %}
  8882   ins_encode %{
  8883     Label done;
  8884     Register Rdst = $dst$$Register;
  8885     Register Rsrc = $src$$Register;
  8886     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8887     __ blsil(Rdst, Rsrc);
  8888     __ jccb(Assembler::notZero, done);
  8889     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8890     __ bind(done);
  8891   %}
  8892   ins_pipe(ialu_reg);
  8893 %}
  8895 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
  8896   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
  8897   predicate(UseBMI1Instructions);
  8898   effect(KILL cr, TEMP dst);
  8900   ins_cost(125);
  8901   format %{ "MOVL   $dst.hi, 0\n\t"
  8902             "BLSIL  $dst.lo, $src\n\t"
  8903             "JNZ    done\n\t"
  8904             "BLSIL  $dst.hi, $src+4\n"
  8905             "done:"
  8906          %}
  8908   ins_encode %{
  8909     Label done;
  8910     Register Rdst = $dst$$Register;
  8911     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8913     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8914     __ blsil(Rdst, $src$$Address);
  8915     __ jccb(Assembler::notZero, done);
  8916     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
  8917     __ bind(done);
  8918   %}
  8919   ins_pipe(ialu_reg_mem);
  8920 %}
  8922 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8923 %{
  8924   match(Set dst (XorL (AddL src minus_1) src));
  8925   predicate(UseBMI1Instructions);
  8926   effect(KILL cr, TEMP dst);
  8928   format %{ "MOVL    $dst.hi, 0\n\t"
  8929             "BLSMSKL $dst.lo, $src.lo\n\t"
  8930             "JNC     done\n\t"
  8931             "BLSMSKL $dst.hi, $src.hi\n"
  8932             "done:"
  8933          %}
  8935   ins_encode %{
  8936     Label done;
  8937     Register Rdst = $dst$$Register;
  8938     Register Rsrc = $src$$Register;
  8939     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8940     __ blsmskl(Rdst, Rsrc);
  8941     __ jccb(Assembler::carryClear, done);
  8942     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8943     __ bind(done);
  8944   %}
  8946   ins_pipe(ialu_reg);
  8947 %}
  8949 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  8950 %{
  8951   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
  8952   predicate(UseBMI1Instructions);
  8953   effect(KILL cr, TEMP dst);
  8955   ins_cost(125);
  8956   format %{ "MOVL    $dst.hi, 0\n\t"
  8957             "BLSMSKL $dst.lo, $src\n\t"
  8958             "JNC     done\n\t"
  8959             "BLSMSKL $dst.hi, $src+4\n"
  8960             "done:"
  8961          %}
  8963   ins_encode %{
  8964     Label done;
  8965     Register Rdst = $dst$$Register;
  8966     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8968     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8969     __ blsmskl(Rdst, $src$$Address);
  8970     __ jccb(Assembler::carryClear, done);
  8971     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
  8972     __ bind(done);
  8973   %}
  8975   ins_pipe(ialu_reg_mem);
  8976 %}
  8978 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8979 %{
  8980   match(Set dst (AndL (AddL src minus_1) src) );
  8981   predicate(UseBMI1Instructions);
  8982   effect(KILL cr, TEMP dst);
  8984   format %{ "MOVL   $dst.hi, $src.hi\n\t"
  8985             "BLSRL  $dst.lo, $src.lo\n\t"
  8986             "JNC    done\n\t"
  8987             "BLSRL  $dst.hi, $src.hi\n"
  8988             "done:"
  8989   %}
  8991   ins_encode %{
  8992     Label done;
  8993     Register Rdst = $dst$$Register;
  8994     Register Rsrc = $src$$Register;
  8995     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8996     __ blsrl(Rdst, Rsrc);
  8997     __ jccb(Assembler::carryClear, done);
  8998     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8999     __ bind(done);
  9000   %}
  9002   ins_pipe(ialu_reg);
  9003 %}
  9005 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  9006 %{
  9007   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
  9008   predicate(UseBMI1Instructions);
  9009   effect(KILL cr, TEMP dst);
  9011   ins_cost(125);
  9012   format %{ "MOVL   $dst.hi, $src+4\n\t"
  9013             "BLSRL  $dst.lo, $src\n\t"
  9014             "JNC    done\n\t"
  9015             "BLSRL  $dst.hi, $src+4\n"
  9016             "done:"
  9017   %}
  9019   ins_encode %{
  9020     Label done;
  9021     Register Rdst = $dst$$Register;
  9022     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  9023     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
  9024     __ blsrl(Rdst, $src$$Address);
  9025     __ jccb(Assembler::carryClear, done);
  9026     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
  9027     __ bind(done);
  9028   %}
  9030   ins_pipe(ialu_reg_mem);
  9031 %}
  9033 // Or Long Register with Register
  9034 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9035   match(Set dst (OrL dst src));
  9036   effect(KILL cr);
  9037   format %{ "OR     $dst.lo,$src.lo\n\t"
  9038             "OR     $dst.hi,$src.hi" %}
  9039   opcode(0x0B,0x0B);
  9040   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9041   ins_pipe( ialu_reg_reg_long );
  9042 %}
  9044 // Or Long Register with Immediate
  9045 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9046   match(Set dst (OrL dst src));
  9047   effect(KILL cr);
  9048   format %{ "OR     $dst.lo,$src.lo\n\t"
  9049             "OR     $dst.hi,$src.hi" %}
  9050   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9051   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9052   ins_pipe( ialu_reg_long );
  9053 %}
  9055 // Or Long Register with Memory
  9056 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9057   match(Set dst (OrL dst (LoadL mem)));
  9058   effect(KILL cr);
  9059   ins_cost(125);
  9060   format %{ "OR     $dst.lo,$mem\n\t"
  9061             "OR     $dst.hi,$mem+4" %}
  9062   opcode(0x0B,0x0B);
  9063   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9064   ins_pipe( ialu_reg_long_mem );
  9065 %}
  9067 // Xor Long Register with Register
  9068 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9069   match(Set dst (XorL dst src));
  9070   effect(KILL cr);
  9071   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9072             "XOR    $dst.hi,$src.hi" %}
  9073   opcode(0x33,0x33);
  9074   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9075   ins_pipe( ialu_reg_reg_long );
  9076 %}
  9078 // Xor Long Register with Immediate -1
  9079 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9080   match(Set dst (XorL dst imm));  
  9081   format %{ "NOT    $dst.lo\n\t"
  9082             "NOT    $dst.hi" %}
  9083   ins_encode %{
  9084      __ notl($dst$$Register);
  9085      __ notl(HIGH_FROM_LOW($dst$$Register));
  9086   %}
  9087   ins_pipe( ialu_reg_long );
  9088 %}
  9090 // Xor Long Register with Immediate
  9091 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9092   match(Set dst (XorL dst src));
  9093   effect(KILL cr);
  9094   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9095             "XOR    $dst.hi,$src.hi" %}
  9096   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9097   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9098   ins_pipe( ialu_reg_long );
  9099 %}
  9101 // Xor Long Register with Memory
  9102 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9103   match(Set dst (XorL dst (LoadL mem)));
  9104   effect(KILL cr);
  9105   ins_cost(125);
  9106   format %{ "XOR    $dst.lo,$mem\n\t"
  9107             "XOR    $dst.hi,$mem+4" %}
  9108   opcode(0x33,0x33);
  9109   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9110   ins_pipe( ialu_reg_long_mem );
  9111 %}
  9113 // Shift Left Long by 1
  9114 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9115   predicate(UseNewLongLShift);
  9116   match(Set dst (LShiftL dst cnt));
  9117   effect(KILL cr);
  9118   ins_cost(100);
  9119   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9120             "ADC    $dst.hi,$dst.hi" %}
  9121   ins_encode %{
  9122     __ addl($dst$$Register,$dst$$Register);
  9123     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9124   %}
  9125   ins_pipe( ialu_reg_long );
  9126 %}
  9128 // Shift Left Long by 2
  9129 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9130   predicate(UseNewLongLShift);
  9131   match(Set dst (LShiftL dst cnt));
  9132   effect(KILL cr);
  9133   ins_cost(100);
  9134   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9135             "ADC    $dst.hi,$dst.hi\n\t" 
  9136             "ADD    $dst.lo,$dst.lo\n\t"
  9137             "ADC    $dst.hi,$dst.hi" %}
  9138   ins_encode %{
  9139     __ addl($dst$$Register,$dst$$Register);
  9140     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9141     __ addl($dst$$Register,$dst$$Register);
  9142     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9143   %}
  9144   ins_pipe( ialu_reg_long );
  9145 %}
  9147 // Shift Left Long by 3
  9148 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9149   predicate(UseNewLongLShift);
  9150   match(Set dst (LShiftL dst cnt));
  9151   effect(KILL cr);
  9152   ins_cost(100);
  9153   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9154             "ADC    $dst.hi,$dst.hi\n\t" 
  9155             "ADD    $dst.lo,$dst.lo\n\t"
  9156             "ADC    $dst.hi,$dst.hi\n\t" 
  9157             "ADD    $dst.lo,$dst.lo\n\t"
  9158             "ADC    $dst.hi,$dst.hi" %}
  9159   ins_encode %{
  9160     __ addl($dst$$Register,$dst$$Register);
  9161     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9162     __ addl($dst$$Register,$dst$$Register);
  9163     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9164     __ addl($dst$$Register,$dst$$Register);
  9165     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9166   %}
  9167   ins_pipe( ialu_reg_long );
  9168 %}
  9170 // Shift Left Long by 1-31
  9171 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9172   match(Set dst (LShiftL dst cnt));
  9173   effect(KILL cr);
  9174   ins_cost(200);
  9175   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9176             "SHL    $dst.lo,$cnt" %}
  9177   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9178   ins_encode( move_long_small_shift(dst,cnt) );
  9179   ins_pipe( ialu_reg_long );
  9180 %}
  9182 // Shift Left Long by 32-63
  9183 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9184   match(Set dst (LShiftL dst cnt));
  9185   effect(KILL cr);
  9186   ins_cost(300);
  9187   format %{ "MOV    $dst.hi,$dst.lo\n"
  9188           "\tSHL    $dst.hi,$cnt-32\n"
  9189           "\tXOR    $dst.lo,$dst.lo" %}
  9190   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9191   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9192   ins_pipe( ialu_reg_long );
  9193 %}
  9195 // Shift Left Long by variable
  9196 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9197   match(Set dst (LShiftL dst shift));
  9198   effect(KILL cr);
  9199   ins_cost(500+200);
  9200   size(17);
  9201   format %{ "TEST   $shift,32\n\t"
  9202             "JEQ,s  small\n\t"
  9203             "MOV    $dst.hi,$dst.lo\n\t"
  9204             "XOR    $dst.lo,$dst.lo\n"
  9205     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9206             "SHL    $dst.lo,$shift" %}
  9207   ins_encode( shift_left_long( dst, shift ) );
  9208   ins_pipe( pipe_slow );
  9209 %}
  9211 // Shift Right Long by 1-31
  9212 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9213   match(Set dst (URShiftL dst cnt));
  9214   effect(KILL cr);
  9215   ins_cost(200);
  9216   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9217             "SHR    $dst.hi,$cnt" %}
  9218   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9219   ins_encode( move_long_small_shift(dst,cnt) );
  9220   ins_pipe( ialu_reg_long );
  9221 %}
  9223 // Shift Right Long by 32-63
  9224 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9225   match(Set dst (URShiftL dst cnt));
  9226   effect(KILL cr);
  9227   ins_cost(300);
  9228   format %{ "MOV    $dst.lo,$dst.hi\n"
  9229           "\tSHR    $dst.lo,$cnt-32\n"
  9230           "\tXOR    $dst.hi,$dst.hi" %}
  9231   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9232   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9233   ins_pipe( ialu_reg_long );
  9234 %}
  9236 // Shift Right Long by variable
  9237 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9238   match(Set dst (URShiftL dst shift));
  9239   effect(KILL cr);
  9240   ins_cost(600);
  9241   size(17);
  9242   format %{ "TEST   $shift,32\n\t"
  9243             "JEQ,s  small\n\t"
  9244             "MOV    $dst.lo,$dst.hi\n\t"
  9245             "XOR    $dst.hi,$dst.hi\n"
  9246     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9247             "SHR    $dst.hi,$shift" %}
  9248   ins_encode( shift_right_long( dst, shift ) );
  9249   ins_pipe( pipe_slow );
  9250 %}
  9252 // Shift Right Long by 1-31
  9253 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9254   match(Set dst (RShiftL dst cnt));
  9255   effect(KILL cr);
  9256   ins_cost(200);
  9257   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9258             "SAR    $dst.hi,$cnt" %}
  9259   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9260   ins_encode( move_long_small_shift(dst,cnt) );
  9261   ins_pipe( ialu_reg_long );
  9262 %}
  9264 // Shift Right Long by 32-63
  9265 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9266   match(Set dst (RShiftL dst cnt));
  9267   effect(KILL cr);
  9268   ins_cost(300);
  9269   format %{ "MOV    $dst.lo,$dst.hi\n"
  9270           "\tSAR    $dst.lo,$cnt-32\n"
  9271           "\tSAR    $dst.hi,31" %}
  9272   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9273   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9274   ins_pipe( ialu_reg_long );
  9275 %}
  9277 // Shift Right arithmetic Long by variable
  9278 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9279   match(Set dst (RShiftL dst shift));
  9280   effect(KILL cr);
  9281   ins_cost(600);
  9282   size(18);
  9283   format %{ "TEST   $shift,32\n\t"
  9284             "JEQ,s  small\n\t"
  9285             "MOV    $dst.lo,$dst.hi\n\t"
  9286             "SAR    $dst.hi,31\n"
  9287     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9288             "SAR    $dst.hi,$shift" %}
  9289   ins_encode( shift_right_arith_long( dst, shift ) );
  9290   ins_pipe( pipe_slow );
  9291 %}
  9294 //----------Double Instructions------------------------------------------------
  9295 // Double Math
  9297 // Compare & branch
  9299 // P6 version of float compare, sets condition codes in EFLAGS
  9300 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9301   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9302   match(Set cr (CmpD src1 src2));
  9303   effect(KILL rax);
  9304   ins_cost(150);
  9305   format %{ "FLD    $src1\n\t"
  9306             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9307             "JNP    exit\n\t"
  9308             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9309             "SAHF\n"
  9310      "exit:\tNOP               // avoid branch to branch" %}
  9311   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9312   ins_encode( Push_Reg_DPR(src1),
  9313               OpcP, RegOpc(src2),
  9314               cmpF_P6_fixup );
  9315   ins_pipe( pipe_slow );
  9316 %}
  9318 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9319   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9320   match(Set cr (CmpD src1 src2));
  9321   ins_cost(150);
  9322   format %{ "FLD    $src1\n\t"
  9323             "FUCOMIP ST,$src2  // P6 instruction" %}
  9324   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9325   ins_encode( Push_Reg_DPR(src1),
  9326               OpcP, RegOpc(src2));
  9327   ins_pipe( pipe_slow );
  9328 %}
  9330 // Compare & branch
  9331 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9332   predicate(UseSSE<=1);
  9333   match(Set cr (CmpD src1 src2));
  9334   effect(KILL rax);
  9335   ins_cost(200);
  9336   format %{ "FLD    $src1\n\t"
  9337             "FCOMp  $src2\n\t"
  9338             "FNSTSW AX\n\t"
  9339             "TEST   AX,0x400\n\t"
  9340             "JZ,s   flags\n\t"
  9341             "MOV    AH,1\t# unordered treat as LT\n"
  9342     "flags:\tSAHF" %}
  9343   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9344   ins_encode( Push_Reg_DPR(src1),
  9345               OpcP, RegOpc(src2),
  9346               fpu_flags);
  9347   ins_pipe( pipe_slow );
  9348 %}
  9350 // Compare vs zero into -1,0,1
  9351 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9352   predicate(UseSSE<=1);
  9353   match(Set dst (CmpD3 src1 zero));
  9354   effect(KILL cr, KILL rax);
  9355   ins_cost(280);
  9356   format %{ "FTSTD  $dst,$src1" %}
  9357   opcode(0xE4, 0xD9);
  9358   ins_encode( Push_Reg_DPR(src1),
  9359               OpcS, OpcP, PopFPU,
  9360               CmpF_Result(dst));
  9361   ins_pipe( pipe_slow );
  9362 %}
  9364 // Compare into -1,0,1
  9365 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9366   predicate(UseSSE<=1);
  9367   match(Set dst (CmpD3 src1 src2));
  9368   effect(KILL cr, KILL rax);
  9369   ins_cost(300);
  9370   format %{ "FCMPD  $dst,$src1,$src2" %}
  9371   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9372   ins_encode( Push_Reg_DPR(src1),
  9373               OpcP, RegOpc(src2),
  9374               CmpF_Result(dst));
  9375   ins_pipe( pipe_slow );
  9376 %}
  9378 // float compare and set condition codes in EFLAGS by XMM regs
  9379 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9380   predicate(UseSSE>=2);
  9381   match(Set cr (CmpD src1 src2));
  9382   ins_cost(145);
  9383   format %{ "UCOMISD $src1,$src2\n\t"
  9384             "JNP,s   exit\n\t"
  9385             "PUSHF\t# saw NaN, set CF\n\t"
  9386             "AND     [rsp], #0xffffff2b\n\t"
  9387             "POPF\n"
  9388     "exit:" %}
  9389   ins_encode %{
  9390     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9391     emit_cmpfp_fixup(_masm);
  9392   %}
  9393   ins_pipe( pipe_slow );
  9394 %}
  9396 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9397   predicate(UseSSE>=2);
  9398   match(Set cr (CmpD src1 src2));
  9399   ins_cost(100);
  9400   format %{ "UCOMISD $src1,$src2" %}
  9401   ins_encode %{
  9402     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9403   %}
  9404   ins_pipe( pipe_slow );
  9405 %}
  9407 // float compare and set condition codes in EFLAGS by XMM regs
  9408 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9409   predicate(UseSSE>=2);
  9410   match(Set cr (CmpD src1 (LoadD src2)));
  9411   ins_cost(145);
  9412   format %{ "UCOMISD $src1,$src2\n\t"
  9413             "JNP,s   exit\n\t"
  9414             "PUSHF\t# saw NaN, set CF\n\t"
  9415             "AND     [rsp], #0xffffff2b\n\t"
  9416             "POPF\n"
  9417     "exit:" %}
  9418   ins_encode %{
  9419     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9420     emit_cmpfp_fixup(_masm);
  9421   %}
  9422   ins_pipe( pipe_slow );
  9423 %}
  9425 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9426   predicate(UseSSE>=2);
  9427   match(Set cr (CmpD src1 (LoadD src2)));
  9428   ins_cost(100);
  9429   format %{ "UCOMISD $src1,$src2" %}
  9430   ins_encode %{
  9431     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9432   %}
  9433   ins_pipe( pipe_slow );
  9434 %}
  9436 // Compare into -1,0,1 in XMM
  9437 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9438   predicate(UseSSE>=2);
  9439   match(Set dst (CmpD3 src1 src2));
  9440   effect(KILL cr);
  9441   ins_cost(255);
  9442   format %{ "UCOMISD $src1, $src2\n\t"
  9443             "MOV     $dst, #-1\n\t"
  9444             "JP,s    done\n\t"
  9445             "JB,s    done\n\t"
  9446             "SETNE   $dst\n\t"
  9447             "MOVZB   $dst, $dst\n"
  9448     "done:" %}
  9449   ins_encode %{
  9450     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9451     emit_cmpfp3(_masm, $dst$$Register);
  9452   %}
  9453   ins_pipe( pipe_slow );
  9454 %}
  9456 // Compare into -1,0,1 in XMM and memory
  9457 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9458   predicate(UseSSE>=2);
  9459   match(Set dst (CmpD3 src1 (LoadD src2)));
