src/share/vm/opto/lcm.cpp

Thu, 12 Sep 2013 23:13:45 +0200

author
adlertz
date
Thu, 12 Sep 2013 23:13:45 +0200
changeset 5722
8c83625e3a53
parent 5642
a9a968364704
child 5791
c9ccd7b85f20
permissions
-rw-r--r--

8024646: Remove LRG_List container, replace it with GrowableArray
Summary: We already have GrowableArray, use it instead of LRG_List
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #ifdef TARGET_ARCH_MODEL_x86_32
    34 # include "adfiles/ad_x86_32.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_MODEL_x86_64
    37 # include "adfiles/ad_x86_64.hpp"
    38 #endif
    39 #ifdef TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #endif
    42 #ifdef TARGET_ARCH_MODEL_zero
    43 # include "adfiles/ad_zero.hpp"
    44 #endif
    45 #ifdef TARGET_ARCH_MODEL_arm
    46 # include "adfiles/ad_arm.hpp"
    47 #endif
    48 #ifdef TARGET_ARCH_MODEL_ppc
    49 # include "adfiles/ad_ppc.hpp"
    50 #endif
    52 // Optimization - Graph Style
    54 //------------------------------implicit_null_check----------------------------
    55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    57 // I can generate a memory op if there is not one nearby.
    58 // The proj is the control projection for the not-null case.
    59 // The val is the pointer being checked for nullness or
    60 // decodeHeapOop_not_null node if it did not fold into address.
    61 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
    62   // Assume if null check need for 0 offset then always needed
    63   // Intel solaris doesn't support any null checks yet and no
    64   // mechanism exists (yet) to set the switches at an os_cpu level
    65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    67   // Make sure the ptr-is-null path appears to be uncommon!
    68   float f = block->end()->as_MachIf()->_prob;
    69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    70   if( f > PROB_UNLIKELY_MAG(4) ) return;
    72   uint bidx = 0;                // Capture index of value into memop
    73   bool was_store;               // Memory op is a store op
    75   // Get the successor block for if the test ptr is non-null
    76   Block* not_null_block;  // this one goes with the proj
    77   Block* null_block;
    78   if (block->get_node(block->number_of_nodes()-1) == proj) {
    79     null_block     = block->_succs[0];
    80     not_null_block = block->_succs[1];
    81   } else {
    82     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
    83     not_null_block = block->_succs[0];
    84     null_block     = block->_succs[1];
    85   }
    86   while (null_block->is_Empty() == Block::empty_with_goto) {
    87     null_block     = null_block->_succs[0];
    88   }
    90   // Search the exception block for an uncommon trap.
    91   // (See Parse::do_if and Parse::do_ifnull for the reason
    92   // we need an uncommon trap.  Briefly, we need a way to
    93   // detect failure of this optimization, as in 6366351.)
    94   {
    95     bool found_trap = false;
    96     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
    97       Node* nn = null_block->get_node(i1);
    98       if (nn->is_MachCall() &&
    99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
   100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
   101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
   102           jint tr_con = trtype->is_int()->get_con();
   103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
   104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
   105           assert((int)reason < (int)BitsPerInt, "recode bit map");
   106           if (is_set_nth_bit(allowed_reasons, (int) reason)
   107               && action != Deoptimization::Action_none) {
   108             // This uncommon trap is sure to recompile, eventually.
   109             // When that happens, C->too_many_traps will prevent
   110             // this transformation from happening again.
   111             found_trap = true;
   112           }
   113         }
   114         break;
   115       }
   116     }
   117     if (!found_trap) {
   118       // We did not find an uncommon trap.
   119       return;
   120     }
   121   }
   123   // Check for decodeHeapOop_not_null node which did not fold into address
   124   bool is_decoden = ((intptr_t)val) & 1;
   125   val = (Node*)(((intptr_t)val) & ~1);
   127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   130   // Search the successor block for a load or store who's base value is also
   131   // the tested value.  There may be several.
   132   Node_List *out = new Node_List(Thread::current()->resource_area());
   133   MachNode *best = NULL;        // Best found so far
   134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   135     Node *m = val->out(i);
   136     if( !m->is_Mach() ) continue;
   137     MachNode *mach = m->as_Mach();
   138     was_store = false;
   139     int iop = mach->ideal_Opcode();
   140     switch( iop ) {
   141     case Op_LoadB:
   142     case Op_LoadUB:
   143     case Op_LoadUS:
   144     case Op_LoadD:
   145     case Op_LoadF:
   146     case Op_LoadI:
   147     case Op_LoadL:
   148     case Op_LoadP:
   149     case Op_LoadN:
   150     case Op_LoadS:
   151     case Op_LoadKlass:
   152     case Op_LoadNKlass:
   153     case Op_LoadRange:
   154     case Op_LoadD_unaligned:
   155     case Op_LoadL_unaligned:
   156       assert(mach->in(2) == val, "should be address");
   157       break;
   158     case Op_StoreB:
   159     case Op_StoreC:
   160     case Op_StoreCM:
   161     case Op_StoreD:
   162     case Op_StoreF:
   163     case Op_StoreI:
   164     case Op_StoreL:
   165     case Op_StoreP:
   166     case Op_StoreN:
   167     case Op_StoreNKlass:
   168       was_store = true;         // Memory op is a store op
   169       // Stores will have their address in slot 2 (memory in slot 1).
