src/share/vm/opto/ifg.cpp

Thu, 12 Sep 2013 23:13:45 +0200

author
adlertz
date
Thu, 12 Sep 2013 23:13:45 +0200
changeset 5722
8c83625e3a53
parent 5635
650868c062a9
child 5916
d8a449d2f5b2
permissions
-rw-r--r--

8024646: Remove LRG_List container, replace it with GrowableArray
Summary: We already have GrowableArray, use it instead of LRG_List
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/oopMap.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/block.hpp"
    30 #include "opto/callnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/chaitin.hpp"
    33 #include "opto/coalesce.hpp"
    34 #include "opto/connode.hpp"
    35 #include "opto/indexSet.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/opcodes.hpp"
    40 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
    41 }
    43 void PhaseIFG::init( uint maxlrg ) {
    44   _maxlrg = maxlrg;
    45   _yanked = new (_arena) VectorSet(_arena);
    46   _is_square = false;
    47   // Make uninitialized adjacency lists
    48   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
    49   // Also make empty live range structures
    50   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
    51   memset(_lrgs,0,sizeof(LRG)*maxlrg);
    52   // Init all to empty
    53   for( uint i = 0; i < maxlrg; i++ ) {
    54     _adjs[i].initialize(maxlrg);
    55     _lrgs[i].Set_All();
    56   }
    57 }
    59 // Add edge between vertices a & b.  These are sorted (triangular matrix),
    60 // then the smaller number is inserted in the larger numbered array.
    61 int PhaseIFG::add_edge( uint a, uint b ) {
    62   lrgs(a).invalid_degree();
    63   lrgs(b).invalid_degree();
    64   // Sort a and b, so that a is bigger
    65   assert( !_is_square, "only on triangular" );
    66   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    67   return _adjs[a].insert( b );
    68 }
    70 // Add an edge between 'a' and everything in the vector.
    71 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
    72   // IFG is triangular, so do the inserts where 'a' < 'b'.
    73   assert( !_is_square, "only on triangular" );
    74   IndexSet *adjs_a = &_adjs[a];
    75   if( !vec->count() ) return;
    77   IndexSetIterator elements(vec);
    78   uint neighbor;
    79   while ((neighbor = elements.next()) != 0) {
    80     add_edge( a, neighbor );
    81   }
    82 }
    84 // Is there an edge between a and b?
    85 int PhaseIFG::test_edge( uint a, uint b ) const {
    86   // Sort a and b, so that a is larger
    87   assert( !_is_square, "only on triangular" );
    88   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    89   return _adjs[a].member(b);
    90 }
    92 // Convert triangular matrix to square matrix
    93 void PhaseIFG::SquareUp() {
    94   assert( !_is_square, "only on triangular" );
    96   // Simple transpose
    97   for( uint i = 0; i < _maxlrg; i++ ) {
    98     IndexSetIterator elements(&_adjs[i]);
    99     uint datum;
   100     while ((datum = elements.next()) != 0) {
   101       _adjs[datum].insert( i );
   102     }
   103   }
   104   _is_square = true;
   105 }
   107 // Compute effective degree in bulk
   108 void PhaseIFG::Compute_Effective_Degree() {
   109   assert( _is_square, "only on square" );
   111   for( uint i = 0; i < _maxlrg; i++ )
   112     lrgs(i).set_degree(effective_degree(i));
   113 }
   115 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
   116   assert( _is_square, "only on square" );
   117   // Swap, so that 'a' has the lesser count.  Then binary search is on
   118   // the smaller of a's list and b's list.
   119   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
   120   //return _adjs[a].unordered_member(b);
   121   return _adjs[a].member(b);
   122 }
   124 // Union edges of B into A
   125 void PhaseIFG::Union( uint a, uint b ) {
   126   assert( _is_square, "only on square" );
   127   IndexSet *A = &_adjs[a];
   128   IndexSetIterator b_elements(&_adjs[b]);
   129   uint datum;
   130   while ((datum = b_elements.next()) != 0) {
   131     if(A->insert(datum)) {
   132       _adjs[datum].insert(a);
   133       lrgs(a).invalid_degree();
   134       lrgs(datum).invalid_degree();
   135     }
   136   }
   137 }
   139 // Yank a Node and all connected edges from the IFG.  Return a
   140 // list of neighbors (edges) yanked.
