src/share/vm/opto/compile.cpp

Thu, 12 Sep 2013 23:13:45 +0200

author
adlertz
date
Thu, 12 Sep 2013 23:13:45 +0200
changeset 5722
8c83625e3a53
parent 5658
edb5ab0f3fe5
child 5710
884ed7a10f09
permissions
-rw-r--r--

8024646: Remove LRG_List container, replace it with GrowableArray
Summary: We already have GrowableArray, use it instead of LRG_List
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/memnode.hpp"
    51 #include "opto/mulnode.hpp"
    52 #include "opto/node.hpp"
    53 #include "opto/opcodes.hpp"
    54 #include "opto/output.hpp"
    55 #include "opto/parse.hpp"
    56 #include "opto/phaseX.hpp"
    57 #include "opto/rootnode.hpp"
    58 #include "opto/runtime.hpp"
    59 #include "opto/stringopts.hpp"
    60 #include "opto/type.hpp"
    61 #include "opto/vectornode.hpp"
    62 #include "runtime/arguments.hpp"
    63 #include "runtime/signature.hpp"
    64 #include "runtime/stubRoutines.hpp"
    65 #include "runtime/timer.hpp"
    66 #include "trace/tracing.hpp"
    67 #include "utilities/copy.hpp"
    68 #ifdef TARGET_ARCH_MODEL_x86_32
    69 # include "adfiles/ad_x86_32.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_MODEL_x86_64
    72 # include "adfiles/ad_x86_64.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_sparc
    75 # include "adfiles/ad_sparc.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_zero
    78 # include "adfiles/ad_zero.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_arm
    81 # include "adfiles/ad_arm.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_ppc
    84 # include "adfiles/ad_ppc.hpp"
    85 #endif
    88 // -------------------- Compile::mach_constant_base_node -----------------------
    89 // Constant table base node singleton.
    90 MachConstantBaseNode* Compile::mach_constant_base_node() {
    91   if (_mach_constant_base_node == NULL) {
    92     _mach_constant_base_node = new (C) MachConstantBaseNode();
    93     _mach_constant_base_node->add_req(C->root());
    94   }
    95   return _mach_constant_base_node;
    96 }
    99 /// Support for intrinsics.
   101 // Return the index at which m must be inserted (or already exists).
   102 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   103 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   104 #ifdef ASSERT
   105   for (int i = 1; i < _intrinsics->length(); i++) {
   106     CallGenerator* cg1 = _intrinsics->at(i-1);
   107     CallGenerator* cg2 = _intrinsics->at(i);
   108     assert(cg1->method() != cg2->method()
   109            ? cg1->method()     < cg2->method()
   110            : cg1->is_virtual() < cg2->is_virtual(),
   111            "compiler intrinsics list must stay sorted");
   112   }
   113 #endif
   114   // Binary search sorted list, in decreasing intervals [lo, hi].
   115   int lo = 0, hi = _intrinsics->length()-1;
   116   while (lo <= hi) {
   117     int mid = (uint)(hi + lo) / 2;
   118     ciMethod* mid_m = _intrinsics->at(mid)->method();
   119     if (m < mid_m) {
   120       hi = mid-1;
   121     } else if (m > mid_m) {
   122       lo = mid+1;
   123     } else {
   124       // look at minor sort key
   125       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   126       if (is_virtual < mid_virt) {
   127         hi = mid-1;
   128       } else if (is_virtual > mid_virt) {
   129         lo = mid+1;
   130       } else {
   131         return mid;  // exact match
   132       }
   133     }
   134   }
   135   return lo;  // inexact match
   136 }
   138 void Compile::register_intrinsic(CallGenerator* cg) {
   139   if (_intrinsics == NULL) {
   140     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   141   }
   142   // This code is stolen from ciObjectFactory::insert.
   143   // Really, GrowableArray should have methods for
   144   // insert_at, remove_at, and binary_search.
   145   int len = _intrinsics->length();
   146   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   147   if (index == len) {
   148     _intrinsics->append(cg);
   149   } else {
   150 #ifdef ASSERT
   151     CallGenerator* oldcg = _intrinsics->at(index);
   152     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   153 #endif
   154     _intrinsics->append(_intrinsics->at(len-1));
   155     int pos;
   156     for (pos = len-2; pos >= index; pos--) {
   157       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   158     }
   159     _intrinsics->at_put(index, cg);
   160   }
   161   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   162 }
   164 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   165   assert(m->is_loaded(), "don't try this on unloaded methods");
   166   if (_intrinsics != NULL) {
   167     int index = intrinsic_insertion_index(m, is_virtual);
   168     if (index < _intrinsics->length()
   169         && _intrinsics->at(index)->method() == m
   170         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   171       return _intrinsics->at(index);
   172     }
   173   }
   174   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   175   if (m->intrinsic_id() != vmIntrinsics::_none &&
   176       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   177     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   178     if (cg != NULL) {
   179       // Save it for next time:
   180       register_intrinsic(cg);
   181       return cg;
   182     } else {
   183       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   184     }
   185   }
   186   return NULL;
   187 }
   189 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   190 // in library_call.cpp.
   193 #ifndef PRODUCT
   194 // statistics gathering...
   196 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   197 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   199 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   200   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   201   int oflags = _intrinsic_hist_flags[id];
   202   assert(flags != 0, "what happened?");
   203   if (is_virtual) {
   204     flags |= _intrinsic_virtual;
   205   }
   206   bool changed = (flags != oflags);
   207   if ((flags & _intrinsic_worked) != 0) {
   208     juint count = (_intrinsic_hist_count[id] += 1);
   209     if (count == 1) {
   210       changed = true;           // first time
   211     }
   212     // increment the overall count also:
   213     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   214   }
   215   if (changed) {
   216     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   217       // Something changed about the intrinsic's virtuality.
   218       if ((flags & _intrinsic_virtual) != 0) {
   219         // This is the first use of this intrinsic as a virtual call.
   220         if (oflags != 0) {
   221           // We already saw it as a non-virtual, so note both cases.
   222           flags |= _intrinsic_both;
   223         }
   224       } else if ((oflags & _intrinsic_both) == 0) {
   225         // This is the first use of this intrinsic as a non-virtual
   226         flags |= _intrinsic_both;
   227       }
   228     }
   229     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   230   }
   231   // update the overall flags also:
   232   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   233   return changed;
   234 }
   236 static char* format_flags(int flags, char* buf) {
   237   buf[0] = 0;
   238   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   239   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   240   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   241   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   242   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   243   if (buf[0] == 0)  strcat(buf, ",");
   244   assert(buf[0] == ',', "must be");
   245   return &buf[1];
   246 }
   248 void Compile::print_intrinsic_statistics() {
   249   char flagsbuf[100];
   250   ttyLocker ttyl;
   251   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   252   tty->print_cr("Compiler intrinsic usage:");
   253   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   254   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   255   #define PRINT_STAT_LINE(name, c, f) \
   256     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   257   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   258     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   259     int   flags = _intrinsic_hist_flags[id];
   260     juint count = _intrinsic_hist_count[id];
   261     if ((flags | count) != 0) {
   262       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   263     }
   264   }
   265   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   266   if (xtty != NULL)  xtty->tail("statistics");
   267 }
   269 void Compile::print_statistics() {
   270   { ttyLocker ttyl;
   271     if (xtty != NULL)  xtty->head("statistics type='opto'");
   272     Parse::print_statistics();
   273     PhaseCCP::print_statistics();
   274     PhaseRegAlloc::print_statistics();
   275     Scheduling::print_statistics();
   276     PhasePeephole::print_statistics();
   277     PhaseIdealLoop::print_statistics();
   278     if (xtty != NULL)  xtty->tail("statistics");
   279   }
   280   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   281     // put this under its own <statistics> element.
   282     print_intrinsic_statistics();
   283   }
   284 }
   285 #endif //PRODUCT
   287 // Support for bundling info
   288 Bundle* Compile::node_bundling(const Node *n) {
   289   assert(valid_bundle_info(n), "oob");
   290   return &_node_bundling_base[n->_idx];
   291 }
   293 bool Compile::valid_bundle_info(const Node *n) {
   294   return (_node_bundling_limit > n->_idx);
   295 }
   298 void Compile::gvn_replace_by(Node* n, Node* nn) {
   299   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   300     Node* use = n->last_out(i);
   301     bool is_in_table = initial_gvn()->hash_delete(use);
   302     uint uses_found = 0;
   303     for (uint j = 0; j < use->len(); j++) {
   304       if (use->in(j) == n) {
   305         if (j < use->req())
   306           use->set_req(j, nn);
   307         else
   308           use->set_prec(j, nn);
   309         uses_found++;
   310       }
   311     }
   312     if (is_in_table) {
   313       // reinsert into table
   314       initial_gvn()->hash_find_insert(use);
   315     }
   316     record_for_igvn(use);
   317     i -= uses_found;    // we deleted 1 or more copies of this edge
   318   }
   319 }
   322 static inline bool not_a_node(const Node* n) {
   323   if (n == NULL)                   return true;
   324   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   325   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   326   return false;
   327 }
   329 // Identify all nodes that are reachable from below, useful.
   330 // Use breadth-first pass that records state in a Unique_Node_List,
   331 // recursive traversal is slower.
   332 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   333   int estimated_worklist_size = unique();
   334   useful.map( estimated_worklist_size, NULL );  // preallocate space
   336   // Initialize worklist
   337   if (root() != NULL)     { useful.push(root()); }
   338   // If 'top' is cached, declare it useful to preserve cached node
   339   if( cached_top_node() ) { useful.push(cached_top_node()); }
   341   // Push all useful nodes onto the list, breadthfirst
   342   for( uint next = 0; next < useful.size(); ++next ) {
   343     assert( next < unique(), "Unique useful nodes < total nodes");
   344     Node *n  = useful.at(next);
   345     uint max = n->len();
   346     for( uint i = 0; i < max; ++i ) {
   347       Node *m = n->in(i);
   348       if (not_a_node(m))  continue;
   349       useful.push(m);
   350     }
   351   }
   352 }
   354 // Update dead_node_list with any missing dead nodes using useful
   355 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   356 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   357   uint max_idx = unique();
   358   VectorSet& useful_node_set = useful.member_set();
   360   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   361     // If node with index node_idx is not in useful set,
   362     // mark it as dead in dead node list.
   363     if (! useful_node_set.test(node_idx) ) {
   364       record_dead_node(node_idx);
   365     }
   366   }
   367 }
   369 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   370   int shift = 0;
   371   for (int i = 0; i < inlines->length(); i++) {
   372     CallGenerator* cg = inlines->at(i);
   373     CallNode* call = cg->call_node();
   374     if (shift > 0) {
   375       inlines->at_put(i-shift, cg);
   376     }
   377     if (!useful.member(call)) {
   378       shift++;
   379     }
   380   }
   381   inlines->trunc_to(inlines->length()-shift);
   382 }
   384 // Disconnect all useless nodes by disconnecting those at the boundary.
   385 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   386   uint next = 0;
   387   while (next < useful.size()) {
   388     Node *n = useful.at(next++);
   389     // Use raw traversal of out edges since this code removes out edges
   390     int max = n->outcnt();
   391     for (int j = 0; j < max; ++j) {
   392       Node* child = n->raw_out(j);
   393       if (! useful.member(child)) {
   394         assert(!child->is_top() || child != top(),
   395                "If top is cached in Compile object it is in useful list");
   396         // Only need to remove this out-edge to the useless node
   397         n->raw_del_out(j);
   398         --j;
   399         --max;
   400       }
   401     }
   402     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   403       record_for_igvn(n->unique_out());
   404     }
   405   }
   406   // Remove useless macro and predicate opaq nodes
   407   for (int i = C->macro_count()-1; i >= 0; i--) {
   408     Node* n = C->macro_node(i);
   409     if (!useful.member(n)) {
   410       remove_macro_node(n);
   411     }
   412   }
   413   // Remove useless expensive node
   414   for (int i = C->expensive_count()-1; i >= 0; i--) {
   415     Node* n = C->expensive_node(i);
   416     if (!useful.member(n)) {
   417       remove_expensive_node(n);
   418     }
   419   }
   420   // clean up the late inline lists
   421   remove_useless_late_inlines(&_string_late_inlines, useful);
   422   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   423   remove_useless_late_inlines(&_late_inlines, useful);
   424   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   425 }
   427 //------------------------------frame_size_in_words-----------------------------
   428 // frame_slots in units of words
   429 int Compile::frame_size_in_words() const {
   430   // shift is 0 in LP32 and 1 in LP64
   431   const int shift = (LogBytesPerWord - LogBytesPerInt);
   432   int words = _frame_slots >> shift;
   433   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   434   return words;
   435 }
   437 // ============================================================================
   438 //------------------------------CompileWrapper---------------------------------
   439 class CompileWrapper : public StackObj {
   440   Compile *const _compile;
   441  public:
   442   CompileWrapper(Compile* compile);
   444   ~CompileWrapper();
   445 };
   447 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   448   // the Compile* pointer is stored in the current ciEnv:
   449   ciEnv* env = compile->env();
   450   assert(env == ciEnv::current(), "must already be a ciEnv active");
   451   assert(env->compiler_data() == NULL, "compile already active?");
   452   env->set_compiler_data(compile);
   453   assert(compile == Compile::current(), "sanity");
   455   compile->set_type_dict(NULL);
   456   compile->set_type_hwm(NULL);
   457   compile->set_type_last_size(0);
   458   compile->set_last_tf(NULL, NULL);
   459   compile->set_indexSet_arena(NULL);
   460   compile->set_indexSet_free_block_list(NULL);
   461   compile->init_type_arena();
   462   Type::Initialize(compile);
   463   _compile->set_scratch_buffer_blob(NULL);
   464   _compile->begin_method();
   465 }
   466 CompileWrapper::~CompileWrapper() {
   467   _compile->end_method();
   468   if (_compile->scratch_buffer_blob() != NULL)
   469     BufferBlob::free(_compile->scratch_buffer_blob());
   470   _compile->env()->set_compiler_data(NULL);
   471 }
   474 //----------------------------print_compile_messages---------------------------
   475 void Compile::print_compile_messages() {
   476 #ifndef PRODUCT
   477   // Check if recompiling
   478   if (_subsume_loads == false && PrintOpto) {
   479     // Recompiling without allowing machine instructions to subsume loads
   480     tty->print_cr("*********************************************************");
   481     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   482     tty->print_cr("*********************************************************");
   483   }
   484   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   485     // Recompiling without escape analysis
   486     tty->print_cr("*********************************************************");
   487     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   488     tty->print_cr("*********************************************************");
   489   }
   490   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   491     // Recompiling without boxing elimination
   492     tty->print_cr("*********************************************************");
   493     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   494     tty->print_cr("*********************************************************");
   495   }
   496   if (env()->break_at_compile()) {
   497     // Open the debugger when compiling this method.