   170       // If the value being nul-checked is in another slot, it means we
   171       // are storing the checked value, which does NOT check the value!
   172       if( mach->in(2) != val ) continue;
   173       break;                    // Found a memory op?
   174     case Op_StrComp:
   175     case Op_StrEquals:
   176     case Op_StrIndexOf:
   177     case Op_AryEq:
   178     case Op_EncodeISOArray:
   179       // Not a legit memory op for implicit null check regardless of
   180       // embedded loads
   181       continue;
   182     default:                    // Also check for embedded loads
   183       if( !mach->needs_anti_dependence_check() )
   184         continue;               // Not an memory op; skip it
   185       if( must_clone[iop] ) {
   186         // Do not move nodes which produce flags because
   187         // RA will try to clone it to place near branch and
   188         // it will cause recompilation, see clone_node().
   189         continue;
   190       }
   191       {
   192         // Check that value is used in memory address in
   193         // instructions with embedded load (CmpP val1,(val2+off)).
   194         Node* base;
   195         Node* index;
   196         const MachOper* oper = mach->memory_inputs(base, index);
   197         if (oper == NULL || oper == (MachOper*)-1) {
   198           continue;             // Not an memory op; skip it
   199         }
   200         if (val == base ||
   201             val == index && val->bottom_type()->isa_narrowoop()) {
   202           break;                // Found it
   203         } else {
   204           continue;             // Skip it
   205         }
   206       }
   207       break;
   208     }
   209     // check if the offset is not too high for implicit exception
   210     {
   211       intptr_t offset = 0;
   212       const TypePtr *adr_type = NULL;  // Do not need this return value here
   213       const Node* base = mach->get_base_and_disp(offset, adr_type);
   214       if (base == NULL || base == NodeSentinel) {
   215         // Narrow oop address doesn't have base, only index
   216         if( val->bottom_type()->isa_narrowoop() &&
   217             MacroAssembler::needs_explicit_null_check(offset) )
   218           continue;             // Give up if offset is beyond page size
   219         // cannot reason about it; is probably not implicit null exception
   220       } else {
   221         const TypePtr* tptr;
   222         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
   223                                   Universe::narrow_klass_shift() == 0)) {
   224           // 32-bits narrow oop can be the base of address expressions
   225           tptr = base->get_ptr_type();
   226         } else {
   227           // only regular oops are expected here
   228           tptr = base->bottom_type()->is_ptr();
   229         }
   230         // Give up if offset is not a compile-time constant
   231         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   232           continue;
   233         offset += tptr->_offset; // correct if base is offseted
   234         if( MacroAssembler::needs_explicit_null_check(offset) )
   235           continue;             // Give up is reference is beyond 4K page size
   236       }
   237     }
   239     // Check ctrl input to see if the null-check dominates the memory op
   240     Block *cb = get_block_for_node(mach);
   241     cb = cb->_idom;             // Always hoist at least 1 block
   242     if( !was_store ) {          // Stores can be hoisted only one block
   243       while( cb->_dom_depth > (block->_dom_depth + 1))
   244         cb = cb->_idom;         // Hoist loads as far as we want
   245       // The non-null-block should dominate the memory op, too. Live
   246       // range spilling will insert a spill in the non-null-block if it is
   247       // needs to spill the memory op for an implicit null check.
   248       if (cb->_dom_depth == (block->_dom_depth + 1)) {
   249         if (cb != not_null_block) continue;
   250         cb = cb->_idom;
   251       }
   252     }
   253     if( cb != block ) continue;
   255     // Found a memory user; see if it can be hoisted to check-block
   256     uint vidx = 0;              // Capture index of value into memop
   257     uint j;
   258     for( j = mach->req()-1; j > 0; j-- ) {
   259       if( mach->in(j) == val ) {
   260         vidx = j;
   261         // Ignore DecodeN val which could be hoisted to where needed.
   262         if( is_decoden ) continue;
   263       }
   264       // Block of memory-op input
   265       Block *inb = get_block_for_node(mach->in(j));
   266       Block *b = block;          // Start from nul check
   267       while( b != inb && b->_dom_depth > inb->_dom_depth )
   268         b = b->_idom;           // search upwards for input
   269       // See if input dominates null check
   270       if( b != inb )
   271         break;
   272     }
   273     if( j > 0 )
   274       continue;
   275     Block *mb = get_block_for_node(mach);
   276     // Hoisting stores requires more checks for the anti-dependence case.