   141 IndexSet *PhaseIFG::remove_node( uint a ) {
   142   assert( _is_square, "only on square" );
   143   assert( !_yanked->test(a), "" );
   144   _yanked->set(a);
   146   // I remove the LRG from all neighbors.
   147   IndexSetIterator elements(&_adjs[a]);
   148   LRG &lrg_a = lrgs(a);
   149   uint datum;
   150   while ((datum = elements.next()) != 0) {
   151     _adjs[datum].remove(a);
   152     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
   153   }
   154   return neighbors(a);
   155 }
   157 // Re-insert a yanked Node.
   158 void PhaseIFG::re_insert( uint a ) {
   159   assert( _is_square, "only on square" );
   160   assert( _yanked->test(a), "" );
   161   (*_yanked) >>= a;
   163   IndexSetIterator elements(&_adjs[a]);
   164   uint datum;
   165   while ((datum = elements.next()) != 0) {
   166     _adjs[datum].insert(a);
   167     lrgs(datum).invalid_degree();
   168   }
   169 }
   171 // Compute the degree between 2 live ranges.  If both live ranges are
   172 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   173 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   174 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   175 // this is so.
   176 int LRG::compute_degree( LRG &l ) const {
   177   int tmp;
   178   int num_regs = _num_regs;
   179   int nregs = l.num_regs();
   180   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
   181     ? (num_regs * nregs)                // then use product
   182     : MAX2(num_regs,nregs);             // else use max
   183   return tmp;
   184 }
   186 // Compute effective degree for this live range.  If both live ranges are
   187 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   188 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   189 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   190 // this is so.
   191 int PhaseIFG::effective_degree( uint lidx ) const {
   192   int eff = 0;
   193   int num_regs = lrgs(lidx).num_regs();
   194   int fat_proj = lrgs(lidx)._fat_proj;
   195   IndexSet *s = neighbors(lidx);
   196   IndexSetIterator elements(s);
   197   uint nidx;
   198   while((nidx = elements.next()) != 0) {
   199     LRG &lrgn = lrgs(nidx);
   200     int nregs = lrgn.num_regs();
   201     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
   202       ? (num_regs * nregs)              // then use product
   203       : MAX2(num_regs,nregs);           // else use max
   204   }
   205   return eff;
   206 }
   209 #ifndef PRODUCT
   210 void PhaseIFG::dump() const {
   211   tty->print_cr("-- Interference Graph --%s--",
   212                 _is_square ? "square" : "triangular" );
   213   if( _is_square ) {
   214     for( uint i = 0; i < _maxlrg; i++ ) {
   215       tty->print( (*_yanked)[i] ? "XX " : "  ");
   216       tty->print("L%d: { ",i);
   217       IndexSetIterator elements(&_adjs[i]);
   218       uint datum;
   219       while ((datum = elements.next()) != 0) {
   220         tty->print("L%d ", datum);
   221       }
   222       tty->print_cr("}");
   224     }
   225     return;
   226   }
   228   // Triangular
   229   for( uint i = 0; i < _maxlrg; i++ ) {
   230     uint j;
   231     tty->print( (*_yanked)[i] ? "XX " : "  ");
   232     tty->print("L%d: { ",i);
   233     for( j = _maxlrg; j > i; j-- )
   234       if( test_edge(j - 1,i) ) {
   235         tty->print("L%d ",j - 1);
   236       }
   237     tty->print("| ");
   238     IndexSetIterator elements(&_adjs[i]);
   239     uint datum;
   240     while ((datum = elements.next()) != 0) {
   241       tty->print("L%d ", datum);
   242     }
   243     tty->print("}\n");
   244   }
   245   tty->print("\n");
   246 }
   248 void PhaseIFG::stats() const {
   249   ResourceMark rm;
   250   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
   251   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
   252   uint i;
   253   for( i = 0; i < _maxlrg; i++ ) {
   254     h_cnt[neighbor_cnt(i)]++;
   255   }
   256   tty->print_cr("--Histogram of counts--");
   257   for( i = 0; i < _maxlrg*2; i++ )
   258     if( h_cnt[i] )
   259       tty->print("%d/%d ",i,h_cnt[i]);
   260   tty->print_cr("");
   261 }
   263 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
   264   // IFG is square, sorted and no need for Find
   265   for( uint i = 0; i < _maxlrg; i++ ) {
   266     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
   267     IndexSet *set = &_adjs[i];
   268     IndexSetIterator elements(set);
   269     uint idx;
   270     uint last = 0;
   271     while ((idx = elements.next()) != 0) {
   272       assert(idx != i, "Must have empty diagonal");
   273       assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find");
   274       assert(_adjs[idx].member(i), "IFG not square");
   275       assert(!(*_yanked)[idx], "No yanked neighbors");
   276       assert(last < idx, "not sorted increasing");
   277       last = idx;
   278     }
   279     assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong");
   280   }
   281 }
   282 #endif
   284 // Interfere this register with everything currently live.  Use the RegMasks
   285 // to trim the set of possible interferences. Return a count of register-only
   286 // interferences as an estimate of register pressure.