   498     tty->print("### Breaking when compiling: ");
   499     method()->print_short_name();
   500     tty->cr();
   501     BREAKPOINT;
   502   }
   504   if( PrintOpto ) {
   505     if (is_osr_compilation()) {
   506       tty->print("[OSR]%3d", _compile_id);
   507     } else {
   508       tty->print("%3d", _compile_id);
   509     }
   510   }
   511 #endif
   512 }
   515 //-----------------------init_scratch_buffer_blob------------------------------
   516 // Construct a temporary BufferBlob and cache it for this compile.
   517 void Compile::init_scratch_buffer_blob(int const_size) {
   518   // If there is already a scratch buffer blob allocated and the
   519   // constant section is big enough, use it.  Otherwise free the
   520   // current and allocate a new one.
   521   BufferBlob* blob = scratch_buffer_blob();
   522   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   523     // Use the current blob.
   524   } else {
   525     if (blob != NULL) {
   526       BufferBlob::free(blob);
   527     }
   529     ResourceMark rm;
   530     _scratch_const_size = const_size;
   531     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   532     blob = BufferBlob::create("Compile::scratch_buffer", size);
   533     // Record the buffer blob for next time.
   534     set_scratch_buffer_blob(blob);
   535     // Have we run out of code space?
   536     if (scratch_buffer_blob() == NULL) {
   537       // Let CompilerBroker disable further compilations.
   538       record_failure("Not enough space for scratch buffer in CodeCache");
   539       return;
   540     }
   541   }
   543   // Initialize the relocation buffers
   544   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   545   set_scratch_locs_memory(locs_buf);
   546 }
   549 //-----------------------scratch_emit_size-------------------------------------
   550 // Helper function that computes size by emitting code
   551 uint Compile::scratch_emit_size(const Node* n) {
   552   // Start scratch_emit_size section.
   553   set_in_scratch_emit_size(true);
   555   // Emit into a trash buffer and count bytes emitted.
   556   // This is a pretty expensive way to compute a size,
   557   // but it works well enough if seldom used.
   558   // All common fixed-size instructions are given a size
   559   // method by the AD file.
   560   // Note that the scratch buffer blob and locs memory are
   561   // allocated at the beginning of the compile task, and
   562   // may be shared by several calls to scratch_emit_size.
   563   // The allocation of the scratch buffer blob is particularly
   564   // expensive, since it has to grab the code cache lock.
   565   BufferBlob* blob = this->scratch_buffer_blob();
   566   assert(blob != NULL, "Initialize BufferBlob at start");
   567   assert(blob->size() > MAX_inst_size, "sanity");
   568   relocInfo* locs_buf = scratch_locs_memory();
   569   address blob_begin = blob->content_begin();
   570   address blob_end   = (address)locs_buf;
   571   assert(blob->content_contains(blob_end), "sanity");
   572   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   573   buf.initialize_consts_size(_scratch_const_size);
   574   buf.initialize_stubs_size(MAX_stubs_size);
   575   assert(locs_buf != NULL, "sanity");
   576   int lsize = MAX_locs_size / 3;
   577   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   578   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   579   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   581   // Do the emission.
   583   Label fakeL; // Fake label for branch instructions.
   584   Label*   saveL = NULL;
   585   uint save_bnum = 0;
   586   bool is_branch = n->is_MachBranch();
   587   if (is_branch) {
   588     MacroAssembler masm(&buf);
   589     masm.bind(fakeL);
   590     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   591     n->as_MachBranch()->label_set(&fakeL, 0);
   592   }
   593   n->emit(buf, this->regalloc());
   594   if (is_branch) // Restore label.
   595     n->as_MachBranch()->label_set(saveL, save_bnum);
   597   // End scratch_emit_size section.
   598   set_in_scratch_emit_size(false);
   600   return buf.insts_size();
   601 }
   604 // ============================================================================
   605 //------------------------------Compile standard-------------------------------
   606 debug_only( int Compile::_debug_idx = 100000; )
   608 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   609 // the continuation bci for on stack replacement.
   612 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   613                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   614                 : Phase(Compiler),
   615                   _env(ci_env),
   616                   _log(ci_env->log()),
   617                   _compile_id(ci_env->compile_id()),
   618                   _save_argument_registers(false),
   619                   _stub_name(NULL),
   620                   _stub_function(NULL),
   621                   _stub_entry_point(NULL),
   622                   _method(target),
   623                   _entry_bci(osr_bci),
   624                   _initial_gvn(NULL),
   625                   _for_igvn(NULL),
   626                   _warm_calls(NULL),
   627                   _subsume_loads(subsume_loads),
   628                   _do_escape_analysis(do_escape_analysis),
   629                   _eliminate_boxing(eliminate_boxing),
   630                   _failure_reason(NULL),
   631                   _code_buffer("Compile::Fill_buffer"),
   632                   _orig_pc_slot(0),
   633                   _orig_pc_slot_offset_in_bytes(0),
   634                   _has_method_handle_invokes(false),
   635                   _mach_constant_base_node(NULL),
   636                   _node_bundling_limit(0),
   637                   _node_bundling_base(NULL),
   638                   _java_calls(0),
   639                   _inner_loops(0),
   640                   _scratch_const_size(-1),
   641                   _in_scratch_emit_size(false),
   642                   _dead_node_list(comp_arena()),
   643                   _dead_node_count(0),
   644 #ifndef PRODUCT
   645                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   646                   _printer(IdealGraphPrinter::printer()),
   647 #endif
   648                   _congraph(NULL),
   649                   _late_inlines(comp_arena(), 2, 0, NULL),
   650                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   651                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   652                   _late_inlines_pos(0),
   653                   _number_of_mh_late_inlines(0),
   654                   _inlining_progress(false),
   655                   _inlining_incrementally(false),
   656                   _print_inlining_list(NULL),
   657                   _print_inlining(0) {
   658   C = this;
   660   CompileWrapper cw(this);
   661 #ifndef PRODUCT
   662   if (TimeCompiler2) {
   663     tty->print(" ");
   664     target->holder()->name()->print();
   665     tty->print(".");
   666     target->print_short_name();
   667     tty->print("  ");
   668   }
   669   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   670   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   671   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   672   if (!print_opto_assembly) {
   673     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   674     if (print_assembly && !Disassembler::can_decode()) {
   675       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   676       print_opto_assembly = true;
   677     }
   678   }
   679   set_print_assembly(print_opto_assembly);
   680   set_parsed_irreducible_loop(false);
   681 #endif
   683   if (ProfileTraps) {
   684     // Make sure the method being compiled gets its own MDO,
   685     // so we can at least track the decompile_count().
   686     method()->ensure_method_data();
   687   }
   689   Init(::AliasLevel);
   692   print_compile_messages();
   694   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   695     _ilt = InlineTree::build_inline_tree_root();
   696   else
   697     _ilt = NULL;
   699   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   700   assert(num_alias_types() >= AliasIdxRaw, "");
   702 #define MINIMUM_NODE_HASH  1023
   703   // Node list that Iterative GVN will start with
   704   Unique_Node_List for_igvn(comp_arena());
   705   set_for_igvn(&for_igvn);
   707   // GVN that will be run immediately on new nodes
   708   uint estimated_size = method()->code_size()*4+64;
   709   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   710   PhaseGVN gvn(node_arena(), estimated_size);
   711   set_initial_gvn(&gvn);
   713   if (PrintInlining  || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
   714     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   715   }
   716   { // Scope for timing the parser
   717     TracePhase t3("parse", &_t_parser, true);
   719     // Put top into the hash table ASAP.
   720     initial_gvn()->transform_no_reclaim(top());
   722     // Set up tf(), start(), and find a CallGenerator.
   723     CallGenerator* cg = NULL;
   724     if (is_osr_compilation()) {
   725       const TypeTuple *domain = StartOSRNode::osr_domain();
   726       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   727       init_tf(TypeFunc::make(domain, range));
   728       StartNode* s = new (this) StartOSRNode(root(), domain);
   729       initial_gvn()->set_type_bottom(s);
   730       init_start(s);
   731       cg = CallGenerator::for_osr(method(), entry_bci());
   732     } else {
   733       // Normal case.
   734       init_tf(TypeFunc::make(method()));
   735       StartNode* s = new (this) StartNode(root(), tf()->domain());
   736       initial_gvn()->set_type_bottom(s);
   737       init_start(s);
   738       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   739         // With java.lang.ref.reference.get() we must go through the
   740         // intrinsic when G1 is enabled - even when get() is the root
   741         // method of the compile - so that, if necessary, the value in
   742         // the referent field of the reference object gets recorded by
   743         // the pre-barrier code.
   744         // Specifically, if G1 is enabled, the value in the referent
   745         // field is recorded by the G1 SATB pre barrier. This will
   746         // result in the referent being marked live and the reference
   747         // object removed from the list of discovered references during
   748         // reference processing.
   749         cg = find_intrinsic(method(), false);
   750       }
   751       if (cg == NULL) {
   752         float past_uses = method()->interpreter_invocation_count();
   753         float expected_uses = past_uses;
   754         cg = CallGenerator::for_inline(method(), expected_uses);
   755       }
   756     }
   757     if (failing())  return;
   758     if (cg == NULL) {
   759       record_method_not_compilable_all_tiers("cannot parse method");
   760       return;
   761     }
   762     JVMState* jvms = build_start_state(start(), tf());
   763     if ((jvms = cg->generate(jvms)) == NULL) {
   764       record_method_not_compilable("method parse failed");
   765       return;
   766     }
   767     GraphKit kit(jvms);
   769     if (!kit.stopped()) {
   770       // Accept return values, and transfer control we know not where.
   771       // This is done by a special, unique ReturnNode bound to root.
   772       return_values(kit.jvms());
   773     }
   775     if (kit.has_exceptions()) {
   776       // Any exceptions that escape from this call must be rethrown
   777       // to whatever caller is dynamically above us on the stack.
   778       // This is done by a special, unique RethrowNode bound to root.
   779       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   780     }
   782     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   784     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   785       inline_string_calls(true);
   786     }
   788     if (failing())  return;
   790     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   792     // Remove clutter produced by parsing.
   793     if (!failing()) {
   794       ResourceMark rm;
   795       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   796     }
   797   }
   799   // Note:  Large methods are capped off in do_one_bytecode().
   800   if (failing())  return;
   802   // After parsing, node notes are no longer automagic.
   803   // They must be propagated by register_new_node_with_optimizer(),
   804   // clone(), or the like.
   805   set_default_node_notes(NULL);
   807   for (;;) {
   808     int successes = Inline_Warm();
   809     if (failing())  return;
   810     if (successes == 0)  break;
   811   }
   813   // Drain the list.
   814   Finish_Warm();
   815 #ifndef PRODUCT
   816   if (_printer) {
   817     _printer->print_inlining(this);
   818   }
   819 #endif
   821   if (failing())  return;
   822   NOT_PRODUCT( verify_graph_edges(); )
   824   // Now optimize
   825   Optimize();
   826   if (failing())  return;
   827   NOT_PRODUCT( verify_graph_edges(); )
   829 #ifndef PRODUCT
   830   if (PrintIdeal) {
   831     ttyLocker ttyl;  // keep the following output all in one block
   832     // This output goes directly to the tty, not the compiler log.
   833     // To enable tools to match it up with the compilation activity,
   834     // be sure to tag this tty output with the compile ID.
   835     if (xtty != NULL) {
   836       xtty->head("ideal compile_id='%d'%s", compile_id(),
   837                  is_osr_compilation()    ? " compile_kind='osr'" :
   838                  "");
   839     }
   840     root()->dump(9999);
   841     if (xtty != NULL) {
   842       xtty->tail("ideal");
   843     }
   844   }
   845 #endif
   847   // Now that we know the size of all the monitors we can add a fixed slot
   848   // for the original deopt pc.
   850   _orig_pc_slot =  fixed_slots();
   851   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   852   set_fixed_slots(next_slot);
   854   // Now generate code
   855   Code_Gen();
   856   if (failing())  return;
   858   // Check if we want to skip execution of all compiled code.