  9460   effect(KILL cr);
  9461   ins_cost(275);
  9462   format %{ "UCOMISD $src1, $src2\n\t"
  9463             "MOV     $dst, #-1\n\t"
  9464             "JP,s    done\n\t"
  9465             "JB,s    done\n\t"
  9466             "SETNE   $dst\n\t"
  9467             "MOVZB   $dst, $dst\n"
  9468     "done:" %}
  9469   ins_encode %{
  9470     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9471     emit_cmpfp3(_masm, $dst$$Register);
  9472   %}
  9473   ins_pipe( pipe_slow );
  9474 %}
  9477 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9478   predicate (UseSSE <=1);
  9479   match(Set dst (SubD dst src));
  9481   format %{ "FLD    $src\n\t"
  9482             "DSUBp  $dst,ST" %}
  9483   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9484   ins_cost(150);
  9485   ins_encode( Push_Reg_DPR(src),
  9486               OpcP, RegOpc(dst) );
  9487   ins_pipe( fpu_reg_reg );
  9488 %}
  9490 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9491   predicate (UseSSE <=1);
  9492   match(Set dst (RoundDouble (SubD src1 src2)));
  9493   ins_cost(250);
  9495   format %{ "FLD    $src2\n\t"
  9496             "DSUB   ST,$src1\n\t"
  9497             "FSTP_D $dst\t# D-round" %}
  9498   opcode(0xD8, 0x5);
  9499   ins_encode( Push_Reg_DPR(src2),
  9500               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9501   ins_pipe( fpu_mem_reg_reg );
  9502 %}
  9505 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9506   predicate (UseSSE <=1);
  9507   match(Set dst (SubD dst (LoadD src)));
  9508   ins_cost(150);
  9510   format %{ "FLD    $src\n\t"
  9511             "DSUBp  $dst,ST" %}
  9512   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9513   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9514               OpcP, RegOpc(dst) );
  9515   ins_pipe( fpu_reg_mem );
  9516 %}
  9518 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9519   predicate (UseSSE<=1);
  9520   match(Set dst (AbsD src));
  9521   ins_cost(100);
  9522   format %{ "FABS" %}
  9523   opcode(0xE1, 0xD9);
  9524   ins_encode( OpcS, OpcP );
  9525   ins_pipe( fpu_reg_reg );
  9526 %}
  9528 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9529   predicate(UseSSE<=1);
  9530   match(Set dst (NegD src));
  9531   ins_cost(100);
  9532   format %{ "FCHS" %}
  9533   opcode(0xE0, 0xD9);
  9534   ins_encode( OpcS, OpcP );
  9535   ins_pipe( fpu_reg_reg );
  9536 %}
  9538 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9539   predicate(UseSSE<=1);
  9540   match(Set dst (AddD dst src));
  9541   format %{ "FLD    $src\n\t"
  9542             "DADD   $dst,ST" %}
  9543   size(4);
  9544   ins_cost(150);
  9545   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9546   ins_encode( Push_Reg_DPR(src),
  9547               OpcP, RegOpc(dst) );
  9548   ins_pipe( fpu_reg_reg );
  9549 %}
  9552 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9553   predicate(UseSSE<=1);
  9554   match(Set dst (RoundDouble (AddD src1 src2)));
  9555   ins_cost(250);
  9557   format %{ "FLD    $src2\n\t"
  9558             "DADD   ST,$src1\n\t"
  9559             "FSTP_D $dst\t# D-round" %}
  9560   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9561   ins_encode( Push_Reg_DPR(src2),
  9562               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9563   ins_pipe( fpu_mem_reg_reg );
  9564 %}
  9567 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9568   predicate(UseSSE<=1);
  9569   match(Set dst (AddD dst (LoadD src)));
  9570   ins_cost(150);
  9572   format %{ "FLD    $src\n\t"
  9573             "DADDp  $dst,ST" %}
  9574   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9575   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9576               OpcP, RegOpc(dst) );
  9577   ins_pipe( fpu_reg_mem );
  9578 %}
  9580 // add-to-memory
  9581 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9582   predicate(UseSSE<=1);
  9583   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9584   ins_cost(150);
  9586   format %{ "FLD_D  $dst\n\t"
  9587             "DADD   ST,$src\n\t"
  9588             "FST_D  $dst" %}
  9589   opcode(0xDD, 0x0);
  9590   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9591               Opcode(0xD8), RegOpc(src),
  9592               set_instruction_start,
  9593               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9594   ins_pipe( fpu_reg_mem );
  9595 %}
  9597 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9598   predicate(UseSSE<=1);
  9599   match(Set dst (AddD dst con));
  9600   ins_cost(125);
  9601   format %{ "FLD1\n\t"
  9602             "DADDp  $dst,ST" %}
  9603   ins_encode %{
  9604     __ fld1();
  9605     __ faddp($dst$$reg);
  9606   %}
  9607   ins_pipe(fpu_reg);
  9608 %}
  9610 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9611   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9612   match(Set dst (AddD dst con));
  9613   ins_cost(200);
  9614   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9615             "DADDp  $dst,ST" %}
  9616   ins_encode %{
  9617     __ fld_d($constantaddress($con));
  9618     __ faddp($dst$$reg);
  9619   %}
  9620   ins_pipe(fpu_reg_mem);
  9621 %}
  9623 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9624   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9625   match(Set dst (RoundDouble (AddD src con)));
  9626   ins_cost(200);
  9627   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9628             "DADD   ST,$src\n\t"
  9629             "FSTP_D $dst\t# D-round" %}
  9630   ins_encode %{
  9631     __ fld_d($constantaddress($con));
  9632     __ fadd($src$$reg);
  9633     __ fstp_d(Address(rsp, $dst$$disp));
  9634   %}
  9635   ins_pipe(fpu_mem_reg_con);
  9636 %}
  9638 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9639   predicate(UseSSE<=1);
  9640   match(Set dst (MulD dst src));
  9641   format %{ "FLD    $src\n\t"
  9642             "DMULp  $dst,ST" %}
  9643   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9644   ins_cost(150);
  9645   ins_encode( Push_Reg_DPR(src),
  9646               OpcP, RegOpc(dst) );
  9647   ins_pipe( fpu_reg_reg );
  9648 %}
  9650 // Strict FP instruction biases argument before multiply then
  9651 // biases result to avoid double rounding of subnormals.
  9652 //
  9653 // scale arg1 by multiplying arg1 by 2^(-15360)
  9654 // load arg2
  9655 // multiply scaled arg1 by arg2
  9656 // rescale product by 2^(15360)
  9657 //
  9658 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9659   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9660   match(Set dst (MulD dst src));
  9661   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9663   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9664             "DMULp  $dst,ST\n\t"
  9665             "FLD    $src\n\t"
  9666             "DMULp  $dst,ST\n\t"
  9667             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9668             "DMULp  $dst,ST\n\t" %}
  9669   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9670   ins_encode( strictfp_bias1(dst),
  9671               Push_Reg_DPR(src),
  9672               OpcP, RegOpc(dst),
  9673               strictfp_bias2(dst) );
  9674   ins_pipe( fpu_reg_reg );
  9675 %}
  9677 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9678   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9679   match(Set dst (MulD dst con));
  9680   ins_cost(200);
  9681   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9682             "DMULp  $dst,ST" %}
  9683   ins_encode %{
  9684     __ fld_d($constantaddress($con));
  9685     __ fmulp($dst$$reg);
  9686   %}
  9687   ins_pipe(fpu_reg_mem);
  9688 %}
  9691 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9692   predicate( UseSSE<=1 );
  9693   match(Set dst (MulD dst (LoadD src)));
  9694   ins_cost(200);
  9695   format %{ "FLD_D  $src\n\t"
  9696             "DMULp  $dst,ST" %}
  9697   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9698   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9699               OpcP, RegOpc(dst) );
  9700   ins_pipe( fpu_reg_mem );
  9701 %}
  9703 //
  9704 // Cisc-alternate to reg-reg multiply
  9705 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9706   predicate( UseSSE<=1 );
  9707   match(Set dst (MulD src (LoadD mem)));
  9708   ins_cost(250);
  9709   format %{ "FLD_D  $mem\n\t"
  9710             "DMUL   ST,$src\n\t"
  9711             "FSTP_D $dst" %}
  9712   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9713   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9714               OpcReg_FPR(src),
  9715               Pop_Reg_DPR(dst) );
  9716   ins_pipe( fpu_reg_reg_mem );
  9717 %}
  9720 // MACRO3 -- addDPR a mulDPR
  9721 // This instruction is a '2-address' instruction in that the result goes
  9722 // back to src2.  This eliminates a move from the macro; possibly the
  9723 // register allocator will have to add it back (and maybe not).
  9724 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9725   predicate( UseSSE<=1 );
  9726   match(Set src2 (AddD (MulD src0 src1) src2));
  9727   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9728             "DMUL   ST,$src1\n\t"
  9729             "DADDp  $src2,ST" %}
  9730   ins_cost(250);
  9731   opcode(0xDD); /* LoadD DD /0 */
  9732   ins_encode( Push_Reg_FPR(src0),
  9733               FMul_ST_reg(src1),
  9734               FAddP_reg_ST(src2) );
  9735   ins_pipe( fpu_reg_reg_reg );
  9736 %}
  9739 // MACRO3 -- subDPR a mulDPR
  9740 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9741   predicate( UseSSE<=1 );
  9742   match(Set src2 (SubD (MulD src0 src1) src2));
  9743   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9744             "DMUL   ST,$src1\n\t"
  9745             "DSUBRp $src2,ST" %}
  9746   ins_cost(250);
  9747   ins_encode( Push_Reg_FPR(src0),
  9748               FMul_ST_reg(src1),
  9749               Opcode(0xDE), Opc_plus(0xE0,src2));
  9750   ins_pipe( fpu_reg_reg_reg );
  9751 %}
  9754 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9755   predicate( UseSSE<=1 );
  9756   match(Set dst (DivD dst src));
  9758   format %{ "FLD    $src\n\t"
  9759             "FDIVp  $dst,ST" %}
  9760   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9761   ins_cost(150);
  9762   ins_encode( Push_Reg_DPR(src),
  9763               OpcP, RegOpc(dst) );
  9764   ins_pipe( fpu_reg_reg );
  9765 %}
  9767 // Strict FP instruction biases argument before division then
  9768 // biases result, to avoid double rounding of subnormals.
  9769 //
  9770 // scale dividend by multiplying dividend by 2^(-15360)
  9771 // load divisor
  9772 // divide scaled dividend by divisor
  9773 // rescale quotient by 2^(15360)
  9774 //
  9775 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9776   predicate (UseSSE<=1);
  9777   match(Set dst (DivD dst src));
  9778   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9779   ins_cost(01);
  9781   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9782             "DMULp  $dst,ST\n\t"
  9783             "FLD    $src\n\t"
  9784             "FDIVp  $dst,ST\n\t"
  9785             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9786             "DMULp  $dst,ST\n\t" %}
  9787   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9788   ins_encode( strictfp_bias1(dst),
  9789               Push_Reg_DPR(src),
  9790               OpcP, RegOpc(dst),
  9791               strictfp_bias2(dst) );
  9792   ins_pipe( fpu_reg_reg );
  9793 %}
  9795 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9796   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9797   match(Set dst (RoundDouble (DivD src1 src2)));
  9799   format %{ "FLD    $src1\n\t"
  9800             "FDIV   ST,$src2\n\t"
  9801             "FSTP_D $dst\t# D-round" %}
  9802   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9803   ins_encode( Push_Reg_DPR(src1),
  9804               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9805   ins_pipe( fpu_mem_reg_reg );
  9806 %}
  9809 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9810   predicate(UseSSE<=1);
  9811   match(Set dst (ModD dst src));
  9812   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9814   format %{ "DMOD   $dst,$src" %}
  9815   ins_cost(250);
  9816   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9817               emitModDPR(),
  9818               Push_Result_Mod_DPR(src),
  9819               Pop_Reg_DPR(dst));
  9820   ins_pipe( pipe_slow );
  9821 %}
  9823 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9824   predicate(UseSSE>=2);
  9825   match(Set dst (ModD src0 src1));
  9826   effect(KILL rax, KILL cr);
  9828   format %{ "SUB    ESP,8\t # DMOD\n"
  9829           "\tMOVSD  [ESP+0],$src1\n"
  9830           "\tFLD_D  [ESP+0]\n"
  9831           "\tMOVSD  [ESP+0],$src0\n"
  9832           "\tFLD_D  [ESP+0]\n"
  9833      "loop:\tFPREM\n"
  9834           "\tFWAIT\n"
  9835           "\tFNSTSW AX\n"
  9836           "\tSAHF\n"
  9837           "\tJP     loop\n"
  9838           "\tFSTP_D [ESP+0]\n"
  9839           "\tMOVSD  $dst,[ESP+0]\n"
  9840           "\tADD    ESP,8\n"
  9841           "\tFSTP   ST0\t # Restore FPU Stack"
  9842     %}
  9843   ins_cost(250);
  9844   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9845   ins_pipe( pipe_slow );
  9846 %}
  9848 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9849   predicate (UseSSE<=1);
  9850   match(Set dst (SinD src));
  9851   ins_cost(1800);
  9852   format %{ "DSIN   $dst" %}
  9853   opcode(0xD9, 0xFE);
  9854   ins_encode( OpcP, OpcS );
  9855   ins_pipe( pipe_slow );
  9856 %}
  9858 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9859   predicate (UseSSE>=2);
  9860   match(Set dst (SinD dst));
  9861   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9862   ins_cost(1800);
  9863   format %{ "DSIN   $dst" %}
  9864   opcode(0xD9, 0xFE);
  9865   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9866   ins_pipe( pipe_slow );
  9867 %}
  9869 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9870   predicate (UseSSE<=1);
  9871   match(Set dst (CosD src));
  9872   ins_cost(1800);
  9873   format %{ "DCOS   $dst" %}
  9874   opcode(0xD9, 0xFF);
  9875   ins_encode( OpcP, OpcS );
  9876   ins_pipe( pipe_slow );
  9877 %}
  9879 instruct cosD_reg(regD dst, eFlagsReg cr) %{
  9880   predicate (UseSSE>=2);
  9881   match(Set dst (CosD dst));
  9882   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9883   ins_cost(1800);
  9884   format %{ "DCOS   $dst" %}
  9885   opcode(0xD9, 0xFF);
  9886   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9887   ins_pipe( pipe_slow );
  9888 %}
  9890 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
  9891   predicate (UseSSE<=1);
  9892   match(Set dst(TanD src));
  9893   format %{ "DTAN   $dst" %}
  9894   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
  9895               Opcode(0xDD), Opcode(0xD8));   // fstp st
  9896   ins_pipe( pipe_slow );
  9897 %}
  9899 instruct tanD_reg(regD dst, eFlagsReg cr) %{
  9900   predicate (UseSSE>=2);
  9901   match(Set dst(TanD dst));
  9902   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9903   format %{ "DTAN   $dst" %}
  9904   ins_encode( Push_SrcD(dst),
  9905               Opcode(0xD9), Opcode(0xF2),    // fptan
  9906               Opcode(0xDD), Opcode(0xD8),   // fstp st
  9907               Push_ResultD(dst) );
  9908   ins_pipe( pipe_slow );
  9909 %}
  9911 instruct atanDPR_reg(regDPR dst, regDPR src) %{
  9912   predicate (UseSSE<=1);
  9913   match(Set dst(AtanD dst src));
  9914   format %{ "DATA   $dst,$src" %}
  9915   opcode(0xD9, 0xF3);
  9916   ins_encode( Push_Reg_DPR(src),
  9917               OpcP, OpcS, RegOpc(dst) );
  9918   ins_pipe( pipe_slow );
  9919 %}
  9921 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
  9922   predicate (UseSSE>=2);
  9923   match(Set dst(AtanD dst src));
  9924   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9925   format %{ "DATA   $dst,$src" %}
  9926   opcode(0xD9, 0xF3);
  9927   ins_encode( Push_SrcD(src),
  9928               OpcP, OpcS, Push_ResultD(dst) );
  9929   ins_pipe( pipe_slow );
  9930 %}
  9932 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
  9933   predicate (UseSSE<=1);
  9934   match(Set dst (SqrtD src));
  9935   format %{ "DSQRT  $dst,$src" %}
  9936   opcode(0xFA, 0xD9);
  9937   ins_encode( Push_Reg_DPR(src),
  9938               OpcS, OpcP, Pop_Reg_DPR(dst) );
  9939   ins_pipe( pipe_slow );
  9940 %}
  9942 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9943   predicate (UseSSE<=1);
  9944   match(Set Y (PowD X Y));  // Raise X to the Yth power
  9945   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9946   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
  9947   ins_encode %{
  9948     __ subptr(rsp, 8);
  9949     __ fld_s($X$$reg - 1);
  9950     __ fast_pow();
  9951     __ addptr(rsp, 8);
  9952   %}
  9953   ins_pipe( pipe_slow );
  9954 %}
  9956 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9957   predicate (UseSSE>=2);
  9958   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  9959   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9960   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
  9961   ins_encode %{
  9962     __ subptr(rsp, 8);
  9963     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  9964     __ fld_d(Address(rsp, 0));
  9965     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  9966     __ fld_d(Address(rsp, 0));
  9967     __ fast_pow();
  9968     __ fstp_d(Address(rsp, 0));
  9969     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9970     __ addptr(rsp, 8);
  9971   %}
  9972   ins_pipe( pipe_slow );
  9973 %}
  9976 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9977   predicate (UseSSE<=1);
  9978   match(Set dpr1 (ExpD dpr1));
  9979   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9980   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
  9981   ins_encode %{
  9982     __ fast_exp();
  9983   %}
  9984   ins_pipe( pipe_slow );
  9985 %}
  9987 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9988   predicate (UseSSE>=2);
  9989   match(Set dst (ExpD src));
  9990   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9991   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
  9992   ins_encode %{
  9993     __ subptr(rsp, 8);
  9994     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  9995     __ fld_d(Address(rsp, 0));
  9996     __ fast_exp();
  9997     __ fstp_d(Address(rsp, 0));
  9998     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9999     __ addptr(rsp, 8);
 10000   %}
 10001   ins_pipe( pipe_slow );
 10002 %}
 10004 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10005   predicate (UseSSE<=1);
 10006   // The source Double operand on FPU stack
 10007   match(Set dst (Log10D src));
 10008   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10009   // fxch         ; swap ST(0) with ST(1)
 10010   // fyl2x        ; compute log_10(2) * log_2(x)
 10011   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10012             "FXCH   \n\t"
 10013             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10014          %}
 10015   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10016               Opcode(0xD9), Opcode(0xC9),   // fxch
 10017               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10019   ins_pipe( pipe_slow );
 10020 %}
 10022 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10023   predicate (UseSSE>=2);
 10024   effect(KILL cr);
 10025   match(Set dst (Log10D src));
 10026   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10027   // fyl2x        ; compute log_10(2) * log_2(x)
 10028   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10029             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10030          %}
 10031   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10032               Push_SrcD(src),
 10033               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10034               Push_ResultD(dst));
 10036   ins_pipe( pipe_slow );
 10037 %}
 10039 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10040   predicate (UseSSE<=1);
 10041   // The source Double operand on FPU stack
 10042   match(Set dst (LogD src));