   287 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
   288   uint retval = 0;
   289   // Interfere with everything live.
   290   const RegMask &rm = lrgs(r).mask();
   291   // Check for interference by checking overlap of regmasks.
   292   // Only interfere if acceptable register masks overlap.
   293   IndexSetIterator elements(liveout);
   294   uint l;
   295   while( (l = elements.next()) != 0 )
   296     if( rm.overlap( lrgs(l).mask() ) )
   297       _ifg->add_edge( r, l );
   298 }
   300 // Actually build the interference graph.  Uses virtual registers only, no
   301 // physical register masks.  This allows me to be very aggressive when
   302 // coalescing copies.  Some of this aggressiveness will have to be undone
   303 // later, but I'd rather get all the copies I can now (since unremoved copies
   304 // at this point can end up in bad places).  Copies I re-insert later I have
   305 // more opportunity to insert them in low-frequency locations.
   306 void PhaseChaitin::build_ifg_virtual( ) {
   308   // For all blocks (in any order) do...
   309   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   310     Block* block = _cfg.get_block(i);
   311     IndexSet* liveout = _live->live(block);
   313     // The IFG is built by a single reverse pass over each basic block.
   314     // Starting with the known live-out set, we remove things that get
   315     // defined and add things that become live (essentially executing one
   316     // pass of a standard LIVE analysis). Just before a Node defines a value
   317     // (and removes it from the live-ness set) that value is certainly live.
   318     // The defined value interferes with everything currently live.  The
   319     // value is then removed from the live-ness set and it's inputs are
   320     // added to the live-ness set.
   321     for (uint j = block->end_idx() + 1; j > 1; j--) {
   322       Node* n = block->get_node(j - 1);
   324       // Get value being defined
   325       uint r = _lrg_map.live_range_id(n);
   327       // Some special values do not allocate
   328       if (r) {
   330         // Remove from live-out set
   331         liveout->remove(r);
   333         // Copies do not define a new value and so do not interfere.
   334         // Remove the copies source from the liveout set before interfering.
   335         uint idx = n->is_Copy();
   336         if (idx) {
   337           liveout->remove(_lrg_map.live_range_id(n->in(idx)));
   338         }
   340         // Interfere with everything live
   341         interfere_with_live(r, liveout);
   342       }
   344       // Make all inputs live
   345       if (!n->is_Phi()) {      // Phi function uses come from prior block
   346         for(uint k = 1; k < n->req(); k++) {
   347           liveout->insert(_lrg_map.live_range_id(n->in(k)));
   348         }
   349       }
   351       // 2-address instructions always have the defined value live
   352       // on entry to the instruction, even though it is being defined
   353       // by the instruction.  We pretend a virtual copy sits just prior
   354       // to the instruction and kills the src-def'd register.
   355       // In other words, for 2-address instructions the defined value
   356       // interferes with all inputs.
   357       uint idx;
   358       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
   359         const MachNode *mach = n->as_Mach();
   360         // Sometimes my 2-address ADDs are commuted in a bad way.
   361         // We generally want the USE-DEF register to refer to the
   362         // loop-varying quantity, to avoid a copy.
   363         uint op = mach->ideal_Opcode();
   364         // Check that mach->num_opnds() == 3 to ensure instruction is
   365         // not subsuming constants, effectively excludes addI_cin_imm
   366         // Can NOT swap for instructions like addI_cin_imm since it
   367         // is adding zero to yhi + carry and the second ideal-input
   368         // points to the result of adding low-halves.
   369         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
   370         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
   371             n->in(1)->bottom_type()->base() == Type::Int &&
   372             // See if the ADD is involved in a tight data loop the wrong way
   373             n->in(2)->is_Phi() &&
   374             n->in(2)->in(2) == n ) {
   375           Node *tmp = n->in(1);
   376           n->set_req( 1, n->in(2) );
   377           n->set_req( 2, tmp );
   378         }
   379         // Defined value interferes with all inputs
   380         uint lidx = _lrg_map.live_range_id(n->in(idx));
   381         for (uint k = 1; k < n->req(); k++) {
   382           uint kidx = _lrg_map.live_range_id(n->in(k));
   383           if (kidx != lidx) {
   384             _ifg->add_edge(r, kidx);
   385           }
   386         }
   387       }
   388     } // End of forall instructions in block
   389   } // End of forall blocks
   390 }
   392 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
   393   IndexSetIterator elements(liveout);
   394   uint lidx;
   395   uint cnt = 0;
   396   while ((lidx = elements.next()) != 0) {
   397     if( lrgs(lidx).mask().is_UP() &&
   398         lrgs(lidx).mask_size() &&
   399         !lrgs(lidx)._is_float &&
   400         !lrgs(lidx)._is_vector &&
   401         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
   402       cnt += lrgs(lidx).reg_pressure();
   403   }
   404   return cnt;
   405 }
   407 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
   408   IndexSetIterator elements(liveout);
   409   uint lidx;
   410   uint cnt = 0;
   411   while ((lidx = elements.next()) != 0) {
   412     if( lrgs(lidx).mask().is_UP() &&
   413         lrgs(lidx).mask_size() &&
   414         (lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
   415       cnt += lrgs(lidx).reg_pressure();
   416   }
   417   return cnt;
   418 }
   420 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
   421 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
   422   if (lrg->mask().is_UP() && lrg->mask_size()) {
   423     if (lrg->_is_float || lrg->_is_vector) {
   424       pressure[1] -= lrg->reg_pressure();
   425       if( pressure[1] == (uint)FLOATPRESSURE ) {
   426         hrp_index[1] = where;
   427         if( pressure[1] > b->_freg_pressure )
   428           b->_freg_pressure = pressure[1]+1;
   429       }
   430     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   431       pressure[0] -= lrg->reg_pressure();
   432       if( pressure[0] == (uint)INTPRESSURE   ) {
   433         hrp_index[0] = where;
   434         if( pressure[0] > b->_reg_pressure )
   435           b->_reg_pressure = pressure[0]+1;
   436       }
   437     }
   438   }
   439 }
   441 // Build the interference graph using physical registers when available.
   442 // That is, if 2 live ranges are simultaneously alive but in their acceptable
   443 // register sets do not overlap, then they do not interfere.
   444 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
   445   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
   447   uint must_spill = 0;
   449   // For all blocks (in any order) do...
   450   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   451     Block* block = _cfg.get_block(i);
   452     // Clone (rather than smash in place) the liveout info, so it is alive
   453     // for the "collect_gc_info" phase later.
   454     IndexSet liveout(_live->live(block));
   455     uint last_inst = block->end_idx();
   456     // Compute first nonphi node index
   457     uint first_inst;
   458     for (first_inst = 1; first_inst < last_inst; first_inst++) {
   459       if (!block->get_node(first_inst)->is_Phi()) {
   460         break;
   461       }
   462     }
   464     // Spills could be inserted before CreateEx node which should be
   465     // first instruction in block after Phis. Move CreateEx up.
   466     for (uint insidx = first_inst; insidx < last_inst; insidx++) {
   467       Node *ex = block->get_node(insidx);
   468       if (ex->is_SpillCopy()) {
   469         continue;
   470       }
   471       if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   472         // If the CreateEx isn't above all the MachSpillCopies
   473         // then move it to the top.
   474         block->remove_node(insidx);
   475         block->insert_node(ex, first_inst);
   476       }
   477       // Stop once a CreateEx or any other node is found
   478       break;
   479     }
   481     // Reset block's register pressure values for each ifg construction
   482     uint pressure[2], hrp_index[2];
   483     pressure[0] = pressure[1] = 0;
   484     hrp_index[0] = hrp_index[1] = last_inst+1;
   485     block->_reg_pressure = block->_freg_pressure = 0;
   486     // Liveout things are presumed live for the whole block.  We accumulate
   487     // 'area' accordingly.  If they get killed in the block, we'll subtract
   488     // the unused part of the block from the area.