   859   {
   860 #ifndef PRODUCT
   861     if (OptoNoExecute) {
   862       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   863       return;
   864     }
   865     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   866 #endif
   868     if (is_osr_compilation()) {
   869       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   870       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   871     } else {
   872       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   873       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   874     }
   876     env()->register_method(_method, _entry_bci,
   877                            &_code_offsets,
   878                            _orig_pc_slot_offset_in_bytes,
   879                            code_buffer(),
   880                            frame_size_in_words(), _oop_map_set,
   881                            &_handler_table, &_inc_table,
   882                            compiler,
   883                            env()->comp_level(),
   884                            has_unsafe_access(),
   885                            SharedRuntime::is_wide_vector(max_vector_size())
   886                            );
   888     if (log() != NULL) // Print code cache state into compiler log
   889       log()->code_cache_state();
   890   }
   891 }
   893 //------------------------------Compile----------------------------------------
   894 // Compile a runtime stub
   895 Compile::Compile( ciEnv* ci_env,
   896                   TypeFunc_generator generator,
   897                   address stub_function,
   898                   const char *stub_name,
   899                   int is_fancy_jump,
   900                   bool pass_tls,
   901                   bool save_arg_registers,
   902                   bool return_pc )
   903   : Phase(Compiler),
   904     _env(ci_env),
   905     _log(ci_env->log()),
   906     _compile_id(0),
   907     _save_argument_registers(save_arg_registers),
   908     _method(NULL),
   909     _stub_name(stub_name),
   910     _stub_function(stub_function),
   911     _stub_entry_point(NULL),
   912     _entry_bci(InvocationEntryBci),
   913     _initial_gvn(NULL),
   914     _for_igvn(NULL),
   915     _warm_calls(NULL),
   916     _orig_pc_slot(0),
   917     _orig_pc_slot_offset_in_bytes(0),
   918     _subsume_loads(true),
   919     _do_escape_analysis(false),
   920     _eliminate_boxing(false),
   921     _failure_reason(NULL),
   922     _code_buffer("Compile::Fill_buffer"),
   923     _has_method_handle_invokes(false),
   924     _mach_constant_base_node(NULL),
   925     _node_bundling_limit(0),
   926     _node_bundling_base(NULL),
   927     _java_calls(0),
   928     _inner_loops(0),
   929 #ifndef PRODUCT
   930     _trace_opto_output(TraceOptoOutput),
   931     _printer(NULL),
   932 #endif
   933     _dead_node_list(comp_arena()),
   934     _dead_node_count(0),
   935     _congraph(NULL),
   936     _number_of_mh_late_inlines(0),
   937     _inlining_progress(false),
   938     _inlining_incrementally(false),
   939     _print_inlining_list(NULL),
   940     _print_inlining(0) {
   941   C = this;
   943 #ifndef PRODUCT
   944   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   945   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   946   set_print_assembly(PrintFrameConverterAssembly);
   947   set_parsed_irreducible_loop(false);
   948 #endif
   949   CompileWrapper cw(this);
   950   Init(/*AliasLevel=*/ 0);
   951   init_tf((*generator)());
   953   {
   954     // The following is a dummy for the sake of GraphKit::gen_stub
   955     Unique_Node_List for_igvn(comp_arena());
   956     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   957     PhaseGVN gvn(Thread::current()->resource_area(),255);
   958     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   959     gvn.transform_no_reclaim(top());
   961     GraphKit kit;
   962     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   963   }
   965   NOT_PRODUCT( verify_graph_edges(); )
   966   Code_Gen();
   967   if (failing())  return;
   970   // Entry point will be accessed using compile->stub_entry_point();
   971   if (code_buffer() == NULL) {
   972     Matcher::soft_match_failure();
   973   } else {
   974     if (PrintAssembly && (WizardMode || Verbose))
   975       tty->print_cr("### Stub::%s", stub_name);
   977     if (!failing()) {
   978       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   980       // Make the NMethod
   981       // For now we mark the frame as never safe for profile stackwalking
   982       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   983                                                       code_buffer(),
   984                                                       CodeOffsets::frame_never_safe,
   985                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   986                                                       frame_size_in_words(),
   987                                                       _oop_map_set,
   988                                                       save_arg_registers);
   989       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   991       _stub_entry_point = rs->entry_point();
   992     }
   993   }
   994 }
   996 //------------------------------Init-------------------------------------------
   997 // Prepare for a single compilation
   998 void Compile::Init(int aliaslevel) {
   999   _unique  = 0;
  1000   _regalloc = NULL;
  1002   _tf      = NULL;  // filled in later
  1003   _top     = NULL;  // cached later
  1004   _matcher = NULL;  // filled in later
  1005   _cfg     = NULL;  // filled in later
  1007   set_24_bit_selection_and_mode(Use24BitFP, false);
  1009   _node_note_array = NULL;
  1010   _default_node_notes = NULL;
  1012   _immutable_memory = NULL; // filled in at first inquiry
  1014   // Globally visible Nodes
  1015   // First set TOP to NULL to give safe behavior during creation of RootNode
  1016   set_cached_top_node(NULL);
  1017   set_root(new (this) RootNode());
  1018   // Now that you have a Root to point to, create the real TOP
  1019   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1020   set_recent_alloc(NULL, NULL);
  1022   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1023   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1024   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1025   env()->set_dependencies(new Dependencies(env()));
  1027   _fixed_slots = 0;
  1028   set_has_split_ifs(false);
  1029   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1030   set_has_stringbuilder(false);
  1031   set_has_boxed_value(false);
  1032   _trap_can_recompile = false;  // no traps emitted yet
  1033   _major_progress = true; // start out assuming good things will happen
  1034   set_has_unsafe_access(false);
  1035   set_max_vector_size(0);
  1036   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1037   set_decompile_count(0);
  1039   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1040   set_num_loop_opts(LoopOptsCount);
  1041   set_do_inlining(Inline);
  1042   set_max_inline_size(MaxInlineSize);
  1043   set_freq_inline_size(FreqInlineSize);
  1044   set_do_scheduling(OptoScheduling);
  1045   set_do_count_invocations(false);
  1046   set_do_method_data_update(false);
  1048   if (debug_info()->recording_non_safepoints()) {
  1049     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1050                         (comp_arena(), 8, 0, NULL));
  1051     set_default_node_notes(Node_Notes::make(this));
  1054   // // -- Initialize types before each compile --
  1055   // // Update cached type information
  1056   // if( _method && _method->constants() )
  1057   //   Type::update_loaded_types(_method, _method->constants());
  1059   // Init alias_type map.
  1060   if (!_do_escape_analysis && aliaslevel == 3)
  1061     aliaslevel = 2;  // No unique types without escape analysis
  1062   _AliasLevel = aliaslevel;
  1063   const int grow_ats = 16;
  1064   _max_alias_types = grow_ats;
  1065   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1066   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1067   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1069     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1071   // Initialize the first few types.
  1072   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1073   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1074   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1075   _num_alias_types = AliasIdxRaw+1;
  1076   // Zero out the alias type cache.
  1077   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1078   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1079   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1081   _intrinsics = NULL;
  1082   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1083   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1084   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1085   register_library_intrinsics();
  1088 //---------------------------init_start----------------------------------------
  1089 // Install the StartNode on this compile object.
  1090 void Compile::init_start(StartNode* s) {
  1091   if (failing())
  1092     return; // already failing
  1093   assert(s == start(), "");
  1096 StartNode* Compile::start() const {
  1097   assert(!failing(), "");
  1098   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1099     Node* start = root()->fast_out(i);
  1100     if( start->is_Start() )
  1101       return start->as_Start();
  1103   ShouldNotReachHere();
  1104   return NULL;
  1107 //-------------------------------immutable_memory-------------------------------------
  1108 // Access immutable memory
  1109 Node* Compile::immutable_memory() {
  1110   if (_immutable_memory != NULL) {
  1111     return _immutable_memory;
  1113   StartNode* s = start();
  1114   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1115     Node *p = s->fast_out(i);
  1116     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1117       _immutable_memory = p;
  1118       return _immutable_memory;
  1121   ShouldNotReachHere();
  1122   return NULL;
  1125 //----------------------set_cached_top_node------------------------------------
  1126 // Install the cached top node, and make sure Node::is_top works correctly.
  1127 void Compile::set_cached_top_node(Node* tn) {
  1128   if (tn != NULL)  verify_top(tn);
  1129   Node* old_top = _top;
  1130   _top = tn;
  1131   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1132   // their _out arrays.
  1133   if (_top != NULL)     _top->setup_is_top();
  1134   if (old_top != NULL)  old_top->setup_is_top();
  1135   assert(_top == NULL || top()->is_top(), "");
  1138 #ifdef ASSERT
  1139 uint Compile::count_live_nodes_by_graph_walk() {
  1140   Unique_Node_List useful(comp_arena());
  1141   // Get useful node list by walking the graph.
  1142   identify_useful_nodes(useful);
  1143   return useful.size();
  1146 void Compile::print_missing_nodes() {
  1148   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1149   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1150     return;
  1153   // This is an expensive function. It is executed only when the user
  1154   // specifies VerifyIdealNodeCount option or otherwise knows the
  1155   // additional work that needs to be done to identify reachable nodes
  1156   // by walking the flow graph and find the missing ones using
  1157   // _dead_node_list.
  1159   Unique_Node_List useful(comp_arena());
  1160   // Get useful node list by walking the graph.
  1161   identify_useful_nodes(useful);
  1163   uint l_nodes = C->live_nodes();
  1164   uint l_nodes_by_walk = useful.size();
  1166   if (l_nodes != l_nodes_by_walk) {
  1167     if (_log != NULL) {
  1168       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1169       _log->stamp();
  1170       _log->end_head();
  1172     VectorSet& useful_member_set = useful.member_set();
  1173     int last_idx = l_nodes_by_walk;
  1174     for (int i = 0; i < last_idx; i++) {
  1175       if (useful_member_set.test(i)) {
  1176         if (_dead_node_list.test(i)) {
  1177           if (_log != NULL) {
  1178             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1180           if (PrintIdealNodeCount) {
  1181             // Print the log message to tty
  1182               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1183               useful.at(i)->dump();
  1187       else if (! _dead_node_list.test(i)) {
  1188         if (_log != NULL) {
  1189           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1191         if (PrintIdealNodeCount) {
  1192           // Print the log message to tty
  1193           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1197     if (_log != NULL) {
  1198       _log->tail("mismatched_nodes");
  1202 #endif
  1204 #ifndef PRODUCT
  1205 void Compile::verify_top(Node* tn) const {
  1206   if (tn != NULL) {
  1207     assert(tn->is_Con(), "top node must be a constant");
  1208     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1209     assert(tn->in(0) != NULL, "must have live top node");
  1212 #endif
  1215 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1217 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1218   guarantee(arr != NULL, "");
  1219   int num_blocks = arr->length();
  1220   if (grow_by < num_blocks)  grow_by = num_blocks;
  1221   int num_notes = grow_by * _node_notes_block_size;
  1222   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1223   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1224   while (num_notes > 0) {
  1225     arr->append(notes);
  1226     notes     += _node_notes_block_size;
  1227     num_notes -= _node_notes_block_size;
  1229   assert(num_notes == 0, "exact multiple, please");
  1232 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1233   if (source == NULL || dest == NULL)  return false;
  1235   if (dest->is_Con())
  1236     return false;               // Do not push debug info onto constants.
  1238 #ifdef ASSERT
  1239   // Leave a bread crumb trail pointing to the original node:
  1240   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1241     dest->set_debug_orig(source);
  1243 #endif
  1245   if (node_note_array() == NULL)
  1246     return false;               // Not collecting any notes now.
  1248   // This is a copy onto a pre-existing node, which may already have notes.
  1249   // If both nodes have notes, do not overwrite any pre-existing notes.
  1250   Node_Notes* source_notes = node_notes_at(source->_idx);
  1251   if (source_notes == NULL || source_notes->is_clear())  return false;
  1252   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1253   if (dest_notes == NULL || dest_notes->is_clear()) {
  1254     return set_node_notes_at(dest->_idx, source_notes);
  1257   Node_Notes merged_notes = (*source_notes);
  1258   // The order of operations here ensures that dest notes will win...
  1259   merged_notes.update_from(dest_notes);
  1260   return set_node_notes_at(dest->_idx, &merged_notes);
  1264 //--------------------------allow_range_check_smearing-------------------------
  1265 // Gating condition for coalescing similar range checks.
  1266 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1267 // single covering check that is at least as strong as any of them.
  1268 // If the optimization succeeds, the simplified (strengthened) range check
  1269 // will always succeed.  If it fails, we will deopt, and then give up
  1270 // on the optimization.
  1271 bool Compile::allow_range_check_smearing() const {
  1272   // If this method has already thrown a range-check,
  1273   // assume it was because we already tried range smearing
  1274   // and it failed.
  1275   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1276   return !already_trapped;
  1280 //------------------------------flatten_alias_type-----------------------------
  1281 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1282   int offset = tj->offset();
  1283   TypePtr::PTR ptr = tj->ptr();
  1285   // Known instance (scalarizable allocation) alias only with itself.
  1286   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1287                        tj->is_oopptr()->is_known_instance();
  1289   // Process weird unsafe references.
  1290   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1291     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1292     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1293     tj = TypeOopPtr::BOTTOM;
  1294     ptr = tj->ptr();
  1295     offset = tj->offset();
  1298   // Array pointers need some flattening
  1299   const TypeAryPtr *ta = tj->isa_aryptr();
  1300   if (ta && ta->is_stable()) {
  1301     // Erase stability property for alias analysis.
  1302     tj = ta = ta->cast_to_stable(false);
  1304   if( ta && is_known_inst ) {
  1305     if ( offset != Type::OffsetBot &&
  1306          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1307       offset = Type::OffsetBot; // Flatten constant access into array body only
  1308       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1310   } else if( ta && _AliasLevel >= 2 ) {
  1311     // For arrays indexed by constant indices, we flatten the alias
  1312     // space to include all of the array body.  Only the header, klass
  1313     // and array length can be accessed un-aliased.
  1314     if( offset != Type::OffsetBot ) {
  1315       if( ta->const_oop() ) { // MethodData* or Method*
  1316         offset = Type::OffsetBot;   // Flatten constant access into array body
  1317         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1318       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1319         // range is OK as-is.
  1320         tj = ta = TypeAryPtr::RANGE;
  1321       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1322         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1323         ta = TypeAryPtr::RANGE; // generic ignored junk
  1324         ptr = TypePtr::BotPTR;
  1325       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1326         tj = TypeInstPtr::MARK;
  1327         ta = TypeAryPtr::RANGE; // generic ignored junk
  1328         ptr = TypePtr::BotPTR;
  1329       } else {                  // Random constant offset into array body
  1330         offset = Type::OffsetBot;   // Flatten constant access into array body
  1331         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1334     // Arrays of fixed size alias with arrays of unknown size.
  1335     if (ta->size() != TypeInt::POS) {
  1336       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1337       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1339     // Arrays of known objects become arrays of unknown objects.
  1340     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1341       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1342       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1344     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1345       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1346       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1348     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1349     // cannot be distinguished by bytecode alone.
  1350     if (ta->elem() == TypeInt::BOOL) {
  1351       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1352       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1353       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1355     // During the 2nd round of IterGVN, NotNull castings are removed.
  1356     // Make sure the Bottom and NotNull variants alias the same.
  1357     // Also, make sure exact and non-exact variants alias the same.
  1358     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1359       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1363   // Oop pointers need some flattening
  1364   const TypeInstPtr *to = tj->isa_instptr();
  1365   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1366     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1367     if( ptr == TypePtr::Constant ) {
  1368       if (to->klass() != ciEnv::current()->Class_klass() ||
  1369           offset < k->size_helper() * wordSize) {
  1370         // No constant oop pointers (such as Strings); they alias with
  1371         // unknown strings.
  1372         assert(!is_known_inst, "not scalarizable allocation");
  1373         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1375     } else if( is_known_inst ) {
  1376       tj = to; // Keep NotNull and klass_is_exact for instance type
  1377     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1378       // During the 2nd round of IterGVN, NotNull castings are removed.
  1379       // Make sure the Bottom and NotNull variants alias the same.
  1380       // Also, make sure exact and non-exact variants alias the same.
  1381       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1383     // Canonicalize the holder of this field
  1384     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1385       // First handle header references such as a LoadKlassNode, even if the
  1386       // object's klass is unloaded at compile time (4965979).
  1387       if (!is_known_inst) { // Do it only for non-instance types
  1388         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1390     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1391       // Static fields are in the space above the normal instance
  1392       // fields in the java.lang.Class instance.
  1393       if (to->klass() != ciEnv::current()->Class_klass()) {
  1394         to = NULL;
  1395         tj = TypeOopPtr::BOTTOM;
  1396         offset = tj->offset();
  1398     } else {
  1399       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1400       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1401         if( is_known_inst ) {
  1402           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1403         } else {
  1404           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1410   // Klass pointers to object array klasses need some flattening
  1411   const TypeKlassPtr *tk = tj->isa_klassptr();
  1412   if( tk ) {
  1413     // If we are referencing a field within a Klass, we need
  1414     // to assume the worst case of an Object.  Both exact and
  1415     // inexact types must flatten to the same alias class so
  1416     // use NotNull as the PTR.