   277     // Give up hoisting if we have to move the store past any load.
   278     if( was_store ) {
   279       Block *b = mb;            // Start searching here for a local load
   280       // mach use (faulting) trying to hoist
   281       // n might be blocker to hoisting
   282       while( b != block ) {
   283         uint k;
   284         for( k = 1; k < b->number_of_nodes(); k++ ) {
   285           Node *n = b->get_node(k);
   286           if( n->needs_anti_dependence_check() &&
   287               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   288             break;              // Found anti-dependent load
   289         }
   290         if( k < b->number_of_nodes() )
   291           break;                // Found anti-dependent load
   292         // Make sure control does not do a merge (would have to check allpaths)
   293         if( b->num_preds() != 2 ) break;
   294         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
   295       }
   296       if( b != block ) continue;
   297     }
   299     // Make sure this memory op is not already being used for a NullCheck
   300     Node *e = mb->end();
   301     if( e->is_MachNullCheck() && e->in(1) == mach )
   302       continue;                 // Already being used as a NULL check
   304     // Found a candidate!  Pick one with least dom depth - the highest
   305     // in the dom tree should be closest to the null check.
   306     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
   307       best = mach;
   308       bidx = vidx;
   309     }
   310   }
   311   // No candidate!
   312   if (best == NULL) {
   313     return;
   314   }
   316   // ---- Found an implicit null check
   317   extern int implicit_null_checks;
   318   implicit_null_checks++;
   320   if( is_decoden ) {
   321     // Check if we need to hoist decodeHeapOop_not_null first.
   322     Block *valb = get_block_for_node(val);
   323     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
   324       // Hoist it up to the end of the test block.
   325       valb->find_remove(val);
   326       block->add_inst(val);
   327       map_node_to_block(val, block);
   328       // DecodeN on x86 may kill flags. Check for flag-killing projections
   329       // that also need to be hoisted.
   330       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   331         Node* n = val->fast_out(j);
   332         if( n->is_MachProj() ) {
   333           get_block_for_node(n)->find_remove(n);
   334           block->add_inst(n);
   335           map_node_to_block(n, block);
   336         }
   337       }
   338     }
   339   }
   340   // Hoist the memory candidate up to the end of the test block.
   341   Block *old_block = get_block_for_node(best);
   342   old_block->find_remove(best);
   343   block->add_inst(best);
   344   map_node_to_block(best, block);
   346   // Move the control dependence
   347   if (best->in(0) && best->in(0) == old_block->head())
   348     best->set_req(0, block->head());
   350   // Check for flag-killing projections that also need to be hoisted
   351   // Should be DU safe because no edge updates.
   352   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   353     Node* n = best->fast_out(j);
   354     if( n->is_MachProj() ) {
   355       get_block_for_node(n)->find_remove(n);
   356       block->add_inst(n);
   357       map_node_to_block(n, block);
   358     }
   359   }
   361   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   362   // One of two graph shapes got matched:
   363   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   364   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   365   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   366   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   367   // We need to flip the projections to keep the same semantics.
   368   if( proj->Opcode() == Op_IfTrue ) {
   369     // Swap order of projections in basic block to swap branch targets
   370     Node *tmp1 = block->get_node(block->end_idx()+1);
   371     Node *tmp2 = block->get_node(block->end_idx()+2);
   372     block->map_node(tmp2, block->end_idx()+1);
   373     block->map_node(tmp1, block->end_idx()+2);
   374     Node *tmp = new (C) Node(C->top()); // Use not NULL input
   375     tmp1->replace_by(tmp);
   376     tmp2->replace_by(tmp1);
   377     tmp->replace_by(tmp2);
   378     tmp->destruct();
   379   }
   381   // Remove the existing null check; use a new implicit null check instead.
   382   // Since schedule-local needs precise def-use info, we need to correct
   383   // it as well.
   384   Node *old_tst = proj->in(0);
   385   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   386   block->map_node(nul_chk, block->end_idx());
   387   map_node_to_block(nul_chk, block);
   388   // Redirect users of old_test to nul_chk
   389   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   390     old_tst->last_out(i2)->set_req(0, nul_chk);
   391   // Clean-up any dead code
   392   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   393     old_tst->set_req(i3, NULL);
   395   latency_from_uses(nul_chk);
   396   latency_from_uses(best);
   397 }
   400 //------------------------------select-----------------------------------------
   401 // Select a nice fellow from the worklist to schedule next. If there is only
   402 // one choice, then use it. Projections take top priority for correctness
   403 // reasons - if I see a projection, then it is next.  There are a number of
   404 // other special cases, for instructions that consume condition codes, et al.