   489     int inst_count = last_inst - first_inst;
   490     double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
   491     assert(!(cost < 0.0), "negative spill cost" );
   492     IndexSetIterator elements(&liveout);
   493     uint lidx;
   494     while ((lidx = elements.next()) != 0) {
   495       LRG &lrg = lrgs(lidx);
   496       lrg._area += cost;
   497       // Compute initial register pressure
   498       if (lrg.mask().is_UP() && lrg.mask_size()) {
   499         if (lrg._is_float || lrg._is_vector) {   // Count float pressure
   500           pressure[1] += lrg.reg_pressure();
   501           if (pressure[1] > block->_freg_pressure) {
   502             block->_freg_pressure = pressure[1];
   503           }
   504           // Count int pressure, but do not count the SP, flags
   505         } else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
   506           pressure[0] += lrg.reg_pressure();
   507           if (pressure[0] > block->_reg_pressure) {
   508             block->_reg_pressure = pressure[0];
   509           }
   510         }
   511       }
   512     }
   513     assert( pressure[0] == count_int_pressure  (&liveout), "" );
   514     assert( pressure[1] == count_float_pressure(&liveout), "" );
   516     // The IFG is built by a single reverse pass over each basic block.
   517     // Starting with the known live-out set, we remove things that get
   518     // defined and add things that become live (essentially executing one
   519     // pass of a standard LIVE analysis).  Just before a Node defines a value
   520     // (and removes it from the live-ness set) that value is certainly live.
   521     // The defined value interferes with everything currently live.  The
   522     // value is then removed from the live-ness set and it's inputs are added
   523     // to the live-ness set.
   524     uint j;
   525     for (j = last_inst + 1; j > 1; j--) {
   526       Node* n = block->get_node(j - 1);
   528       // Get value being defined
   529       uint r = _lrg_map.live_range_id(n);
   531       // Some special values do not allocate
   532       if(r) {
   533         // A DEF normally costs block frequency; rematerialized values are
   534         // removed from the DEF sight, so LOWER costs here.
   535         lrgs(r)._cost += n->rematerialize() ? 0 : block->_freq;
   537         // If it is not live, then this instruction is dead.  Probably caused
   538         // by spilling and rematerialization.  Who cares why, yank this baby.
   539         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
   540           Node *def = n->in(0);
   541           if( !n->is_Proj() ||
   542               // Could also be a flags-projection of a dead ADD or such.
   543               (_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
   544             block->remove_node(j - 1);
   545             if (lrgs(r)._def == n) {
   546               lrgs(r)._def = 0;
   547             }
   548             n->disconnect_inputs(NULL, C);
   549             _cfg.unmap_node_from_block(n);
   550             n->replace_by(C->top());
   551             // Since yanking a Node from block, high pressure moves up one
   552             hrp_index[0]--;
   553             hrp_index[1]--;
   554             continue;
   555           }
   557           // Fat-projections kill many registers which cannot be used to
   558           // hold live ranges.
   559           if (lrgs(r)._fat_proj) {
   560             // Count the int-only registers
   561             RegMask itmp = lrgs(r).mask();
   562             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
   563             int iregs = itmp.Size();
   564             if (pressure[0]+iregs > block->_reg_pressure) {
   565               block->_reg_pressure = pressure[0] + iregs;
   566             }
   567             if (pressure[0] <= (uint)INTPRESSURE && pressure[0] + iregs > (uint)INTPRESSURE) {
   568               hrp_index[0] = j - 1;
   569             }
   570             // Count the float-only registers
   571             RegMask ftmp = lrgs(r).mask();
   572             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
   573             int fregs = ftmp.Size();
   574             if (pressure[1] + fregs > block->_freg_pressure) {
   575               block->_freg_pressure = pressure[1] + fregs;
   576             }
   577             if(pressure[1] <= (uint)FLOATPRESSURE && pressure[1]+fregs > (uint)FLOATPRESSURE) {
   578               hrp_index[1] = j - 1;
   579             }
   580           }
   582         } else {                // Else it is live
   583           // A DEF also ends 'area' partway through the block.
   584           lrgs(r)._area -= cost;
   585           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
   587           // Insure high score for immediate-use spill copies so they get a color
   588           if( n->is_SpillCopy()
   589               && lrgs(r).is_singledef()        // MultiDef live range can still split
   590               && n->outcnt() == 1              // and use must be in this block
   591               && _cfg.get_block_for_node(n->unique_out()) == block) {
   592             // All single-use MachSpillCopy(s) that immediately precede their
   593             // use must color early.  If a longer live range steals their
   594             // color, the spill copy will split and may push another spill copy
   595             // further away resulting in an infinite spill-split-retry cycle.
   596             // Assigning a zero area results in a high score() and a good
   597             // location in the simplify list.
   598             //
   600             Node *single_use = n->unique_out();
   601             assert(block->find_node(single_use) >= j, "Use must be later in block");
   602             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
   604             // Find first non SpillCopy 'm' that follows the current instruction
   605             // (j - 1) is index for current instruction 'n'
   606             Node *m = n;
   607             for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) {
   608               m = block->get_node(i);
   609             }
   610             if (m == single_use) {
   611               lrgs(r)._area = 0.0;
   612             }
   613           }
   615           // Remove from live-out set
   616           if( liveout.remove(r) ) {
   617             // Adjust register pressure.
   618             // Capture last hi-to-lo pressure transition
   619             lower_pressure(&lrgs(r), j - 1, block, pressure, hrp_index);
   620             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   621             assert( pressure[1] == count_float_pressure(&liveout), "" );
   622           }
   624           // Copies do not define a new value and so do not interfere.
   625           // Remove the copies source from the liveout set before interfering.
   626           uint idx = n->is_Copy();
   627           if (idx) {
   628             uint x = _lrg_map.live_range_id(n->in(idx));
   629             if (liveout.remove(x)) {
   630               lrgs(x)._area -= cost;
   631               // Adjust register pressure.
   632               lower_pressure(&lrgs(x), j - 1, block, pressure, hrp_index);
   633               assert( pressure[0] == count_int_pressure  (&liveout), "" );
   634               assert( pressure[1] == count_float_pressure(&liveout), "" );
   635             }
   636           }
   637         } // End of if live or not
   639         // Interfere with everything live.  If the defined value must
   640         // go in a particular register, just remove that register from
   641         // all conflicting parties and avoid the interference.
   643         // Make exclusions for rematerializable defs.  Since rematerializable
   644         // DEFs are not bound but the live range is, some uses must be bound.
   645         // If we spill live range 'r', it can rematerialize at each use site
   646         // according to its bindings.
   647         const RegMask &rmask = lrgs(r).mask();
   648         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
   649           // Check for common case
   650           int r_size = lrgs(r).num_regs();
   651           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
   652           // Smear odd bits
   653           IndexSetIterator elements(&liveout);
   654           uint l;
   655           while ((l = elements.next()) != 0) {
   656             LRG &lrg = lrgs(l);
   657             // If 'l' must spill already, do not further hack his bits.
   658             // He'll get some interferences and be forced to spill later.
   659             if( lrg._must_spill ) continue;
   660             // Remove bound register(s) from 'l's choices
   661             RegMask old = lrg.mask();
   662             uint old_size = lrg.mask_size();
   663             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
   664             // longer interferes with 'r'.  If 'l' requires aligned
   665             // adjacent pairs, subtract out bit pairs.
   666             assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
   667             if (lrg.num_regs() > 1 && !lrg._fat_proj) {
   668               RegMask r2mask = rmask;
   669               // Leave only aligned set of bits.
   670               r2mask.smear_to_sets(lrg.num_regs());
   671               // It includes vector case.
   672               lrg.SUBTRACT( r2mask );
   673               lrg.compute_set_mask_size();
   674             } else if( r_size != 1 ) { // fat proj
   675               lrg.SUBTRACT( rmask );
   676               lrg.compute_set_mask_size();
   677             } else {            // Common case: size 1 bound removal
   678               if( lrg.mask().Member(r_reg) ) {
   679                 lrg.Remove(r_reg);
   680                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
   681               }
   682             }
   683             // If 'l' goes completely dry, it must spill.
   684             if( lrg.not_free() ) {
   685               // Give 'l' some kind of reasonable mask, so he picks up
   686               // interferences (and will spill later).