 10043   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10044   // fxch         ; swap ST(0) with ST(1)
 10045   // fyl2x        ; compute log_e(2) * log_2(x)
 10046   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10047             "FXCH   \n\t"
 10048             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10049          %}
 10050   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10051               Opcode(0xD9), Opcode(0xC9),   // fxch
 10052               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10054   ins_pipe( pipe_slow );
 10055 %}
 10057 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10058   predicate (UseSSE>=2);
 10059   effect(KILL cr);
 10060   // The source and result Double operands in XMM registers
 10061   match(Set dst (LogD src));
 10062   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10063   // fyl2x        ; compute log_e(2) * log_2(x)
 10064   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10065             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10066          %}
 10067   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10068               Push_SrcD(src),
 10069               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10070               Push_ResultD(dst));
 10071   ins_pipe( pipe_slow );
 10072 %}
 10074 //-------------Float Instructions-------------------------------
 10075 // Float Math
 10077 // Code for float compare:
 10078 //     fcompp();
 10079 //     fwait(); fnstsw_ax();
 10080 //     sahf();
 10081 //     movl(dst, unordered_result);
 10082 //     jcc(Assembler::parity, exit);
 10083 //     movl(dst, less_result);
 10084 //     jcc(Assembler::below, exit);
 10085 //     movl(dst, equal_result);
 10086 //     jcc(Assembler::equal, exit);
 10087 //     movl(dst, greater_result);
 10088 //   exit:
 10090 // P6 version of float compare, sets condition codes in EFLAGS
 10091 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10092   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10093   match(Set cr (CmpF src1 src2));
 10094   effect(KILL rax);
 10095   ins_cost(150);
 10096   format %{ "FLD    $src1\n\t"
 10097             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10098             "JNP    exit\n\t"
 10099             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10100             "SAHF\n"
 10101      "exit:\tNOP               // avoid branch to branch" %}
 10102   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10103   ins_encode( Push_Reg_DPR(src1),
 10104               OpcP, RegOpc(src2),
 10105               cmpF_P6_fixup );
 10106   ins_pipe( pipe_slow );
 10107 %}
 10109 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10110   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10111   match(Set cr (CmpF src1 src2));
 10112   ins_cost(100);
 10113   format %{ "FLD    $src1\n\t"
 10114             "FUCOMIP ST,$src2  // P6 instruction" %}
 10115   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10116   ins_encode( Push_Reg_DPR(src1),
 10117               OpcP, RegOpc(src2));
 10118   ins_pipe( pipe_slow );
 10119 %}
 10122 // Compare & branch
 10123 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10124   predicate(UseSSE == 0);
 10125   match(Set cr (CmpF src1 src2));
 10126   effect(KILL rax);
 10127   ins_cost(200);
 10128   format %{ "FLD    $src1\n\t"
 10129             "FCOMp  $src2\n\t"
 10130             "FNSTSW AX\n\t"
 10131             "TEST   AX,0x400\n\t"
 10132             "JZ,s   flags\n\t"
 10133             "MOV    AH,1\t# unordered treat as LT\n"
 10134     "flags:\tSAHF" %}
 10135   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10136   ins_encode( Push_Reg_DPR(src1),
 10137               OpcP, RegOpc(src2),
 10138               fpu_flags);
 10139   ins_pipe( pipe_slow );
 10140 %}
 10142 // Compare vs zero into -1,0,1
 10143 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10144   predicate(UseSSE == 0);
 10145   match(Set dst (CmpF3 src1 zero));
 10146   effect(KILL cr, KILL rax);
 10147   ins_cost(280);
 10148   format %{ "FTSTF  $dst,$src1" %}
 10149   opcode(0xE4, 0xD9);
 10150   ins_encode( Push_Reg_DPR(src1),
 10151               OpcS, OpcP, PopFPU,
 10152               CmpF_Result(dst));
 10153   ins_pipe( pipe_slow );
 10154 %}
 10156 // Compare into -1,0,1
 10157 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10158   predicate(UseSSE == 0);
 10159   match(Set dst (CmpF3 src1 src2));
 10160   effect(KILL cr, KILL rax);
 10161   ins_cost(300);
 10162   format %{ "FCMPF  $dst,$src1,$src2" %}
 10163   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10164   ins_encode( Push_Reg_DPR(src1),
 10165               OpcP, RegOpc(src2),
 10166               CmpF_Result(dst));
 10167   ins_pipe( pipe_slow );
 10168 %}
 10170 // float compare and set condition codes in EFLAGS by XMM regs
 10171 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10172   predicate(UseSSE>=1);
 10173   match(Set cr (CmpF src1 src2));
 10174   ins_cost(145);
 10175   format %{ "UCOMISS $src1,$src2\n\t"
 10176             "JNP,s   exit\n\t"
 10177             "PUSHF\t# saw NaN, set CF\n\t"
 10178             "AND     [rsp], #0xffffff2b\n\t"
 10179             "POPF\n"
 10180     "exit:" %}
 10181   ins_encode %{
 10182     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10183     emit_cmpfp_fixup(_masm);
 10184   %}
 10185   ins_pipe( pipe_slow );
 10186 %}
 10188 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10189   predicate(UseSSE>=1);
 10190   match(Set cr (CmpF src1 src2));
 10191   ins_cost(100);
 10192   format %{ "UCOMISS $src1,$src2" %}
 10193   ins_encode %{
 10194     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10195   %}
 10196   ins_pipe( pipe_slow );
 10197 %}
 10199 // float compare and set condition codes in EFLAGS by XMM regs
 10200 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10201   predicate(UseSSE>=1);
 10202   match(Set cr (CmpF src1 (LoadF src2)));
 10203   ins_cost(165);
 10204   format %{ "UCOMISS $src1,$src2\n\t"
 10205             "JNP,s   exit\n\t"
 10206             "PUSHF\t# saw NaN, set CF\n\t"
 10207             "AND     [rsp], #0xffffff2b\n\t"
 10208             "POPF\n"
 10209     "exit:" %}
 10210   ins_encode %{
 10211     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10212     emit_cmpfp_fixup(_masm);
 10213   %}
 10214   ins_pipe( pipe_slow );
 10215 %}
 10217 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10218   predicate(UseSSE>=1);
 10219   match(Set cr (CmpF src1 (LoadF src2)));
 10220   ins_cost(100);
 10221   format %{ "UCOMISS $src1,$src2" %}
 10222   ins_encode %{
 10223     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10224   %}
 10225   ins_pipe( pipe_slow );
 10226 %}
 10228 // Compare into -1,0,1 in XMM
 10229 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10230   predicate(UseSSE>=1);
 10231   match(Set dst (CmpF3 src1 src2));
 10232   effect(KILL cr);
 10233   ins_cost(255);
 10234   format %{ "UCOMISS $src1, $src2\n\t"
 10235             "MOV     $dst, #-1\n\t"
 10236             "JP,s    done\n\t"
 10237             "JB,s    done\n\t"
 10238             "SETNE   $dst\n\t"
 10239             "MOVZB   $dst, $dst\n"
 10240     "done:" %}
 10241   ins_encode %{
 10242     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10243     emit_cmpfp3(_masm, $dst$$Register);
 10244   %}
 10245   ins_pipe( pipe_slow );
 10246 %}
 10248 // Compare into -1,0,1 in XMM and memory
 10249 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10250   predicate(UseSSE>=1);
 10251   match(Set dst (CmpF3 src1 (LoadF src2)));
 10252   effect(KILL cr);
 10253   ins_cost(275);
 10254   format %{ "UCOMISS $src1, $src2\n\t"
 10255             "MOV     $dst, #-1\n\t"
 10256             "JP,s    done\n\t"
 10257             "JB,s    done\n\t"
 10258             "SETNE   $dst\n\t"
 10259             "MOVZB   $dst, $dst\n"
 10260     "done:" %}
 10261   ins_encode %{
 10262     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10263     emit_cmpfp3(_masm, $dst$$Register);
 10264   %}
 10265   ins_pipe( pipe_slow );
 10266 %}
 10268 // Spill to obtain 24-bit precision
 10269 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10270   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10271   match(Set dst (SubF src1 src2));
 10273   format %{ "FSUB   $dst,$src1 - $src2" %}
 10274   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10275   ins_encode( Push_Reg_FPR(src1),
 10276               OpcReg_FPR(src2),
 10277               Pop_Mem_FPR(dst) );
 10278   ins_pipe( fpu_mem_reg_reg );
 10279 %}
 10280 //
 10281 // This instruction does not round to 24-bits
 10282 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10283   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10284   match(Set dst (SubF dst src));
 10286   format %{ "FSUB   $dst,$src" %}
 10287   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10288   ins_encode( Push_Reg_FPR(src),
 10289               OpcP, RegOpc(dst) );
 10290   ins_pipe( fpu_reg_reg );
 10291 %}
 10293 // Spill to obtain 24-bit precision
 10294 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10295   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10296   match(Set dst (AddF src1 src2));
 10298   format %{ "FADD   $dst,$src1,$src2" %}
 10299   opcode(0xD8, 0x0); /* D8 C0+i */
 10300   ins_encode( Push_Reg_FPR(src2),
 10301               OpcReg_FPR(src1),
 10302               Pop_Mem_FPR(dst) );
 10303   ins_pipe( fpu_mem_reg_reg );
 10304 %}
 10305 //
 10306 // This instruction does not round to 24-bits
 10307 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10308   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10309   match(Set dst (AddF dst src));
 10311   format %{ "FLD    $src\n\t"
 10312             "FADDp  $dst,ST" %}
 10313   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10314   ins_encode( Push_Reg_FPR(src),
 10315               OpcP, RegOpc(dst) );
 10316   ins_pipe( fpu_reg_reg );
 10317 %}
 10319 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10320   predicate(UseSSE==0);
 10321   match(Set dst (AbsF src));
 10322   ins_cost(100);
 10323   format %{ "FABS" %}
 10324   opcode(0xE1, 0xD9);
 10325   ins_encode( OpcS, OpcP );
 10326   ins_pipe( fpu_reg_reg );
 10327 %}
 10329 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10330   predicate(UseSSE==0);
 10331   match(Set dst (NegF src));
 10332   ins_cost(100);
 10333   format %{ "FCHS" %}
 10334   opcode(0xE0, 0xD9);
 10335   ins_encode( OpcS, OpcP );
 10336   ins_pipe( fpu_reg_reg );
 10337 %}
 10339 // Cisc-alternate to addFPR_reg
 10340 // Spill to obtain 24-bit precision
 10341 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10342   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10343   match(Set dst (AddF src1 (LoadF src2)));
 10345   format %{ "FLD    $src2\n\t"
 10346             "FADD   ST,$src1\n\t"
 10347             "FSTP_S $dst" %}
 10348   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10349   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10350               OpcReg_FPR(src1),
 10351               Pop_Mem_FPR(dst) );
 10352   ins_pipe( fpu_mem_reg_mem );
 10353 %}
 10354 //
 10355 // Cisc-alternate to addFPR_reg
 10356 // This instruction does not round to 24-bits
 10357 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10358   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10359   match(Set dst (AddF dst (LoadF src)));
 10361   format %{ "FADD   $dst,$src" %}
 10362   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10363   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10364               OpcP, RegOpc(dst) );
 10365   ins_pipe( fpu_reg_mem );
 10366 %}
 10368 // // Following two instructions for _222_mpegaudio
 10369 // Spill to obtain 24-bit precision
 10370 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10371   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10372   match(Set dst (AddF src1 src2));
 10374   format %{ "FADD   $dst,$src1,$src2" %}
 10375   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10376   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10377               OpcReg_FPR(src2),
 10378               Pop_Mem_FPR(dst) );
 10379   ins_pipe( fpu_mem_reg_mem );
 10380 %}
 10382 // Cisc-spill variant
 10383 // Spill to obtain 24-bit precision
 10384 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10385   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10386   match(Set dst (AddF src1 (LoadF src2)));
 10388   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10389   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10390   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10391               set_instruction_start,
 10392               OpcP, RMopc_Mem(secondary,src1),
 10393               Pop_Mem_FPR(dst) );
 10394   ins_pipe( fpu_mem_mem_mem );
 10395 %}
 10397 // Spill to obtain 24-bit precision
 10398 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10399   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10400   match(Set dst (AddF src1 src2));
 10402   format %{ "FADD   $dst,$src1,$src2" %}
 10403   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10404   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10405               set_instruction_start,
 10406               OpcP, RMopc_Mem(secondary,src1),
 10407               Pop_Mem_FPR(dst) );
 10408   ins_pipe( fpu_mem_mem_mem );
 10409 %}
 10412 // Spill to obtain 24-bit precision
 10413 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10414   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10415   match(Set dst (AddF src con));
 10416   format %{ "FLD    $src\n\t"
 10417             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10418             "FSTP_S $dst"  %}
 10419   ins_encode %{
 10420     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10421     __ fadd_s($constantaddress($con));
 10422     __ fstp_s(Address(rsp, $dst$$disp));
 10423   %}
 10424   ins_pipe(fpu_mem_reg_con);
 10425 %}
 10426 //
 10427 // This instruction does not round to 24-bits
 10428 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10429   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10430   match(Set dst (AddF src con));
 10431   format %{ "FLD    $src\n\t"
 10432             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10433             "FSTP   $dst"  %}
 10434   ins_encode %{
 10435     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10436     __ fadd_s($constantaddress($con));
 10437     __ fstp_d($dst$$reg);
 10438   %}
 10439   ins_pipe(fpu_reg_reg_con);
 10440 %}
 10442 // Spill to obtain 24-bit precision
 10443 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10444   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10445   match(Set dst (MulF src1 src2));
 10447   format %{ "FLD    $src1\n\t"
 10448             "FMUL   $src2\n\t"
 10449             "FSTP_S $dst"  %}
 10450   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10451   ins_encode( Push_Reg_FPR(src1),
 10452               OpcReg_FPR(src2),
 10453               Pop_Mem_FPR(dst) );
 10454   ins_pipe( fpu_mem_reg_reg );
 10455 %}
 10456 //
 10457 // This instruction does not round to 24-bits
 10458 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10459   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10460   match(Set dst (MulF src1 src2));
 10462   format %{ "FLD    $src1\n\t"
 10463             "FMUL   $src2\n\t"
 10464             "FSTP_S $dst"  %}
 10465   opcode(0xD8, 0x1); /* D8 C8+i */
 10466   ins_encode( Push_Reg_FPR(src2),
 10467               OpcReg_FPR(src1),
 10468               Pop_Reg_FPR(dst) );
 10469   ins_pipe( fpu_reg_reg_reg );
 10470 %}
 10473 // Spill to obtain 24-bit precision
 10474 // Cisc-alternate to reg-reg multiply
 10475 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10476   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10477   match(Set dst (MulF src1 (LoadF src2)));
 10479   format %{ "FLD_S  $src2\n\t"
 10480             "FMUL   $src1\n\t"
 10481             "FSTP_S $dst"  %}
 10482   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10483   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10484               OpcReg_FPR(src1),
 10485               Pop_Mem_FPR(dst) );
 10486   ins_pipe( fpu_mem_reg_mem );
 10487 %}
 10488 //
 10489 // This instruction does not round to 24-bits
 10490 // Cisc-alternate to reg-reg multiply
 10491 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10492   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10493   match(Set dst (MulF src1 (LoadF src2)));
 10495   format %{ "FMUL   $dst,$src1,$src2" %}
 10496   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10497   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10498               OpcReg_FPR(src1),
 10499               Pop_Reg_FPR(dst) );
 10500   ins_pipe( fpu_reg_reg_mem );
 10501 %}
 10503 // Spill to obtain 24-bit precision
 10504 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10505   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10506   match(Set dst (MulF src1 src2));
 10508   format %{ "FMUL   $dst,$src1,$src2" %}
 10509   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10510   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10511               set_instruction_start,
 10512               OpcP, RMopc_Mem(secondary,src1),
 10513               Pop_Mem_FPR(dst) );
 10514   ins_pipe( fpu_mem_mem_mem );
 10515 %}
 10517 // Spill to obtain 24-bit precision
 10518 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10519   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10520   match(Set dst (MulF src con));
 10522   format %{ "FLD    $src\n\t"
 10523             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10524             "FSTP_S $dst"  %}
 10525   ins_encode %{
 10526     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10527     __ fmul_s($constantaddress($con));
 10528     __ fstp_s(Address(rsp, $dst$$disp));
 10529   %}
 10530   ins_pipe(fpu_mem_reg_con);
 10531 %}
 10532 //
 10533 // This instruction does not round to 24-bits
 10534 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10535   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10536   match(Set dst (MulF src con));
 10538   format %{ "FLD    $src\n\t"
 10539             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10540             "FSTP   $dst"  %}
 10541   ins_encode %{
 10542     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10543     __ fmul_s($constantaddress($con));
 10544     __ fstp_d($dst$$reg);
 10545   %}
 10546   ins_pipe(fpu_reg_reg_con);
 10547 %}
 10550 //
 10551 // MACRO1 -- subsume unshared load into mulFPR
 10552 // This instruction does not round to 24-bits
 10553 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10554   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10555   match(Set dst (MulF (LoadF mem1) src));
 10557   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10558             "FMUL   ST,$src\n\t"
 10559             "FSTP   $dst" %}
 10560   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10561   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10562               OpcReg_FPR(src),
 10563               Pop_Reg_FPR(dst) );
 10564   ins_pipe( fpu_reg_reg_mem );
 10565 %}
 10566 //
 10567 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10568 // This instruction does not round to 24-bits
 10569 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10570   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10571   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10572   ins_cost(95);
 10574   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10575             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10576             "FADD   ST,$src2\n\t"
 10577             "FSTP   $dst" %}
 10578   opcode(0xD9); /* LoadF D9 /0 */
 10579   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10580               FMul_ST_reg(src1),
 10581               FAdd_ST_reg(src2),
 10582               Pop_Reg_FPR(dst) );
 10583   ins_pipe( fpu_reg_mem_reg_reg );
 10584 %}
 10586 // MACRO3 -- addFPR a mulFPR
 10587 // This instruction does not round to 24-bits.  It is a '2-address'
 10588 // instruction in that the result goes back to src2.  This eliminates
 10589 // a move from the macro; possibly the register allocator will have
 10590 // to add it back (and maybe not).