   405 // These are chosen immediately. Some instructions are required to immediately
   406 // precede the last instruction in the block, and these are taken last. Of the
   407 // remaining cases (most), choose the instruction with the greatest latency
   408 // (that is, the most number of pseudo-cycles required to the end of the
   409 // routine). If there is a tie, choose the instruction with the most inputs.
   410 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
   412   // If only a single entry on the stack, use it
   413   uint cnt = worklist.size();
   414   if (cnt == 1) {
   415     Node *n = worklist[0];
   416     worklist.map(0,worklist.pop());
   417     return n;
   418   }
   420   uint choice  = 0; // Bigger is most important
   421   uint latency = 0; // Bigger is scheduled first
   422   uint score   = 0; // Bigger is better
   423   int idx = -1;     // Index in worklist
   424   int cand_cnt = 0; // Candidate count
   426   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   427     // Order in worklist is used to break ties.
   428     // See caller for how this is used to delay scheduling
   429     // of induction variable increments to after the other
   430     // uses of the phi are scheduled.
   431     Node *n = worklist[i];      // Get Node on worklist
   433     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   434     if( n->is_Proj() ||         // Projections always win
   435         n->Opcode()== Op_Con || // So does constant 'Top'
   436         iop == Op_CreateEx ||   // Create-exception must start block
   437         iop == Op_CheckCastPP
   438         ) {
   439       worklist.map(i,worklist.pop());
   440       return n;
   441     }
   443     // Final call in a block must be adjacent to 'catch'
   444     Node *e = block->end();
   445     if( e->is_Catch() && e->in(0)->in(0) == n )
   446       continue;
   448     // Memory op for an implicit null check has to be at the end of the block
   449     if( e->is_MachNullCheck() && e->in(1) == n )
   450       continue;
   452     // Schedule IV increment last.
   453     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
   454         e->in(1)->in(1) == n && n->is_iteratively_computed())
   455       continue;
   457     uint n_choice  = 2;
   459     // See if this instruction is consumed by a branch. If so, then (as the
   460     // branch is the last instruction in the basic block) force it to the
   461     // end of the basic block
   462     if ( must_clone[iop] ) {
   463       // See if any use is a branch
   464       bool found_machif = false;
   466       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   467         Node* use = n->fast_out(j);
   469         // The use is a conditional branch, make them adjacent
   470         if (use->is_MachIf() && get_block_for_node(use) == block) {
   471           found_machif = true;
   472           break;
   473         }
   475         // More than this instruction pending for successor to be ready,
   476         // don't choose this if other opportunities are ready
   477         if (ready_cnt.at(use->_idx) > 1)
   478           n_choice = 1;
   479       }
   481       // loop terminated, prefer not to use this instruction
   482       if (found_machif)
   483         continue;
   484     }
   486     // See if this has a predecessor that is "must_clone", i.e. sets the
   487     // condition code. If so, choose this first
   488     for (uint j = 0; j < n->req() ; j++) {
   489       Node *inn = n->in(j);
   490       if (inn) {
   491         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   492           n_choice = 3;
   493           break;
   494         }
   495       }
   496     }
   498     // MachTemps should be scheduled last so they are near their uses
   499     if (n->is_MachTemp()) {
   500       n_choice = 1;
   501     }
   503     uint n_latency = get_latency_for_node(n);
   504     uint n_score   = n->req();   // Many inputs get high score to break ties
   506     // Keep best latency found
   507     cand_cnt++;
   508     if (choice < n_choice ||
   509         (choice == n_choice &&
   510          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
   511           (!StressLCM &&
   512            (latency < n_latency ||
   513             (latency == n_latency &&
   514              (score < n_score))))))) {
   515       choice  = n_choice;
   516       latency = n_latency;
   517       score   = n_score;
   518       idx     = i;               // Also keep index in worklist
   519     }
   520   } // End of for all ready nodes in worklist
   522   assert(idx >= 0, "index should be set");
   523   Node *n = worklist[(uint)idx];      // Get the winner
   525   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   526   return n;
   527 }
   530 //------------------------------set_next_call----------------------------------
   531 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
   532   if( next_call.test_set(n->_idx) ) return;
   533   for( uint i=0; i<n->len(); i++ ) {
   534     Node *m = n->in(i);
   535     if( !m ) continue;  // must see all nodes in block that precede call
   536     if (get_block_for_node(m) == block) {
   537       set_next_call(block, m, next_call);
   538     }
   539   }
   540 }
   542 //------------------------------needed_for_next_call---------------------------
   543 // Set the flag 'next_call' for each Node that is needed for the next call to
   544 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   545 // next subroutine call get priority - basically it moves things NOT needed
   546 // for the next call till after the call.  This prevents me from trying to
   547 // carry lots of stuff live across a call.