   687               lrg.set_mask( old );
   688               lrg.set_mask_size(old_size);
   689               must_spill++;
   690               lrg._must_spill = 1;
   691               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   692             }
   693           }
   694         } // End of if bound
   696         // Now interference with everything that is live and has
   697         // compatible register sets.
   698         interfere_with_live(r,&liveout);
   700       } // End of if normal register-allocated value
   702       // Area remaining in the block
   703       inst_count--;
   704       cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
   706       // Make all inputs live
   707       if( !n->is_Phi() ) {      // Phi function uses come from prior block
   708         JVMState* jvms = n->jvms();
   709         uint debug_start = jvms ? jvms->debug_start() : 999999;
   710         // Start loop at 1 (skip control edge) for most Nodes.
   711         // SCMemProj's might be the sole use of a StoreLConditional.
   712         // While StoreLConditionals set memory (the SCMemProj use)
   713         // they also def flags; if that flag def is unused the
   714         // allocator sees a flag-setting instruction with no use of
   715         // the flags and assumes it's dead.  This keeps the (useless)
   716         // flag-setting behavior alive while also keeping the (useful)
   717         // memory update effect.
   718         for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
   719           Node *def = n->in(k);
   720           uint x = _lrg_map.live_range_id(def);
   721           if (!x) {
   722             continue;
   723           }
   724           LRG &lrg = lrgs(x);
   725           // No use-side cost for spilling debug info
   726           if (k < debug_start) {
   727             // A USE costs twice block frequency (once for the Load, once
   728             // for a Load-delay).  Rematerialized uses only cost once.
   729             lrg._cost += (def->rematerialize() ? block->_freq : (block->_freq + block->_freq));
   730           }
   731           // It is live now
   732           if (liveout.insert(x)) {
   733             // Newly live things assumed live from here to top of block
   734             lrg._area += cost;
   735             // Adjust register pressure
   736             if (lrg.mask().is_UP() && lrg.mask_size()) {
   737               if (lrg._is_float || lrg._is_vector) {
   738                 pressure[1] += lrg.reg_pressure();
   739                 if (pressure[1] > block->_freg_pressure)  {
   740                   block->_freg_pressure = pressure[1];
   741                 }
   742               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   743                 pressure[0] += lrg.reg_pressure();
   744                 if (pressure[0] > block->_reg_pressure) {
   745                   block->_reg_pressure = pressure[0];
   746                 }
   747               }
   748             }
   749             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   750             assert( pressure[1] == count_float_pressure(&liveout), "" );
   751           }
   752           assert(!(lrg._area < 0.0), "negative spill area" );
   753         }
   754       }
   755     } // End of reverse pass over all instructions in block
   757     // If we run off the top of the block with high pressure and
   758     // never see a hi-to-low pressure transition, just record that
   759     // the whole block is high pressure.
   760     if (pressure[0] > (uint)INTPRESSURE) {
   761       hrp_index[0] = 0;
   762       if (pressure[0] > block->_reg_pressure) {
   763         block->_reg_pressure = pressure[0];
   764       }
   765     }
   766     if (pressure[1] > (uint)FLOATPRESSURE) {
   767       hrp_index[1] = 0;
   768       if (pressure[1] > block->_freg_pressure) {
   769         block->_freg_pressure = pressure[1];
   770       }
   771     }
   773     // Compute high pressure indice; avoid landing in the middle of projnodes
   774     j = hrp_index[0];
   775     if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
   776       Node* cur = block->get_node(j);
   777       while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
   778         j--;
   779         cur = block->get_node(j);
   780       }
   781     }
   782     block->_ihrp_index = j;
   783     j = hrp_index[1];
   784     if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
   785       Node* cur = block->get_node(j);
   786       while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
   787         j--;
   788         cur = block->get_node(j);
   789       }
   790     }
   791     block->_fhrp_index = j;
   793 #ifndef PRODUCT
   794     // Gather Register Pressure Statistics
   795     if( PrintOptoStatistics ) {
   796       if (block->_reg_pressure > (uint)INTPRESSURE || block->_freg_pressure > (uint)FLOATPRESSURE) {
   797         _high_pressure++;
   798       } else {
   799         _low_pressure++;
   800       }
   801     }
   802 #endif
   803   } // End of for all blocks
   805   return must_spill;
   806 }

mercurial