 10591 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10592   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10593   match(Set src2 (AddF (MulF src0 src1) src2));
 10595   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10596             "FMUL   ST,$src1\n\t"
 10597             "FADDP  $src2,ST" %}
 10598   opcode(0xD9); /* LoadF D9 /0 */
 10599   ins_encode( Push_Reg_FPR(src0),
 10600               FMul_ST_reg(src1),
 10601               FAddP_reg_ST(src2) );
 10602   ins_pipe( fpu_reg_reg_reg );
 10603 %}
 10605 // MACRO4 -- divFPR subFPR
 10606 // This instruction does not round to 24-bits
 10607 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10608   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10609   match(Set dst (DivF (SubF src2 src1) src3));
 10611   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10612             "FSUB   ST,$src1\n\t"
 10613             "FDIV   ST,$src3\n\t"
 10614             "FSTP  $dst" %}
 10615   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10616   ins_encode( Push_Reg_FPR(src2),
 10617               subFPR_divFPR_encode(src1,src3),
 10618               Pop_Reg_FPR(dst) );
 10619   ins_pipe( fpu_reg_reg_reg_reg );
 10620 %}
 10622 // Spill to obtain 24-bit precision
 10623 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10624   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10625   match(Set dst (DivF src1 src2));
 10627   format %{ "FDIV   $dst,$src1,$src2" %}
 10628   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10629   ins_encode( Push_Reg_FPR(src1),
 10630               OpcReg_FPR(src2),
 10631               Pop_Mem_FPR(dst) );
 10632   ins_pipe( fpu_mem_reg_reg );
 10633 %}
 10634 //
 10635 // This instruction does not round to 24-bits
 10636 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10637   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10638   match(Set dst (DivF dst src));
 10640   format %{ "FDIV   $dst,$src" %}
 10641   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10642   ins_encode( Push_Reg_FPR(src),
 10643               OpcP, RegOpc(dst) );
 10644   ins_pipe( fpu_reg_reg );
 10645 %}
 10648 // Spill to obtain 24-bit precision
 10649 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10650   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10651   match(Set dst (ModF src1 src2));
 10652   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10654   format %{ "FMOD   $dst,$src1,$src2" %}
 10655   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10656               emitModDPR(),
 10657               Push_Result_Mod_DPR(src2),
 10658               Pop_Mem_FPR(dst));
 10659   ins_pipe( pipe_slow );
 10660 %}
 10661 //
 10662 // This instruction does not round to 24-bits
 10663 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10664   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10665   match(Set dst (ModF dst src));
 10666   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10668   format %{ "FMOD   $dst,$src" %}
 10669   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10670               emitModDPR(),
 10671               Push_Result_Mod_DPR(src),
 10672               Pop_Reg_FPR(dst));
 10673   ins_pipe( pipe_slow );
 10674 %}
 10676 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10677   predicate(UseSSE>=1);
 10678   match(Set dst (ModF src0 src1));
 10679   effect(KILL rax, KILL cr);
 10680   format %{ "SUB    ESP,4\t # FMOD\n"
 10681           "\tMOVSS  [ESP+0],$src1\n"
 10682           "\tFLD_S  [ESP+0]\n"
 10683           "\tMOVSS  [ESP+0],$src0\n"
 10684           "\tFLD_S  [ESP+0]\n"
 10685      "loop:\tFPREM\n"
 10686           "\tFWAIT\n"
 10687           "\tFNSTSW AX\n"
 10688           "\tSAHF\n"
 10689           "\tJP     loop\n"
 10690           "\tFSTP_S [ESP+0]\n"
 10691           "\tMOVSS  $dst,[ESP+0]\n"
 10692           "\tADD    ESP,4\n"
 10693           "\tFSTP   ST0\t # Restore FPU Stack"
 10694     %}
 10695   ins_cost(250);
 10696   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10697   ins_pipe( pipe_slow );
 10698 %}
 10701 //----------Arithmetic Conversion Instructions---------------------------------
 10702 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10704 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10705   predicate(UseSSE==0);
 10706   match(Set dst (RoundFloat src));
 10707   ins_cost(125);
 10708   format %{ "FST_S  $dst,$src\t# F-round" %}
 10709   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10710   ins_pipe( fpu_mem_reg );
 10711 %}
 10713 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10714   predicate(UseSSE<=1);
 10715   match(Set dst (RoundDouble src));
 10716   ins_cost(125);
 10717   format %{ "FST_D  $dst,$src\t# D-round" %}
 10718   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10719   ins_pipe( fpu_mem_reg );
 10720 %}
 10722 // Force rounding to 24-bit precision and 6-bit exponent
 10723 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10724   predicate(UseSSE==0);
 10725   match(Set dst (ConvD2F src));
 10726   format %{ "FST_S  $dst,$src\t# F-round" %}
 10727   expand %{
 10728     roundFloat_mem_reg(dst,src);
 10729   %}
 10730 %}
 10732 // Force rounding to 24-bit precision and 6-bit exponent
 10733 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10734   predicate(UseSSE==1);
 10735   match(Set dst (ConvD2F src));
 10736   effect( KILL cr );
 10737   format %{ "SUB    ESP,4\n\t"
 10738             "FST_S  [ESP],$src\t# F-round\n\t"
 10739             "MOVSS  $dst,[ESP]\n\t"
 10740             "ADD ESP,4" %}
 10741   ins_encode %{
 10742     __ subptr(rsp, 4);
 10743     if ($src$$reg != FPR1L_enc) {
 10744       __ fld_s($src$$reg-1);
 10745       __ fstp_s(Address(rsp, 0));
 10746     } else {
 10747       __ fst_s(Address(rsp, 0));
 10749     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10750     __ addptr(rsp, 4);
 10751   %}
 10752   ins_pipe( pipe_slow );
 10753 %}
 10755 // Force rounding double precision to single precision
 10756 instruct convD2F_reg(regF dst, regD src) %{
 10757   predicate(UseSSE>=2);
 10758   match(Set dst (ConvD2F src));
 10759   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10760   ins_encode %{
 10761     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10762   %}
 10763   ins_pipe( pipe_slow );
 10764 %}
 10766 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10767   predicate(UseSSE==0);
 10768   match(Set dst (ConvF2D src));
 10769   format %{ "FST_S  $dst,$src\t# D-round" %}
 10770   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10771   ins_pipe( fpu_reg_reg );
 10772 %}
 10774 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10775   predicate(UseSSE==1);
 10776   match(Set dst (ConvF2D src));
 10777   format %{ "FST_D  $dst,$src\t# D-round" %}
 10778   expand %{
 10779     roundDouble_mem_reg(dst,src);
 10780   %}
 10781 %}
 10783 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10784   predicate(UseSSE==1);
 10785   match(Set dst (ConvF2D src));
 10786   effect( KILL cr );
 10787   format %{ "SUB    ESP,4\n\t"
 10788             "MOVSS  [ESP] $src\n\t"
 10789             "FLD_S  [ESP]\n\t"
 10790             "ADD    ESP,4\n\t"
 10791             "FSTP   $dst\t# D-round" %}
 10792   ins_encode %{
 10793     __ subptr(rsp, 4);
 10794     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10795     __ fld_s(Address(rsp, 0));
 10796     __ addptr(rsp, 4);
 10797     __ fstp_d($dst$$reg);
 10798   %}
 10799   ins_pipe( pipe_slow );
 10800 %}
 10802 instruct convF2D_reg(regD dst, regF src) %{
 10803   predicate(UseSSE>=2);
 10804   match(Set dst (ConvF2D src));
 10805   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10806   ins_encode %{
 10807     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10808   %}
 10809   ins_pipe( pipe_slow );
 10810 %}
 10812 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10813 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10814   predicate(UseSSE<=1);
 10815   match(Set dst (ConvD2I src));
 10816   effect( KILL tmp, KILL cr );
 10817   format %{ "FLD    $src\t# Convert double to int \n\t"
 10818             "FLDCW  trunc mode\n\t"
 10819             "SUB    ESP,4\n\t"
 10820             "FISTp  [ESP + #0]\n\t"
 10821             "FLDCW  std/24-bit mode\n\t"
 10822             "POP    EAX\n\t"
 10823             "CMP    EAX,0x80000000\n\t"
 10824             "JNE,s  fast\n\t"
 10825             "FLD_D  $src\n\t"
 10826             "CALL   d2i_wrapper\n"
 10827       "fast:" %}
 10828   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10829   ins_pipe( pipe_slow );
 10830 %}
 10832 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10833 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10834   predicate(UseSSE>=2);
 10835   match(Set dst (ConvD2I src));
 10836   effect( KILL tmp, KILL cr );
 10837   format %{ "CVTTSD2SI $dst, $src\n\t"
 10838             "CMP    $dst,0x80000000\n\t"
 10839             "JNE,s  fast\n\t"
 10840             "SUB    ESP, 8\n\t"
 10841             "MOVSD  [ESP], $src\n\t"
 10842             "FLD_D  [ESP]\n\t"
 10843             "ADD    ESP, 8\n\t"
 10844             "CALL   d2i_wrapper\n"
 10845       "fast:" %}
 10846   ins_encode %{
 10847     Label fast;
 10848     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10849     __ cmpl($dst$$Register, 0x80000000);
 10850     __ jccb(Assembler::notEqual, fast);
 10851     __ subptr(rsp, 8);
 10852     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10853     __ fld_d(Address(rsp, 0));
 10854     __ addptr(rsp, 8);
 10855     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10856     __ bind(fast);
 10857   %}
 10858   ins_pipe( pipe_slow );
 10859 %}
 10861 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10862   predicate(UseSSE<=1);
 10863   match(Set dst (ConvD2L src));
 10864   effect( KILL cr );
 10865   format %{ "FLD    $src\t# Convert double to long\n\t"
 10866             "FLDCW  trunc mode\n\t"
 10867             "SUB    ESP,8\n\t"
 10868             "FISTp  [ESP + #0]\n\t"
 10869             "FLDCW  std/24-bit mode\n\t"
 10870             "POP    EAX\n\t"
 10871             "POP    EDX\n\t"
 10872             "CMP    EDX,0x80000000\n\t"
 10873             "JNE,s  fast\n\t"
 10874             "TEST   EAX,EAX\n\t"
 10875             "JNE,s  fast\n\t"
 10876             "FLD    $src\n\t"
 10877             "CALL   d2l_wrapper\n"
 10878       "fast:" %}
 10879   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 10880   ins_pipe( pipe_slow );
 10881 %}
 10883 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10884 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 10885   predicate (UseSSE>=2);
 10886   match(Set dst (ConvD2L src));
 10887   effect( KILL cr );
 10888   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 10889             "MOVSD  [ESP],$src\n\t"
 10890             "FLD_D  [ESP]\n\t"
 10891             "FLDCW  trunc mode\n\t"
 10892             "FISTp  [ESP + #0]\n\t"
 10893             "FLDCW  std/24-bit mode\n\t"
 10894             "POP    EAX\n\t"
 10895             "POP    EDX\n\t"
 10896             "CMP    EDX,0x80000000\n\t"
 10897             "JNE,s  fast\n\t"
 10898             "TEST   EAX,EAX\n\t"
 10899             "JNE,s  fast\n\t"
 10900             "SUB    ESP,8\n\t"
 10901             "MOVSD  [ESP],$src\n\t"
 10902             "FLD_D  [ESP]\n\t"
 10903             "ADD    ESP,8\n\t"
 10904             "CALL   d2l_wrapper\n"
 10905       "fast:" %}
 10906   ins_encode %{
 10907     Label fast;
 10908     __ subptr(rsp, 8);
 10909     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10910     __ fld_d(Address(rsp, 0));
 10911     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10912     __ fistp_d(Address(rsp, 0));
 10913     // Restore the rounding mode, mask the exception
 10914     if (Compile::current()->in_24_bit_fp_mode()) {
 10915       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10916     } else {
 10917       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10919     // Load the converted long, adjust CPU stack
 10920     __ pop(rax);
 10921     __ pop(rdx);
 10922     __ cmpl(rdx, 0x80000000);
 10923     __ jccb(Assembler::notEqual, fast);
 10924     __ testl(rax, rax);
 10925     __ jccb(Assembler::notEqual, fast);
 10926     __ subptr(rsp, 8);
 10927     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10928     __ fld_d(Address(rsp, 0));
 10929     __ addptr(rsp, 8);
 10930     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10931     __ bind(fast);
 10932   %}
 10933   ins_pipe( pipe_slow );
 10934 %}
 10936 // Convert a double to an int.  Java semantics require we do complex
 10937 // manglations in the corner cases.  So we set the rounding mode to
 10938 // 'zero', store the darned double down as an int, and reset the
 10939 // rounding mode to 'nearest'.  The hardware stores a flag value down
 10940 // if we would overflow or converted a NAN; we check for this and
 10941 // and go the slow path if needed.
 10942 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 10943   predicate(UseSSE==0);
 10944   match(Set dst (ConvF2I src));
 10945   effect( KILL tmp, KILL cr );
 10946   format %{ "FLD    $src\t# Convert float to int \n\t"
 10947             "FLDCW  trunc mode\n\t"
 10948             "SUB    ESP,4\n\t"
 10949             "FISTp  [ESP + #0]\n\t"
 10950             "FLDCW  std/24-bit mode\n\t"
 10951             "POP    EAX\n\t"
 10952             "CMP    EAX,0x80000000\n\t"
 10953             "JNE,s  fast\n\t"
 10954             "FLD    $src\n\t"
 10955             "CALL   d2i_wrapper\n"
 10956       "fast:" %}
 10957   // DPR2I_encoding works for FPR2I
 10958   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 10959   ins_pipe( pipe_slow );
 10960 %}
 10962 // Convert a float in xmm to an int reg.