   548 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
   549   // Find the next control-defining Node in this block
   550   Node* call = NULL;
   551   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   552     Node* m = this_call->fast_out(i);
   553     if (get_block_for_node(m) == block && // Local-block user
   554         m != this_call &&       // Not self-start node
   555         m->is_MachCall()) {
   556       call = m;
   557       break;
   558     }
   559   }
   560   if (call == NULL)  return;    // No next call (e.g., block end is near)
   561   // Set next-call for all inputs to this call
   562   set_next_call(block, call, next_call);
   563 }
   565 //------------------------------add_call_kills-------------------------------------
   566 // helper function that adds caller save registers to MachProjNode
   567 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
   568   // Fill in the kill mask for the call
   569   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   570     if( !regs.Member(r) ) {     // Not already defined by the call
   571       // Save-on-call register?
   572       if ((save_policy[r] == 'C') ||
   573           (save_policy[r] == 'A') ||
   574           ((save_policy[r] == 'E') && exclude_soe)) {
   575         proj->_rout.Insert(r);
   576       }
   577     }
   578   }
   579 }
   582 //------------------------------sched_call-------------------------------------
   583 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
   584   RegMask regs;
   586   // Schedule all the users of the call right now.  All the users are
   587   // projection Nodes, so they must be scheduled next to the call.
   588   // Collect all the defined registers.
   589   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   590     Node* n = mcall->fast_out(i);
   591     assert( n->is_MachProj(), "" );
   592     int n_cnt = ready_cnt.at(n->_idx)-1;
   593     ready_cnt.at_put(n->_idx, n_cnt);
   594     assert( n_cnt == 0, "" );
   595     // Schedule next to call
   596     block->map_node(n, node_cnt++);
   597     // Collect defined registers
   598     regs.OR(n->out_RegMask());
   599     // Check for scheduling the next control-definer
   600     if( n->bottom_type() == Type::CONTROL )
   601       // Warm up next pile of heuristic bits
   602       needed_for_next_call(block, n, next_call);
   604     // Children of projections are now all ready
   605     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   606       Node* m = n->fast_out(j); // Get user
   607       if(get_block_for_node(m) != block) {
   608         continue;
   609       }
   610       if( m->is_Phi() ) continue;
   611       int m_cnt = ready_cnt.at(m->_idx)-1;
   612       ready_cnt.at_put(m->_idx, m_cnt);
   613       if( m_cnt == 0 )
   614         worklist.push(m);
   615     }
   617   }
   619   // Act as if the call defines the Frame Pointer.
   620   // Certainly the FP is alive and well after the call.
   621   regs.Insert(_matcher.c_frame_pointer());
   623   // Set all registers killed and not already defined by the call.
   624   uint r_cnt = mcall->tf()->range()->cnt();
   625   int op = mcall->ideal_Opcode();
   626   MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   627   map_node_to_block(proj, block);
   628   block->insert_node(proj, node_cnt++);
   630   // Select the right register save policy.
   631   const char * save_policy;
   632   switch (op) {
   633     case Op_CallRuntime:
   634     case Op_CallLeaf:
   635     case Op_CallLeafNoFP:
   636       // Calling C code so use C calling convention
   637       save_policy = _matcher._c_reg_save_policy;
   638       break;
   640     case Op_CallStaticJava:
   641     case Op_CallDynamicJava:
   642       // Calling Java code so use Java calling convention
   643       save_policy = _matcher._register_save_policy;
   644       break;
   646     default:
   647       ShouldNotReachHere();
   648   }
   650   // When using CallRuntime mark SOE registers as killed by the call
   651   // so values that could show up in the RegisterMap aren't live in a
   652   // callee saved register since the register wouldn't know where to
   653   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   654   // have debug info on them.  Strictly speaking this only needs to be
   655   // done for oops since idealreg2debugmask takes care of debug info
   656   // references but there no way to handle oops differently than other
   657   // pointers as far as the kill mask goes.
   658   bool exclude_soe = op == Op_CallRuntime;
   660   // If the call is a MethodHandle invoke, we need to exclude the
   661   // register which is used to save the SP value over MH invokes from
   662   // the mask.  Otherwise this register could be used for
   663   // deoptimization information.
   664   if (op == Op_CallStaticJava) {
   665     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   666     if (mcallstaticjava->_method_handle_invoke)
   667       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   668   }
   670   add_call_kills(proj, regs, save_policy, exclude_soe);
   672   return node_cnt;
   673 }
   676 //------------------------------schedule_local---------------------------------
   677 // Topological sort within a block.  Someday become a real scheduler.
   678 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
   679   // Already "sorted" are the block start Node (as the first entry), and
   680   // the block-ending Node and any trailing control projections.  We leave
   681   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   682   // Node.  Everything else gets topo-sorted.