  1417     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1419       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1420                                    TypeKlassPtr::OBJECT->klass(),
  1421                                    offset);
  1424     ciKlass* klass = tk->klass();
  1425     if( klass->is_obj_array_klass() ) {
  1426       ciKlass* k = TypeAryPtr::OOPS->klass();
  1427       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1428         k = TypeInstPtr::BOTTOM->klass();
  1429       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1432     // Check for precise loads from the primary supertype array and force them
  1433     // to the supertype cache alias index.  Check for generic array loads from
  1434     // the primary supertype array and also force them to the supertype cache
  1435     // alias index.  Since the same load can reach both, we need to merge
  1436     // these 2 disparate memories into the same alias class.  Since the
  1437     // primary supertype array is read-only, there's no chance of confusion
  1438     // where we bypass an array load and an array store.
  1439     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1440     if (offset == Type::OffsetBot ||
  1441         (offset >= primary_supers_offset &&
  1442          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1443         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1444       offset = in_bytes(Klass::secondary_super_cache_offset());
  1445       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1449   // Flatten all Raw pointers together.
  1450   if (tj->base() == Type::RawPtr)
  1451     tj = TypeRawPtr::BOTTOM;
  1453   if (tj->base() == Type::AnyPtr)
  1454     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1456   // Flatten all to bottom for now
  1457   switch( _AliasLevel ) {
  1458   case 0:
  1459     tj = TypePtr::BOTTOM;
  1460     break;
  1461   case 1:                       // Flatten to: oop, static, field or array
  1462     switch (tj->base()) {
  1463     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1464     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1465     case Type::AryPtr:   // do not distinguish arrays at all
  1466     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1467     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1468     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1469     default: ShouldNotReachHere();
  1471     break;
  1472   case 2:                       // No collapsing at level 2; keep all splits
  1473   case 3:                       // No collapsing at level 3; keep all splits
  1474     break;
  1475   default:
  1476     Unimplemented();
  1479   offset = tj->offset();
  1480   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1482   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1483           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1484           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1485           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1486           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1487           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1488           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1489           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1490   assert( tj->ptr() != TypePtr::TopPTR &&
  1491           tj->ptr() != TypePtr::AnyNull &&
  1492           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1493 //    assert( tj->ptr() != TypePtr::Constant ||
  1494 //            tj->base() == Type::RawPtr ||
  1495 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1497   return tj;
  1500 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1501   _index = i;
  1502   _adr_type = at;
  1503   _field = NULL;
  1504   _element = NULL;
  1505   _is_rewritable = true; // default
  1506   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1507   if (atoop != NULL && atoop->is_known_instance()) {
  1508     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1509     _general_index = Compile::current()->get_alias_index(gt);
  1510   } else {
  1511     _general_index = 0;
  1515 //---------------------------------print_on------------------------------------
  1516 #ifndef PRODUCT
  1517 void Compile::AliasType::print_on(outputStream* st) {
  1518   if (index() < 10)
  1519         st->print("@ <%d> ", index());
  1520   else  st->print("@ <%d>",  index());
  1521   st->print(is_rewritable() ? "   " : " RO");
  1522   int offset = adr_type()->offset();
  1523   if (offset == Type::OffsetBot)
  1524         st->print(" +any");
  1525   else  st->print(" +%-3d", offset);
  1526   st->print(" in ");
  1527   adr_type()->dump_on(st);
  1528   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1529   if (field() != NULL && tjp) {
  1530     if (tjp->klass()  != field()->holder() ||
  1531         tjp->offset() != field()->offset_in_bytes()) {
  1532       st->print(" != ");
  1533       field()->print();
  1534       st->print(" ***");
  1539 void print_alias_types() {
  1540   Compile* C = Compile::current();
  1541   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1542   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1543     C->alias_type(idx)->print_on(tty);
  1544     tty->cr();
  1547 #endif
  1550 //----------------------------probe_alias_cache--------------------------------
  1551 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1552   intptr_t key = (intptr_t) adr_type;
  1553   key ^= key >> logAliasCacheSize;
  1554   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1558 //-----------------------------grow_alias_types--------------------------------
  1559 void Compile::grow_alias_types() {
  1560   const int old_ats  = _max_alias_types; // how many before?
  1561   const int new_ats  = old_ats;          // how many more?
  1562   const int grow_ats = old_ats+new_ats;  // how many now?
  1563   _max_alias_types = grow_ats;
  1564   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1565   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1566   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1567   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1571 //--------------------------------find_alias_type------------------------------
  1572 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1573   if (_AliasLevel == 0)
  1574     return alias_type(AliasIdxBot);
  1576   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1577   if (ace->_adr_type == adr_type) {
  1578     return alias_type(ace->_index);
  1581   // Handle special cases.
  1582   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1583   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1585   // Do it the slow way.
  1586   const TypePtr* flat = flatten_alias_type(adr_type);
  1588 #ifdef ASSERT
  1589   assert(flat == flatten_alias_type(flat), "idempotent");
  1590   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1591   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1592     const TypeOopPtr* foop = flat->is_oopptr();
  1593     // Scalarizable allocations have exact klass always.
  1594     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1595     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1596     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1598   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1599 #endif
  1601   int idx = AliasIdxTop;
  1602   for (int i = 0; i < num_alias_types(); i++) {
  1603     if (alias_type(i)->adr_type() == flat) {
  1604       idx = i;
  1605       break;
  1609   if (idx == AliasIdxTop) {
  1610     if (no_create)  return NULL;
  1611     // Grow the array if necessary.
  1612     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1613     // Add a new alias type.
  1614     idx = _num_alias_types++;
  1615     _alias_types[idx]->Init(idx, flat);
  1616     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1617     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1618     if (flat->isa_instptr()) {
  1619       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1620           && flat->is_instptr()->klass() == env()->Class_klass())
  1621         alias_type(idx)->set_rewritable(false);
  1623     if (flat->isa_aryptr()) {
  1624 #ifdef ASSERT
  1625       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1626       // (T_BYTE has the weakest alignment and size restrictions...)
  1627       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1628 #endif
  1629       if (flat->offset() == TypePtr::OffsetBot) {
  1630         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1633     if (flat->isa_klassptr()) {
  1634       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1635         alias_type(idx)->set_rewritable(false);
  1636       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1637         alias_type(idx)->set_rewritable(false);
  1638       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1639         alias_type(idx)->set_rewritable(false);
  1640       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1641         alias_type(idx)->set_rewritable(false);
  1643     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1644     // but the base pointer type is not distinctive enough to identify
  1645     // references into JavaThread.)
  1647     // Check for final fields.
  1648     const TypeInstPtr* tinst = flat->isa_instptr();
  1649     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1650       ciField* field;
  1651       if (tinst->const_oop() != NULL &&
  1652           tinst->klass() == ciEnv::current()->Class_klass() &&
  1653           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1654         // static field
  1655         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1656         field = k->get_field_by_offset(tinst->offset(), true);
  1657       } else {
  1658         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1659         field = k->get_field_by_offset(tinst->offset(), false);
  1661       assert(field == NULL ||
  1662              original_field == NULL ||
  1663              (field->holder() == original_field->holder() &&
  1664               field->offset() == original_field->offset() &&
  1665               field->is_static() == original_field->is_static()), "wrong field?");
  1666       // Set field() and is_rewritable() attributes.
  1667       if (field != NULL)  alias_type(idx)->set_field(field);
  1671   // Fill the cache for next time.
  1672   ace->_adr_type = adr_type;
  1673   ace->_index    = idx;
  1674   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1676   // Might as well try to fill the cache for the flattened version, too.
  1677   AliasCacheEntry* face = probe_alias_cache(flat);
  1678   if (face->_adr_type == NULL) {
  1679     face->_adr_type = flat;
  1680     face->_index    = idx;
  1681     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1684   return alias_type(idx);
  1688 Compile::AliasType* Compile::alias_type(ciField* field) {
  1689   const TypeOopPtr* t;
  1690   if (field->is_static())
  1691     t = TypeInstPtr::make(field->holder()->java_mirror());
  1692   else
  1693     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1694   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1695   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1696   return atp;
  1700 //------------------------------have_alias_type--------------------------------
  1701 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1702   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1703   if (ace->_adr_type == adr_type) {
  1704     return true;
  1707   // Handle special cases.
  1708   if (adr_type == NULL)             return true;
  1709   if (adr_type == TypePtr::BOTTOM)  return true;
  1711   return find_alias_type(adr_type, true, NULL) != NULL;
  1714 //-----------------------------must_alias--------------------------------------
  1715 // True if all values of the given address type are in the given alias category.
  1716 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1717   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1718   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1719   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1720   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1722   // the only remaining possible overlap is identity
  1723   int adr_idx = get_alias_index(adr_type);
  1724   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1725   assert(adr_idx == alias_idx ||
  1726          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1727           && adr_type                       != TypeOopPtr::BOTTOM),
  1728          "should not be testing for overlap with an unsafe pointer");
  1729   return adr_idx == alias_idx;
  1732 //------------------------------can_alias--------------------------------------
  1733 // True if any values of the given address type are in the given alias category.
  1734 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1735   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1736   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1737   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1738   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1740   // the only remaining possible overlap is identity
  1741   int adr_idx = get_alias_index(adr_type);
  1742   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1743   return adr_idx == alias_idx;
  1748 //---------------------------pop_warm_call-------------------------------------
  1749 WarmCallInfo* Compile::pop_warm_call() {
  1750   WarmCallInfo* wci = _warm_calls;
  1751   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1752   return wci;
  1755 //----------------------------Inline_Warm--------------------------------------
  1756 int Compile::Inline_Warm() {
  1757   // If there is room, try to inline some more warm call sites.
  1758   // %%% Do a graph index compaction pass when we think we're out of space?
  1759   if (!InlineWarmCalls)  return 0;
  1761   int calls_made_hot = 0;
  1762   int room_to_grow   = NodeCountInliningCutoff - unique();
  1763   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1764   int amount_grown   = 0;
  1765   WarmCallInfo* call;
  1766   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1767     int est_size = (int)call->size();
  1768     if (est_size > (room_to_grow - amount_grown)) {
  1769       // This one won't fit anyway.  Get rid of it.
  1770       call->make_cold();
  1771       continue;
  1773     call->make_hot();
  1774     calls_made_hot++;
  1775     amount_grown   += est_size;
  1776     amount_to_grow -= est_size;
  1779   if (calls_made_hot > 0)  set_major_progress();
  1780   return calls_made_hot;
  1784 //----------------------------Finish_Warm--------------------------------------
  1785 void Compile::Finish_Warm() {
  1786   if (!InlineWarmCalls)  return;
  1787   if (failing())  return;
  1788   if (warm_calls() == NULL)  return;
  1790   // Clean up loose ends, if we are out of space for inlining.
  1791   WarmCallInfo* call;
  1792   while ((call = pop_warm_call()) != NULL) {
  1793     call->make_cold();
  1797 //---------------------cleanup_loop_predicates-----------------------
  1798 // Remove the opaque nodes that protect the predicates so that all unused
  1799 // checks and uncommon_traps will be eliminated from the ideal graph
  1800 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1801   if (predicate_count()==0) return;
  1802   for (int i = predicate_count(); i > 0; i--) {
  1803     Node * n = predicate_opaque1_node(i-1);
  1804     assert(n->Opcode() == Op_Opaque1, "must be");
  1805     igvn.replace_node(n, n->in(1));
  1807   assert(predicate_count()==0, "should be clean!");
  1810 // StringOpts and late inlining of string methods
  1811 void Compile::inline_string_calls(bool parse_time) {
  1813     // remove useless nodes to make the usage analysis simpler
  1814     ResourceMark rm;
  1815     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1819     ResourceMark rm;
  1820     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1821     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1822     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1825   // now inline anything that we skipped the first time around
  1826   if (!parse_time) {
  1827     _late_inlines_pos = _late_inlines.length();
  1830   while (_string_late_inlines.length() > 0) {
  1831     CallGenerator* cg = _string_late_inlines.pop();
  1832     cg->do_late_inline();
  1833     if (failing())  return;
  1835   _string_late_inlines.trunc_to(0);
  1838 // Late inlining of boxing methods
  1839 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1840   if (_boxing_late_inlines.length() > 0) {
  1841     assert(has_boxed_value(), "inconsistent");
  1843     PhaseGVN* gvn = initial_gvn();
  1844     set_inlining_incrementally(true);
  1846     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1847     for_igvn()->clear();
  1848     gvn->replace_with(&igvn);
  1850     while (_boxing_late_inlines.length() > 0) {
  1851       CallGenerator* cg = _boxing_late_inlines.pop();
  1852       cg->do_late_inline();
  1853       if (failing())  return;
  1855     _boxing_late_inlines.trunc_to(0);
  1858       ResourceMark rm;
  1859       PhaseRemoveUseless pru(gvn, for_igvn());
  1862     igvn = PhaseIterGVN(gvn);
  1863     igvn.optimize();
  1865     set_inlining_progress(false);
  1866     set_inlining_incrementally(false);
  1870 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1871   assert(IncrementalInline, "incremental inlining should be on");
  1872   PhaseGVN* gvn = initial_gvn();
  1874   set_inlining_progress(false);
  1875   for_igvn()->clear();
  1876   gvn->replace_with(&igvn);
  1878   int i = 0;
  1880   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1881     CallGenerator* cg = _late_inlines.at(i);
  1882     _late_inlines_pos = i+1;
  1883     cg->do_late_inline();
  1884     if (failing())  return;
  1886   int j = 0;
  1887   for (; i < _late_inlines.length(); i++, j++) {
  1888     _late_inlines.at_put(j, _late_inlines.at(i));
  1890   _late_inlines.trunc_to(j);
  1893     ResourceMark rm;
  1894     PhaseRemoveUseless pru(gvn, for_igvn());
  1897   igvn = PhaseIterGVN(gvn);
  1900 // Perform incremental inlining until bound on number of live nodes is reached
  1901 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1902   PhaseGVN* gvn = initial_gvn();
  1904   set_inlining_incrementally(true);
  1905   set_inlining_progress(true);
  1906   uint low_live_nodes = 0;
  1908   while(inlining_progress() && _late_inlines.length() > 0) {
  1910     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1911       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1912         // PhaseIdealLoop is expensive so we only try it once we are
  1913         // out of loop and we only try it again if the previous helped
  1914         // got the number of nodes down significantly
  1915         PhaseIdealLoop ideal_loop( igvn, false, true );
  1916         if (failing())  return;
  1917         low_live_nodes = live_nodes();
  1918         _major_progress = true;
  1921       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1922         break;
  1926     inline_incrementally_one(igvn);
  1928     if (failing())  return;
  1930     igvn.optimize();
  1932     if (failing())  return;
  1935   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1937   if (_string_late_inlines.length() > 0) {
  1938     assert(has_stringbuilder(), "inconsistent");
  1939     for_igvn()->clear();
  1940     initial_gvn()->replace_with(&igvn);
  1942     inline_string_calls(false);
  1944     if (failing())  return;
  1947       ResourceMark rm;
  1948       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1951     igvn = PhaseIterGVN(gvn);
  1953     igvn.optimize();
  1956   set_inlining_incrementally(false);
  1960 //------------------------------Optimize---------------------------------------
  1961 // Given a graph, optimize it.