 10963 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 10964   predicate(UseSSE>=1);
 10965   match(Set dst (ConvF2I src));
 10966   effect( KILL tmp, KILL cr );
 10967   format %{ "CVTTSS2SI $dst, $src\n\t"
 10968             "CMP    $dst,0x80000000\n\t"
 10969             "JNE,s  fast\n\t"
 10970             "SUB    ESP, 4\n\t"
 10971             "MOVSS  [ESP], $src\n\t"
 10972             "FLD    [ESP]\n\t"
 10973             "ADD    ESP, 4\n\t"
 10974             "CALL   d2i_wrapper\n"
 10975       "fast:" %}
 10976   ins_encode %{
 10977     Label fast;
 10978     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 10979     __ cmpl($dst$$Register, 0x80000000);
 10980     __ jccb(Assembler::notEqual, fast);
 10981     __ subptr(rsp, 4);
 10982     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10983     __ fld_s(Address(rsp, 0));
 10984     __ addptr(rsp, 4);
 10985     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10986     __ bind(fast);
 10987   %}
 10988   ins_pipe( pipe_slow );
 10989 %}
 10991 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 10992   predicate(UseSSE==0);
 10993   match(Set dst (ConvF2L src));
 10994   effect( KILL cr );
 10995   format %{ "FLD    $src\t# Convert float to long\n\t"
 10996             "FLDCW  trunc mode\n\t"
 10997             "SUB    ESP,8\n\t"
 10998             "FISTp  [ESP + #0]\n\t"
 10999             "FLDCW  std/24-bit mode\n\t"
 11000             "POP    EAX\n\t"
 11001             "POP    EDX\n\t"
 11002             "CMP    EDX,0x80000000\n\t"
 11003             "JNE,s  fast\n\t"
 11004             "TEST   EAX,EAX\n\t"
 11005             "JNE,s  fast\n\t"
 11006             "FLD    $src\n\t"
 11007             "CALL   d2l_wrapper\n"
 11008       "fast:" %}
 11009   // DPR2L_encoding works for FPR2L
 11010   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11011   ins_pipe( pipe_slow );
 11012 %}
 11014 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11015 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11016   predicate (UseSSE>=1);
 11017   match(Set dst (ConvF2L src));
 11018   effect( KILL cr );
 11019   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11020             "MOVSS  [ESP],$src\n\t"
 11021             "FLD_S  [ESP]\n\t"
 11022             "FLDCW  trunc mode\n\t"
 11023             "FISTp  [ESP + #0]\n\t"
 11024             "FLDCW  std/24-bit mode\n\t"
 11025             "POP    EAX\n\t"
 11026             "POP    EDX\n\t"
 11027             "CMP    EDX,0x80000000\n\t"
 11028             "JNE,s  fast\n\t"
 11029             "TEST   EAX,EAX\n\t"
 11030             "JNE,s  fast\n\t"
 11031             "SUB    ESP,4\t# Convert float to long\n\t"
 11032             "MOVSS  [ESP],$src\n\t"
 11033             "FLD_S  [ESP]\n\t"
 11034             "ADD    ESP,4\n\t"
 11035             "CALL   d2l_wrapper\n"
 11036       "fast:" %}
 11037   ins_encode %{
 11038     Label fast;
 11039     __ subptr(rsp, 8);
 11040     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11041     __ fld_s(Address(rsp, 0));
 11042     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11043     __ fistp_d(Address(rsp, 0));
 11044     // Restore the rounding mode, mask the exception
 11045     if (Compile::current()->in_24_bit_fp_mode()) {
 11046       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11047     } else {
 11048       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11050     // Load the converted long, adjust CPU stack
 11051     __ pop(rax);
 11052     __ pop(rdx);
 11053     __ cmpl(rdx, 0x80000000);
 11054     __ jccb(Assembler::notEqual, fast);
 11055     __ testl(rax, rax);
 11056     __ jccb(Assembler::notEqual, fast);
 11057     __ subptr(rsp, 4);
 11058     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11059     __ fld_s(Address(rsp, 0));
 11060     __ addptr(rsp, 4);
 11061     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11062     __ bind(fast);
 11063   %}
 11064   ins_pipe( pipe_slow );
 11065 %}
 11067 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11068   predicate( UseSSE<=1 );
 11069   match(Set dst (ConvI2D src));
 11070   format %{ "FILD   $src\n\t"
 11071             "FSTP   $dst" %}
 11072   opcode(0xDB, 0x0);  /* DB /0 */
 11073   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11074   ins_pipe( fpu_reg_mem );
 11075 %}
 11077 instruct convI2D_reg(regD dst, rRegI src) %{
 11078   predicate( UseSSE>=2 && !UseXmmI2D );
 11079   match(Set dst (ConvI2D src));
 11080   format %{ "CVTSI2SD $dst,$src" %}
 11081   ins_encode %{
 11082     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11083   %}
 11084   ins_pipe( pipe_slow );
 11085 %}
 11087 instruct convI2D_mem(regD dst, memory mem) %{
 11088   predicate( UseSSE>=2 );
 11089   match(Set dst (ConvI2D (LoadI mem)));
 11090   format %{ "CVTSI2SD $dst,$mem" %}
 11091   ins_encode %{
 11092     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11093   %}
 11094   ins_pipe( pipe_slow );
 11095 %}
 11097 instruct convXI2D_reg(regD dst, rRegI src)
 11098 %{
 11099   predicate( UseSSE>=2 && UseXmmI2D );
 11100   match(Set dst (ConvI2D src));
 11102   format %{ "MOVD  $dst,$src\n\t"
 11103             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11104   ins_encode %{
 11105     __ movdl($dst$$XMMRegister, $src$$Register);
 11106     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11107   %}
 11108   ins_pipe(pipe_slow); // XXX
 11109 %}
 11111 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11112   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11113   match(Set dst (ConvI2D (LoadI mem)));
 11114   format %{ "FILD   $mem\n\t"
 11115             "FSTP   $dst" %}
 11116   opcode(0xDB);      /* DB /0 */
 11117   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11118               Pop_Reg_DPR(dst));
 11119   ins_pipe( fpu_reg_mem );
 11120 %}
 11122 // Convert a byte to a float; no rounding step needed.
 11123 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11124   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11125   match(Set dst (ConvI2F src));
 11126   format %{ "FILD   $src\n\t"
 11127             "FSTP   $dst" %}
 11129   opcode(0xDB, 0x0);  /* DB /0 */
 11130   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11131   ins_pipe( fpu_reg_mem );
 11132 %}
 11134 // In 24-bit mode, force exponent rounding by storing back out
 11135 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11136   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11137   match(Set dst (ConvI2F src));
 11138   ins_cost(200);
 11139   format %{ "FILD   $src\n\t"
 11140             "FSTP_S $dst" %}
 11141   opcode(0xDB, 0x0);  /* DB /0 */
 11142   ins_encode( Push_Mem_I(src),
 11143               Pop_Mem_FPR(dst));
 11144   ins_pipe( fpu_mem_mem );
 11145 %}
 11147 // In 24-bit mode, force exponent rounding by storing back out
 11148 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11149   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11150   match(Set dst (ConvI2F (LoadI mem)));
 11151   ins_cost(200);
 11152   format %{ "FILD   $mem\n\t"
 11153             "FSTP_S $dst" %}
 11154   opcode(0xDB);  /* DB /0 */
 11155   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11156               Pop_Mem_FPR(dst));
 11157   ins_pipe( fpu_mem_mem );
 11158 %}
 11160 // This instruction does not round to 24-bits
 11161 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11162   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11163   match(Set dst (ConvI2F src));
 11164   format %{ "FILD   $src\n\t"
 11165             "FSTP   $dst" %}
 11166   opcode(0xDB, 0x0);  /* DB /0 */
 11167   ins_encode( Push_Mem_I(src),
 11168               Pop_Reg_FPR(dst));
 11169   ins_pipe( fpu_reg_mem );
 11170 %}
 11172 // This instruction does not round to 24-bits
 11173 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11174   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11175   match(Set dst (ConvI2F (LoadI mem)));
 11176   format %{ "FILD   $mem\n\t"
 11177             "FSTP   $dst" %}
 11178   opcode(0xDB);      /* DB /0 */
 11179   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11180               Pop_Reg_FPR(dst));
 11181   ins_pipe( fpu_reg_mem );
 11182 %}
 11184 // Convert an int to a float in xmm; no rounding step needed.
 11185 instruct convI2F_reg(regF dst, rRegI src) %{
 11186   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11187   match(Set dst (ConvI2F src));
 11188   format %{ "CVTSI2SS $dst, $src" %}
 11189   ins_encode %{
 11190     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11191   %}
 11192   ins_pipe( pipe_slow );
 11193 %}
 11195  instruct convXI2F_reg(regF dst, rRegI src)
 11196 %{
 11197   predicate( UseSSE>=2 && UseXmmI2F );
 11198   match(Set dst (ConvI2F src));
 11200   format %{ "MOVD  $dst,$src\n\t"
 11201             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11202   ins_encode %{
 11203     __ movdl($dst$$XMMRegister, $src$$Register);
 11204     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11205   %}
 11206   ins_pipe(pipe_slow); // XXX
 11207 %}
 11209 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11210   match(Set dst (ConvI2L src));
 11211   effect(KILL cr);
 11212   ins_cost(375);
 11213   format %{ "MOV    $dst.lo,$src\n\t"
 11214             "MOV    $dst.hi,$src\n\t"
 11215             "SAR    $dst.hi,31" %}
 11216   ins_encode(convert_int_long(dst,src));
 11217   ins_pipe( ialu_reg_reg_long );
 11218 %}
 11220 // Zero-extend convert int to long
 11221 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11222   match(Set dst (AndL (ConvI2L src) mask) );
 11223   effect( KILL flags );
 11224   ins_cost(250);
 11225   format %{ "MOV    $dst.lo,$src\n\t"
 11226             "XOR    $dst.hi,$dst.hi" %}
 11227   opcode(0x33); // XOR
 11228   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11229   ins_pipe( ialu_reg_reg_long );
 11230 %}
 11232 // Zero-extend long
 11233 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11234   match(Set dst (AndL src mask) );
 11235   effect( KILL flags );
 11236   ins_cost(250);
 11237   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11238             "XOR    $dst.hi,$dst.hi\n\t" %}
 11239   opcode(0x33); // XOR
 11240   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11241   ins_pipe( ialu_reg_reg_long );
 11242 %}
 11244 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11245   predicate (UseSSE<=1);
 11246   match(Set dst (ConvL2D src));
 11247   effect( KILL cr );
 11248   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11249             "PUSH   $src.lo\n\t"
 11250             "FILD   ST,[ESP + #0]\n\t"
 11251             "ADD    ESP,8\n\t"
 11252             "FSTP_D $dst\t# D-round" %}
 11253   opcode(0xDF, 0x5);  /* DF /5 */
 11254   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11255   ins_pipe( pipe_slow );
 11256 %}
 11258 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11259   predicate (UseSSE>=2);
 11260   match(Set dst (ConvL2D src));
 11261   effect( KILL cr );
 11262   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11263             "PUSH   $src.lo\n\t"
 11264             "FILD_D [ESP]\n\t"
 11265             "FSTP_D [ESP]\n\t"
 11266             "MOVSD  $dst,[ESP]\n\t"
 11267             "ADD    ESP,8" %}
 11268   opcode(0xDF, 0x5);  /* DF /5 */
 11269   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11270   ins_pipe( pipe_slow );
 11271 %}
 11273 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11274   predicate (UseSSE>=1);
 11275   match(Set dst (ConvL2F src));
 11276   effect( KILL cr );
 11277   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11278             "PUSH   $src.lo\n\t"
 11279             "FILD_D [ESP]\n\t"
 11280             "FSTP_S [ESP]\n\t"
 11281             "MOVSS  $dst,[ESP]\n\t"
 11282             "ADD    ESP,8" %}
 11283   opcode(0xDF, 0x5);  /* DF /5 */
 11284   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11285   ins_pipe( pipe_slow );
 11286 %}
 11288 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11289   match(Set dst (ConvL2F src));
 11290   effect( KILL cr );
 11291   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11292             "PUSH   $src.lo\n\t"
 11293             "FILD   ST,[ESP + #0]\n\t"
 11294             "ADD    ESP,8\n\t"
 11295             "FSTP_S $dst\t# F-round" %}
 11296   opcode(0xDF, 0x5);  /* DF /5 */
 11297   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11298   ins_pipe( pipe_slow );
 11299 %}
 11301 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11302   match(Set dst (ConvL2I src));
 11303   effect( DEF dst, USE src );
 11304   format %{ "MOV    $dst,$src.lo" %}
 11305   ins_encode(enc_CopyL_Lo(dst,src));
 11306   ins_pipe( ialu_reg_reg );
 11307 %}
 11310 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11311   match(Set dst (MoveF2I src));
 11312   effect( DEF dst, USE src );
 11313   ins_cost(100);
 11314   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11315   ins_encode %{
 11316     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11317   %}
 11318   ins_pipe( ialu_reg_mem );
 11319 %}
 11321 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11322   predicate(UseSSE==0);
 11323   match(Set dst (MoveF2I src));
 11324   effect( DEF dst, USE src );
 11326   ins_cost(125);
 11327   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11328   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11329   ins_pipe( fpu_mem_reg );
 11330 %}
 11332 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11333   predicate(UseSSE>=1);
 11334   match(Set dst (MoveF2I src));
 11335   effect( DEF dst, USE src );
 11337   ins_cost(95);
 11338   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11339   ins_encode %{
 11340     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11341   %}
 11342   ins_pipe( pipe_slow );
 11343 %}
 11345 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11346   predicate(UseSSE>=2);
 11347   match(Set dst (MoveF2I src));
 11348   effect( DEF dst, USE src );
 11349   ins_cost(85);
 11350   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11351   ins_encode %{
 11352     __ movdl($dst$$Register, $src$$XMMRegister);
 11353   %}
 11354   ins_pipe( pipe_slow );
 11355 %}
 11357 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11358   match(Set dst (MoveI2F src));
 11359   effect( DEF dst, USE src );
 11361   ins_cost(100);
 11362   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11363   ins_encode %{
 11364     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11365   %}
 11366   ins_pipe( ialu_mem_reg );
 11367 %}
 11370 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11371   predicate(UseSSE==0);
 11372   match(Set dst (MoveI2F src));
 11373   effect(DEF dst, USE src);
 11375   ins_cost(125);
 11376   format %{ "FLD_S  $src\n\t"
 11377             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11378   opcode(0xD9);               /* D9 /0, FLD m32real */
 11379   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11380               Pop_Reg_FPR(dst) );
 11381   ins_pipe( fpu_reg_mem );
 11382 %}
 11384 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11385   predicate(UseSSE>=1);
 11386   match(Set dst (MoveI2F src));
 11387   effect( DEF dst, USE src );
 11389   ins_cost(95);
 11390   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11391   ins_encode %{
 11392     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11393   %}
 11394   ins_pipe( pipe_slow );
 11395 %}
 11397 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11398   predicate(UseSSE>=2);
 11399   match(Set dst (MoveI2F src));
 11400   effect( DEF dst, USE src );
 11402   ins_cost(85);
 11403   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11404   ins_encode %{
 11405     __ movdl($dst$$XMMRegister, $src$$Register);
 11406   %}
 11407   ins_pipe( pipe_slow );
 11408 %}
 11410 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11411   match(Set dst (MoveD2L src));
 11412   effect(DEF dst, USE src);
 11414   ins_cost(250);
 11415   format %{ "MOV    $dst.lo,$src\n\t"
 11416             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11417   opcode(0x8B, 0x8B);
 11418   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11419   ins_pipe( ialu_mem_long_reg );
 11420 %}
 11422 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11423   predicate(UseSSE<=1);
 11424   match(Set dst (MoveD2L src));
 11425   effect(DEF dst, USE src);
 11427   ins_cost(125);
 11428   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11429   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11430   ins_pipe( fpu_mem_reg );
 11431 %}
 11433 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11434   predicate(UseSSE>=2);
 11435   match(Set dst (MoveD2L src));
 11436   effect(DEF dst, USE src);
 11437   ins_cost(95);
 11438   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11439   ins_encode %{
 11440     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11441   %}
 11442   ins_pipe( pipe_slow );
 11443 %}
 11445 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11446   predicate(UseSSE>=2);
 11447   match(Set dst (MoveD2L src));
 11448   effect(DEF dst, USE src, TEMP tmp);
 11449   ins_cost(85);
 11450   format %{ "MOVD   $dst.lo,$src\n\t"
 11451             "PSHUFLW $tmp,$src,0x4E\n\t"
 11452             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11453   ins_encode %{
 11454     __ movdl($dst$$Register, $src$$XMMRegister);
 11455     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11456     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11457   %}
 11458   ins_pipe( pipe_slow );
 11459 %}
 11461 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11462   match(Set dst (MoveL2D src));
 11463   effect(DEF dst, USE src);
 11465   ins_cost(200);
 11466   format %{ "MOV    $dst,$src.lo\n\t"
 11467             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11468   opcode(0x89, 0x89);
 11469   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11470   ins_pipe( ialu_mem_long_reg );
 11471 %}
 11474 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11475   predicate(UseSSE<=1);
 11476   match(Set dst (MoveL2D src));
 11477   effect(DEF dst, USE src);
 11478   ins_cost(125);
 11480   format %{ "FLD_D  $src\n\t"
 11481             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11482   opcode(0xDD);               /* DD /0, FLD m64real */
 11483   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11484               Pop_Reg_DPR(dst) );
 11485   ins_pipe( fpu_reg_mem );
 11486 %}
 11489 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11490   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11491   match(Set dst (MoveL2D src));
 11492   effect(DEF dst, USE src);
 11494   ins_cost(95);
 11495   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11496   ins_encode %{
 11497     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11498   %}
 11499   ins_pipe( pipe_slow );
 11500 %}
 11502 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11503   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11504   match(Set dst (MoveL2D src));
 11505   effect(DEF dst, USE src);
 11507   ins_cost(95);
 11508   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11509   ins_encode %{
 11510     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11511   %}
 11512   ins_pipe( pipe_slow );
 11513 %}
 11515 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11516   predicate(UseSSE>=2);
 11517   match(Set dst (MoveL2D src));
 11518   effect(TEMP dst, USE src, TEMP tmp);
 11519   ins_cost(85);
 11520   format %{ "MOVD   $dst,$src.lo\n\t"
 11521             "MOVD   $tmp,$src.hi\n\t"
 11522             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11523   ins_encode %{
 11524     __ movdl($dst$$XMMRegister, $src$$Register);
 11525     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11526     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11527   %}
 11528   ins_pipe( pipe_slow );
 11529 %}
 11532 // =======================================================================
 11533 // fast clearing of an array
 11534 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11535   predicate(!UseFastStosb);
 11536   match(Set dummy (ClearArray cnt base));
 11537   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11538   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11539             "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11540             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11541   ins_encode %{ 
 11542     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11543   %}
 11544   ins_pipe( pipe_slow );
 11545 %}
 11547 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11548   predicate(UseFastStosb);
 11549   match(Set dummy (ClearArray cnt base));
 11550   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11551   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11552             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
 11553             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
 11554   ins_encode %{ 
 11555     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11556   %}
 11557   ins_pipe( pipe_slow );
 11558 %}
 11560 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11561                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11562   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11563   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11565   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11566   ins_encode %{
 11567     __ string_compare($str1$$Register, $str2$$Register,
 11568                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11569                       $tmp1$$XMMRegister);
 11570   %}
 11571   ins_pipe( pipe_slow );
 11572 %}
 11574 // fast string equals
 11575 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11576                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11577   match(Set result (StrEquals (Binary str1 str2) cnt));
 11578   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11580   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11581   ins_encode %{
 11582     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11583                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11584                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11585   %}
 11586   ins_pipe( pipe_slow );
 11587 %}
 11589 // fast search of substring with known size.