   684 #ifndef PRODUCT
   685     if (trace_opto_pipelining()) {
   686       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
   687       for (uint i = 0;i < block->number_of_nodes(); i++) {
   688         tty->print("# ");
   689         block->get_node(i)->fast_dump();
   690       }
   691       tty->print_cr("#");
   692     }
   693 #endif
   695   // RootNode is already sorted
   696   if (block->number_of_nodes() == 1) {
   697     return true;
   698   }
   700   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   701   uint node_cnt = block->end_idx();
   702   uint phi_cnt = 1;
   703   uint i;
   704   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   705     Node *n = block->get_node(i);
   706     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   707         (n->is_Proj()  && n->in(0) == block->head()) ) {
   708       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   709       block->map_node(block->get_node(phi_cnt), i);
   710       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
   711     } else {                    // All others
   712       // Count block-local inputs to 'n'
   713       uint cnt = n->len();      // Input count
   714       uint local = 0;
   715       for( uint j=0; j<cnt; j++ ) {
   716         Node *m = n->in(j);
   717         if( m && get_block_for_node(m) == block && !m->is_top() )
   718           local++;              // One more block-local input
   719       }
   720       ready_cnt.at_put(n->_idx, local); // Count em up
   722 #ifdef ASSERT
   723       if( UseConcMarkSweepGC || UseG1GC ) {
   724         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   725           // Check the precedence edges
   726           for (uint prec = n->req(); prec < n->len(); prec++) {
   727             Node* oop_store = n->in(prec);
   728             if (oop_store != NULL) {
   729               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
   730             }
   731           }
   732         }
   733       }
   734 #endif
   736       // A few node types require changing a required edge to a precedence edge
   737       // before allocation.
   738       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   739           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   740            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   741         // MemBarAcquire could be created without Precedent edge.
   742         // del_req() replaces the specified edge with the last input edge
   743         // and then removes the last edge. If the specified edge > number of
   744         // edges the last edge will be moved outside of the input edges array
   745         // and the edge will be lost. This is why this code should be
   746         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   747         Node *x = n->in(TypeFunc::Parms);
   748         n->del_req(TypeFunc::Parms);
   749         n->add_prec(x);
   750       }
   751     }
   752   }
   753   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
   754     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
   756   // All the prescheduled guys do not hold back internal nodes
   757   uint i3;
   758   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   759     Node *n = block->get_node(i3);       // Get pre-scheduled
   760     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   761       Node* m = n->fast_out(j);
   762       if (get_block_for_node(m) == block) { // Local-block user
   763         int m_cnt = ready_cnt.at(m->_idx)-1;
   764         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
   765       }
   766     }
   767   }
   769   Node_List delay;
   770   // Make a worklist
   771   Node_List worklist;
   772   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   773     Node *m = block->get_node(i4);
   774     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
   775       if (m->is_iteratively_computed()) {
   776         // Push induction variable increments last to allow other uses
   777         // of the phi to be scheduled first. The select() method breaks
   778         // ties in scheduling by worklist order.
   779         delay.push(m);
   780       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   781         // Force the CreateEx to the top of the list so it's processed
   782         // first and ends up at the start of the block.
   783         worklist.insert(0, m);
   784       } else {
   785         worklist.push(m);         // Then on to worklist!
   786       }
   787     }
   788   }
   789   while (delay.size()) {
   790     Node* d = delay.pop();
   791     worklist.push(d);
   792   }
   794   // Warm up the 'next_call' heuristic bits
   795   needed_for_next_call(block, block->head(), next_call);
   797 #ifndef PRODUCT
   798     if (trace_opto_pipelining()) {
   799       for (uint j=0; j< block->number_of_nodes(); j++) {
   800         Node     *n = block->get_node(j);
   801         int     idx = n->_idx;
   802         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
   803         tty->print("latency:%3d  ", get_latency_for_node(n));
   804         tty->print("%4d: %s\n", idx, n->Name());
   805       }
   806     }
   807 #endif
   809   uint max_idx = (uint)ready_cnt.length();
   810   // Pull from worklist and schedule
   811   while( worklist.size() ) {    // Worklist is not ready
   813 #ifndef PRODUCT
   814     if (trace_opto_pipelining()) {
   815       tty->print("#   ready list:");
   816       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   817         Node *n = worklist[i];      // Get Node on worklist
   818         tty->print(" %d", n->_idx);
   819       }
   820       tty->cr();
   821     }
   822 #endif
   824     // Select and pop a ready guy from worklist