  1962 void Compile::Optimize() {
  1963   TracePhase t1("optimizer", &_t_optimizer, true);
  1965 #ifndef PRODUCT
  1966   if (env()->break_at_compile()) {
  1967     BREAKPOINT;
  1970 #endif
  1972   ResourceMark rm;
  1973   int          loop_opts_cnt;
  1975   NOT_PRODUCT( verify_graph_edges(); )
  1977   print_method(PHASE_AFTER_PARSING);
  1980   // Iterative Global Value Numbering, including ideal transforms
  1981   // Initialize IterGVN with types and values from parse-time GVN
  1982   PhaseIterGVN igvn(initial_gvn());
  1984     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1985     igvn.optimize();
  1988   print_method(PHASE_ITER_GVN1, 2);
  1990   if (failing())  return;
  1993     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  1994     inline_incrementally(igvn);
  1997   print_method(PHASE_INCREMENTAL_INLINE, 2);
  1999   if (failing())  return;
  2001   if (eliminate_boxing()) {
  2002     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2003     // Inline valueOf() methods now.
  2004     inline_boxing_calls(igvn);
  2006     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2008     if (failing())  return;
  2011   // No more new expensive nodes will be added to the list from here
  2012   // so keep only the actual candidates for optimizations.
  2013   cleanup_expensive_nodes(igvn);
  2015   // Perform escape analysis
  2016   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2017     if (has_loops()) {
  2018       // Cleanup graph (remove dead nodes).
  2019       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2020       PhaseIdealLoop ideal_loop( igvn, false, true );
  2021       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2022       if (failing())  return;
  2024     ConnectionGraph::do_analysis(this, &igvn);
  2026     if (failing())  return;
  2028     // Optimize out fields loads from scalar replaceable allocations.
  2029     igvn.optimize();
  2030     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2032     if (failing())  return;
  2034     if (congraph() != NULL && macro_count() > 0) {
  2035       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2036       PhaseMacroExpand mexp(igvn);
  2037       mexp.eliminate_macro_nodes();
  2038       igvn.set_delay_transform(false);
  2040       igvn.optimize();
  2041       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2043       if (failing())  return;
  2047   // Loop transforms on the ideal graph.  Range Check Elimination,
  2048   // peeling, unrolling, etc.
  2050   // Set loop opts counter
  2051   loop_opts_cnt = num_loop_opts();
  2052   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2054       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2055       PhaseIdealLoop ideal_loop( igvn, true );
  2056       loop_opts_cnt--;
  2057       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2058       if (failing())  return;
  2060     // Loop opts pass if partial peeling occurred in previous pass
  2061     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2062       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2063       PhaseIdealLoop ideal_loop( igvn, false );
  2064       loop_opts_cnt--;
  2065       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2066       if (failing())  return;
  2068     // Loop opts pass for loop-unrolling before CCP
  2069     if(major_progress() && (loop_opts_cnt > 0)) {
  2070       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2071       PhaseIdealLoop ideal_loop( igvn, false );
  2072       loop_opts_cnt--;
  2073       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2075     if (!failing()) {
  2076       // Verify that last round of loop opts produced a valid graph
  2077       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2078       PhaseIdealLoop::verify(igvn);
  2081   if (failing())  return;
  2083   // Conditional Constant Propagation;
  2084   PhaseCCP ccp( &igvn );
  2085   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2087     TracePhase t2("ccp", &_t_ccp, true);
  2088     ccp.do_transform();
  2090   print_method(PHASE_CPP1, 2);
  2092   assert( true, "Break here to ccp.dump_old2new_map()");
  2094   // Iterative Global Value Numbering, including ideal transforms
  2096     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2097     igvn = ccp;
  2098     igvn.optimize();
  2101   print_method(PHASE_ITER_GVN2, 2);
  2103   if (failing())  return;
  2105   // Loop transforms on the ideal graph.  Range Check Elimination,
  2106   // peeling, unrolling, etc.
  2107   if(loop_opts_cnt > 0) {
  2108     debug_only( int cnt = 0; );
  2109     while(major_progress() && (loop_opts_cnt > 0)) {
  2110       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2111       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2112       PhaseIdealLoop ideal_loop( igvn, true);
  2113       loop_opts_cnt--;
  2114       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2115       if (failing())  return;
  2120     // Verify that all previous optimizations produced a valid graph
  2121     // at least to this point, even if no loop optimizations were done.
  2122     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2123     PhaseIdealLoop::verify(igvn);
  2127     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2128     PhaseMacroExpand  mex(igvn);
  2129     if (mex.expand_macro_nodes()) {
  2130       assert(failing(), "must bail out w/ explicit message");
  2131       return;
  2135  } // (End scope of igvn; run destructor if necessary for asserts.)
  2137   dump_inlining();
  2138   // A method with only infinite loops has no edges entering loops from root
  2140     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2141     if (final_graph_reshaping()) {
  2142       assert(failing(), "must bail out w/ explicit message");
  2143       return;
  2147   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2151 //------------------------------Code_Gen---------------------------------------
  2152 // Given a graph, generate code for it
  2153 void Compile::Code_Gen() {
  2154   if (failing()) {
  2155     return;
  2158   // Perform instruction selection.  You might think we could reclaim Matcher
  2159   // memory PDQ, but actually the Matcher is used in generating spill code.
  2160   // Internals of the Matcher (including some VectorSets) must remain live
  2161   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2162   // set a bit in reclaimed memory.
  2164   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2165   // nodes.  Mapping is only valid at the root of each matched subtree.
  2166   NOT_PRODUCT( verify_graph_edges(); )
  2168   Matcher matcher;
  2169   _matcher = &matcher;
  2171     TracePhase t2("matcher", &_t_matcher, true);
  2172     matcher.match();
  2174   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2175   // nodes.  Mapping is only valid at the root of each matched subtree.
  2176   NOT_PRODUCT( verify_graph_edges(); )
  2178   // If you have too many nodes, or if matching has failed, bail out
  2179   check_node_count(0, "out of nodes matching instructions");
  2180   if (failing()) {
  2181     return;
  2184   // Build a proper-looking CFG
  2185   PhaseCFG cfg(node_arena(), root(), matcher);
  2186   _cfg = &cfg;
  2188     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2189     bool success = cfg.do_global_code_motion();
  2190     if (!success) {
  2191       return;
  2194     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2195     NOT_PRODUCT( verify_graph_edges(); )
  2196     debug_only( cfg.verify(); )
  2199   PhaseChaitin regalloc(unique(), cfg, matcher);
  2200   _regalloc = &regalloc;
  2202     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2203     // Perform register allocation.  After Chaitin, use-def chains are
  2204     // no longer accurate (at spill code) and so must be ignored.
  2205     // Node->LRG->reg mappings are still accurate.
  2206     _regalloc->Register_Allocate();
  2208     // Bail out if the allocator builds too many nodes
  2209     if (failing()) {
  2210       return;
  2214   // Prior to register allocation we kept empty basic blocks in case the
  2215   // the allocator needed a place to spill.  After register allocation we
  2216   // are not adding any new instructions.  If any basic block is empty, we
  2217   // can now safely remove it.
  2219     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2220     cfg.remove_empty_blocks();
  2221     if (do_freq_based_layout()) {
  2222       PhaseBlockLayout layout(cfg);
  2223     } else {
  2224       cfg.set_loop_alignment();
  2226     cfg.fixup_flow();
  2229   // Apply peephole optimizations
  2230   if( OptoPeephole ) {
  2231     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2232     PhasePeephole peep( _regalloc, cfg);
  2233     peep.do_transform();
  2236   // Convert Nodes to instruction bits in a buffer
  2238     // %%%% workspace merge brought two timers together for one job
  2239     TracePhase t2a("output", &_t_output, true);
  2240     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2241     Output();
  2244   print_method(PHASE_FINAL_CODE);
  2246   // He's dead, Jim.
  2247   _cfg     = (PhaseCFG*)0xdeadbeef;
  2248   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2252 //------------------------------dump_asm---------------------------------------
  2253 // Dump formatted assembly
  2254 #ifndef PRODUCT
  2255 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2256   bool cut_short = false;
  2257   tty->print_cr("#");
  2258   tty->print("#  ");  _tf->dump();  tty->cr();
  2259   tty->print_cr("#");
  2261   // For all blocks
  2262   int pc = 0x0;                 // Program counter
  2263   char starts_bundle = ' ';
  2264   _regalloc->dump_frame();
  2266   Node *n = NULL;
  2267   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2268     if (VMThread::should_terminate()) {
  2269       cut_short = true;
  2270       break;
  2272     Block* block = _cfg->get_block(i);
  2273     if (block->is_connector() && !Verbose) {
  2274       continue;
  2276     n = block->head();
  2277     if (pcs && n->_idx < pc_limit) {
  2278       tty->print("%3.3x   ", pcs[n->_idx]);
  2279     } else {
  2280       tty->print("      ");
  2282     block->dump_head(_cfg);
  2283     if (block->is_connector()) {
  2284       tty->print_cr("        # Empty connector block");
  2285     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2286       tty->print_cr("        # Block is sole successor of call");
  2289     // For all instructions
  2290     Node *delay = NULL;
  2291     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2292       if (VMThread::should_terminate()) {
  2293         cut_short = true;
  2294         break;
  2296       n = block->get_node(j);
  2297       if (valid_bundle_info(n)) {
  2298         Bundle* bundle = node_bundling(n);
  2299         if (bundle->used_in_unconditional_delay()) {
  2300           delay = n;
  2301           continue;
  2303         if (bundle->starts_bundle()) {
  2304           starts_bundle = '+';
  2308       if (WizardMode) {
  2309         n->dump();
  2312       if( !n->is_Region() &&    // Dont print in the Assembly
  2313           !n->is_Phi() &&       // a few noisely useless nodes
  2314           !n->is_Proj() &&
  2315           !n->is_MachTemp() &&
  2316           !n->is_SafePointScalarObject() &&
  2317           !n->is_Catch() &&     // Would be nice to print exception table targets
  2318           !n->is_MergeMem() &&  // Not very interesting
  2319           !n->is_top() &&       // Debug info table constants
  2320           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2321           ) {
  2322         if (pcs && n->_idx < pc_limit)
  2323           tty->print("%3.3x", pcs[n->_idx]);
  2324         else
  2325           tty->print("   ");
  2326         tty->print(" %c ", starts_bundle);
  2327         starts_bundle = ' ';
  2328         tty->print("\t");
  2329         n->format(_regalloc, tty);
  2330         tty->cr();
  2333       // If we have an instruction with a delay slot, and have seen a delay,
  2334       // then back up and print it
  2335       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2336         assert(delay != NULL, "no unconditional delay instruction");
  2337         if (WizardMode) delay->dump();
  2339         if (node_bundling(delay)->starts_bundle())
  2340           starts_bundle = '+';
  2341         if (pcs && n->_idx < pc_limit)
  2342           tty->print("%3.3x", pcs[n->_idx]);
  2343         else
  2344           tty->print("   ");
  2345         tty->print(" %c ", starts_bundle);
  2346         starts_bundle = ' ';
  2347         tty->print("\t");
  2348         delay->format(_regalloc, tty);
  2349         tty->print_cr("");
  2350         delay = NULL;
  2353       // Dump the exception table as well
  2354       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2355         // Print the exception table for this offset
  2356         _handler_table.print_subtable_for(pc);
  2360     if (pcs && n->_idx < pc_limit)
  2361       tty->print_cr("%3.3x", pcs[n->_idx]);
  2362     else
  2363       tty->print_cr("");
  2365     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2367   } // End of per-block dump
  2368   tty->print_cr("");
  2370   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2372 #endif
  2374 //------------------------------Final_Reshape_Counts---------------------------
  2375 // This class defines counters to help identify when a method
  2376 // may/must be executed using hardware with only 24-bit precision.
  2377 struct Final_Reshape_Counts : public StackObj {
  2378   int  _call_count;             // count non-inlined 'common' calls
  2379   int  _float_count;            // count float ops requiring 24-bit precision
  2380   int  _double_count;           // count double ops requiring more precision
  2381   int  _java_call_count;        // count non-inlined 'java' calls
  2382   int  _inner_loop_count;       // count loops which need alignment
  2383   VectorSet _visited;           // Visitation flags
  2384   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2386   Final_Reshape_Counts() :
  2387     _call_count(0), _float_count(0), _double_count(0),
  2388     _java_call_count(0), _inner_loop_count(0),
  2389     _visited( Thread::current()->resource_area() ) { }
  2391   void inc_call_count  () { _call_count  ++; }
  2392   void inc_float_count () { _float_count ++; }
  2393   void inc_double_count() { _double_count++; }
  2394   void inc_java_call_count() { _java_call_count++; }
  2395   void inc_inner_loop_count() { _inner_loop_count++; }
  2397   int  get_call_count  () const { return _call_count  ; }
  2398   int  get_float_count () const { return _float_count ; }
  2399   int  get_double_count() const { return _double_count; }
  2400   int  get_java_call_count() const { return _java_call_count; }
  2401   int  get_inner_loop_count() const { return _inner_loop_count; }
  2402 };
  2404 #ifdef ASSERT
  2405 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2406   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2407   // Make sure the offset goes inside the instance layout.
  2408   return k->contains_field_offset(tp->offset());
  2409   // Note that OffsetBot and OffsetTop are very negative.
  2411 #endif
  2413 // Eliminate trivially redundant StoreCMs and accumulate their
  2414 // precedence edges.
  2415 void Compile::eliminate_redundant_card_marks(Node* n) {
  2416   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2417   if (n->in(MemNode::Address)->outcnt() > 1) {
  2418     // There are multiple users of the same address so it might be
  2419     // possible to eliminate some of the StoreCMs
  2420     Node* mem = n->in(MemNode::Memory);
  2421     Node* adr = n->in(MemNode::Address);
  2422     Node* val = n->in(MemNode::ValueIn);
  2423     Node* prev = n;
  2424     bool done = false;
  2425     // Walk the chain of StoreCMs eliminating ones that match.  As
  2426     // long as it's a chain of single users then the optimization is
  2427     // safe.  Eliminating partially redundant StoreCMs would require
  2428     // cloning copies down the other paths.
  2429     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2430       if (adr == mem->in(MemNode::Address) &&
  2431           val == mem->in(MemNode::ValueIn)) {
  2432         // redundant StoreCM
  2433         if (mem->req() > MemNode::OopStore) {
  2434           // Hasn't been processed by this code yet.