 11590 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11591                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11592   predicate(UseSSE42Intrinsics);
 11593   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11594   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11596   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11597   ins_encode %{
 11598     int icnt2 = (int)$int_cnt2$$constant;
 11599     if (icnt2 >= 8) {
 11600       // IndexOf for constant substrings with size >= 8 elements
 11601       // which don't need to be loaded through stack.
 11602       __ string_indexofC8($str1$$Register, $str2$$Register,
 11603                           $cnt1$$Register, $cnt2$$Register,
 11604                           icnt2, $result$$Register,
 11605                           $vec$$XMMRegister, $tmp$$Register);
 11606     } else {
 11607       // Small strings are loaded through stack if they cross page boundary.
 11608       __ string_indexof($str1$$Register, $str2$$Register,
 11609                         $cnt1$$Register, $cnt2$$Register,
 11610                         icnt2, $result$$Register,
 11611                         $vec$$XMMRegister, $tmp$$Register);
 11613   %}
 11614   ins_pipe( pipe_slow );
 11615 %}
 11617 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11618                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11619   predicate(UseSSE42Intrinsics);
 11620   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11621   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11623   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11624   ins_encode %{
 11625     __ string_indexof($str1$$Register, $str2$$Register,
 11626                       $cnt1$$Register, $cnt2$$Register,
 11627                       (-1), $result$$Register,
 11628                       $vec$$XMMRegister, $tmp$$Register);
 11629   %}
 11630   ins_pipe( pipe_slow );
 11631 %}
 11633 // fast array equals
 11634 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11635                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11636 %{
 11637   match(Set result (AryEq ary1 ary2));
 11638   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11639   //ins_cost(300);
 11641   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11642   ins_encode %{
 11643     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11644                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11645                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11646   %}
 11647   ins_pipe( pipe_slow );
 11648 %}
 11650 // encode char[] to byte[] in ISO_8859_1
 11651 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
 11652                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
 11653                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
 11654   match(Set result (EncodeISOArray src (Binary dst len)));
 11655   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
 11657   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
 11658   ins_encode %{
 11659     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
 11660                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
 11661                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
 11662   %}
 11663   ins_pipe( pipe_slow );
 11664 %}
 11667 //----------Control Flow Instructions------------------------------------------
 11668 // Signed compare Instructions
 11669 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11670   match(Set cr (CmpI op1 op2));
 11671   effect( DEF cr, USE op1, USE op2 );
 11672   format %{ "CMP    $op1,$op2" %}
 11673   opcode(0x3B);  /* Opcode 3B /r */
 11674   ins_encode( OpcP, RegReg( op1, op2) );
 11675   ins_pipe( ialu_cr_reg_reg );
 11676 %}
 11678 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11679   match(Set cr (CmpI op1 op2));
 11680   effect( DEF cr, USE op1 );
 11681   format %{ "CMP    $op1,$op2" %}
 11682   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11683   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11684   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11685   ins_pipe( ialu_cr_reg_imm );
 11686 %}
 11688 // Cisc-spilled version of cmpI_eReg
 11689 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11690   match(Set cr (CmpI op1 (LoadI op2)));
 11692   format %{ "CMP    $op1,$op2" %}
 11693   ins_cost(500);
 11694   opcode(0x3B);  /* Opcode 3B /r */
 11695   ins_encode( OpcP, RegMem( op1, op2) );
 11696   ins_pipe( ialu_cr_reg_mem );
 11697 %}
 11699 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11700   match(Set cr (CmpI src zero));
 11701   effect( DEF cr, USE src );
 11703   format %{ "TEST   $src,$src" %}
 11704   opcode(0x85);
 11705   ins_encode( OpcP, RegReg( src, src ) );
 11706   ins_pipe( ialu_cr_reg_imm );
 11707 %}
 11709 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11710   match(Set cr (CmpI (AndI src con) zero));
 11712   format %{ "TEST   $src,$con" %}
 11713   opcode(0xF7,0x00);
 11714   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11715   ins_pipe( ialu_cr_reg_imm );
 11716 %}
 11718 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11719   match(Set cr (CmpI (AndI src mem) zero));
 11721   format %{ "TEST   $src,$mem" %}
 11722   opcode(0x85);
 11723   ins_encode( OpcP, RegMem( src, mem ) );
 11724   ins_pipe( ialu_cr_reg_mem );
 11725 %}
 11727 // Unsigned compare Instructions; really, same as signed except they
 11728 // produce an eFlagsRegU instead of eFlagsReg.
 11729 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11730   match(Set cr (CmpU op1 op2));
 11732   format %{ "CMPu   $op1,$op2" %}
 11733   opcode(0x3B);  /* Opcode 3B /r */
 11734   ins_encode( OpcP, RegReg( op1, op2) );
 11735   ins_pipe( ialu_cr_reg_reg );
 11736 %}
 11738 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11739   match(Set cr (CmpU op1 op2));
 11741   format %{ "CMPu   $op1,$op2" %}
 11742   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11743   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11744   ins_pipe( ialu_cr_reg_imm );
 11745 %}
 11747 // // Cisc-spilled version of cmpU_eReg
 11748 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11749   match(Set cr (CmpU op1 (LoadI op2)));
 11751   format %{ "CMPu   $op1,$op2" %}
 11752   ins_cost(500);
 11753   opcode(0x3B);  /* Opcode 3B /r */
 11754   ins_encode( OpcP, RegMem( op1, op2) );
 11755   ins_pipe( ialu_cr_reg_mem );
 11756 %}
 11758 // // Cisc-spilled version of cmpU_eReg
 11759 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11760 //  match(Set cr (CmpU (LoadI op1) op2));
 11761 //
 11762 //  format %{ "CMPu   $op1,$op2" %}
 11763 //  ins_cost(500);
 11764 //  opcode(0x39);  /* Opcode 39 /r */
 11765 //  ins_encode( OpcP, RegMem( op1, op2) );
 11766 //%}
 11768 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11769   match(Set cr (CmpU src zero));
 11771   format %{ "TESTu  $src,$src" %}
 11772   opcode(0x85);
 11773   ins_encode( OpcP, RegReg( src, src ) );
 11774   ins_pipe( ialu_cr_reg_imm );
 11775 %}
 11777 // Unsigned pointer compare Instructions
 11778 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11779   match(Set cr (CmpP op1 op2));
 11781   format %{ "CMPu   $op1,$op2" %}
 11782   opcode(0x3B);  /* Opcode 3B /r */
 11783   ins_encode( OpcP, RegReg( op1, op2) );
 11784   ins_pipe( ialu_cr_reg_reg );
 11785 %}
 11787 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11788   match(Set cr (CmpP op1 op2));
 11790   format %{ "CMPu   $op1,$op2" %}
 11791   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11792   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11793   ins_pipe( ialu_cr_reg_imm );
 11794 %}
 11796 // // Cisc-spilled version of cmpP_eReg
 11797 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11798   match(Set cr (CmpP op1 (LoadP op2)));
 11800   format %{ "CMPu   $op1,$op2" %}
 11801   ins_cost(500);
 11802   opcode(0x3B);  /* Opcode 3B /r */
 11803   ins_encode( OpcP, RegMem( op1, op2) );
 11804   ins_pipe( ialu_cr_reg_mem );
 11805 %}
 11807 // // Cisc-spilled version of cmpP_eReg
 11808 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 11809 //  match(Set cr (CmpP (LoadP op1) op2));
 11810 //
 11811 //  format %{ "CMPu   $op1,$op2" %}
 11812 //  ins_cost(500);
 11813 //  opcode(0x39);  /* Opcode 39 /r */
 11814 //  ins_encode( OpcP, RegMem( op1, op2) );
 11815 //%}
 11817 // Compare raw pointer (used in out-of-heap check).
 11818 // Only works because non-oop pointers must be raw pointers
 11819 // and raw pointers have no anti-dependencies.
 11820 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 11821   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
 11822   match(Set cr (CmpP op1 (LoadP op2)));
 11824   format %{ "CMPu   $op1,$op2" %}
 11825   opcode(0x3B);  /* Opcode 3B /r */
 11826   ins_encode( OpcP, RegMem( op1, op2) );
 11827   ins_pipe( ialu_cr_reg_mem );
 11828 %}
 11830 //
 11831 // This will generate a signed flags result. This should be ok
 11832 // since any compare to a zero should be eq/neq.
 11833 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 11834   match(Set cr (CmpP src zero));
 11836   format %{ "TEST   $src,$src" %}
 11837   opcode(0x85);
 11838   ins_encode( OpcP, RegReg( src, src ) );
 11839   ins_pipe( ialu_cr_reg_imm );
 11840 %}
 11842 // Cisc-spilled version of testP_reg
 11843 // This will generate a signed flags result. This should be ok
 11844 // since any compare to a zero should be eq/neq.
 11845 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 11846   match(Set cr (CmpP (LoadP op) zero));
 11848   format %{ "TEST   $op,0xFFFFFFFF" %}
 11849   ins_cost(500);
 11850   opcode(0xF7);               /* Opcode F7 /0 */
 11851   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 11852   ins_pipe( ialu_cr_reg_imm );
 11853 %}
 11855 // Yanked all unsigned pointer compare operations.
 11856 // Pointer compares are done with CmpP which is already unsigned.
 11858 //----------Max and Min--------------------------------------------------------
 11859 // Min Instructions
 11860 ////
 11861 //   *** Min and Max using the conditional move are slower than the
 11862 //   *** branch version on a Pentium III.
 11863 // // Conditional move for min
 11864 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11865 //  effect( USE_DEF op2, USE op1, USE cr );
 11866 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 11867 //  opcode(0x4C,0x0F);
 11868 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11869 //  ins_pipe( pipe_cmov_reg );
 11870 //%}
 11871 //
 11872 //// Min Register with Register (P6 version)
 11873 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11874 //  predicate(VM_Version::supports_cmov() );
 11875 //  match(Set op2 (MinI op1 op2));
 11876 //  ins_cost(200);
 11877 //  expand %{
 11878 //    eFlagsReg cr;
 11879 //    compI_eReg(cr,op1,op2);
 11880 //    cmovI_reg_lt(op2,op1,cr);
 11881 //  %}
 11882 //%}
 11884 // Min Register with Register (generic version)
 11885 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11886   match(Set dst (MinI dst src));
 11887   effect(KILL flags);
 11888   ins_cost(300);
 11890   format %{ "MIN    $dst,$src" %}
 11891   opcode(0xCC);
 11892   ins_encode( min_enc(dst,src) );
 11893   ins_pipe( pipe_slow );
 11894 %}
 11896 // Max Register with Register
 11897 //   *** Min and Max using the conditional move are slower than the
 11898 //   *** branch version on a Pentium III.
 11899 // // Conditional move for max
 11900 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11901 //  effect( USE_DEF op2, USE op1, USE cr );
 11902 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 11903 //  opcode(0x4F,0x0F);
 11904 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11905 //  ins_pipe( pipe_cmov_reg );
 11906 //%}
 11907 //
 11908 // // Max Register with Register (P6 version)
 11909 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11910 //  predicate(VM_Version::supports_cmov() );
 11911 //  match(Set op2 (MaxI op1 op2));
 11912 //  ins_cost(200);
 11913 //  expand %{
 11914 //    eFlagsReg cr;
 11915 //    compI_eReg(cr,op1,op2);
 11916 //    cmovI_reg_gt(op2,op1,cr);
 11917 //  %}
 11918 //%}
 11920 // Max Register with Register (generic version)
 11921 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11922   match(Set dst (MaxI dst src));
 11923   effect(KILL flags);
 11924   ins_cost(300);
 11926   format %{ "MAX    $dst,$src" %}
 11927   opcode(0xCC);
 11928   ins_encode( max_enc(dst,src) );
 11929   ins_pipe( pipe_slow );
 11930 %}
 11932 // ============================================================================
 11933 // Counted Loop limit node which represents exact final iterator value.
 11934 // Note: the resulting value should fit into integer range since
 11935 // counted loops have limit check on overflow.
 11936 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 11937   match(Set limit (LoopLimit (Binary init limit) stride));
 11938   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 11939   ins_cost(300);
 11941   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 11942   ins_encode %{
 11943     int strd = (int)$stride$$constant;
 11944     assert(strd != 1 && strd != -1, "sanity");
 11945     int m1 = (strd > 0) ? 1 : -1;
 11946     // Convert limit to long (EAX:EDX)
 11947     __ cdql();
 11948     // Convert init to long (init:tmp)
 11949     __ movl($tmp$$Register, $init$$Register);
 11950     __ sarl($tmp$$Register, 31);
 11951     // $limit - $init
 11952     __ subl($limit$$Register, $init$$Register);
 11953     __ sbbl($limit_hi$$Register, $tmp$$Register);
 11954     // + ($stride - 1)
 11955     if (strd > 0) {
 11956       __ addl($limit$$Register, (strd - 1));
 11957       __ adcl($limit_hi$$Register, 0);
 11958       __ movl($tmp$$Register, strd);
 11959     } else {
 11960       __ addl($limit$$Register, (strd + 1));
 11961       __ adcl($limit_hi$$Register, -1);
 11962       __ lneg($limit_hi$$Register, $limit$$Register);
 11963       __ movl($tmp$$Register, -strd);
 11965     // signed devision: (EAX:EDX) / pos_stride
 11966     __ idivl($tmp$$Register);
 11967     if (strd < 0) {
 11968       // restore sign
 11969       __ negl($tmp$$Register);
 11971     // (EAX) * stride
 11972     __ mull($tmp$$Register);
 11973     // + init (ignore upper bits)
 11974     __ addl($limit$$Register, $init$$Register);
 11975   %}
 11976   ins_pipe( pipe_slow );
 11977 %}
 11979 // ============================================================================
 11980 // Branch Instructions
 11981 // Jump Table
 11982 instruct jumpXtnd(rRegI switch_val) %{
 11983   match(Jump switch_val);
 11984   ins_cost(350);
 11985   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 11986   ins_encode %{
 11987     // Jump to Address(table_base + switch_reg)
 11988     Address index(noreg, $switch_val$$Register, Address::times_1);
 11989     __ jump(ArrayAddress($constantaddress, index));
 11990   %}
 11991   ins_pipe(pipe_jmp);
 11992 %}
 11994 // Jump Direct - Label defines a relative address from JMP+1
 11995 instruct jmpDir(label labl) %{
 11996   match(Goto);
 11997   effect(USE labl);
 11999   ins_cost(300);
 12000   format %{ "JMP    $labl" %}
 12001   size(5);
 12002   ins_encode %{
 12003     Label* L = $labl$$label;
 12004     __ jmp(*L, false); // Always long jump
 12005   %}
 12006   ins_pipe( pipe_jmp );
 12007 %}
 12009 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12010 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12011   match(If cop cr);
 12012   effect(USE labl);
 12014   ins_cost(300);
 12015   format %{ "J$cop    $labl" %}
 12016   size(6);
 12017   ins_encode %{
 12018     Label* L = $labl$$label;
 12019     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12020   %}
 12021   ins_pipe( pipe_jcc );
 12022 %}
 12024 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12025 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12026   match(CountedLoopEnd cop cr);
 12027   effect(USE labl);
 12029   ins_cost(300);
 12030   format %{ "J$cop    $labl\t# Loop end" %}
 12031   size(6);
 12032   ins_encode %{
 12033     Label* L = $labl$$label;
 12034     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12035   %}
 12036   ins_pipe( pipe_jcc );
 12037 %}
 12039 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12040 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12041   match(CountedLoopEnd cop cmp);
 12042   effect(USE labl);
 12044   ins_cost(300);
 12045   format %{ "J$cop,u  $labl\t# Loop end" %}
 12046   size(6);
 12047   ins_encode %{
 12048     Label* L = $labl$$label;
 12049     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12050   %}
 12051   ins_pipe( pipe_jcc );
 12052 %}
 12054 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12055   match(CountedLoopEnd cop cmp);
 12056   effect(USE labl);
 12058   ins_cost(200);
 12059   format %{ "J$cop,u  $labl\t# Loop end" %}
 12060   size(6);
 12061   ins_encode %{
 12062     Label* L = $labl$$label;
 12063     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12064   %}
 12065   ins_pipe( pipe_jcc );
 12066 %}
 12068 // Jump Direct Conditional - using unsigned comparison
 12069 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12070   match(If cop cmp);
 12071   effect(USE labl);
 12073   ins_cost(300);
 12074   format %{ "J$cop,u  $labl" %}
 12075   size(6);
 12076   ins_encode %{
 12077     Label* L = $labl$$label;
 12078     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12079   %}
 12080   ins_pipe(pipe_jcc);
 12081 %}
 12083 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12084   match(If cop cmp);
 12085   effect(USE labl);
 12087   ins_cost(200);
 12088   format %{ "J$cop,u  $labl" %}
 12089   size(6);
 12090   ins_encode %{
 12091     Label* L = $labl$$label;
 12092     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12093   %}
 12094   ins_pipe(pipe_jcc);
 12095 %}
 12097 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12098   match(If cop cmp);
 12099   effect(USE labl);
 12101   ins_cost(200);
 12102   format %{ $$template
 12103     if ($cop$$cmpcode == Assembler::notEqual) {
 12104       $$emit$$"JP,u   $labl\n\t"
 12105       $$emit$$"J$cop,u   $labl"
 12106     } else {
 12107       $$emit$$"JP,u   done\n\t"
 12108       $$emit$$"J$cop,u   $labl\n\t"
 12109       $$emit$$"done:"
 12111   %}
 12112   ins_encode %{
 12113     Label* l = $labl$$label;
 12114     if ($cop$$cmpcode == Assembler::notEqual) {
 12115       __ jcc(Assembler::parity, *l, false);
 12116       __ jcc(Assembler::notEqual, *l, false);
 12117     } else if ($cop$$cmpcode == Assembler::equal) {
 12118       Label done;
 12119       __ jccb(Assembler::parity, done);
 12120       __ jcc(Assembler::equal, *l, false);
 12121       __ bind(done);
 12122     } else {
 12123        ShouldNotReachHere();
 12125   %}
 12126   ins_pipe(pipe_jcc);
 12127 %}
 12129 // ============================================================================
 12130 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12131 // array for an instance of the superklass.  Set a hidden internal cache on a
 12132 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12133 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12134 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12135   match(Set result (PartialSubtypeCheck sub super));
 12136   effect( KILL rcx, KILL cr );
 12138   ins_cost(1100);  // slightly larger than the next version
 12139   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12140             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12141             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12142             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12143             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12144             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12145             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12146      "miss:\t" %}
 12148   opcode(0x1); // Force a XOR of EDI
 12149   ins_encode( enc_PartialSubtypeCheck() );
 12150   ins_pipe( pipe_slow );
 12151 %}
 12153 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12154   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12155   effect( KILL rcx, KILL result );
 12157   ins_cost(1000);
 12158   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12159             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12160             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12161             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12162             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12163             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12164      "miss:\t" %}
 12166   opcode(0x0);  // No need to XOR EDI
 12167   ins_encode( enc_PartialSubtypeCheck() );
 12168   ins_pipe( pipe_slow );
 12169 %}
 12171 // ============================================================================
 12172 // Branch Instructions -- short offset versions
 12173 //
 12174 // These instructions are used to replace jumps of a long offset (the default
 12175 // match) with jumps of a shorter offset.  These instructions are all tagged
 12176 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12177 // match rules in general matching.  Instead, the ADLC generates a conversion
 12178 // method in the MachNode which can be used to do in-place replacement of the
 12179 // long variant with the shorter variant.  The compiler will determine if a
 12180 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12181 // specific code section of the file.
 12183 // Jump Direct - Label defines a relative address from JMP+1
 12184 instruct jmpDir_short(label labl) %{
 12185   match(Goto);
 12186   effect(USE labl);
 12188   ins_cost(300);
 12189   format %{ "JMP,s  $labl" %}
 12190   size(2);
 12191   ins_encode %{
 12192     Label* L = $labl$$label;
 12193     __ jmpb(*L);
 12194   %}
 12195   ins_pipe( pipe_jmp );
 12196   ins_short_branch(1);
 12197 %}
 12199 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12200 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12201   match(If cop cr);
 12202   effect(USE labl);
 12204   ins_cost(300);
 12205   format %{ "J$cop,s  $labl" %}
 12206   size(2);
 12207   ins_encode %{
 12208     Label* L = $labl$$label;
 12209     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12210   %}
 12211   ins_pipe( pipe_jcc );
 12212   ins_short_branch(1);
 12213 %}
 12215 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12216 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12217   match(CountedLoopEnd cop cr);
 12218   effect(USE labl);
 12220   ins_cost(300);
 12221   format %{ "J$cop,s  $labl\t# Loop end" %}
 12222   size(2);
 12223   ins_encode %{
 12224     Label* L = $labl$$label;
 12225     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12226   %}
 12227   ins_pipe( pipe_jcc );
 12228   ins_short_branch(1);
 12229 %}
 12231 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12232 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12233   match(CountedLoopEnd cop cmp);
 12234   effect(USE labl);
 12236   ins_cost(300);
 12237   format %{ "J$cop,us $labl\t# Loop end" %}
 12238   size(2);
 12239   ins_encode %{
 12240     Label* L = $labl$$label;
 12241     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12242   %}
 12243   ins_pipe( pipe_jcc );
 12244   ins_short_branch(1);
 12245 %}
 12247 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12248   match(CountedLoopEnd cop cmp);
 12249   effect(USE labl);
 12251   ins_cost(300);
 12252   format %{ "J$cop,us $labl\t# Loop end" %}
 12253   size(2);
 12254   ins_encode %{
 12255     Label* L = $labl$$label;
 12256     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12257   %}
 12258   ins_pipe( pipe_jcc );
 12259   ins_short_branch(1);
 12260 %}
 12262 // Jump Direct Conditional - using unsigned comparison
 12263 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12264   match(If cop cmp);
 12265   effect(USE labl);
 12267   ins_cost(300);
 12268   format %{ "J$cop,us $labl" %}
 12269   size(2);
 12270   ins_encode %{
 12271     Label* L = $labl$$label;
 12272     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12273   %}
 12274   ins_pipe( pipe_jcc );
 12275   ins_short_branch(1);
 12276 %}
 12278 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12279   match(If cop cmp);
 12280   effect(USE labl);
 12282   ins_cost(300);
 12283   format %{ "J$cop,us $labl" %}
 12284   size(2);
 12285   ins_encode %{
 12286     Label* L = $labl$$label;
 12287     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12288   %}
 12289   ins_pipe( pipe_jcc );
 12290   ins_short_branch(1);
 12291 %}
 12293 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12294   match(If cop cmp);
 12295   effect(USE labl);
 12297   ins_cost(300);
 12298   format %{ $$template
 12299     if ($cop$$cmpcode == Assembler::notEqual) {
 12300       $$emit$$"JP,u,s   $labl\n\t"
 12301       $$emit$$"J$cop,u,s   $labl"
 12302     } else {
 12303       $$emit$$"JP,u,s   done\n\t"
 12304       $$emit$$"J$cop,u,s  $labl\n\t"
 12305       $$emit$$"done:"
 12307   %}
 12308   size(4);
 12309   ins_encode %{
 12310     Label* l = $labl$$label;
 12311     if ($cop$$cmpcode == Assembler::notEqual) {
 12312       __ jccb(Assembler::parity, *l);
 12313       __ jccb(Assembler::notEqual, *l);
 12314     } else if ($cop$$cmpcode == Assembler::equal) {
 12315       Label done;
 12316       __ jccb(Assembler::parity, done);
 12317       __ jccb(Assembler::equal, *l);
 12318       __ bind(done);
 12319     } else {
 12320        ShouldNotReachHere();
 12322   %}
 12323   ins_pipe(pipe_jcc);
 12324   ins_short_branch(1);
 12325 %}
 12327 // ============================================================================
 12328 // Long Compare
 12329 //
 12330 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12331 // is tricky.  The flavor of compare used depends on whether we are testing
 12332 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12333 // The GE test is the negated LT test.  The LE test can be had by commuting
 12334 // the operands (yielding a GE test) and then negating; negate again for the
 12335 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12336 // NE test is negated from that.
 12338 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12339 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12340 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12341 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12342 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12343 // foo match ends up with the wrong leaf.  One fix is to not match both
 12344 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12345 // both forms beat the trinary form of long-compare and both are very useful
 12346 // on Intel which has so few registers.
 12348 // Manifest a CmpL result in an integer register.  Very painful.
 12349 // This is the test to avoid.
 12350 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12351   match(Set dst (CmpL3 src1 src2));
 12352   effect( KILL flags );
 12353   ins_cost(1000);
 12354   format %{ "XOR    $dst,$dst\n\t"
 12355             "CMP    $src1.hi,$src2.hi\n\t"
 12356             "JLT,s  m_one\n\t"
 12357             "JGT,s  p_one\n\t"
 12358             "CMP    $src1.lo,$src2.lo\n\t"
 12359             "JB,s   m_one\n\t"
 12360             "JEQ,s  done\n"
 12361     "p_one:\tINC    $dst\n\t"
 12362             "JMP,s  done\n"
 12363     "m_one:\tDEC    $dst\n"
 12364      "done:" %}
 12365   ins_encode %{
 12366     Label p_one, m_one, done;
 12367     __ xorptr($dst$$Register, $dst$$Register);
 12368     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12369     __ jccb(Assembler::less,    m_one);
 12370     __ jccb(Assembler::greater, p_one);
 12371     __ cmpl($src1$$Register, $src2$$Register);
 12372     __ jccb(Assembler::below,   m_one);
 12373     __ jccb(Assembler::equal,   done);
 12374     __ bind(p_one);
 12375     __ incrementl($dst$$Register);
 12376     __ jmpb(done);
 12377     __ bind(m_one);
 12378     __ decrementl($dst$$Register);
 12379     __ bind(done);
 12380   %}
 12381   ins_pipe( pipe_slow );
 12382 %}
 12384 //======
 12385 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12386 // compares.  Can be used for LE or GT compares by reversing arguments.
 12387 // NOT GOOD FOR EQ/NE tests.
 12388 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12389   match( Set flags (CmpL src zero ));
 12390   ins_cost(100);
 12391   format %{ "TEST   $src.hi,$src.hi" %}
 12392   opcode(0x85);
 12393   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12394   ins_pipe( ialu_cr_reg_reg );
 12395 %}
 12397 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12398 // compares.  Can be used for LE or GT compares by reversing arguments.
 12399 // NOT GOOD FOR EQ/NE tests.
 12400 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12401   match( Set flags (CmpL src1 src2 ));
 12402   effect( TEMP tmp );
 12403   ins_cost(300);
 12404   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12405             "MOV    $tmp,$src1.hi\n\t"
 12406             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12407   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12408   ins_pipe( ialu_cr_reg_reg );
 12409 %}
 12411 // Long compares reg < zero/req OR reg >= zero/req.
 12412 // Just a wrapper for a normal branch, plus the predicate test.
 12413 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12414   match(If cmp flags);
 12415   effect(USE labl);
 12416   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12417   expand %{
 12418     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12419   %}
 12420 %}
 12422 //======
 12423 // Manifest a CmpUL result in the normal flags.  Only good for LT or GE
 12424 // compares.  Can be used for LE or GT compares by reversing arguments.
 12425 // NOT GOOD FOR EQ/NE tests.
 12426 instruct cmpUL_zero_flags_LTGE(flagsReg_ulong_LTGE flags, eRegL src, immL0 zero) %{
 12427   match(Set flags (CmpUL src zero));
 12428   ins_cost(100);
 12429   format %{ "TEST   $src.hi,$src.hi" %}
 12430   opcode(0x85);
 12431   ins_encode(OpcP, RegReg_Hi2(src, src));
 12432   ins_pipe(ialu_cr_reg_reg);
 12433 %}
 12435 // Manifest a CmpUL result in the normal flags.  Only good for LT or GE
 12436 // compares.  Can be used for LE or GT compares by reversing arguments.
 12437 // NOT GOOD FOR EQ/NE tests.
 12438 instruct cmpUL_reg_flags_LTGE(flagsReg_ulong_LTGE flags, eRegL src1, eRegL src2, rRegI tmp) %{
 12439   match(Set flags (CmpUL src1 src2));
 12440   effect(TEMP tmp);
 12441   ins_cost(300);
 12442   format %{ "CMP    $src1.lo,$src2.lo\t! Unsigned long compare; set flags for low bits\n\t"
 12443             "MOV    $tmp,$src1.hi\n\t"
 12444             "SBB    $tmp,$src2.hi\t! Compute flags for unsigned long compare" %}
 12445   ins_encode(long_cmp_flags2(src1, src2, tmp));
 12446   ins_pipe(ialu_cr_reg_reg);
 12447 %}
 12449 // Unsigned long compares reg < zero/req OR reg >= zero/req.
 12450 // Just a wrapper for a normal branch, plus the predicate test.
 12451 instruct cmpUL_LTGE(cmpOpU cmp, flagsReg_ulong_LTGE flags, label labl) %{
 12452   match(If cmp flags);
 12453   effect(USE labl);
 12454   predicate(_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge);
 12455   expand %{
 12456     jmpCon(cmp, flags, labl);    // JLT or JGE...
 12457   %}
 12458 %}
 12460 // Compare 2 longs and CMOVE longs.
 12461 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12462   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12463   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12464   ins_cost(400);
 12465   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12466             "CMOV$cmp $dst.hi,$src.hi" %}
 12467   opcode(0x0F,0x40);
 12468   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12469   ins_pipe( pipe_cmov_reg_long );
 12470 %}
 12472 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12473   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12474   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12475   ins_cost(500);
 12476   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12477             "CMOV$cmp $dst.hi,$src.hi" %}
 12478   opcode(0x0F,0x40);
 12479   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12480   ins_pipe( pipe_cmov_reg_long );
 12481 %}
 12483 // Compare 2 longs and CMOVE ints.
 12484 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12485   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12486   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12487   ins_cost(200);
 12488   format %{ "CMOV$cmp $dst,$src" %}
 12489   opcode(0x0F,0x40);
 12490   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12491   ins_pipe( pipe_cmov_reg );
 12492 %}
 12494 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12495   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12496   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12497   ins_cost(250);
 12498   format %{ "CMOV$cmp $dst,$src" %}
 12499   opcode(0x0F,0x40);
 12500   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12501   ins_pipe( pipe_cmov_mem );
 12502 %}
 12504 // Compare 2 longs and CMOVE ints.
 12505 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12506   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12507   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12508   ins_cost(200);
 12509   format %{ "CMOV$cmp $dst,$src" %}
 12510   opcode(0x0F,0x40);
 12511   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12512   ins_pipe( pipe_cmov_reg );
 12513 %}
 12515 // Compare 2 longs and CMOVE doubles
 12516 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12517   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12518   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12519   ins_cost(200);
 12520   expand %{
 12521     fcmovDPR_regS(cmp,flags,dst,src);
 12522   %}
 12523 %}
 12525 // Compare 2 longs and CMOVE doubles
 12526 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12527   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12528   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12529   ins_cost(200);
 12530   expand %{
 12531     fcmovD_regS(cmp,flags,dst,src);
 12532   %}
 12533 %}
 12535 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12536   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12537   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12538   ins_cost(200);
 12539   expand %{
 12540     fcmovFPR_regS(cmp,flags,dst,src);
 12541   %}
 12542 %}
 12544 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12545   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12546   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12547   ins_cost(200);
 12548   expand %{
 12549     fcmovF_regS(cmp,flags,dst,src);
 12550   %}
 12551 %}
 12553 //======
 12554 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12555 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12556   match( Set flags (CmpL src zero ));
 12557   effect(TEMP tmp);
 12558   ins_cost(200);
 12559   format %{ "MOV    $tmp,$src.lo\n\t"
 12560             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12561   ins_encode( long_cmp_flags0( src, tmp ) );
 12562   ins_pipe( ialu_reg_reg_long );
 12563 %}
 12565 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12566 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12567   match( Set flags (CmpL src1 src2 ));
 12568   ins_cost(200+300);
 12569   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12570             "JNE,s  skip\n\t"
 12571             "CMP    $src1.hi,$src2.hi\n\t"
 12572      "skip:\t" %}
 12573   ins_encode( long_cmp_flags1( src1, src2 ) );
 12574   ins_pipe( ialu_cr_reg_reg );
 12575 %}
 12577 // Long compare reg == zero/reg OR reg != zero/reg
 12578 // Just a wrapper for a normal branch, plus the predicate test.
 12579 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12580   match(If cmp flags);
 12581   effect(USE labl);
 12582   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12583   expand %{
 12584     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12585   %}
 12586 %}
 12588 //======
 12589 // Manifest a CmpUL result in the normal flags.  Only good for EQ/NE compares.
 12590 instruct cmpUL_zero_flags_EQNE(flagsReg_ulong_EQNE flags, eRegL src, immL0 zero, rRegI tmp) %{
 12591   match(Set flags (CmpUL src zero));
 12592   effect(TEMP tmp);
 12593   ins_cost(200);
 12594   format %{ "MOV    $tmp,$src.lo\n\t"
 12595             "OR     $tmp,$src.hi\t! Unsigned long is EQ/NE 0?" %}
 12596   ins_encode(long_cmp_flags0(src, tmp));
 12597   ins_pipe(ialu_reg_reg_long);
 12598 %}
 12600 // Manifest a CmpUL result in the normal flags.  Only good for EQ/NE compares.
 12601 instruct cmpUL_reg_flags_EQNE(flagsReg_ulong_EQNE flags, eRegL src1, eRegL src2) %{
 12602   match(Set flags (CmpUL src1 src2));
 12603   ins_cost(200+300);
 12604   format %{ "CMP    $src1.lo,$src2.lo\t! Unsigned long compare; set flags for low bits\n\t"
 12605             "JNE,s  skip\n\t"
 12606             "CMP    $src1.hi,$src2.hi\n\t"
 12607      "skip:\t" %}
 12608   ins_encode(long_cmp_flags1(src1, src2));
 12609   ins_pipe(ialu_cr_reg_reg);
 12610 %}
 12612 // Unsigned long compare reg == zero/reg OR reg != zero/reg
 12613 // Just a wrapper for a normal branch, plus the predicate test.
 12614 instruct cmpUL_EQNE(cmpOpU cmp, flagsReg_ulong_EQNE flags, label labl) %{
 12615   match(If cmp flags);
 12616   effect(USE labl);
 12617   predicate(_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne);
 12618   expand %{
 12619     jmpCon(cmp, flags, labl);    // JEQ or JNE...
 12620   %}
 12621 %}
 12623 // Compare 2 longs and CMOVE longs.
 12624 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12625   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12626   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12627   ins_cost(400);
 12628   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12629             "CMOV$cmp $dst.hi,$src.hi" %}
 12630   opcode(0x0F,0x40);
 12631   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12632   ins_pipe( pipe_cmov_reg_long );
 12633 %}
 12635 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12636   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12637   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12638   ins_cost(500);
 12639   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12640             "CMOV$cmp $dst.hi,$src.hi" %}
 12641   opcode(0x0F,0x40);
 12642   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12643   ins_pipe( pipe_cmov_reg_long );
 12644 %}
 12646 // Compare 2 longs and CMOVE ints.
 12647 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12648   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12649   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12650   ins_cost(200);
 12651   format %{ "CMOV$cmp $dst,$src" %}
 12652   opcode(0x0F,0x40);
 12653   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12654   ins_pipe( pipe_cmov_reg );
 12655 %}
 12657 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12658   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12659   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12660   ins_cost(250);
 12661   format %{ "CMOV$cmp $dst,$src" %}
 12662   opcode(0x0F,0x40);
 12663   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12664   ins_pipe( pipe_cmov_mem );
 12665 %}
 12667 // Compare 2 longs and CMOVE ints.
 12668 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12669   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12670   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12671   ins_cost(200);
 12672   format %{ "CMOV$cmp $dst,$src" %}
 12673   opcode(0x0F,0x40);
 12674   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12675   ins_pipe( pipe_cmov_reg );
 12676 %}
 12678 // Compare 2 longs and CMOVE doubles
 12679 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12680   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12681   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12682   ins_cost(200);
 12683   expand %{
 12684     fcmovDPR_regS(cmp,flags,dst,src);
 12685   %}
 12686 %}
 12688 // Compare 2 longs and CMOVE doubles
 12689 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12690   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12691   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12692   ins_cost(200);
 12693   expand %{
 12694     fcmovD_regS(cmp,flags,dst,src);
 12695   %}
 12696 %}
 12698 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12699   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12700   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12701   ins_cost(200);
 12702   expand %{
 12703     fcmovFPR_regS(cmp,flags,dst,src);
 12704   %}
 12705 %}
 12707 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12708   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12709   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12710   ins_cost(200);
 12711   expand %{
 12712     fcmovF_regS(cmp,flags,dst,src);
 12713   %}
 12714 %}
 12716 //======
 12717 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12718 // Same as cmpL_reg_flags_LEGT except must negate src
 12719 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12720   match( Set flags (CmpL src zero ));
 12721   effect( TEMP tmp );
 12722   ins_cost(300);
 12723   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12724             "CMP    $tmp,$src.lo\n\t"
 12725             "SBB    $tmp,$src.hi\n\t" %}
 12726   ins_encode( long_cmp_flags3(src, tmp) );
 12727   ins_pipe( ialu_reg_reg_long );
 12728 %}
 12730 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12731 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12732 // requires a commuted test to get the same result.
 12733 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12734   match( Set flags (CmpL src1 src2 ));
 12735   effect( TEMP tmp );
 12736   ins_cost(300);
 12737   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12738             "MOV    $tmp,$src2.hi\n\t"
 12739             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12740   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12741   ins_pipe( ialu_cr_reg_reg );
 12742 %}
 12744 // Long compares reg < zero/req OR reg >= zero/req.
 12745 // Just a wrapper for a normal branch, plus the predicate test
 12746 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12747   match(If cmp flags);
 12748   effect(USE labl);
 12749   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12750   ins_cost(300);
 12751   expand %{
 12752     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12753   %}
 12754 %}
 12756 //======
 12757 // Manifest a CmpUL result in the normal flags.  Only good for LE or GT compares.
 12758 // Same as cmpUL_reg_flags_LEGT except must negate src
 12759 instruct cmpUL_zero_flags_LEGT(flagsReg_ulong_LEGT flags, eRegL src, immL0 zero, rRegI tmp) %{
 12760   match(Set flags (CmpUL src zero));
 12761   effect(TEMP tmp);
 12762   ins_cost(300);
 12763   format %{ "XOR    $tmp,$tmp\t# Unsigned long compare for -$src < 0, use commuted test\n\t"
 12764             "CMP    $tmp,$src.lo\n\t"
 12765             "SBB    $tmp,$src.hi\n\t" %}
 12766   ins_encode(long_cmp_flags3(src, tmp));
 12767   ins_pipe(ialu_reg_reg_long);
 12768 %}
 12770 // Manifest a CmpUL result in the normal flags.  Only good for LE or GT compares.
 12771 // Same as cmpUL_reg_flags_LTGE except operands swapped.  Swapping operands
 12772 // requires a commuted test to get the same result.
 12773 instruct cmpUL_reg_flags_LEGT(flagsReg_ulong_LEGT flags, eRegL src1, eRegL src2, rRegI tmp) %{
 12774   match(Set flags (CmpUL src1 src2));
 12775   effect(TEMP tmp);
 12776   ins_cost(300);
 12777   format %{ "CMP    $src2.lo,$src1.lo\t! Unsigned long compare, swapped operands, use with commuted test\n\t"
 12778             "MOV    $tmp,$src2.hi\n\t"
 12779             "SBB    $tmp,$src1.hi\t! Compute flags for unsigned long compare" %}
 12780   ins_encode(long_cmp_flags2( src2, src1, tmp));
 12781   ins_pipe(ialu_cr_reg_reg);
 12782 %}
 12784 // Unsigned long compares reg < zero/req OR reg >= zero/req.
 12785 // Just a wrapper for a normal branch, plus the predicate test
 12786 instruct cmpUL_LEGT(cmpOpU_commute cmp, flagsReg_ulong_LEGT flags, label labl) %{
 12787   match(If cmp flags);
 12788   effect(USE labl);
 12789   predicate(_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le);
 12790   ins_cost(300);
 12791   expand %{
 12792     jmpCon(cmp, flags, labl);    // JGT or JLE...
 12793   %}
 12794 %}
 12796 // Compare 2 longs and CMOVE longs.
 12797 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12798   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12799   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12800   ins_cost(400);
 12801   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12802             "CMOV$cmp $dst.hi,$src.hi" %}
 12803   opcode(0x0F,0x40);
 12804   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12805   ins_pipe( pipe_cmov_reg_long );
 12806 %}
 12808 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12809   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12810   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12811   ins_cost(500);
 12812   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12813             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12814   opcode(0x0F,0x40);
 12815   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12816   ins_pipe( pipe_cmov_reg_long );
 12817 %}
 12819 // Compare 2 longs and CMOVE ints.
 12820 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12821   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12822   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12823   ins_cost(200);
 12824   format %{ "CMOV$cmp $dst,$src" %}
 12825   opcode(0x0F,0x40);
 12826   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12827   ins_pipe( pipe_cmov_reg );
 12828 %}
 12830 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12831   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12832   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12833   ins_cost(250);
 12834   format %{ "CMOV$cmp $dst,$src" %}
 12835   opcode(0x0F,0x40);
 12836   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12837   ins_pipe( pipe_cmov_mem );
 12838 %}
 12840 // Compare 2 longs and CMOVE ptrs.
 12841 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12842   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12843   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12844   ins_cost(200);
 12845   format %{ "CMOV$cmp $dst,$src" %}
 12846   opcode(0x0F,0x40);
 12847   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12848   ins_pipe( pipe_cmov_reg );
 12849 %}
 12851 // Compare 2 longs and CMOVE doubles
 12852 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12853   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12854   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12855   ins_cost(200);
 12856   expand %{
 12857     fcmovDPR_regS(cmp,flags,dst,src);
 12858   %}
 12859 %}
 12861 // Compare 2 longs and CMOVE doubles
 12862 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12863   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12864   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12865   ins_cost(200);
 12866   expand %{
 12867     fcmovD_regS(cmp,flags,dst,src);
 12868   %}
 12869 %}
 12871 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12872   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12873   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12874   ins_cost(200);
 12875   expand %{
 12876     fcmovFPR_regS(cmp,flags,dst,src);
 12877   %}
 12878 %}
 12881 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12882   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12883   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12884   ins_cost(200);
 12885   expand %{
 12886     fcmovF_regS(cmp,flags,dst,src);
 12887   %}
 12888 %}
 12891 // ============================================================================
 12892 // Procedure Call/Return Instructions
 12893 // Call Java Static Instruction
 12894 // Note: If this code changes, the corresponding ret_addr_offset() and
 12895 //       compute_padding() functions will have to be adjusted.
 12896 instruct CallStaticJavaDirect(method meth) %{
 12897   match(CallStaticJava);
 12898   effect(USE meth);
 12900   ins_cost(300);
 12901   format %{ "CALL,static " %}
 12902   opcode(0xE8); /* E8 cd */
 12903   ins_encode( pre_call_resets,
 12904               Java_Static_Call( meth ),
 12905               call_epilog,
 12906               post_call_FPU );
 12907   ins_pipe( pipe_slow );
 12908   ins_alignment(4);
 12909 %}
 12911 // Call Java Dynamic Instruction
 12912 // Note: If this code changes, the corresponding ret_addr_offset() and
 12913 //       compute_padding() functions will have to be adjusted.
 12914 instruct CallDynamicJavaDirect(method meth) %{
 12915   match(CallDynamicJava);
 12916   effect(USE meth);
 12918   ins_cost(300);
 12919   format %{ "MOV    EAX,(oop)-1\n\t"
 12920             "CALL,dynamic" %}
 12921   opcode(0xE8); /* E8 cd */
 12922   ins_encode( pre_call_resets,
 12923               Java_Dynamic_Call( meth ),
 12924               call_epilog,
 12925               post_call_FPU );
 12926   ins_pipe( pipe_slow );
 12927   ins_alignment(4);
 12928 %}
 12930 // Call Runtime Instruction
 12931 instruct CallRuntimeDirect(method meth) %{
 12932   match(CallRuntime );
 12933   effect(USE meth);
 12935   ins_cost(300);
 12936   format %{ "CALL,runtime " %}
 12937   opcode(0xE8); /* E8 cd */
 12938   // Use FFREEs to clear entries in float stack
 12939   ins_encode( pre_call_resets,
 12940               FFree_Float_Stack_All,
 12941               Java_To_Runtime( meth ),
 12942               post_call_FPU );
 12943   ins_pipe( pipe_slow );
 12944 %}
 12946 // Call runtime without safepoint
 12947 instruct CallLeafDirect(method meth) %{
 12948   match(CallLeaf);
 12949   effect(USE meth);
 12951   ins_cost(300);
 12952   format %{ "CALL_LEAF,runtime " %}
 12953   opcode(0xE8); /* E8 cd */
 12954   ins_encode( pre_call_resets,
 12955               FFree_Float_Stack_All,
 12956               Java_To_Runtime( meth ),
 12957               Verify_FPU_For_Leaf, post_call_FPU );
 12958   ins_pipe( pipe_slow );
 12959 %}
 12961 instruct CallLeafNoFPDirect(method meth) %{
 12962   match(CallLeafNoFP);
 12963   effect(USE meth);
 12965   ins_cost(300);
 12966   format %{ "CALL_LEAF_NOFP,runtime " %}
 12967   opcode(0xE8); /* E8 cd */
 12968   ins_encode(Java_To_Runtime(meth));
 12969   ins_pipe( pipe_slow );
 12970 %}
 12973 // Return Instruction
 12974 // Remove the return address & jump to it.
 12975 instruct Ret() %{
 12976   match(Return);
 12977   format %{ "RET" %}
 12978   opcode(0xC3);
 12979   ins_encode(OpcP);
 12980   ins_pipe( pipe_jmp );
 12981 %}
 12983 // Tail Call; Jump from runtime stub to Java code.
 12984 // Also known as an 'interprocedural jump'.
 12985 // Target of jump will eventually return to caller.
 12986 // TailJump below removes the return address.
 12987 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 12988   match(TailCall jump_target method_oop );
 12989   ins_cost(300);
 12990   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 12991   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12992   ins_encode( OpcP, RegOpc(jump_target) );
 12993   ins_pipe( pipe_jmp );
 12994 %}
 12997 // Tail Jump; remove the return address; jump to target.
 12998 // TailCall above leaves the return address around.
 12999 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13000   match( TailJump jump_target ex_oop );
 13001   ins_cost(300);
 13002   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13003             "JMP    $jump_target " %}
 13004   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13005   ins_encode( enc_pop_rdx,
 13006               OpcP, RegOpc(jump_target) );
 13007   ins_pipe( pipe_jmp );
 13008 %}
 13010 // Create exception oop: created by stack-crawling runtime code.
 13011 // Created exception is now available to this handler, and is setup
 13012 // just prior to jumping to this handler.  No code emitted.
 13013 instruct CreateException( eAXRegP ex_oop )
 13014 %{
 13015   match(Set ex_oop (CreateEx));
 13017   size(0);
 13018   // use the following format syntax
 13019   format %{ "# exception oop is in EAX; no code emitted" %}
 13020   ins_encode();
 13021   ins_pipe( empty );
 13022 %}
 13025 // Rethrow exception:
 13026 // The exception oop will come in the first argument position.
 13027 // Then JUMP (not call) to the rethrow stub code.
 13028 instruct RethrowException()
 13029 %{
 13030   match(Rethrow);
 13032   // use the following format syntax
 13033   format %{ "JMP    rethrow_stub" %}
 13034   ins_encode(enc_rethrow);
 13035   ins_pipe( pipe_jmp );
 13036 %}
 13038 // inlined locking and unlocking
 13040 instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
 13041   predicate(Compile::current()->use_rtm());
 13042   match(Set cr (FastLock object box));
 13043   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
 13044   ins_cost(300);
 13045   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
 13046   ins_encode %{
 13047     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 13048                  $scr$$Register, $cx1$$Register, $cx2$$Register,
 13049                  _counters, _rtm_counters, _stack_rtm_counters,
 13050                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
 13051                  true, ra_->C->profile_rtm());
 13052   %}
 13053   ins_pipe(pipe_slow);
 13054 %}
 13056 instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 13057   predicate(!Compile::current()->use_rtm());
 13058   match(Set cr (FastLock object box));
 13059   effect(TEMP tmp, TEMP scr, USE_KILL box);
 13060   ins_cost(300);
 13061   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 13062   ins_encode %{
 13063     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 13064                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
 13065   %}
 13066   ins_pipe(pipe_slow);
 13067 %}
 13069 instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13070   match(Set cr (FastUnlock object box));
 13071   effect(TEMP tmp, USE_KILL box);
 13072   ins_cost(300);
 13073   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 13074   ins_encode %{
 13075     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
 13076   %}
 13077   ins_pipe(pipe_slow);
 13078 %}
 13082 // ============================================================================
 13083 // Safepoint Instruction
 13084 instruct safePoint_poll(eFlagsReg cr) %{
 13085   match(SafePoint);
 13086   effect(KILL cr);
 13088   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13089   // On SPARC that might be acceptable as we can generate the address with
 13090   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13091   // putting additional pressure on the index-0 in the D$.  Because of
 13092   // alignment (just like the situation at hand) the lower indices tend
 13093   // to see more traffic.  It'd be better to change the polling address
 13094   // to offset 0 of the last $line in the polling page.
 13096   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13097   ins_cost(125);
 13098   size(6) ;
 13099   ins_encode( Safepoint_Poll() );
 13100   ins_pipe( ialu_reg_mem );
 13101 %}
 13104 // ============================================================================
 13105 // This name is KNOWN by the ADLC and cannot be changed.
 13106 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 13107 // for this guy.
 13108 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 13109   match(Set dst (ThreadLocal));
 13110   effect(DEF dst, KILL cr);
 13112   format %{ "MOV    $dst, Thread::current()" %}
 13113   ins_encode %{
 13114     Register dstReg = as_Register($dst$$reg);
 13115     __ get_thread(dstReg);
 13116   %}
 13117   ins_pipe( ialu_reg_fat );
 13118 %}
 13122 //----------PEEPHOLE RULES-----------------------------------------------------
 13123 // These must follow all instruction definitions as they use the names
 13124 // defined in the instructions definitions.
 13125 //
 13126 // peepmatch ( root_instr_name [preceding_instruction]* );
 13127 //
 13128 // peepconstraint %{
 13129 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13130 //  [, ...] );
 13131 // // instruction numbers are zero-based using left to right order in peepmatch
 13132 //
 13133 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13134 // // provide an instruction_number.operand_name for each operand that appears
 13135 // // in the replacement instruction's match rule
 13136 //
 13137 // ---------VM FLAGS---------------------------------------------------------
 13138 //
 13139 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13140 //
 13141 // Each peephole rule is given an identifying number starting with zero and
 13142 // increasing by one in the order seen by the parser.  An individual peephole
 13143 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13144 // on the command-line.
 13145 //
 13146 // ---------CURRENT LIMITATIONS----------------------------------------------
 13147 //
 13148 // Only match adjacent instructions in same basic block
 13149 // Only equality constraints
 13150 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13151 // Only one replacement instruction
 13152 //
 13153 // ---------EXAMPLE----------------------------------------------------------
 13154 //
 13155 // // pertinent parts of existing instructions in architecture description
 13156 // instruct movI(rRegI dst, rRegI src) %{
 13157 //   match(Set dst (CopyI src));
 13158 // %}
 13159 //
 13160 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 13161 //   match(Set dst (AddI dst src));
 13162 //   effect(KILL cr);
 13163 // %}
 13164 //
 13165 // // Change (inc mov) to lea
 13166 // peephole %{
 13167 //   // increment preceeded by register-register move
 13168 //   peepmatch ( incI_eReg movI );
 13169 //   // require that the destination register of the increment
 13170 //   // match the destination register of the move
 13171 //   peepconstraint ( 0.dst == 1.dst );
 13172 //   // construct a replacement instruction that sets
 13173 //   // the destination to ( move's source register + one )
 13174 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13175 // %}
 13176 //
 13177 // Implementation no longer uses movX instructions since
 13178 // machine-independent system no longer uses CopyX nodes.
 13179 //
 13180 // peephole %{
 13181 //   peepmatch ( incI_eReg movI );
 13182 //   peepconstraint ( 0.dst == 1.dst );
 13183 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13184 // %}
 13185 //
 13186 // peephole %{
 13187 //   peepmatch ( decI_eReg movI );
 13188 //   peepconstraint ( 0.dst == 1.dst );
 13189 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13190 // %}
 13191 //
 13192 // peephole %{
 13193 //   peepmatch ( addI_eReg_imm movI );
 13194 //   peepconstraint ( 0.dst == 1.dst );
 13195 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13196 // %}
 13197 //
 13198 // peephole %{
 13199 //   peepmatch ( addP_eReg_imm movP );
 13200 //   peepconstraint ( 0.dst == 1.dst );
 13201 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13202 // %}
 13204 // // Change load of spilled value to only a spill
 13205 // instruct storeI(memory mem, rRegI src) %{
 13206 //   match(Set mem (StoreI mem src));
 13207 // %}
 13208 //
 13209 // instruct loadI(rRegI dst, memory mem) %{
 13210 //   match(Set dst (LoadI mem));
 13211 // %}
 13212 //
 13213 peephole %{
 13214   peepmatch ( loadI storeI );
 13215   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13216   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13217 %}
 13219 //----------SMARTSPILL RULES---------------------------------------------------
 13220 // These must follow all instruction definitions as they use the names
 13221 // defined in the instructions definitions.

mercurial