   825     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
   826     block->map_node(n, phi_cnt++);    // Schedule him next
   828 #ifndef PRODUCT
   829     if (trace_opto_pipelining()) {
   830       tty->print("#    select %d: %s", n->_idx, n->Name());
   831       tty->print(", latency:%d", get_latency_for_node(n));
   832       n->dump();
   833       if (Verbose) {
   834         tty->print("#   ready list:");
   835         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   836           Node *n = worklist[i];      // Get Node on worklist
   837           tty->print(" %d", n->_idx);
   838         }
   839         tty->cr();
   840       }
   841     }
   843 #endif
   844     if( n->is_MachCall() ) {
   845       MachCallNode *mcall = n->as_MachCall();
   846       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
   847       continue;
   848     }
   850     if (n->is_Mach() && n->as_Mach()->has_call()) {
   851       RegMask regs;
   852       regs.Insert(_matcher.c_frame_pointer());
   853       regs.OR(n->out_RegMask());
   855       MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
   856       map_node_to_block(proj, block);
   857       block->insert_node(proj, phi_cnt++);
   859       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
   860     }
   862     // Children are now all ready
   863     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   864       Node* m = n->fast_out(i5); // Get user
   865       if (get_block_for_node(m) != block) {
   866         continue;
   867       }
   868       if( m->is_Phi() ) continue;
   869       if (m->_idx >= max_idx) { // new node, skip it
   870         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
   871         continue;
   872       }
   873       int m_cnt = ready_cnt.at(m->_idx)-1;
   874       ready_cnt.at_put(m->_idx, m_cnt);
   875       if( m_cnt == 0 )
   876         worklist.push(m);
   877     }
   878   }
   880   if( phi_cnt != block->end_idx() ) {
   881     // did not schedule all.  Retry, Bailout, or Die
   882     if (C->subsume_loads() == true && !C->failing()) {
   883       // Retry with subsume_loads == false
   884       // If this is the first failure, the sentinel string will "stick"
   885       // to the Compile object, and the C2Compiler will see it and retry.
   886       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   887     }
   888     // assert( phi_cnt == end_idx(), "did not schedule all" );
   889     return false;
   890   }
   892 #ifndef PRODUCT
   893   if (trace_opto_pipelining()) {
   894     tty->print_cr("#");
   895     tty->print_cr("# after schedule_local");
   896     for (uint i = 0;i < block->number_of_nodes();i++) {
   897       tty->print("# ");
   898       block->get_node(i)->fast_dump();
   899     }
   900     tty->cr();
   901   }
   902 #endif
   905   return true;
   906 }
   908 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   909 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   910   for (uint l = 0; l < use->len(); l++) {
   911     if (use->in(l) == old_def) {
   912       if (l < use->req()) {
   913         use->set_req(l, new_def);
   914       } else {
   915         use->rm_prec(l);
   916         use->add_prec(new_def);
   917         l--;
   918       }
   919     }
   920   }
   921 }
   923 //------------------------------catch_cleanup_find_cloned_def------------------
   924 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
   925   assert( use_blk != def_blk, "Inter-block cleanup only");
   927   // The use is some block below the Catch.  Find and return the clone of the def
   928   // that dominates the use. If there is no clone in a dominating block, then
   929   // create a phi for the def in a dominating block.
   931   // Find which successor block dominates this use.  The successor
   932   // blocks must all be single-entry (from the Catch only; I will have
   933   // split blocks to make this so), hence they all dominate.
   934   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   935     use_blk = use_blk->_idom;
   937   // Find the successor
   938   Node *fixup = NULL;
   940   uint j;
   941   for( j = 0; j < def_blk->_num_succs; j++ )
   942     if( use_blk == def_blk->_succs[j] )
   943       break;
   945   if( j == def_blk->_num_succs ) {
   946     // Block at same level in dom-tree is not a successor.  It needs a
   947     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   948     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   949     for(uint k = 1; k < use_blk->num_preds(); k++) {
   950       Block* block = get_block_for_node(use_blk->pred(k));
   951       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
   952     }
   954     // Check to see if the use_blk already has an identical phi inserted.
   955     // If it exists, it will be at the first position since all uses of a
   956     // def are processed together.
   957     Node *phi = use_blk->get_node(1);
   958     if( phi->is_Phi() ) {
   959       fixup = phi;
   960       for (uint k = 1; k < use_blk->num_preds(); k++) {
   961         if (phi->in(k) != inputs[k]) {
   962           // Not a match
   963           fixup = NULL;
   964           break;
   965         }
   966       }
   967     }
   969     // If an existing PhiNode was not found, make a new one.
   970     if (fixup == NULL) {
   971       Node *new_phi = PhiNode::make(use_blk->head(), def);
   972       use_blk->insert_node(new_phi, 1);
   973       map_node_to_block(new_phi, use_blk);
   974       for (uint k = 1; k < use_blk->num_preds(); k++) {
   975         new_phi->set_req(k, inputs[k]);
   976       }
   977       fixup = new_phi;
   978     }
   980   } else {
   981     // Found the use just below the Catch.  Make it use the clone.