  2435           n->add_prec(mem->in(MemNode::OopStore));
  2436         } else {
  2437           // Already converted to precedence edge
  2438           for (uint i = mem->req(); i < mem->len(); i++) {
  2439             // Accumulate any precedence edges
  2440             if (mem->in(i) != NULL) {
  2441               n->add_prec(mem->in(i));
  2444           // Everything above this point has been processed.
  2445           done = true;
  2447         // Eliminate the previous StoreCM
  2448         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2449         assert(mem->outcnt() == 0, "should be dead");
  2450         mem->disconnect_inputs(NULL, this);
  2451       } else {
  2452         prev = mem;
  2454       mem = prev->in(MemNode::Memory);
  2459 //------------------------------final_graph_reshaping_impl----------------------
  2460 // Implement items 1-5 from final_graph_reshaping below.
  2461 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2463   if ( n->outcnt() == 0 ) return; // dead node
  2464   uint nop = n->Opcode();
  2466   // Check for 2-input instruction with "last use" on right input.
  2467   // Swap to left input.  Implements item (2).
  2468   if( n->req() == 3 &&          // two-input instruction
  2469       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2470       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2471       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2472       !n->in(2)->is_Con() ) {   // right use is not a constant
  2473     // Check for commutative opcode
  2474     switch( nop ) {
  2475     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2476     case Op_MaxI:  case Op_MinI:
  2477     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2478     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2479     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2480       // Move "last use" input to left by swapping inputs
  2481       n->swap_edges(1, 2);
  2482       break;
  2484     default:
  2485       break;
  2489 #ifdef ASSERT
  2490   if( n->is_Mem() ) {
  2491     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2492     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2493             // oop will be recorded in oop map if load crosses safepoint
  2494             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2495                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2496             "raw memory operations should have control edge");
  2498 #endif
  2499   // Count FPU ops and common calls, implements item (3)
  2500   switch( nop ) {
  2501   // Count all float operations that may use FPU
  2502   case Op_AddF:
  2503   case Op_SubF:
  2504   case Op_MulF:
  2505   case Op_DivF:
  2506   case Op_NegF:
  2507   case Op_ModF:
  2508   case Op_ConvI2F:
  2509   case Op_ConF:
  2510   case Op_CmpF:
  2511   case Op_CmpF3:
  2512   // case Op_ConvL2F: // longs are split into 32-bit halves
  2513     frc.inc_float_count();
  2514     break;
  2516   case Op_ConvF2D:
  2517   case Op_ConvD2F:
  2518     frc.inc_float_count();
  2519     frc.inc_double_count();
  2520     break;
  2522   // Count all double operations that may use FPU
  2523   case Op_AddD:
  2524   case Op_SubD:
  2525   case Op_MulD:
  2526   case Op_DivD:
  2527   case Op_NegD:
  2528   case Op_ModD:
  2529   case Op_ConvI2D:
  2530   case Op_ConvD2I:
  2531   // case Op_ConvL2D: // handled by leaf call
  2532   // case Op_ConvD2L: // handled by leaf call
  2533   case Op_ConD:
  2534   case Op_CmpD:
  2535   case Op_CmpD3:
  2536     frc.inc_double_count();
  2537     break;
  2538   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2539   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2540     n->subsume_by(n->in(1), this);
  2541     break;
  2542   case Op_CallStaticJava:
  2543   case Op_CallJava:
  2544   case Op_CallDynamicJava:
  2545     frc.inc_java_call_count(); // Count java call site;
  2546   case Op_CallRuntime:
  2547   case Op_CallLeaf:
  2548   case Op_CallLeafNoFP: {
  2549     assert( n->is_Call(), "" );
  2550     CallNode *call = n->as_Call();
  2551     // Count call sites where the FP mode bit would have to be flipped.
  2552     // Do not count uncommon runtime calls:
  2553     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2554     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2555     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2556       frc.inc_call_count();   // Count the call site
  2557     } else {                  // See if uncommon argument is shared
  2558       Node *n = call->in(TypeFunc::Parms);
  2559       int nop = n->Opcode();
  2560       // Clone shared simple arguments to uncommon calls, item (1).
  2561       if( n->outcnt() > 1 &&
  2562           !n->is_Proj() &&
  2563           nop != Op_CreateEx &&
  2564           nop != Op_CheckCastPP &&
  2565           nop != Op_DecodeN &&
  2566           nop != Op_DecodeNKlass &&
  2567           !n->is_Mem() ) {
  2568         Node *x = n->clone();
  2569         call->set_req( TypeFunc::Parms, x );
  2572     break;
  2575   case Op_StoreD:
  2576   case Op_LoadD:
  2577   case Op_LoadD_unaligned:
  2578     frc.inc_double_count();
  2579     goto handle_mem;
  2580   case Op_StoreF:
  2581   case Op_LoadF:
  2582     frc.inc_float_count();
  2583     goto handle_mem;
  2585   case Op_StoreCM:
  2587       // Convert OopStore dependence into precedence edge
  2588       Node* prec = n->in(MemNode::OopStore);
  2589       n->del_req(MemNode::OopStore);
  2590       n->add_prec(prec);
  2591       eliminate_redundant_card_marks(n);
  2594     // fall through
  2596   case Op_StoreB:
  2597   case Op_StoreC:
  2598   case Op_StorePConditional:
  2599   case Op_StoreI:
  2600   case Op_StoreL:
  2601   case Op_StoreIConditional:
  2602   case Op_StoreLConditional:
  2603   case Op_CompareAndSwapI:
  2604   case Op_CompareAndSwapL:
  2605   case Op_CompareAndSwapP:
  2606   case Op_CompareAndSwapN:
  2607   case Op_GetAndAddI:
  2608   case Op_GetAndAddL:
  2609   case Op_GetAndSetI:
  2610   case Op_GetAndSetL:
  2611   case Op_GetAndSetP:
  2612   case Op_GetAndSetN:
  2613   case Op_StoreP:
  2614   case Op_StoreN:
  2615   case Op_StoreNKlass:
  2616   case Op_LoadB:
  2617   case Op_LoadUB:
  2618   case Op_LoadUS:
  2619   case Op_LoadI:
  2620   case Op_LoadKlass:
  2621   case Op_LoadNKlass:
  2622   case Op_LoadL:
  2623   case Op_LoadL_unaligned:
  2624   case Op_LoadPLocked:
  2625   case Op_LoadP:
  2626   case Op_LoadN:
  2627   case Op_LoadRange:
  2628   case Op_LoadS: {
  2629   handle_mem:
  2630 #ifdef ASSERT
  2631     if( VerifyOptoOopOffsets ) {
  2632       assert( n->is_Mem(), "" );
  2633       MemNode *mem  = (MemNode*)n;
  2634       // Check to see if address types have grounded out somehow.
  2635       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2636       assert( !tp || oop_offset_is_sane(tp), "" );
  2638 #endif
  2639     break;
  2642   case Op_AddP: {               // Assert sane base pointers
  2643     Node *addp = n->in(AddPNode::Address);
  2644     assert( !addp->is_AddP() ||
  2645             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2646             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2647             "Base pointers must match" );
  2648 #ifdef _LP64
  2649     if ((UseCompressedOops || UseCompressedKlassPointers) &&
  2650         addp->Opcode() == Op_ConP &&
  2651         addp == n->in(AddPNode::Base) &&
  2652         n->in(AddPNode::Offset)->is_Con()) {
  2653       // Use addressing with narrow klass to load with offset on x86.
  2654       // On sparc loading 32-bits constant and decoding it have less
  2655       // instructions (4) then load 64-bits constant (7).
  2656       // Do this transformation here since IGVN will convert ConN back to ConP.
  2657       const Type* t = addp->bottom_type();
  2658       if (t->isa_oopptr() || t->isa_klassptr()) {
  2659         Node* nn = NULL;
  2661         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2663         // Look for existing ConN node of the same exact type.
  2664         Node* r  = root();
  2665         uint cnt = r->outcnt();
  2666         for (uint i = 0; i < cnt; i++) {
  2667           Node* m = r->raw_out(i);
  2668           if (m!= NULL && m->Opcode() == op &&
  2669               m->bottom_type()->make_ptr() == t) {
  2670             nn = m;
  2671             break;
  2674         if (nn != NULL) {
  2675           // Decode a narrow oop to match address
  2676           // [R12 + narrow_oop_reg<<3 + offset]
  2677           if (t->isa_oopptr()) {
  2678             nn = new (this) DecodeNNode(nn, t);
  2679           } else {
  2680             nn = new (this) DecodeNKlassNode(nn, t);
  2682           n->set_req(AddPNode::Base, nn);
  2683           n->set_req(AddPNode::Address, nn);
  2684           if (addp->outcnt() == 0) {
  2685             addp->disconnect_inputs(NULL, this);
  2690 #endif
  2691     break;
  2694 #ifdef _LP64
  2695   case Op_CastPP:
  2696     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2697       Node* in1 = n->in(1);
  2698       const Type* t = n->bottom_type();
  2699       Node* new_in1 = in1->clone();
  2700       new_in1->as_DecodeN()->set_type(t);
  2702       if (!Matcher::narrow_oop_use_complex_address()) {
  2703         //
  2704         // x86, ARM and friends can handle 2 adds in addressing mode
  2705         // and Matcher can fold a DecodeN node into address by using
  2706         // a narrow oop directly and do implicit NULL check in address:
  2707         //
  2708         // [R12 + narrow_oop_reg<<3 + offset]
  2709         // NullCheck narrow_oop_reg
  2710         //
  2711         // On other platforms (Sparc) we have to keep new DecodeN node and
  2712         // use it to do implicit NULL check in address:
  2713         //
  2714         // decode_not_null narrow_oop_reg, base_reg
  2715         // [base_reg + offset]
  2716         // NullCheck base_reg
  2717         //
  2718         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2719         // to keep the information to which NULL check the new DecodeN node
  2720         // corresponds to use it as value in implicit_null_check().
  2721         //
  2722         new_in1->set_req(0, n->in(0));
  2725       n->subsume_by(new_in1, this);
  2726       if (in1->outcnt() == 0) {
  2727         in1->disconnect_inputs(NULL, this);
  2730     break;
  2732   case Op_CmpP:
  2733     // Do this transformation here to preserve CmpPNode::sub() and
  2734     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2735     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2736       Node* in1 = n->in(1);
  2737       Node* in2 = n->in(2);
  2738       if (!in1->is_DecodeNarrowPtr()) {
  2739         in2 = in1;
  2740         in1 = n->in(2);
  2742       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2744       Node* new_in2 = NULL;
  2745       if (in2->is_DecodeNarrowPtr()) {
  2746         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2747         new_in2 = in2->in(1);
  2748       } else if (in2->Opcode() == Op_ConP) {
  2749         const Type* t = in2->bottom_type();
  2750         if (t == TypePtr::NULL_PTR) {
  2751           assert(in1->is_DecodeN(), "compare klass to null?");
  2752           // Don't convert CmpP null check into CmpN if compressed
  2753           // oops implicit null check is not generated.
  2754           // This will allow to generate normal oop implicit null check.
  2755           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2756             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2757           //
  2758           // This transformation together with CastPP transformation above
  2759           // will generated code for implicit NULL checks for compressed oops.
  2760           //
  2761           // The original code after Optimize()
  2762           //
  2763           //    LoadN memory, narrow_oop_reg
  2764           //    decode narrow_oop_reg, base_reg
  2765           //    CmpP base_reg, NULL
  2766           //    CastPP base_reg // NotNull
  2767           //    Load [base_reg + offset], val_reg
  2768           //
  2769           // after these transformations will be
  2770           //
  2771           //    LoadN memory, narrow_oop_reg
  2772           //    CmpN narrow_oop_reg, NULL
  2773           //    decode_not_null narrow_oop_reg, base_reg
  2774           //    Load [base_reg + offset], val_reg
  2775           //
  2776           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2777           // since narrow oops can be used in debug info now (see the code in
  2778           // final_graph_reshaping_walk()).
  2779           //
  2780           // At the end the code will be matched to
  2781           // on x86:
  2782           //
  2783           //    Load_narrow_oop memory, narrow_oop_reg
  2784           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2785           //    NullCheck narrow_oop_reg
  2786           //
  2787           // and on sparc:
  2788           //
  2789           //    Load_narrow_oop memory, narrow_oop_reg
  2790           //    decode_not_null narrow_oop_reg, base_reg
  2791           //    Load [base_reg + offset], val_reg
  2792           //    NullCheck base_reg
  2793           //
  2794         } else if (t->isa_oopptr()) {
  2795           new_in2 = ConNode::make(this, t->make_narrowoop());
  2796         } else if (t->isa_klassptr()) {
  2797           new_in2 = ConNode::make(this, t->make_narrowklass());
  2800       if (new_in2 != NULL) {
  2801         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2802         n->subsume_by(cmpN, this);
  2803         if (in1->outcnt() == 0) {
  2804           in1->disconnect_inputs(NULL, this);
  2806         if (in2->outcnt() == 0) {
  2807           in2->disconnect_inputs(NULL, this);
  2811     break;
  2813   case Op_DecodeN:
  2814   case Op_DecodeNKlass:
  2815     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2816     // DecodeN could be pinned when it can't be fold into
  2817     // an address expression, see the code for Op_CastPP above.
  2818     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2819     break;
  2821   case Op_EncodeP:
  2822   case Op_EncodePKlass: {
  2823     Node* in1 = n->in(1);
  2824     if (in1->is_DecodeNarrowPtr()) {
  2825       n->subsume_by(in1->in(1), this);
  2826     } else if (in1->Opcode() == Op_ConP) {
  2827       const Type* t = in1->bottom_type();
  2828       if (t == TypePtr::NULL_PTR) {
  2829         assert(t->isa_oopptr(), "null klass?");
  2830         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2831       } else if (t->isa_oopptr()) {
  2832         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2833       } else if (t->isa_klassptr()) {
  2834         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2837     if (in1->outcnt() == 0) {
  2838       in1->disconnect_inputs(NULL, this);
  2840     break;
  2843   case Op_Proj: {
  2844     if (OptimizeStringConcat) {
  2845       ProjNode* p = n->as_Proj();
  2846       if (p->_is_io_use) {
  2847         // Separate projections were used for the exception path which
  2848         // are normally removed by a late inline.  If it wasn't inlined
  2849         // then they will hang around and should just be replaced with
  2850         // the original one.
  2851         Node* proj = NULL;
  2852         // Replace with just one
  2853         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2854           Node *use = i.get();
  2855           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2856             proj = use;
  2857             break;
  2860         assert(proj != NULL, "must be found");
  2861         p->subsume_by(proj, this);
  2864     break;
  2867   case Op_Phi:
  2868     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2869       // The EncodeP optimization may create Phi with the same edges
  2870       // for all paths. It is not handled well by Register Allocator.
  2871       Node* unique_in = n->in(1);
  2872       assert(unique_in != NULL, "");
  2873       uint cnt = n->req();
  2874       for (uint i = 2; i < cnt; i++) {
  2875         Node* m = n->in(i);
  2876         assert(m != NULL, "");
  2877         if (unique_in != m)
  2878           unique_in = NULL;
  2880       if (unique_in != NULL) {
  2881         n->subsume_by(unique_in, this);
  2884     break;
  2886 #endif
  2888   case Op_ModI:
  2889     if (UseDivMod) {
  2890       // Check if a%b and a/b both exist
  2891       Node* d = n->find_similar(Op_DivI);
  2892       if (d) {
  2893         // Replace them with a fused divmod if supported
  2894         if (Matcher::has_match_rule(Op_DivModI)) {
  2895           DivModINode* divmod = DivModINode::make(this, n);
  2896           d->subsume_by(divmod->div_proj(), this);
  2897           n->subsume_by(divmod->mod_proj(), this);
  2898         } else {
  2899           // replace a%b with a-((a/b)*b)
  2900           Node* mult = new (this) MulINode(d, d->in(2));
  2901           Node* sub  = new (this) SubINode(d->in(1), mult);
  2902           n->subsume_by(sub, this);
  2906     break;
  2908   case Op_ModL:
  2909     if (UseDivMod) {
  2910       // Check if a%b and a/b both exist
  2911       Node* d = n->find_similar(Op_DivL);
  2912       if (d) {
  2913         // Replace them with a fused divmod if supported
  2914         if (Matcher::has_match_rule(Op_DivModL)) {
  2915           DivModLNode* divmod = DivModLNode::make(this, n);
  2916           d->subsume_by(divmod->div_proj(), this);
  2917           n->subsume_by(divmod->mod_proj(), this);
  2918         } else {
  2919           // replace a%b with a-((a/b)*b)
  2920           Node* mult = new (this) MulLNode(d, d->in(2));
  2921           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2922           n->subsume_by(sub, this);
  2926     break;
  2928   case Op_LoadVector:
  2929   case Op_StoreVector:
  2930     break;
  2932   case Op_PackB:
  2933   case Op_PackS:
  2934   case Op_PackI:
  2935   case Op_PackF:
  2936   case Op_PackL:
  2937   case Op_PackD:
  2938     if (n->req()-1 > 2) {
  2939       // Replace many operand PackNodes with a binary tree for matching
  2940       PackNode* p = (PackNode*) n;
  2941       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2942       n->subsume_by(btp, this);
  2944     break;
  2945   case Op_Loop:
  2946   case Op_CountedLoop:
  2947     if (n->as_Loop()->is_inner_loop()) {
  2948       frc.inc_inner_loop_count();
  2950     break;
  2951   case Op_LShiftI:
  2952   case Op_RShiftI:
  2953   case Op_URShiftI:
  2954   case Op_LShiftL:
  2955   case Op_RShiftL:
  2956   case Op_URShiftL:
  2957     if (Matcher::need_masked_shift_count) {
  2958       // The cpu's shift instructions don't restrict the count to the
  2959       // lower 5/6 bits. We need to do the masking ourselves.
  2960       Node* in2 = n->in(2);
  2961       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2962       const TypeInt* t = in2->find_int_type();
  2963       if (t != NULL && t->is_con()) {
  2964         juint shift = t->get_con();
  2965         if (shift > mask) { // Unsigned cmp
  2966           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2968       } else {
  2969         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2970           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2971           n->set_req(2, shift);
  2974       if (in2->outcnt() == 0) { // Remove dead node
  2975         in2->disconnect_inputs(NULL, this);
  2978     break;
  2979   case Op_MemBarStoreStore:
  2980   case Op_MemBarRelease:
  2981     // Break the link with AllocateNode: it is no longer useful and
  2982     // confuses register allocation.
  2983     if (n->req() > MemBarNode::Precedent) {
  2984       n->set_req(MemBarNode::Precedent, top());
  2986     break;
  2987   default:
  2988     assert( !n->is_Call(), "" );
  2989     assert( !n->is_Mem(), "" );
  2990     break;
  2993   // Collect CFG split points
  2994   if (n->is_MultiBranch())
  2995     frc._tests.push(n);
  2998 //------------------------------final_graph_reshaping_walk---------------------
  2999 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3000 // requires that the walk visits a node's inputs before visiting the node.
  3001 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3002   ResourceArea *area = Thread::current()->resource_area();
  3003   Unique_Node_List sfpt(area);
  3005   frc._visited.set(root->_idx); // first, mark node as visited
  3006   uint cnt = root->req();
  3007   Node *n = root;
  3008   uint  i = 0;
  3009   while (true) {
  3010     if (i < cnt) {
  3011       // Place all non-visited non-null inputs onto stack
  3012       Node* m = n->in(i);
  3013       ++i;
  3014       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3015         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  3016           sfpt.push(m);
  3017         cnt = m->req();
  3018         nstack.push(n, i); // put on stack parent and next input's index
  3019         n = m;
  3020         i = 0;
  3022     } else {
  3023       // Now do post-visit work
  3024       final_graph_reshaping_impl( n, frc );
  3025       if (nstack.is_empty())
  3026         break;             // finished
  3027       n = nstack.node();   // Get node from stack
  3028       cnt = n->req();
  3029       i = nstack.index();
  3030       nstack.pop();        // Shift to the next node on stack
  3034   // Skip next transformation if compressed oops are not used.
  3035   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3036       (!UseCompressedOops && !UseCompressedKlassPointers))
  3037     return;
  3039   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3040   // It could be done for an uncommon traps or any safepoints/calls
  3041   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3042   while (sfpt.size() > 0) {
  3043     n = sfpt.pop();
  3044     JVMState *jvms = n->as_SafePoint()->jvms();
  3045     assert(jvms != NULL, "sanity");
  3046     int start = jvms->debug_start();
  3047     int end   = n->req();
  3048     bool is_uncommon = (n->is_CallStaticJava() &&
  3049                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3050     for (int j = start; j < end; j++) {
  3051       Node* in = n->in(j);
  3052       if (in->is_DecodeNarrowPtr()) {
  3053         bool safe_to_skip = true;
  3054         if (!is_uncommon ) {
  3055           // Is it safe to skip?
  3056           for (uint i = 0; i < in->outcnt(); i++) {
  3057             Node* u = in->raw_out(i);
  3058             if (!u->is_SafePoint() ||
  3059                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3060               safe_to_skip = false;
  3064         if (safe_to_skip) {
  3065           n->set_req(j, in->in(1));
  3067         if (in->outcnt() == 0) {
  3068           in->disconnect_inputs(NULL, this);
  3075 //------------------------------final_graph_reshaping--------------------------
  3076 // Final Graph Reshaping.
  3077 //
  3078 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3079 //     and not commoned up and forced early.  Must come after regular
  3080 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3081 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3082 //     Remove Opaque nodes.
  3083 // (2) Move last-uses by commutative operations to the left input to encourage
  3084 //     Intel update-in-place two-address operations and better register usage
  3085 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3086 //     calls canonicalizing them back.
  3087 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3088 //     and call sites.  On Intel, we can get correct rounding either by
  3089 //     forcing singles to memory (requires extra stores and loads after each
  3090 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3091 //     clearing the mode bit around call sites).  The mode bit is only used
  3092 //     if the relative frequency of single FP ops to calls is low enough.
  3093 //     This is a key transform for SPEC mpeg_audio.
  3094 // (4) Detect infinite loops; blobs of code reachable from above but not
  3095 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3096 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3097 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3098 //     Detection is by looking for IfNodes where only 1 projection is
  3099 //     reachable from below or CatchNodes missing some targets.
  3100 // (5) Assert for insane oop offsets in debug mode.
  3102 bool Compile::final_graph_reshaping() {
  3103   // an infinite loop may have been eliminated by the optimizer,
  3104   // in which case the graph will be empty.
  3105   if (root()->req() == 1) {
  3106     record_method_not_compilable("trivial infinite loop");
  3107     return true;
  3110   // Expensive nodes have their control input set to prevent the GVN
  3111   // from freely commoning them. There's no GVN beyond this point so
  3112   // no need to keep the control input. We want the expensive nodes to
  3113   // be freely moved to the least frequent code path by gcm.
  3114   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3115   for (int i = 0; i < expensive_count(); i++) {
  3116     _expensive_nodes->at(i)->set_req(0, NULL);
  3119   Final_Reshape_Counts frc;
  3121   // Visit everybody reachable!
  3122   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3123   Node_Stack nstack(unique() >> 1);
  3124   final_graph_reshaping_walk(nstack, root(), frc);
  3126   // Check for unreachable (from below) code (i.e., infinite loops).
  3127   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3128     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3129     // Get number of CFG targets.
  3130     // Note that PCTables include exception targets after calls.
  3131     uint required_outcnt = n->required_outcnt();
  3132     if (n->outcnt() != required_outcnt) {
  3133       // Check for a few special cases.  Rethrow Nodes never take the
  3134       // 'fall-thru' path, so expected kids is 1 less.
  3135       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3136         if (n->in(0)->in(0)->is_Call()) {
  3137           CallNode *call = n->in(0)->in(0)->as_Call();
  3138           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3139             required_outcnt--;      // Rethrow always has 1 less kid
  3140           } else if (call->req() > TypeFunc::Parms &&
  3141                      call->is_CallDynamicJava()) {
  3142             // Check for null receiver. In such case, the optimizer has
  3143             // detected that the virtual call will always result in a null
  3144             // pointer exception. The fall-through projection of this CatchNode
  3145             // will not be populated.
  3146             Node *arg0 = call->in(TypeFunc::Parms);
  3147             if (arg0->is_Type() &&
  3148                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3149               required_outcnt--;
  3151           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3152                      call->req() > TypeFunc::Parms+1 &&
  3153                      call->is_CallStaticJava()) {
  3154             // Check for negative array length. In such case, the optimizer has
  3155             // detected that the allocation attempt will always result in an
  3156             // exception. There is no fall-through projection of this CatchNode .
  3157             Node *arg1 = call->in(TypeFunc::Parms+1);
  3158             if (arg1->is_Type() &&
  3159                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3160               required_outcnt--;
  3165       // Recheck with a better notion of 'required_outcnt'
  3166       if (n->outcnt() != required_outcnt) {
  3167         record_method_not_compilable("malformed control flow");
  3168         return true;            // Not all targets reachable!
  3171     // Check that I actually visited all kids.  Unreached kids
  3172     // must be infinite loops.
  3173     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3174       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3175         record_method_not_compilable("infinite loop");
  3176         return true;            // Found unvisited kid; must be unreach
  3180   // If original bytecodes contained a mixture of floats and doubles
  3181   // check if the optimizer has made it homogenous, item (3).
  3182   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3183       frc.get_float_count() > 32 &&
  3184       frc.get_double_count() == 0 &&
  3185       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3186     set_24_bit_selection_and_mode( false,  true );
  3189   set_java_calls(frc.get_java_call_count());
  3190   set_inner_loops(frc.get_inner_loop_count());
  3192   // No infinite loops, no reason to bail out.
  3193   return false;
  3196 //-----------------------------too_many_traps----------------------------------
  3197 // Report if there are too many traps at the current method and bci.
  3198 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3199 bool Compile::too_many_traps(ciMethod* method,
  3200                              int bci,
  3201                              Deoptimization::DeoptReason reason) {
  3202   ciMethodData* md = method->method_data();
  3203   if (md->is_empty()) {
  3204     // Assume the trap has not occurred, or that it occurred only
  3205     // because of a transient condition during start-up in the interpreter.
  3206     return false;
  3208   if (md->has_trap_at(bci, reason) != 0) {
  3209     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3210     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3211     // assume the worst.
  3212     if (log())
  3213       log()->elem("observe trap='%s' count='%d'",
  3214                   Deoptimization::trap_reason_name(reason),
  3215                   md->trap_count(reason));
  3216     return true;
  3217   } else {
  3218     // Ignore method/bci and see if there have been too many globally.
  3219     return too_many_traps(reason, md);
  3223 // Less-accurate variant which does not require a method and bci.
  3224 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3225                              ciMethodData* logmd) {
  3226  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3227     // Too many traps globally.
  3228     // Note that we use cumulative trap_count, not just md->trap_count.
  3229     if (log()) {
  3230       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3231       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3232                   Deoptimization::trap_reason_name(reason),
  3233                   mcount, trap_count(reason));
  3235     return true;
  3236   } else {
  3237     // The coast is clear.
  3238     return false;
  3242 //--------------------------too_many_recompiles--------------------------------
  3243 // Report if there are too many recompiles at the current method and bci.
  3244 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3245 // Is not eager to return true, since this will cause the compiler to use
  3246 // Action_none for a trap point, to avoid too many recompilations.
  3247 bool Compile::too_many_recompiles(ciMethod* method,
  3248                                   int bci,
  3249                                   Deoptimization::DeoptReason reason) {
  3250   ciMethodData* md = method->method_data();
  3251   if (md->is_empty()) {
  3252     // Assume the trap has not occurred, or that it occurred only
  3253     // because of a transient condition during start-up in the interpreter.
  3254     return false;
  3256   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3257   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3258   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3259   Deoptimization::DeoptReason per_bc_reason
  3260     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3261   if ((per_bc_reason == Deoptimization::Reason_none
  3262        || md->has_trap_at(bci, reason) != 0)
  3263       // The trap frequency measure we care about is the recompile count:
  3264       && md->trap_recompiled_at(bci)
  3265       && md->overflow_recompile_count() >= bc_cutoff) {
  3266     // Do not emit a trap here if it has already caused recompilations.
  3267     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3268     // assume the worst.
  3269     if (log())
  3270       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3271                   Deoptimization::trap_reason_name(reason),
  3272                   md->trap_count(reason),
  3273                   md->overflow_recompile_count());
  3274     return true;
  3275   } else if (trap_count(reason) != 0
  3276              && decompile_count() >= m_cutoff) {
  3277     // Too many recompiles globally, and we have seen this sort of trap.
  3278     // Use cumulative decompile_count, not just md->decompile_count.
  3279     if (log())
  3280       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3281                   Deoptimization::trap_reason_name(reason),
  3282                   md->trap_count(reason), trap_count(reason),
  3283                   md->decompile_count(), decompile_count());
  3284     return true;
  3285   } else {
  3286     // The coast is clear.
  3287     return false;
  3292 #ifndef PRODUCT
  3293 //------------------------------verify_graph_edges---------------------------
  3294 // Walk the Graph and verify that there is a one-to-one correspondence
  3295 // between Use-Def edges and Def-Use edges in the graph.