   982     fixup = use_blk->get_node(n_clone_idx);
   983   }
   985   return fixup;
   986 }
   988 //--------------------------catch_cleanup_intra_block--------------------------
   989 // Fix all input edges in use that reference "def".  The use is in the same
   990 // block as the def and both have been cloned in each successor block.
   991 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   993   // Both the use and def have been cloned. For each successor block,
   994   // get the clone of the use, and make its input the clone of the def
   995   // found in that block.
   997   uint use_idx = blk->find_node(use);
   998   uint offset_idx = use_idx - beg;
   999   for( uint k = 0; k < blk->_num_succs; k++ ) {
  1000     // Get clone in each successor block
  1001     Block *sb = blk->_succs[k];
  1002     Node *clone = sb->get_node(offset_idx+1);
  1003     assert( clone->Opcode() == use->Opcode(), "" );
  1005     // Make use-clone reference the def-clone
  1006     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
  1010 //------------------------------catch_cleanup_inter_block---------------------
  1011 // Fix all input edges in use that reference "def".  The use is in a different
  1012 // block than the def.
  1013 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
  1014   if( !use_blk ) return;        // Can happen if the use is a precedence edge
  1016   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
  1017   catch_cleanup_fix_all_inputs(use, def, new_def);
  1020 //------------------------------call_catch_cleanup-----------------------------
  1021 // If we inserted any instructions between a Call and his CatchNode,
  1022 // clone the instructions on all paths below the Catch.
  1023 void PhaseCFG::call_catch_cleanup(Block* block) {
  1025   // End of region to clone
  1026   uint end = block->end_idx();
  1027   if( !block->get_node(end)->is_Catch() ) return;
  1028   // Start of region to clone
  1029   uint beg = end;
  1030   while(!block->get_node(beg-1)->is_MachProj() ||
  1031         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
  1032     beg--;
  1033     assert(beg > 0,"Catch cleanup walking beyond block boundary");
  1035   // Range of inserted instructions is [beg, end)
  1036   if( beg == end ) return;
  1038   // Clone along all Catch output paths.  Clone area between the 'beg' and
  1039   // 'end' indices.
  1040   for( uint i = 0; i < block->_num_succs; i++ ) {
  1041     Block *sb = block->_succs[i];
  1042     // Clone the entire area; ignoring the edge fixup for now.
  1043     for( uint j = end; j > beg; j-- ) {
  1044       // It is safe here to clone a node with anti_dependence
  1045       // since clones dominate on each path.
  1046       Node *clone = block->get_node(j-1)->clone();
  1047       sb->insert_node(clone, 1);
  1048       map_node_to_block(clone, sb);
  1053   // Fixup edges.  Check the def-use info per cloned Node
  1054   for(uint i2 = beg; i2 < end; i2++ ) {
  1055     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
  1056     Node *n = block->get_node(i2);        // Node that got cloned
  1057     // Need DU safe iterator because of edge manipulation in calls.
  1058     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
  1059     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1060       out->push(n->fast_out(j1));
  1062     uint max = out->size();
  1063     for (uint j = 0; j < max; j++) {// For all users
  1064       Node *use = out->pop();
  1065       Block *buse = get_block_for_node(use);
  1066       if( use->is_Phi() ) {
  1067         for( uint k = 1; k < use->req(); k++ )
  1068           if( use->in(k) == n ) {
  1069             Block* b = get_block_for_node(buse->pred(k));
  1070             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
  1071             use->set_req(k, fixup);
  1073       } else {
  1074         if (block == buse) {
  1075           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
  1076         } else {
  1077           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
  1080     } // End for all users
  1082   } // End of for all Nodes in cloned area
  1084   // Remove the now-dead cloned ops
  1085   for(uint i3 = beg; i3 < end; i3++ ) {
  1086     block->get_node(beg)->disconnect_inputs(NULL, C);
  1087     block->remove_node(beg);
  1090   // If the successor blocks have a CreateEx node, move it back to the top
  1091   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
  1092     Block *sb = block->_succs[i4];
  1093     uint new_cnt = end - beg;
  1094     // Remove any newly created, but dead, nodes.
  1095     for( uint j = new_cnt; j > 0; j-- ) {
  1096       Node *n = sb->get_node(j);
  1097       if (n->outcnt() == 0 &&
  1098           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1099         n->disconnect_inputs(NULL, C);
  1100         sb->remove_node(j);
  1101         new_cnt--;
  1104     // If any newly created nodes remain, move the CreateEx node to the top
  1105     if (new_cnt > 0) {
  1106       Node *cex = sb->get_node(1+new_cnt);
  1107       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1108         sb->remove_node(1+new_cnt);
  1109         sb->insert_node(cex, 1);

mercurial