  3296 void Compile::verify_graph_edges(bool no_dead_code) {
  3297   if (VerifyGraphEdges) {
  3298     ResourceArea *area = Thread::current()->resource_area();
  3299     Unique_Node_List visited(area);
  3300     // Call recursive graph walk to check edges
  3301     _root->verify_edges(visited);
  3302     if (no_dead_code) {
  3303       // Now make sure that no visited node is used by an unvisited node.
  3304       bool dead_nodes = 0;
  3305       Unique_Node_List checked(area);
  3306       while (visited.size() > 0) {
  3307         Node* n = visited.pop();
  3308         checked.push(n);
  3309         for (uint i = 0; i < n->outcnt(); i++) {
  3310           Node* use = n->raw_out(i);
  3311           if (checked.member(use))  continue;  // already checked
  3312           if (visited.member(use))  continue;  // already in the graph
  3313           if (use->is_Con())        continue;  // a dead ConNode is OK
  3314           // At this point, we have found a dead node which is DU-reachable.
  3315           if (dead_nodes++ == 0)
  3316             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3317           use->dump(2);
  3318           tty->print_cr("---");
  3319           checked.push(use);  // No repeats; pretend it is now checked.
  3322       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3326 #endif
  3328 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3329 // This is required because there is not quite a 1-1 relation between the
  3330 // ciEnv and its compilation task and the Compile object.  Note that one
  3331 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3332 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3333 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3334 // by the logic in C2Compiler.
  3335 void Compile::record_failure(const char* reason) {
  3336   if (log() != NULL) {
  3337     log()->elem("failure reason='%s' phase='compile'", reason);
  3339   if (_failure_reason == NULL) {
  3340     // Record the first failure reason.
  3341     _failure_reason = reason;
  3344   EventCompilerFailure event;
  3345   if (event.should_commit()) {
  3346     event.set_compileID(Compile::compile_id());
  3347     event.set_failure(reason);
  3348     event.commit();
  3351   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3352     C->print_method(PHASE_FAILURE);
  3354   _root = NULL;  // flush the graph, too
  3357 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3358   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3359     _phase_name(name), _dolog(dolog)
  3361   if (dolog) {
  3362     C = Compile::current();
  3363     _log = C->log();
  3364   } else {
  3365     C = NULL;
  3366     _log = NULL;
  3368   if (_log != NULL) {
  3369     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3370     _log->stamp();
  3371     _log->end_head();
  3375 Compile::TracePhase::~TracePhase() {
  3377   C = Compile::current();
  3378   if (_dolog) {
  3379     _log = C->log();
  3380   } else {
  3381     _log = NULL;
  3384 #ifdef ASSERT
  3385   if (PrintIdealNodeCount) {
  3386     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3387                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3390   if (VerifyIdealNodeCount) {
  3391     Compile::current()->print_missing_nodes();
  3393 #endif
  3395   if (_log != NULL) {
  3396     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3400 //=============================================================================
  3401 // Two Constant's are equal when the type and the value are equal.
  3402 bool Compile::Constant::operator==(const Constant& other) {
  3403   if (type()          != other.type()         )  return false;
  3404   if (can_be_reused() != other.can_be_reused())  return false;
  3405   // For floating point values we compare the bit pattern.
  3406   switch (type()) {
  3407   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3408   case T_LONG:
  3409   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3410   case T_OBJECT:
  3411   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3412   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3413   case T_METADATA: return (_v._metadata == other._v._metadata);
  3414   default: ShouldNotReachHere();
  3416   return false;
  3419 static int type_to_size_in_bytes(BasicType t) {
  3420   switch (t) {
  3421   case T_LONG:    return sizeof(jlong  );
  3422   case T_FLOAT:   return sizeof(jfloat );
  3423   case T_DOUBLE:  return sizeof(jdouble);
  3424   case T_METADATA: return sizeof(Metadata*);
  3425     // We use T_VOID as marker for jump-table entries (labels) which
  3426     // need an internal word relocation.
  3427   case T_VOID:
  3428   case T_ADDRESS:
  3429   case T_OBJECT:  return sizeof(jobject);
  3432   ShouldNotReachHere();
  3433   return -1;
  3436 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3437   // sort descending
  3438   if (a->freq() > b->freq())  return -1;
  3439   if (a->freq() < b->freq())  return  1;
  3440   return 0;
  3443 void Compile::ConstantTable::calculate_offsets_and_size() {
  3444   // First, sort the array by frequencies.
  3445   _constants.sort(qsort_comparator);
  3447 #ifdef ASSERT
  3448   // Make sure all jump-table entries were sorted to the end of the
  3449   // array (they have a negative frequency).
  3450   bool found_void = false;
  3451   for (int i = 0; i < _constants.length(); i++) {
  3452     Constant con = _constants.at(i);
  3453     if (con.type() == T_VOID)
  3454       found_void = true;  // jump-tables
  3455     else
  3456       assert(!found_void, "wrong sorting");
  3458 #endif
  3460   int offset = 0;
  3461   for (int i = 0; i < _constants.length(); i++) {
  3462     Constant* con = _constants.adr_at(i);
  3464     // Align offset for type.
  3465     int typesize = type_to_size_in_bytes(con->type());
  3466     offset = align_size_up(offset, typesize);
  3467     con->set_offset(offset);   // set constant's offset
  3469     if (con->type() == T_VOID) {
  3470       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3471       offset = offset + typesize * n->outcnt();  // expand jump-table
  3472     } else {
  3473       offset = offset + typesize;
  3477   // Align size up to the next section start (which is insts; see
  3478   // CodeBuffer::align_at_start).
  3479   assert(_size == -1, "already set?");
  3480   _size = align_size_up(offset, CodeEntryAlignment);
  3483 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3484   MacroAssembler _masm(&cb);
  3485   for (int i = 0; i < _constants.length(); i++) {
  3486     Constant con = _constants.at(i);
  3487     address constant_addr;
  3488     switch (con.type()) {
  3489     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3490     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3491     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3492     case T_OBJECT: {
  3493       jobject obj = con.get_jobject();
  3494       int oop_index = _masm.oop_recorder()->find_index(obj);
  3495       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3496       break;
  3498     case T_ADDRESS: {
  3499       address addr = (address) con.get_jobject();
  3500       constant_addr = _masm.address_constant(addr);
  3501       break;
  3503     // We use T_VOID as marker for jump-table entries (labels) which
  3504     // need an internal word relocation.
  3505     case T_VOID: {
  3506       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3507       // Fill the jump-table with a dummy word.  The real value is
  3508       // filled in later in fill_jump_table.
  3509       address dummy = (address) n;
  3510       constant_addr = _masm.address_constant(dummy);
  3511       // Expand jump-table
  3512       for (uint i = 1; i < n->outcnt(); i++) {
  3513         address temp_addr = _masm.address_constant(dummy + i);
  3514         assert(temp_addr, "consts section too small");
  3516       break;
  3518     case T_METADATA: {
  3519       Metadata* obj = con.get_metadata();
  3520       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3521       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3522       break;
  3524     default: ShouldNotReachHere();
  3526     assert(constant_addr, "consts section too small");
  3527     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3531 int Compile::ConstantTable::find_offset(Constant& con) const {
  3532   int idx = _constants.find(con);
  3533   assert(idx != -1, "constant must be in constant table");
  3534   int offset = _constants.at(idx).offset();
  3535   assert(offset != -1, "constant table not emitted yet?");
  3536   return offset;
  3539 void Compile::ConstantTable::add(Constant& con) {
  3540   if (con.can_be_reused()) {
  3541     int idx = _constants.find(con);
  3542     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3543       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3544       return;
  3547   (void) _constants.append(con);
  3550 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3551   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3552   Constant con(type, value, b->_freq);
  3553   add(con);
  3554   return con;
  3557 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3558   Constant con(metadata);
  3559   add(con);
  3560   return con;
  3563 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3564   jvalue value;
  3565   BasicType type = oper->type()->basic_type();
  3566   switch (type) {
  3567   case T_LONG:    value.j = oper->constantL(); break;
  3568   case T_FLOAT:   value.f = oper->constantF(); break;
  3569   case T_DOUBLE:  value.d = oper->constantD(); break;
  3570   case T_OBJECT:
  3571   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3572   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3573   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3575   return add(n, type, value);
  3578 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3579   jvalue value;
  3580   // We can use the node pointer here to identify the right jump-table
  3581   // as this method is called from Compile::Fill_buffer right before
  3582   // the MachNodes are emitted and the jump-table is filled (means the
  3583   // MachNode pointers do not change anymore).
  3584   value.l = (jobject) n;
  3585   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3586   add(con);
  3587   return con;
  3590 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3591   // If called from Compile::scratch_emit_size do nothing.
  3592   if (Compile::current()->in_scratch_emit_size())  return;
  3594   assert(labels.is_nonempty(), "must be");
  3595   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3597   // Since MachConstantNode::constant_offset() also contains
  3598   // table_base_offset() we need to subtract the table_base_offset()
  3599   // to get the plain offset into the constant table.
  3600   int offset = n->constant_offset() - table_base_offset();
  3602   MacroAssembler _masm(&cb);
  3603   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3605   for (uint i = 0; i < n->outcnt(); i++) {
  3606     address* constant_addr = &jump_table_base[i];
  3607     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3608     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3609     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3613 void Compile::dump_inlining() {
  3614   if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
  3615     // Print inlining message for candidates that we couldn't inline
  3616     // for lack of space or non constant receiver
  3617     for (int i = 0; i < _late_inlines.length(); i++) {
  3618       CallGenerator* cg = _late_inlines.at(i);
  3619       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3621     Unique_Node_List useful;
  3622     useful.push(root());
  3623     for (uint next = 0; next < useful.size(); ++next) {
  3624       Node* n  = useful.at(next);
  3625       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3626         CallNode* call = n->as_Call();
  3627         CallGenerator* cg = call->generator();
  3628         cg->print_inlining_late("receiver not constant");
  3630       uint max = n->len();
  3631       for ( uint i = 0; i < max; ++i ) {
  3632         Node *m = n->in(i);
  3633         if ( m == NULL ) continue;
  3634         useful.push(m);
  3637     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3638       tty->print(_print_inlining_list->at(i).ss()->as_string());
  3643 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3644   if (n1->Opcode() < n2->Opcode())      return -1;
  3645   else if (n1->Opcode() > n2->Opcode()) return 1;
  3647   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3648   for (uint i = 1; i < n1->req(); i++) {
  3649     if (n1->in(i) < n2->in(i))      return -1;
  3650     else if (n1->in(i) > n2->in(i)) return 1;
  3653   return 0;
  3656 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3657   Node* n1 = *n1p;
  3658   Node* n2 = *n2p;
  3660   return cmp_expensive_nodes(n1, n2);
  3663 void Compile::sort_expensive_nodes() {
  3664   if (!expensive_nodes_sorted()) {
  3665     _expensive_nodes->sort(cmp_expensive_nodes);
  3669 bool Compile::expensive_nodes_sorted() const {
  3670   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3671     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3672       return false;
  3675   return true;
  3678 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3679   if (_expensive_nodes->length() == 0) {
  3680     return false;
  3683   assert(OptimizeExpensiveOps, "optimization off?");
  3685   // Take this opportunity to remove dead nodes from the list
  3686   int j = 0;
  3687   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3688     Node* n = _expensive_nodes->at(i);
  3689     if (!n->is_unreachable(igvn)) {
  3690       assert(n->is_expensive(), "should be expensive");
  3691       _expensive_nodes->at_put(j, n);
  3692       j++;
  3695   _expensive_nodes->trunc_to(j);
  3697   // Then sort the list so that similar nodes are next to each other
  3698   // and check for at least two nodes of identical kind with same data
  3699   // inputs.
  3700   sort_expensive_nodes();
  3702   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3703     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3704       return true;
  3708   return false;
  3711 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3712   if (_expensive_nodes->length() == 0) {
  3713     return;
  3716   assert(OptimizeExpensiveOps, "optimization off?");
  3718   // Sort to bring similar nodes next to each other and clear the
  3719   // control input of nodes for which there's only a single copy.
  3720   sort_expensive_nodes();
  3722   int j = 0;
  3723   int identical = 0;
  3724   int i = 0;
  3725   for (; i < _expensive_nodes->length()-1; i++) {
  3726     assert(j <= i, "can't write beyond current index");
  3727     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3728       identical++;
  3729       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3730       continue;
  3732     if (identical > 0) {
  3733       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3734       identical = 0;
  3735     } else {
  3736       Node* n = _expensive_nodes->at(i);
  3737       igvn.hash_delete(n);
  3738       n->set_req(0, NULL);
  3739       igvn.hash_insert(n);
  3742   if (identical > 0) {
  3743     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3744   } else if (_expensive_nodes->length() >= 1) {
  3745     Node* n = _expensive_nodes->at(i);
  3746     igvn.hash_delete(n);
  3747     n->set_req(0, NULL);
  3748     igvn.hash_insert(n);
  3750   _expensive_nodes->trunc_to(j);
  3753 void Compile::add_expensive_node(Node * n) {
  3754   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3755   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3756   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3757   if (OptimizeExpensiveOps) {
  3758     _expensive_nodes->append(n);
  3759   } else {
  3760     // Clear control input and let IGVN optimize expensive nodes if
  3761     // OptimizeExpensiveOps is off.
  3762     n->set_req(0, NULL);
  3766 // Auxiliary method to support randomized stressing/fuzzing.
  3767 //
  3768 // This method can be called the arbitrary number of times, with current count
  3769 // as the argument. The logic allows selecting a single candidate from the
  3770 // running list of candidates as follows:
  3771 //    int count = 0;
  3772 //    Cand* selected = null;
  3773 //    while(cand = cand->next()) {
  3774 //      if (randomized_select(++count)) {
  3775 //        selected = cand;
  3776 //      }
  3777 //    }
  3778 //
  3779 // Including count equalizes the chances any candidate is "selected".
  3780 // This is useful when we don't have the complete list of candidates to choose
  3781 // from uniformly. In this case, we need to adjust the randomicity of the
  3782 // selection, or else we will end up biasing the selection towards the latter
  3783 // candidates.
  3784 //
  3785 // Quick back-envelope calculation shows that for the list of n candidates
  3786 // the equal probability for the candidate to persist as "best" can be
  3787 // achieved by replacing it with "next" k-th candidate with the probability
  3788 // of 1/k. It can be easily shown that by the end of the run, the
  3789 // probability for any candidate is converged to 1/n, thus giving the
  3790 // uniform distribution among all the candidates.
  3791 //
  3792 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  3793 #define RANDOMIZED_DOMAIN_POW 29
  3794 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  3795 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  3796 bool Compile::randomized_select(int count) {
  3797   assert(count > 0, "only positive");
  3798   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial