src/cpu/sparc/vm/sparc.ad

Fri, 11 Oct 2013 10:14:02 -0700

author
twisti
date
Fri, 11 Oct 2013 10:14:02 -0700
changeset 5915
8b80b262e501
parent 5791
c9ccd7b85f20
child 5997
59e8ad757e19
child 6029
209aa13ab8c0
permissions
-rw-r--r--

8005173: assert(false) failed: DEBUG MESSAGE: exception oop must be empty (macroAssembler_x86.cpp:625)
Reviewed-by: kvn, iveresov

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedClassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   563     } else {
   564       klass_load_size = 1*BytesPerInstWord;
   565     }
   566     if (Assembler::is_simm13(v_off)) {
   567       return klass_load_size +
   568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   569              NativeCall::instruction_size);  // call; delay slot
   570     } else {
   571       return klass_load_size +
   572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   573              NativeCall::instruction_size);  // call; delay slot
   574     }
   575   }
   576 }
   578 int MachCallRuntimeNode::ret_addr_offset() {
   579 #ifdef _LP64
   580   if (MacroAssembler::is_far_target(entry_point())) {
   581     return NativeFarCall::instruction_size;
   582   } else {
   583     return NativeCall::instruction_size;
   584   }
   585 #else
   586   return NativeCall::instruction_size;  // call; delay slot
   587 #endif
   588 }
   590 // Indicate if the safepoint node needs the polling page as an input.
   591 // Since Sparc does not have absolute addressing, it does.
   592 bool SafePointNode::needs_polling_address_input() {
   593   return true;
   594 }
   596 // emit an interrupt that is caught by the debugger (for debugging compiler)
   597 void emit_break(CodeBuffer &cbuf) {
   598   MacroAssembler _masm(&cbuf);
   599   __ breakpoint_trap();
   600 }
   602 #ifndef PRODUCT
   603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   604   st->print("TA");
   605 }
   606 #endif
   608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   609   emit_break(cbuf);
   610 }
   612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   613   return MachNode::size(ra_);
   614 }
   616 // Traceable jump
   617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   618   MacroAssembler _masm(&cbuf);
   619   Register rdest = reg_to_register_object(jump_target);
   620   __ JMP(rdest, 0);
   621   __ delayed()->nop();
   622 }
   624 // Traceable jump and set exception pc
   625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   626   MacroAssembler _masm(&cbuf);
   627   Register rdest = reg_to_register_object(jump_target);
   628   __ JMP(rdest, 0);
   629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   630 }
   632 void emit_nop(CodeBuffer &cbuf) {
   633   MacroAssembler _masm(&cbuf);
   634   __ nop();
   635 }
   637 void emit_illtrap(CodeBuffer &cbuf) {
   638   MacroAssembler _masm(&cbuf);
   639   __ illtrap(0);
   640 }
   643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   644   assert(n->rule() != loadUB_rule, "");
   646   intptr_t offset = 0;
   647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   648   const Node* addr = n->get_base_and_disp(offset, adr_type);
   649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   atype = atype->add_offset(offset);
   653   assert(disp32 == offset, "wrong disp32");
   654   return atype->_offset;
   655 }
   658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   659   assert(n->rule() != loadUB_rule, "");
   661   intptr_t offset = 0;
   662   Node* addr = n->in(2);
   663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   665     Node* a = addr->in(2/*AddPNode::Address*/);
   666     Node* o = addr->in(3/*AddPNode::Offset*/);
   667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   669     assert(atype->isa_oop_ptr(), "still an oop");
   670   }
   671   offset = atype->is_ptr()->_offset;
   672   if (offset != Type::OffsetBot)  offset += disp32;
   673   return offset;
   674 }
   676 static inline jdouble replicate_immI(int con, int count, int width) {
   677   // Load a constant replicated "count" times with width "width"
   678   assert(count*width == 8 && width <= 4, "sanity");
   679   int bit_width = width * 8;
   680   jlong val = con;
   681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   682   for (int i = 0; i < count - 1; i++) {
   683     val |= (val << bit_width);
   684   }
   685   jdouble dval = *((jdouble*) &val);  // coerce to double type
   686   return dval;
   687 }
   689 static inline jdouble replicate_immF(float con) {
   690   // Replicate float con 2 times and pack into vector.
   691   int val = *((int*)&con);
   692   jlong lval = val;
   693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   695   return dval;
   696 }
   698 // Standard Sparc opcode form2 field breakdown
   699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   701   int op = (f30 << 30) |
   702            (f29 << 29) |
   703            (f25 << 25) |
   704            (f22 << 22) |
   705            (f20 << 20) |
   706            (f19 << 19) |
   707            (f0  <<  0);
   708   cbuf.insts()->emit_int32(op);
   709 }
   711 // Standard Sparc opcode form2 field breakdown
   712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   713   f0 >>= 10;           // Drop 10 bits
   714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   715   int op = (f30 << 30) |
   716            (f25 << 25) |
   717            (f22 << 22) |
   718            (f0  <<  0);
   719   cbuf.insts()->emit_int32(op);
   720 }
   722 // Standard Sparc opcode form3 field breakdown
   723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   724   int op = (f30 << 30) |
   725            (f25 << 25) |
   726            (f19 << 19) |
   727            (f14 << 14) |
   728            (f5  <<  5) |
   729            (f0  <<  0);
   730   cbuf.insts()->emit_int32(op);
   731 }
   733 // Standard Sparc opcode form3 field breakdown
   734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   735   simm13 &= (1<<13)-1; // Mask to 13 bits
   736   int op = (f30 << 30) |
   737            (f25 << 25) |
   738            (f19 << 19) |
   739            (f14 << 14) |
   740            (1   << 13) | // bit to indicate immediate-mode
   741            (simm13<<0);
   742   cbuf.insts()->emit_int32(op);
   743 }
   745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   746   simm10 &= (1<<10)-1; // Mask to 10 bits
   747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   748 }
   750 #ifdef ASSERT
   751 // Helper function for VerifyOops in emit_form3_mem_reg
   752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   753   warning("VerifyOops encountered unexpected instruction:");
   754   n->dump(2);
   755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   756 }
   757 #endif
   760 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   763 #ifdef ASSERT
   764   // The following code implements the +VerifyOops feature.
   765   // It verifies oop values which are loaded into or stored out of
   766   // the current method activation.  +VerifyOops complements techniques
   767   // like ScavengeALot, because it eagerly inspects oops in transit,
   768   // as they enter or leave the stack, as opposed to ScavengeALot,
   769   // which inspects oops "at rest", in the stack or heap, at safepoints.
   770   // For this reason, +VerifyOops can sometimes detect bugs very close
   771   // to their point of creation.  It can also serve as a cross-check
   772   // on the validity of oop maps, when used toegether with ScavengeALot.
   774   // It would be good to verify oops at other points, especially
   775   // when an oop is used as a base pointer for a load or store.
   776   // This is presently difficult, because it is hard to know when
   777   // a base address is biased or not.  (If we had such information,
   778   // it would be easy and useful to make a two-argument version of
   779   // verify_oop which unbiases the base, and performs verification.)
   781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   782   bool is_verified_oop_base  = false;
   783   bool is_verified_oop_load  = false;
   784   bool is_verified_oop_store = false;
   785   int tmp_enc = -1;
   786   if (VerifyOops && src1_enc != R_SP_enc) {
   787     // classify the op, mainly for an assert check
   788     int st_op = 0, ld_op = 0;
   789     switch (primary) {
   790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   794     case Assembler::std_op3:  st_op = Op_StoreL; break;
   795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   810     default: ShouldNotReachHere();
   811     }
   812     if (tertiary == REGP_OP) {
   813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   815       else                          ShouldNotReachHere();
   816       if (st_op) {
   817         // a store
   818         // inputs are (0:control, 1:memory, 2:address, 3:value)
   819         Node* n2 = n->in(3);
   820         if (n2 != NULL) {
   821           const Type* t = n2->bottom_type();
   822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823         }
   824       } else {
   825         // a load
   826         const Type* t = n->bottom_type();
   827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   828       }
   829     }
   831     if (ld_op) {
   832       // a Load
   833       // inputs are (0:control, 1:memory, 2:address)
   834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   849           !(n->rule() == loadUB_rule)) {
   850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   851       }
   852     } else if (st_op) {
   853       // a Store
   854       // inputs are (0:control, 1:memory, 2:address, 3:value)
   855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   863       }
   864     }
   866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   867       Node* addr = n->in(2);
   868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   870         if (atype != NULL) {
   871           intptr_t offset = get_offset_from_base(n, atype, disp32);
   872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   873           if (offset != offset_2) {
   874             get_offset_from_base(n, atype, disp32);
   875             get_offset_from_base_2(n, atype, disp32);
   876           }
   877           assert(offset == offset_2, "different offsets");
   878           if (offset == disp32) {
   879             // we now know that src1 is a true oop pointer
   880             is_verified_oop_base = true;
   881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   882               if( primary == Assembler::ldd_op3 ) {
   883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   884               } else {
   885                 tmp_enc = dst_enc;
   886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   887                 assert(src1_enc != dst_enc, "");
   888               }
   889             }
   890           }
   891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   892                        || offset == oopDesc::mark_offset_in_bytes())) {
   893                       // loading the mark should not be allowed either, but
   894                       // we don't check this since it conflicts with InlineObjectHash
   895                       // usage of LoadINode to get the mark. We could keep the
   896                       // check if we create a new LoadMarkNode
   897             // but do not verify the object before its header is initialized
   898             ShouldNotReachHere();
   899           }
   900         }
   901       }
   902     }
   903   }
   904 #endif
   906   uint instr;
   907   instr = (Assembler::ldst_op << 30)
   908         | (dst_enc        << 25)
   909         | (primary        << 19)
   910         | (src1_enc       << 14);
   912   uint index = src2_enc;
   913   int disp = disp32;
   915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   916     disp += STACK_BIAS;
   918   // We should have a compiler bailout here rather than a guarantee.
   919   // Better yet would be some mechanism to handle variable-size matches correctly.
   920   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   922   if( disp == 0 ) {
   923     // use reg-reg form
   924     // bit 13 is already zero
   925     instr |= index;
   926   } else {
   927     // use reg-imm form
   928     instr |= 0x00002000;          // set bit 13 to one
   929     instr |= disp & 0x1FFF;
   930   }
   932   cbuf.insts()->emit_int32(instr);
   934 #ifdef ASSERT
   935   {
   936     MacroAssembler _masm(&cbuf);
   937     if (is_verified_oop_base) {
   938       __ verify_oop(reg_to_register_object(src1_enc));
   939     }
   940     if (is_verified_oop_store) {
   941       __ verify_oop(reg_to_register_object(dst_enc));
   942     }
   943     if (tmp_enc != -1) {
   944       __ mov(O7, reg_to_register_object(tmp_enc));
   945     }
   946     if (is_verified_oop_load) {
   947       __ verify_oop(reg_to_register_object(dst_enc));
   948     }
   949   }
   950 #endif
   951 }
   953 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   954   // The method which records debug information at every safepoint
   955   // expects the call to be the first instruction in the snippet as
   956   // it creates a PcDesc structure which tracks the offset of a call
   957   // from the start of the codeBlob. This offset is computed as
   958   // code_end() - code_begin() of the code which has been emitted
   959   // so far.
   960   // In this particular case we have skirted around the problem by
   961   // putting the "mov" instruction in the delay slot but the problem
   962   // may bite us again at some other point and a cleaner/generic
   963   // solution using relocations would be needed.
   964   MacroAssembler _masm(&cbuf);
   965   __ set_inst_mark();
   967   // We flush the current window just so that there is a valid stack copy
   968   // the fact that the current window becomes active again instantly is
   969   // not a problem there is nothing live in it.
   971 #ifdef ASSERT
   972   int startpos = __ offset();
   973 #endif /* ASSERT */
   975   __ call((address)entry_point, rtype);
   977   if (preserve_g2)   __ delayed()->mov(G2, L7);
   978   else __ delayed()->nop();
   980   if (preserve_g2)   __ mov(L7, G2);
   982 #ifdef ASSERT
   983   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   984 #ifdef _LP64
   985     // Trash argument dump slots.
   986     __ set(0xb0b8ac0db0b8ac0d, G1);
   987     __ mov(G1, G5);
   988     __ stx(G1, SP, STACK_BIAS + 0x80);
   989     __ stx(G1, SP, STACK_BIAS + 0x88);
   990     __ stx(G1, SP, STACK_BIAS + 0x90);
   991     __ stx(G1, SP, STACK_BIAS + 0x98);
   992     __ stx(G1, SP, STACK_BIAS + 0xA0);
   993     __ stx(G1, SP, STACK_BIAS + 0xA8);
   994 #else // _LP64
   995     // this is also a native call, so smash the first 7 stack locations,
   996     // and the various registers
   998     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   999     // while [SP+0x44..0x58] are the argument dump slots.
  1000     __ set((intptr_t)0xbaadf00d, G1);
  1001     __ mov(G1, G5);
  1002     __ sllx(G1, 32, G1);
  1003     __ or3(G1, G5, G1);
  1004     __ mov(G1, G5);
  1005     __ stx(G1, SP, 0x40);
  1006     __ stx(G1, SP, 0x48);
  1007     __ stx(G1, SP, 0x50);
  1008     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1009 #endif // _LP64
  1011 #endif /*ASSERT*/
  1014 //=============================================================================
  1015 // REQUIRED FUNCTIONALITY for encoding
  1016 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1017 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1020 //=============================================================================
  1021 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1023 int Compile::ConstantTable::calculate_table_base_offset() const {
  1024   if (UseRDPCForConstantTableBase) {
  1025     // The table base offset might be less but then it fits into
  1026     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1027     return Assembler::min_simm13();
  1028   } else {
  1029     int offset = -(size() / 2);
  1030     if (!Assembler::is_simm13(offset)) {
  1031       offset = Assembler::min_simm13();
  1033     return offset;
  1037 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1038   Compile* C = ra_->C;
  1039   Compile::ConstantTable& constant_table = C->constant_table();
  1040   MacroAssembler _masm(&cbuf);
  1042   Register r = as_Register(ra_->get_encode(this));
  1043   CodeSection* consts_section = __ code()->consts();
  1044   int consts_size = consts_section->align_at_start(consts_section->size());
  1045   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1047   if (UseRDPCForConstantTableBase) {
  1048     // For the following RDPC logic to work correctly the consts
  1049     // section must be allocated right before the insts section.  This
  1050     // assert checks for that.  The layout and the SECT_* constants
  1051     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1052     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1053     int insts_offset = __ offset();
  1055     // Layout:
  1056     //
  1057     // |----------- consts section ------------|----------- insts section -----------...
  1058     // |------ constant table -----|- padding -|------------------x----
  1059     //                                                            \ current PC (RDPC instruction)
  1060     // |<------------- consts_size ----------->|<- insts_offset ->|
  1061     //                                                            \ table base
  1062     // The table base offset is later added to the load displacement
  1063     // so it has to be negative.
  1064     int table_base_offset = -(consts_size + insts_offset);
  1065     int disp;
  1067     // If the displacement from the current PC to the constant table
  1068     // base fits into simm13 we set the constant table base to the
  1069     // current PC.
  1070     if (Assembler::is_simm13(table_base_offset)) {
  1071       constant_table.set_table_base_offset(table_base_offset);
  1072       disp = 0;
  1073     } else {
  1074       // Otherwise we set the constant table base offset to the
  1075       // maximum negative displacement of load instructions to keep
  1076       // the disp as small as possible:
  1077       //
  1078       // |<------------- consts_size ----------->|<- insts_offset ->|
  1079       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1080       //                                  \ table base
  1081       table_base_offset = Assembler::min_simm13();
  1082       constant_table.set_table_base_offset(table_base_offset);
  1083       disp = (consts_size + insts_offset) + table_base_offset;
  1086     __ rdpc(r);
  1088     if (disp != 0) {
  1089       assert(r != O7, "need temporary");
  1090       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1093   else {
  1094     // Materialize the constant table base.
  1095     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1096     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1097     AddressLiteral base(baseaddr, rspec);
  1098     __ set(base, r);
  1102 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1103   if (UseRDPCForConstantTableBase) {
  1104     // This is really the worst case but generally it's only 1 instruction.
  1105     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1106   } else {
  1107     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1111 #ifndef PRODUCT
  1112 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1113   char reg[128];
  1114   ra_->dump_register(this, reg);
  1115   if (UseRDPCForConstantTableBase) {
  1116     st->print("RDPC   %s\t! constant table base", reg);
  1117   } else {
  1118     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1121 #endif
  1124 //=============================================================================
  1126 #ifndef PRODUCT
  1127 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1128   Compile* C = ra_->C;
  1130   for (int i = 0; i < OptoPrologueNops; i++) {
  1131     st->print_cr("NOP"); st->print("\t");
  1134   if( VerifyThread ) {
  1135     st->print_cr("Verify_Thread"); st->print("\t");
  1138   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1140   // Calls to C2R adapters often do not accept exceptional returns.
  1141   // We require that their callers must bang for them.  But be careful, because
  1142   // some VM calls (such as call site linkage) can use several kilobytes of
  1143   // stack.  But the stack safety zone should account for that.
  1144   // See bugs 4446381, 4468289, 4497237.
  1145   if (C->need_stack_bang(framesize)) {
  1146     st->print_cr("! stack bang"); st->print("\t");
  1149   if (Assembler::is_simm13(-framesize)) {
  1150     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1151   } else {
  1152     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1153     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1154     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1158 #endif
  1160 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1161   Compile* C = ra_->C;
  1162   MacroAssembler _masm(&cbuf);
  1164   for (int i = 0; i < OptoPrologueNops; i++) {
  1165     __ nop();
  1168   __ verify_thread();
  1170   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1171   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1172   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1174   // Calls to C2R adapters often do not accept exceptional returns.
  1175   // We require that their callers must bang for them.  But be careful, because
  1176   // some VM calls (such as call site linkage) can use several kilobytes of
  1177   // stack.  But the stack safety zone should account for that.
  1178   // See bugs 4446381, 4468289, 4497237.
  1179   if (C->need_stack_bang(framesize)) {
  1180     __ generate_stack_overflow_check(framesize);
  1183   if (Assembler::is_simm13(-framesize)) {
  1184     __ save(SP, -framesize, SP);
  1185   } else {
  1186     __ sethi(-framesize & ~0x3ff, G3);
  1187     __ add(G3, -framesize & 0x3ff, G3);
  1188     __ save(SP, G3, SP);
  1190   C->set_frame_complete( __ offset() );
  1192   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1193     // NOTE: We set the table base offset here because users might be
  1194     // emitted before MachConstantBaseNode.
  1195     Compile::ConstantTable& constant_table = C->constant_table();
  1196     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1200 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1201   return MachNode::size(ra_);
  1204 int MachPrologNode::reloc() const {
  1205   return 10; // a large enough number
  1208 //=============================================================================
  1209 #ifndef PRODUCT
  1210 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1211   Compile* C = ra_->C;
  1213   if( do_polling() && ra_->C->is_method_compilation() ) {
  1214     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1215 #ifdef _LP64
  1216     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1217 #else
  1218     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1219 #endif
  1222   if( do_polling() )
  1223     st->print("RET\n\t");
  1225   st->print("RESTORE");
  1227 #endif
  1229 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1230   MacroAssembler _masm(&cbuf);
  1231   Compile* C = ra_->C;
  1233   __ verify_thread();
  1235   // If this does safepoint polling, then do it here
  1236   if( do_polling() && ra_->C->is_method_compilation() ) {
  1237     AddressLiteral polling_page(os::get_polling_page());
  1238     __ sethi(polling_page, L0);
  1239     __ relocate(relocInfo::poll_return_type);
  1240     __ ld_ptr( L0, 0, G0 );
  1243   // If this is a return, then stuff the restore in the delay slot
  1244   if( do_polling() ) {
  1245     __ ret();
  1246     __ delayed()->restore();
  1247   } else {
  1248     __ restore();
  1252 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1253   return MachNode::size(ra_);
  1256 int MachEpilogNode::reloc() const {
  1257   return 16; // a large enough number
  1260 const Pipeline * MachEpilogNode::pipeline() const {
  1261   return MachNode::pipeline_class();
  1264 int MachEpilogNode::safepoint_offset() const {
  1265   assert( do_polling(), "no return for this epilog node");
  1266   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1269 //=============================================================================
  1271 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1272 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1273 static enum RC rc_class( OptoReg::Name reg ) {
  1274   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1275   if (OptoReg::is_stack(reg)) return rc_stack;
  1276   VMReg r = OptoReg::as_VMReg(reg);
  1277   if (r->is_Register()) return rc_int;
  1278   assert(r->is_FloatRegister(), "must be");
  1279   return rc_float;
  1282 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1283   if( cbuf ) {
  1284     // Better yet would be some mechanism to handle variable-size matches correctly
  1285     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1286       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1287     } else {
  1288       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1291 #ifndef PRODUCT
  1292   else if( !do_size ) {
  1293     if( size != 0 ) st->print("\n\t");
  1294     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1295     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1297 #endif
  1298   return size+4;
  1301 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1302   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1303 #ifndef PRODUCT
  1304   else if( !do_size ) {
  1305     if( size != 0 ) st->print("\n\t");
  1306     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1308 #endif
  1309   return size+4;
  1312 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1313                                         PhaseRegAlloc *ra_,
  1314                                         bool do_size,
  1315                                         outputStream* st ) const {
  1316   // Get registers to move
  1317   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1318   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1319   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1320   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1322   enum RC src_second_rc = rc_class(src_second);
  1323   enum RC src_first_rc = rc_class(src_first);
  1324   enum RC dst_second_rc = rc_class(dst_second);
  1325   enum RC dst_first_rc = rc_class(dst_first);
  1327   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1329   // Generate spill code!
  1330   int size = 0;
  1332   if( src_first == dst_first && src_second == dst_second )
  1333     return size;            // Self copy, no move
  1335   // --------------------------------------
  1336   // Check for mem-mem move.  Load into unused float registers and fall into
  1337   // the float-store case.
  1338   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1339     int offset = ra_->reg2offset(src_first);
  1340     // Further check for aligned-adjacent pair, so we can use a double load
  1341     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1342       src_second    = OptoReg::Name(R_F31_num);
  1343       src_second_rc = rc_float;
  1344       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1345     } else {
  1346       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1348     src_first    = OptoReg::Name(R_F30_num);
  1349     src_first_rc = rc_float;
  1352   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1353     int offset = ra_->reg2offset(src_second);
  1354     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1355     src_second    = OptoReg::Name(R_F31_num);
  1356     src_second_rc = rc_float;
  1359   // --------------------------------------
  1360   // Check for float->int copy; requires a trip through memory
  1361   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1362     int offset = frame::register_save_words*wordSize;
  1363     if (cbuf) {
  1364       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1365       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1366       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1369 #ifndef PRODUCT
  1370     else if (!do_size) {
  1371       if (size != 0) st->print("\n\t");
  1372       st->print(  "SUB    R_SP,16,R_SP\n");
  1373       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1374       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1375       st->print("\tADD    R_SP,16,R_SP\n");
  1377 #endif
  1378     size += 16;
  1381   // Check for float->int copy on T4
  1382   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1383     // Further check for aligned-adjacent pair, so we can use a double move
  1384     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1385       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1386     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1388   // Check for int->float copy on T4
  1389   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1390     // Further check for aligned-adjacent pair, so we can use a double move
  1391     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1392       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1393     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1396   // --------------------------------------
  1397   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1398   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1399   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1400   // there.  Misaligned sources only come from native-long-returns (handled
  1401   // special below).
  1402 #ifndef _LP64
  1403   if( src_first_rc == rc_int &&     // source is already big-endian
  1404       src_second_rc != rc_bad &&    // 64-bit move
  1405       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1406     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1407     // Do the big-endian flop.
  1408     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1409     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1411 #endif
  1413   // --------------------------------------
  1414   // Check for integer reg-reg copy
  1415   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1416 #ifndef _LP64
  1417     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1418       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1419       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1420       //       operand contains the least significant word of the 64-bit value and vice versa.
  1421       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1422       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1423       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1424       if( cbuf ) {
  1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1427         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1428 #ifndef PRODUCT
  1429       } else if( !do_size ) {
  1430         if( size != 0 ) st->print("\n\t");
  1431         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1432         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1433         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1434 #endif
  1436       return size+12;
  1438     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1439       // returning a long value in I0/I1
  1440       // a SpillCopy must be able to target a return instruction's reg_class
  1441       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1442       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1443       //       operand contains the least significant word of the 64-bit value and vice versa.
  1444       OptoReg::Name tdest = dst_first;
  1446       if (src_first == dst_first) {
  1447         tdest = OptoReg::Name(R_O7_num);
  1448         size += 4;
  1451       if( cbuf ) {
  1452         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1453         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1454         // ShrL_reg_imm6
  1455         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1456         // ShrR_reg_imm6  src, 0, dst
  1457         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1458         if (tdest != dst_first) {
  1459           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1462 #ifndef PRODUCT
  1463       else if( !do_size ) {
  1464         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1465         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1466         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1467         if (tdest != dst_first) {
  1468           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1471 #endif // PRODUCT
  1472       return size+8;
  1474 #endif // !_LP64
  1475     // Else normal reg-reg copy
  1476     assert( src_second != dst_first, "smashed second before evacuating it" );
  1477     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1478     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1479     // This moves an aligned adjacent pair.
  1480     // See if we are done.
  1481     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1482       return size;
  1485   // Check for integer store
  1486   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1487     int offset = ra_->reg2offset(dst_first);
  1488     // Further check for aligned-adjacent pair, so we can use a double store
  1489     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1490       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1491     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1494   // Check for integer load
  1495   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1496     int offset = ra_->reg2offset(src_first);
  1497     // Further check for aligned-adjacent pair, so we can use a double load
  1498     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1499       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1500     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1503   // Check for float reg-reg copy
  1504   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1505     // Further check for aligned-adjacent pair, so we can use a double move
  1506     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1507       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1508     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1511   // Check for float store
  1512   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1513     int offset = ra_->reg2offset(dst_first);
  1514     // Further check for aligned-adjacent pair, so we can use a double store
  1515     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1516       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1517     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1520   // Check for float load
  1521   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1522     int offset = ra_->reg2offset(src_first);
  1523     // Further check for aligned-adjacent pair, so we can use a double load
  1524     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1525       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1526     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1529   // --------------------------------------------------------------------
  1530   // Check for hi bits still needing moving.  Only happens for misaligned
  1531   // arguments to native calls.
  1532   if( src_second == dst_second )
  1533     return size;               // Self copy; no move
  1534   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1536 #ifndef _LP64
  1537   // In the LP64 build, all registers can be moved as aligned/adjacent
  1538   // pairs, so there's never any need to move the high bits separately.
  1539   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1540   // all sorts of silly alignment problems.
  1542   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1543   // 32-bits of a 64-bit register, but are needed in low bits of another
  1544   // register (else it's a hi-bits-to-hi-bits copy which should have
  1545   // happened already as part of a 64-bit move)
  1546   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1547     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1548     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1549     // Shift src_second down to dst_second's low bits.
  1550     if( cbuf ) {
  1551       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1552 #ifndef PRODUCT
  1553     } else if( !do_size ) {
  1554       if( size != 0 ) st->print("\n\t");
  1555       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1556 #endif
  1558     return size+4;
  1561   // Check for high word integer store.  Must down-shift the hi bits
  1562   // into a temp register, then fall into the case of storing int bits.
  1563   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1564     // Shift src_second down to dst_second's low bits.
  1565     if( cbuf ) {
  1566       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1567 #ifndef PRODUCT
  1568     } else if( !do_size ) {
  1569       if( size != 0 ) st->print("\n\t");
  1570       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1571 #endif
  1573     size+=4;
  1574     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1577   // Check for high word integer load
  1578   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1579     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1581   // Check for high word integer store
  1582   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1583     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1585   // Check for high word float store
  1586   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1587     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1589 #endif // !_LP64
  1591   Unimplemented();
  1594 #ifndef PRODUCT
  1595 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1596   implementation( NULL, ra_, false, st );
  1598 #endif
  1600 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1601   implementation( &cbuf, ra_, false, NULL );
  1604 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1605   return implementation( NULL, ra_, true, NULL );
  1608 //=============================================================================
  1609 #ifndef PRODUCT
  1610 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1611   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1613 #endif
  1615 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1616   MacroAssembler _masm(&cbuf);
  1617   for(int i = 0; i < _count; i += 1) {
  1618     __ nop();
  1622 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1623   return 4 * _count;
  1627 //=============================================================================
  1628 #ifndef PRODUCT
  1629 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1630   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1631   int reg = ra_->get_reg_first(this);
  1632   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1634 #endif
  1636 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1637   MacroAssembler _masm(&cbuf);
  1638   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1639   int reg = ra_->get_encode(this);
  1641   if (Assembler::is_simm13(offset)) {
  1642      __ add(SP, offset, reg_to_register_object(reg));
  1643   } else {
  1644      __ set(offset, O7);
  1645      __ add(SP, O7, reg_to_register_object(reg));
  1649 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1650   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1651   assert(ra_ == ra_->C->regalloc(), "sanity");
  1652   return ra_->C->scratch_emit_size(this);
  1655 //=============================================================================
  1656 #ifndef PRODUCT
  1657 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1658   st->print_cr("\nUEP:");
  1659 #ifdef    _LP64
  1660   if (UseCompressedClassPointers) {
  1661     assert(Universe::heap() != NULL, "java heap should be initialized");
  1662     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1663     st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1664     if (Universe::narrow_klass_shift() != 0) {
  1665       st->print_cr("\tSLL    R_G5,3,R_G5");
  1667     st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1668     st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1669   } else {
  1670     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1672   st->print_cr("\tCMP    R_G5,R_G3" );
  1673   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1674 #else  // _LP64
  1675   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1676   st->print_cr("\tCMP    R_G5,R_G3" );
  1677   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1678 #endif // _LP64
  1680 #endif
  1682 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1683   MacroAssembler _masm(&cbuf);
  1684   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1685   Register temp_reg   = G3;
  1686   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1688   // Load klass from receiver
  1689   __ load_klass(O0, temp_reg);
  1690   // Compare against expected klass
  1691   __ cmp(temp_reg, G5_ic_reg);
  1692   // Branch to miss code, checks xcc or icc depending
  1693   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1696 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1697   return MachNode::size(ra_);
  1701 //=============================================================================
  1703 uint size_exception_handler() {
  1704   if (TraceJumps) {
  1705     return (400); // just a guess
  1707   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1710 uint size_deopt_handler() {
  1711   if (TraceJumps) {
  1712     return (400); // just a guess
  1714   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1717 // Emit exception handler code.
  1718 int emit_exception_handler(CodeBuffer& cbuf) {
  1719   Register temp_reg = G3;
  1720   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1721   MacroAssembler _masm(&cbuf);
  1723   address base =
  1724   __ start_a_stub(size_exception_handler());
  1725   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1727   int offset = __ offset();
  1729   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1730   __ delayed()->nop();
  1732   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1734   __ end_a_stub();
  1736   return offset;
  1739 int emit_deopt_handler(CodeBuffer& cbuf) {
  1740   // Can't use any of the current frame's registers as we may have deopted
  1741   // at a poll and everything (including G3) can be live.
  1742   Register temp_reg = L0;
  1743   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1744   MacroAssembler _masm(&cbuf);
  1746   address base =
  1747   __ start_a_stub(size_deopt_handler());
  1748   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1750   int offset = __ offset();
  1751   __ save_frame(0);
  1752   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1753   __ delayed()->restore();
  1755   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1757   __ end_a_stub();
  1758   return offset;
  1762 // Given a register encoding, produce a Integer Register object
  1763 static Register reg_to_register_object(int register_encoding) {
  1764   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1765   return as_Register(register_encoding);
  1768 // Given a register encoding, produce a single-precision Float Register object
  1769 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1770   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1771   return as_SingleFloatRegister(register_encoding);
  1774 // Given a register encoding, produce a double-precision Float Register object
  1775 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1776   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1777   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1778   return as_DoubleFloatRegister(register_encoding);
  1781 const bool Matcher::match_rule_supported(int opcode) {
  1782   if (!has_match_rule(opcode))
  1783     return false;
  1785   switch (opcode) {
  1786   case Op_CountLeadingZerosI:
  1787   case Op_CountLeadingZerosL:
  1788   case Op_CountTrailingZerosI:
  1789   case Op_CountTrailingZerosL:
  1790   case Op_PopCountI:
  1791   case Op_PopCountL:
  1792     if (!UsePopCountInstruction)
  1793       return false;
  1794   case Op_CompareAndSwapL:
  1795 #ifdef _LP64
  1796   case Op_CompareAndSwapP:
  1797 #endif
  1798     if (!VM_Version::supports_cx8())
  1799       return false;
  1800     break;
  1803   return true;  // Per default match rules are supported.
  1806 int Matcher::regnum_to_fpu_offset(int regnum) {
  1807   return regnum - 32; // The FP registers are in the second chunk
  1810 #ifdef ASSERT
  1811 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1812 #endif
  1814 // Vector width in bytes
  1815 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1816   assert(MaxVectorSize == 8, "");
  1817   return 8;
  1820 // Vector ideal reg
  1821 const int Matcher::vector_ideal_reg(int size) {
  1822   assert(MaxVectorSize == 8, "");
  1823   return Op_RegD;
  1826 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1827   fatal("vector shift is not supported");
  1828   return Node::NotAMachineReg;
  1831 // Limits on vector size (number of elements) loaded into vector.
  1832 const int Matcher::max_vector_size(const BasicType bt) {
  1833   assert(is_java_primitive(bt), "only primitive type vectors");
  1834   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1837 const int Matcher::min_vector_size(const BasicType bt) {
  1838   return max_vector_size(bt); // Same as max.
  1841 // SPARC doesn't support misaligned vectors store/load.
  1842 const bool Matcher::misaligned_vectors_ok() {
  1843   return false;
  1846 // USII supports fxtof through the whole range of number, USIII doesn't
  1847 const bool Matcher::convL2FSupported(void) {
  1848   return VM_Version::has_fast_fxtof();
  1851 // Is this branch offset short enough that a short branch can be used?
  1852 //
  1853 // NOTE: If the platform does not provide any short branch variants, then
  1854 //       this method should return false for offset 0.
  1855 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1856   // The passed offset is relative to address of the branch.
  1857   // Don't need to adjust the offset.
  1858   return UseCBCond && Assembler::is_simm12(offset);
  1861 const bool Matcher::isSimpleConstant64(jlong value) {
  1862   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1863   // Depends on optimizations in MacroAssembler::setx.
  1864   int hi = (int)(value >> 32);
  1865   int lo = (int)(value & ~0);
  1866   return (hi == 0) || (hi == -1) || (lo == 0);
  1869 // No scaling for the parameter the ClearArray node.
  1870 const bool Matcher::init_array_count_is_in_bytes = true;
  1872 // Threshold size for cleararray.
  1873 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1875 // No additional cost for CMOVL.
  1876 const int Matcher::long_cmove_cost() { return 0; }
  1878 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1879 const int Matcher::float_cmove_cost() {
  1880   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1883 // Should the Matcher clone shifts on addressing modes, expecting them to
  1884 // be subsumed into complex addressing expressions or compute them into
  1885 // registers?  True for Intel but false for most RISCs
  1886 const bool Matcher::clone_shift_expressions = false;
  1888 // Do we need to mask the count passed to shift instructions or does
  1889 // the cpu only look at the lower 5/6 bits anyway?
  1890 const bool Matcher::need_masked_shift_count = false;
  1892 bool Matcher::narrow_oop_use_complex_address() {
  1893   NOT_LP64(ShouldNotCallThis());
  1894   assert(UseCompressedOops, "only for compressed oops code");
  1895   return false;
  1898 bool Matcher::narrow_klass_use_complex_address() {
  1899   NOT_LP64(ShouldNotCallThis());
  1900   assert(UseCompressedClassPointers, "only for compressed klass code");
  1901   return false;
  1904 // Is it better to copy float constants, or load them directly from memory?
  1905 // Intel can load a float constant from a direct address, requiring no
  1906 // extra registers.  Most RISCs will have to materialize an address into a
  1907 // register first, so they would do better to copy the constant from stack.
  1908 const bool Matcher::rematerialize_float_constants = false;
  1910 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1911 // needed.  Else we split the double into 2 integer pieces and move it
  1912 // piece-by-piece.  Only happens when passing doubles into C code as the
  1913 // Java calling convention forces doubles to be aligned.
  1914 #ifdef _LP64
  1915 const bool Matcher::misaligned_doubles_ok = true;
  1916 #else
  1917 const bool Matcher::misaligned_doubles_ok = false;
  1918 #endif
  1920 // No-op on SPARC.
  1921 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1924 // Advertise here if the CPU requires explicit rounding operations
  1925 // to implement the UseStrictFP mode.
  1926 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1928 // Are floats conerted to double when stored to stack during deoptimization?
  1929 // Sparc does not handle callee-save floats.
  1930 bool Matcher::float_in_double() { return false; }
  1932 // Do ints take an entire long register or just half?
  1933 // Note that we if-def off of _LP64.
  1934 // The relevant question is how the int is callee-saved.  In _LP64
  1935 // the whole long is written but de-opt'ing will have to extract
  1936 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1937 #ifdef _LP64
  1938 const bool Matcher::int_in_long = true;
  1939 #else
  1940 const bool Matcher::int_in_long = false;
  1941 #endif
  1943 // Return whether or not this register is ever used as an argument.  This
  1944 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1945 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1946 // arguments in those registers not be available to the callee.
  1947 bool Matcher::can_be_java_arg( int reg ) {
  1948   // Standard sparc 6 args in registers
  1949   if( reg == R_I0_num ||
  1950       reg == R_I1_num ||
  1951       reg == R_I2_num ||
  1952       reg == R_I3_num ||
  1953       reg == R_I4_num ||
  1954       reg == R_I5_num ) return true;
  1955 #ifdef _LP64
  1956   // 64-bit builds can pass 64-bit pointers and longs in
  1957   // the high I registers
  1958   if( reg == R_I0H_num ||
  1959       reg == R_I1H_num ||
  1960       reg == R_I2H_num ||
  1961       reg == R_I3H_num ||
  1962       reg == R_I4H_num ||
  1963       reg == R_I5H_num ) return true;
  1965   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1966     return true;
  1969 #else
  1970   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1971   // Longs cannot be passed in O regs, because O regs become I regs
  1972   // after a 'save' and I regs get their high bits chopped off on
  1973   // interrupt.
  1974   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1975   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1976 #endif
  1977   // A few float args in registers
  1978   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1980   return false;
  1983 bool Matcher::is_spillable_arg( int reg ) {
  1984   return can_be_java_arg(reg);
  1987 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1988   // Use hardware SDIVX instruction when it is
  1989   // faster than a code which use multiply.
  1990   return VM_Version::has_fast_idiv();
  1993 // Register for DIVI projection of divmodI
  1994 RegMask Matcher::divI_proj_mask() {
  1995   ShouldNotReachHere();
  1996   return RegMask();
  1999 // Register for MODI projection of divmodI
  2000 RegMask Matcher::modI_proj_mask() {
  2001   ShouldNotReachHere();
  2002   return RegMask();
  2005 // Register for DIVL projection of divmodL
  2006 RegMask Matcher::divL_proj_mask() {
  2007   ShouldNotReachHere();
  2008   return RegMask();
  2011 // Register for MODL projection of divmodL
  2012 RegMask Matcher::modL_proj_mask() {
  2013   ShouldNotReachHere();
  2014   return RegMask();
  2017 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2018   return L7_REGP_mask();
  2021 const RegMask Matcher::mathExactI_result_proj_mask() {
  2022   return G1_REGI_mask();
  2025 const RegMask Matcher::mathExactI_flags_proj_mask() {
  2026   return INT_FLAGS_mask();
  2030 %}
  2033 // The intptr_t operand types, defined by textual substitution.
  2034 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2035 #ifdef _LP64
  2036 #define immX      immL
  2037 #define immX13    immL13
  2038 #define immX13m7  immL13m7
  2039 #define iRegX     iRegL
  2040 #define g1RegX    g1RegL
  2041 #else
  2042 #define immX      immI
  2043 #define immX13    immI13
  2044 #define immX13m7  immI13m7
  2045 #define iRegX     iRegI
  2046 #define g1RegX    g1RegI
  2047 #endif
  2049 //----------ENCODING BLOCK-----------------------------------------------------
  2050 // This block specifies the encoding classes used by the compiler to output
  2051 // byte streams.  Encoding classes are parameterized macros used by
  2052 // Machine Instruction Nodes in order to generate the bit encoding of the
  2053 // instruction.  Operands specify their base encoding interface with the
  2054 // interface keyword.  There are currently supported four interfaces,
  2055 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2056 // operand to generate a function which returns its register number when
  2057 // queried.   CONST_INTER causes an operand to generate a function which
  2058 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2059 // operand to generate four functions which return the Base Register, the
  2060 // Index Register, the Scale Value, and the Offset Value of the operand when
  2061 // queried.  COND_INTER causes an operand to generate six functions which
  2062 // return the encoding code (ie - encoding bits for the instruction)
  2063 // associated with each basic boolean condition for a conditional instruction.
  2064 //
  2065 // Instructions specify two basic values for encoding.  Again, a function
  2066 // is available to check if the constant displacement is an oop. They use the
  2067 // ins_encode keyword to specify their encoding classes (which must be
  2068 // a sequence of enc_class names, and their parameters, specified in
  2069 // the encoding block), and they use the
  2070 // opcode keyword to specify, in order, their primary, secondary, and
  2071 // tertiary opcode.  Only the opcode sections which a particular instruction
  2072 // needs for encoding need to be specified.
  2073 encode %{
  2074   enc_class enc_untested %{
  2075 #ifdef ASSERT
  2076     MacroAssembler _masm(&cbuf);
  2077     __ untested("encoding");
  2078 #endif
  2079   %}
  2081   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2082     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2083                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2084   %}
  2086   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2087     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2088                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2089   %}
  2091   enc_class form3_mem_prefetch_read( memory mem ) %{
  2092     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2093                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2094   %}
  2096   enc_class form3_mem_prefetch_write( memory mem ) %{
  2097     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2098                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2099   %}
  2101   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2102     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2103     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2104     guarantee($mem$$index == R_G0_enc, "double index?");
  2105     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2106     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2107     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2108     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2109   %}
  2111   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2112     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2113     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2114     guarantee($mem$$index == R_G0_enc, "double index?");
  2115     // Load long with 2 instructions
  2116     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2117     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2118   %}
  2120   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2121   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2122     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2123     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2124   %}
  2126   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2127     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2128     if( $rs2$$reg != $rd$$reg )
  2129       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2130   %}
  2132   // Target lo half of long
  2133   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2134     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2135     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2136       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2137   %}
  2139   // Source lo half of long
  2140   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2141     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2142     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2143       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2144   %}
  2146   // Target hi half of long
  2147   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2148     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2149   %}
  2151   // Source lo half of long, and leave it sign extended.
  2152   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2153     // Sign extend low half
  2154     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2155   %}
  2157   // Source hi half of long, and leave it sign extended.
  2158   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2159     // Shift high half to low half
  2160     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2161   %}
  2163   // Source hi half of long
  2164   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2165     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2166     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2167       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2168   %}
  2170   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2171     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2172   %}
  2174   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2175     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2176     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2177   %}
  2179   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2180     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2181     // clear if nothing else is happening
  2182     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2183     // blt,a,pn done
  2184     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2185     // mov dst,-1 in delay slot
  2186     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2187   %}
  2189   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2190     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2191   %}
  2193   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2194     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2195   %}
  2197   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2198     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2199   %}
  2201   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2202     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2203   %}
  2205   enc_class move_return_pc_to_o1() %{
  2206     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2207   %}
  2209 #ifdef _LP64
  2210   /* %%% merge with enc_to_bool */
  2211   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2212     MacroAssembler _masm(&cbuf);
  2214     Register   src_reg = reg_to_register_object($src$$reg);
  2215     Register   dst_reg = reg_to_register_object($dst$$reg);
  2216     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2217   %}
  2218 #endif
  2220   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2221     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2222     MacroAssembler _masm(&cbuf);
  2224     Register   p_reg = reg_to_register_object($p$$reg);
  2225     Register   q_reg = reg_to_register_object($q$$reg);
  2226     Register   y_reg = reg_to_register_object($y$$reg);
  2227     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2229     __ subcc( p_reg, q_reg,   p_reg );
  2230     __ add  ( p_reg, y_reg, tmp_reg );
  2231     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2232   %}
  2234   enc_class form_d2i_helper(regD src, regF dst) %{
  2235     // fcmp %fcc0,$src,$src
  2236     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2237     // branch %fcc0 not-nan, predict taken
  2238     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2239     // fdtoi $src,$dst
  2240     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2241     // fitos $dst,$dst (if nan)
  2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2243     // clear $dst (if nan)
  2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2245     // carry on here...
  2246   %}
  2248   enc_class form_d2l_helper(regD src, regD dst) %{
  2249     // fcmp %fcc0,$src,$src  check for NAN
  2250     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2251     // branch %fcc0 not-nan, predict taken
  2252     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2253     // fdtox $src,$dst   convert in delay slot
  2254     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2255     // fxtod $dst,$dst  (if nan)
  2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2257     // clear $dst (if nan)
  2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2259     // carry on here...
  2260   %}
  2262   enc_class form_f2i_helper(regF src, regF dst) %{
  2263     // fcmps %fcc0,$src,$src
  2264     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2265     // branch %fcc0 not-nan, predict taken
  2266     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2267     // fstoi $src,$dst
  2268     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2269     // fitos $dst,$dst (if nan)
  2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2271     // clear $dst (if nan)
  2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2273     // carry on here...
  2274   %}
  2276   enc_class form_f2l_helper(regF src, regD dst) %{
  2277     // fcmps %fcc0,$src,$src
  2278     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2279     // branch %fcc0 not-nan, predict taken
  2280     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2281     // fstox $src,$dst
  2282     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2283     // fxtod $dst,$dst (if nan)
  2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2285     // clear $dst (if nan)
  2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2287     // carry on here...
  2288   %}
  2290   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2291   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2292   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2293   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2295   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2297   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2298   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2300   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2301     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2302   %}
  2304   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2305     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2306   %}
  2308   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2309     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2310   %}
  2312   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2313     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2314   %}
  2316   enc_class form3_convI2F(regF rs2, regF rd) %{
  2317     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2318   %}
  2320   // Encloding class for traceable jumps
  2321   enc_class form_jmpl(g3RegP dest) %{
  2322     emit_jmpl(cbuf, $dest$$reg);
  2323   %}
  2325   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2326     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2327   %}
  2329   enc_class form2_nop() %{
  2330     emit_nop(cbuf);
  2331   %}
  2333   enc_class form2_illtrap() %{
  2334     emit_illtrap(cbuf);
  2335   %}
  2338   // Compare longs and convert into -1, 0, 1.
  2339   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2340     // CMP $src1,$src2
  2341     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2342     // blt,a,pn done
  2343     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2344     // mov dst,-1 in delay slot
  2345     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2346     // bgt,a,pn done
  2347     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2348     // mov dst,1 in delay slot
  2349     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2350     // CLR    $dst
  2351     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2352   %}
  2354   enc_class enc_PartialSubtypeCheck() %{
  2355     MacroAssembler _masm(&cbuf);
  2356     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2357     __ delayed()->nop();
  2358   %}
  2360   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2361     MacroAssembler _masm(&cbuf);
  2362     Label* L = $labl$$label;
  2363     Assembler::Predict predict_taken =
  2364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2366     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2367     __ delayed()->nop();
  2368   %}
  2370   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2371     MacroAssembler _masm(&cbuf);
  2372     Label* L = $labl$$label;
  2373     Assembler::Predict predict_taken =
  2374       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2376     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2377     __ delayed()->nop();
  2378   %}
  2380   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2381     int op = (Assembler::arith_op << 30) |
  2382              ($dst$$reg << 25) |
  2383              (Assembler::movcc_op3 << 19) |
  2384              (1 << 18) |                    // cc2 bit for 'icc'
  2385              ($cmp$$cmpcode << 14) |
  2386              (0 << 13) |                    // select register move
  2387              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2388              ($src$$reg << 0);
  2389     cbuf.insts()->emit_int32(op);
  2390   %}
  2392   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2393     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2394     int op = (Assembler::arith_op << 30) |
  2395              ($dst$$reg << 25) |
  2396              (Assembler::movcc_op3 << 19) |
  2397              (1 << 18) |                    // cc2 bit for 'icc'
  2398              ($cmp$$cmpcode << 14) |
  2399              (1 << 13) |                    // select immediate move
  2400              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2401              (simm11 << 0);
  2402     cbuf.insts()->emit_int32(op);
  2403   %}
  2405   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2406     int op = (Assembler::arith_op << 30) |
  2407              ($dst$$reg << 25) |
  2408              (Assembler::movcc_op3 << 19) |
  2409              (0 << 18) |                    // cc2 bit for 'fccX'
  2410              ($cmp$$cmpcode << 14) |
  2411              (0 << 13) |                    // select register move
  2412              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2413              ($src$$reg << 0);
  2414     cbuf.insts()->emit_int32(op);
  2415   %}
  2417   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2418     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2419     int op = (Assembler::arith_op << 30) |
  2420              ($dst$$reg << 25) |
  2421              (Assembler::movcc_op3 << 19) |
  2422              (0 << 18) |                    // cc2 bit for 'fccX'
  2423              ($cmp$$cmpcode << 14) |
  2424              (1 << 13) |                    // select immediate move
  2425              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2426              (simm11 << 0);
  2427     cbuf.insts()->emit_int32(op);
  2428   %}
  2430   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2431     int op = (Assembler::arith_op << 30) |
  2432              ($dst$$reg << 25) |
  2433              (Assembler::fpop2_op3 << 19) |
  2434              (0 << 18) |
  2435              ($cmp$$cmpcode << 14) |
  2436              (1 << 13) |                    // select register move
  2437              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2438              ($primary << 5) |              // select single, double or quad
  2439              ($src$$reg << 0);
  2440     cbuf.insts()->emit_int32(op);
  2441   %}
  2443   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2444     int op = (Assembler::arith_op << 30) |
  2445              ($dst$$reg << 25) |
  2446              (Assembler::fpop2_op3 << 19) |
  2447              (0 << 18) |
  2448              ($cmp$$cmpcode << 14) |
  2449              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2450              ($primary << 5) |              // select single, double or quad
  2451              ($src$$reg << 0);
  2452     cbuf.insts()->emit_int32(op);
  2453   %}
  2455   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2456   // the condition comes from opcode-field instead of an argument.
  2457   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2458     int op = (Assembler::arith_op << 30) |
  2459              ($dst$$reg << 25) |
  2460              (Assembler::movcc_op3 << 19) |
  2461              (1 << 18) |                    // cc2 bit for 'icc'
  2462              ($primary << 14) |
  2463              (0 << 13) |                    // select register move
  2464              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2465              ($src$$reg << 0);
  2466     cbuf.insts()->emit_int32(op);
  2467   %}
  2469   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2470     int op = (Assembler::arith_op << 30) |
  2471              ($dst$$reg << 25) |
  2472              (Assembler::movcc_op3 << 19) |
  2473              (6 << 16) |                    // cc2 bit for 'xcc'
  2474              ($primary << 14) |
  2475              (0 << 13) |                    // select register move
  2476              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2477              ($src$$reg << 0);
  2478     cbuf.insts()->emit_int32(op);
  2479   %}
  2481   enc_class Set13( immI13 src, iRegI rd ) %{
  2482     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2483   %}
  2485   enc_class SetHi22( immI src, iRegI rd ) %{
  2486     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2487   %}
  2489   enc_class Set32( immI src, iRegI rd ) %{
  2490     MacroAssembler _masm(&cbuf);
  2491     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2492   %}
  2494   enc_class call_epilog %{
  2495     if( VerifyStackAtCalls ) {
  2496       MacroAssembler _masm(&cbuf);
  2497       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2498       Register temp_reg = G3;
  2499       __ add(SP, framesize, temp_reg);
  2500       __ cmp(temp_reg, FP);
  2501       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2503   %}
  2505   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2506   // to G1 so the register allocator will not have to deal with the misaligned register
  2507   // pair.
  2508   enc_class adjust_long_from_native_call %{
  2509 #ifndef _LP64
  2510     if (returns_long()) {
  2511       //    sllx  O0,32,O0
  2512       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2513       //    srl   O1,0,O1
  2514       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2515       //    or    O0,O1,G1
  2516       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2518 #endif
  2519   %}
  2521   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2522     // CALL directly to the runtime
  2523     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2524     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2525                     /*preserve_g2=*/true);
  2526   %}
  2528   enc_class preserve_SP %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ mov(SP, L7_mh_SP_save);
  2531   %}
  2533   enc_class restore_SP %{
  2534     MacroAssembler _masm(&cbuf);
  2535     __ mov(L7_mh_SP_save, SP);
  2536   %}
  2538   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2539     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2540     // who we intended to call.
  2541     if (!_method) {
  2542       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2543     } else if (_optimized_virtual) {
  2544       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2545     } else {
  2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2548     if (_method) {  // Emit stub for static call.
  2549       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2551   %}
  2553   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2554     MacroAssembler _masm(&cbuf);
  2555     __ set_inst_mark();
  2556     int vtable_index = this->_vtable_index;
  2557     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2558     if (vtable_index < 0) {
  2559       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2560       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2561       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2562       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2563       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2564       __ ic_call((address)$meth$$method);
  2565     } else {
  2566       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2567       // Just go thru the vtable
  2568       // get receiver klass (receiver already checked for non-null)
  2569       // If we end up going thru a c2i adapter interpreter expects method in G5
  2570       int off = __ offset();
  2571       __ load_klass(O0, G3_scratch);
  2572       int klass_load_size;
  2573       if (UseCompressedClassPointers) {
  2574         assert(Universe::heap() != NULL, "java heap should be initialized");
  2575         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2576       } else {
  2577         klass_load_size = 1*BytesPerInstWord;
  2579       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2580       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2581       if (Assembler::is_simm13(v_off)) {
  2582         __ ld_ptr(G3, v_off, G5_method);
  2583       } else {
  2584         // Generate 2 instructions
  2585         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2586         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2587         // ld_ptr, set_hi, set
  2588         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2589                "Unexpected instruction size(s)");
  2590         __ ld_ptr(G3, G5_method, G5_method);
  2592       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2593       // However it may very well end up in handle_wrong_method if the
  2594       // method is abstract for the particular class.
  2595       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2596       // jump to target (either compiled code or c2iadapter)
  2597       __ jmpl(G3_scratch, G0, O7);
  2598       __ delayed()->nop();
  2600   %}
  2602   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2603     MacroAssembler _masm(&cbuf);
  2605     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2606     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2607                               // we might be calling a C2I adapter which needs it.
  2609     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2610     // Load nmethod
  2611     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2613     // CALL to compiled java, indirect the contents of G3
  2614     __ set_inst_mark();
  2615     __ callr(temp_reg, G0);
  2616     __ delayed()->nop();
  2617   %}
  2619 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2620     MacroAssembler _masm(&cbuf);
  2621     Register Rdividend = reg_to_register_object($src1$$reg);
  2622     Register Rdivisor = reg_to_register_object($src2$$reg);
  2623     Register Rresult = reg_to_register_object($dst$$reg);
  2625     __ sra(Rdivisor, 0, Rdivisor);
  2626     __ sra(Rdividend, 0, Rdividend);
  2627     __ sdivx(Rdividend, Rdivisor, Rresult);
  2628 %}
  2630 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2631     MacroAssembler _masm(&cbuf);
  2633     Register Rdividend = reg_to_register_object($src1$$reg);
  2634     int divisor = $imm$$constant;
  2635     Register Rresult = reg_to_register_object($dst$$reg);
  2637     __ sra(Rdividend, 0, Rdividend);
  2638     __ sdivx(Rdividend, divisor, Rresult);
  2639 %}
  2641 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2642     MacroAssembler _masm(&cbuf);
  2643     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2644     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2645     Register Rdst  = reg_to_register_object($dst$$reg);
  2647     __ sra( Rsrc1, 0, Rsrc1 );
  2648     __ sra( Rsrc2, 0, Rsrc2 );
  2649     __ mulx( Rsrc1, Rsrc2, Rdst );
  2650     __ srlx( Rdst, 32, Rdst );
  2651 %}
  2653 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2654     MacroAssembler _masm(&cbuf);
  2655     Register Rdividend = reg_to_register_object($src1$$reg);
  2656     Register Rdivisor = reg_to_register_object($src2$$reg);
  2657     Register Rresult = reg_to_register_object($dst$$reg);
  2658     Register Rscratch = reg_to_register_object($scratch$$reg);
  2660     assert(Rdividend != Rscratch, "");
  2661     assert(Rdivisor  != Rscratch, "");
  2663     __ sra(Rdividend, 0, Rdividend);
  2664     __ sra(Rdivisor, 0, Rdivisor);
  2665     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2666     __ mulx(Rscratch, Rdivisor, Rscratch);
  2667     __ sub(Rdividend, Rscratch, Rresult);
  2668 %}
  2670 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2671     MacroAssembler _masm(&cbuf);
  2673     Register Rdividend = reg_to_register_object($src1$$reg);
  2674     int divisor = $imm$$constant;
  2675     Register Rresult = reg_to_register_object($dst$$reg);
  2676     Register Rscratch = reg_to_register_object($scratch$$reg);
  2678     assert(Rdividend != Rscratch, "");
  2680     __ sra(Rdividend, 0, Rdividend);
  2681     __ sdivx(Rdividend, divisor, Rscratch);
  2682     __ mulx(Rscratch, divisor, Rscratch);
  2683     __ sub(Rdividend, Rscratch, Rresult);
  2684 %}
  2686 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2687     MacroAssembler _masm(&cbuf);
  2689     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2690     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2692     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2693 %}
  2695 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2696     MacroAssembler _masm(&cbuf);
  2698     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2699     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2701     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2702 %}
  2704 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2705     MacroAssembler _masm(&cbuf);
  2707     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2708     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2710     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2711 %}
  2713 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2714     MacroAssembler _masm(&cbuf);
  2716     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2717     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2719     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2720 %}
  2722 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2723     MacroAssembler _masm(&cbuf);
  2725     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2726     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2728     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2729 %}
  2731 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2732     MacroAssembler _masm(&cbuf);
  2734     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2735     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2737     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2738 %}
  2740 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2741     MacroAssembler _masm(&cbuf);
  2743     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2744     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2746     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2747 %}
  2749 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2750     MacroAssembler _masm(&cbuf);
  2752     Register Roop  = reg_to_register_object($oop$$reg);
  2753     Register Rbox  = reg_to_register_object($box$$reg);
  2754     Register Rscratch = reg_to_register_object($scratch$$reg);
  2755     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2757     assert(Roop  != Rscratch, "");
  2758     assert(Roop  != Rmark, "");
  2759     assert(Rbox  != Rscratch, "");
  2760     assert(Rbox  != Rmark, "");
  2762     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2763 %}
  2765 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2766     MacroAssembler _masm(&cbuf);
  2768     Register Roop  = reg_to_register_object($oop$$reg);
  2769     Register Rbox  = reg_to_register_object($box$$reg);
  2770     Register Rscratch = reg_to_register_object($scratch$$reg);
  2771     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2773     assert(Roop  != Rscratch, "");
  2774     assert(Roop  != Rmark, "");
  2775     assert(Rbox  != Rscratch, "");
  2776     assert(Rbox  != Rmark, "");
  2778     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2779   %}
  2781   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2782     MacroAssembler _masm(&cbuf);
  2783     Register Rmem = reg_to_register_object($mem$$reg);
  2784     Register Rold = reg_to_register_object($old$$reg);
  2785     Register Rnew = reg_to_register_object($new$$reg);
  2787     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2788     __ cmp( Rold, Rnew );
  2789   %}
  2791   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2792     Register Rmem = reg_to_register_object($mem$$reg);
  2793     Register Rold = reg_to_register_object($old$$reg);
  2794     Register Rnew = reg_to_register_object($new$$reg);
  2796     MacroAssembler _masm(&cbuf);
  2797     __ mov(Rnew, O7);
  2798     __ casx(Rmem, Rold, O7);
  2799     __ cmp( Rold, O7 );
  2800   %}
  2802   // raw int cas, used for compareAndSwap
  2803   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2804     Register Rmem = reg_to_register_object($mem$$reg);
  2805     Register Rold = reg_to_register_object($old$$reg);
  2806     Register Rnew = reg_to_register_object($new$$reg);
  2808     MacroAssembler _masm(&cbuf);
  2809     __ mov(Rnew, O7);
  2810     __ cas(Rmem, Rold, O7);
  2811     __ cmp( Rold, O7 );
  2812   %}
  2814   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2815     Register Rres = reg_to_register_object($res$$reg);
  2817     MacroAssembler _masm(&cbuf);
  2818     __ mov(1, Rres);
  2819     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2820   %}
  2822   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2823     Register Rres = reg_to_register_object($res$$reg);
  2825     MacroAssembler _masm(&cbuf);
  2826     __ mov(1, Rres);
  2827     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2828   %}
  2830   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2831     MacroAssembler _masm(&cbuf);
  2832     Register Rdst = reg_to_register_object($dst$$reg);
  2833     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2834                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2835     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2836                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2838     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2839     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2840   %}
  2843   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2844     Label Ldone, Lloop;
  2845     MacroAssembler _masm(&cbuf);
  2847     Register   str1_reg = reg_to_register_object($str1$$reg);
  2848     Register   str2_reg = reg_to_register_object($str2$$reg);
  2849     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2850     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2851     Register result_reg = reg_to_register_object($result$$reg);
  2853     assert(result_reg != str1_reg &&
  2854            result_reg != str2_reg &&
  2855            result_reg != cnt1_reg &&
  2856            result_reg != cnt2_reg ,
  2857            "need different registers");
  2859     // Compute the minimum of the string lengths(str1_reg) and the
  2860     // difference of the string lengths (stack)
  2862     // See if the lengths are different, and calculate min in str1_reg.
  2863     // Stash diff in O7 in case we need it for a tie-breaker.
  2864     Label Lskip;
  2865     __ subcc(cnt1_reg, cnt2_reg, O7);
  2866     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2867     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2868     // cnt2 is shorter, so use its count:
  2869     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2870     __ bind(Lskip);
  2872     // reallocate cnt1_reg, cnt2_reg, result_reg
  2873     // Note:  limit_reg holds the string length pre-scaled by 2
  2874     Register limit_reg =   cnt1_reg;
  2875     Register  chr2_reg =   cnt2_reg;
  2876     Register  chr1_reg = result_reg;
  2877     // str{12} are the base pointers
  2879     // Is the minimum length zero?
  2880     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2881     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2882     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2884     // Load first characters
  2885     __ lduh(str1_reg, 0, chr1_reg);
  2886     __ lduh(str2_reg, 0, chr2_reg);
  2888     // Compare first characters
  2889     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2890     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2891     assert(chr1_reg == result_reg, "result must be pre-placed");
  2892     __ delayed()->nop();
  2895       // Check after comparing first character to see if strings are equivalent
  2896       Label LSkip2;
  2897       // Check if the strings start at same location
  2898       __ cmp(str1_reg, str2_reg);
  2899       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2900       __ delayed()->nop();
  2902       // Check if the length difference is zero (in O7)
  2903       __ cmp(G0, O7);
  2904       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2905       __ delayed()->mov(G0, result_reg);  // result is zero
  2907       // Strings might not be equal
  2908       __ bind(LSkip2);
  2911     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2912     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2913     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2915     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2916     __ add(str1_reg, limit_reg, str1_reg);
  2917     __ add(str2_reg, limit_reg, str2_reg);
  2918     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2920     // Compare the rest of the characters
  2921     __ lduh(str1_reg, limit_reg, chr1_reg);
  2922     __ bind(Lloop);
  2923     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2924     __ lduh(str2_reg, limit_reg, chr2_reg);
  2925     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2926     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2927     assert(chr1_reg == result_reg, "result must be pre-placed");
  2928     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2929     // annul LDUH if branch is not taken to prevent access past end of string
  2930     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2931     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2933     // If strings are equal up to min length, return the length difference.
  2934     __ mov(O7, result_reg);
  2936     // Otherwise, return the difference between the first mismatched chars.
  2937     __ bind(Ldone);
  2938   %}
  2940 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2941     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2942     MacroAssembler _masm(&cbuf);
  2944     Register   str1_reg = reg_to_register_object($str1$$reg);
  2945     Register   str2_reg = reg_to_register_object($str2$$reg);
  2946     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2947     Register   tmp1_reg = O7;
  2948     Register result_reg = reg_to_register_object($result$$reg);
  2950     assert(result_reg != str1_reg &&
  2951            result_reg != str2_reg &&
  2952            result_reg !=  cnt_reg &&
  2953            result_reg != tmp1_reg ,
  2954            "need different registers");
  2956     __ cmp(str1_reg, str2_reg); //same char[] ?
  2957     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2958     __ delayed()->add(G0, 1, result_reg);
  2960     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2961     __ delayed()->add(G0, 1, result_reg); // count == 0
  2963     //rename registers
  2964     Register limit_reg =    cnt_reg;
  2965     Register  chr1_reg = result_reg;
  2966     Register  chr2_reg =   tmp1_reg;
  2968     //check for alignment and position the pointers to the ends
  2969     __ or3(str1_reg, str2_reg, chr1_reg);
  2970     __ andcc(chr1_reg, 0x3, chr1_reg);
  2971     // notZero means at least one not 4-byte aligned.
  2972     // We could optimize the case when both arrays are not aligned
  2973     // but it is not frequent case and it requires additional checks.
  2974     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2975     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2977     // Compare char[] arrays aligned to 4 bytes.
  2978     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2979                           chr1_reg, chr2_reg, Ldone);
  2980     __ ba(Ldone);
  2981     __ delayed()->add(G0, 1, result_reg);
  2983     // char by char compare
  2984     __ bind(Lchar);
  2985     __ add(str1_reg, limit_reg, str1_reg);
  2986     __ add(str2_reg, limit_reg, str2_reg);
  2987     __ neg(limit_reg); //negate count
  2989     __ lduh(str1_reg, limit_reg, chr1_reg);
  2990     // Lchar_loop
  2991     __ bind(Lchar_loop);
  2992     __ lduh(str2_reg, limit_reg, chr2_reg);
  2993     __ cmp(chr1_reg, chr2_reg);
  2994     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2995     __ delayed()->mov(G0, result_reg); //not equal
  2996     __ inccc(limit_reg, sizeof(jchar));
  2997     // annul LDUH if branch is not taken to prevent access past end of string
  2998     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2999     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3001     __ add(G0, 1, result_reg);  //equal
  3003     __ bind(Ldone);
  3004   %}
  3006 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3007     Label Lvector, Ldone, Lloop;
  3008     MacroAssembler _masm(&cbuf);
  3010     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3011     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3012     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3013     Register   tmp2_reg = O7;
  3014     Register result_reg = reg_to_register_object($result$$reg);
  3016     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3017     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3019     // return true if the same array
  3020     __ cmp(ary1_reg, ary2_reg);
  3021     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3022     __ delayed()->add(G0, 1, result_reg); // equal
  3024     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3025     __ delayed()->mov(G0, result_reg);    // not equal
  3027     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3028     __ delayed()->mov(G0, result_reg);    // not equal
  3030     //load the lengths of arrays
  3031     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3032     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3034     // return false if the two arrays are not equal length
  3035     __ cmp(tmp1_reg, tmp2_reg);
  3036     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3037     __ delayed()->mov(G0, result_reg);     // not equal
  3039     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3040     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3042     // load array addresses
  3043     __ add(ary1_reg, base_offset, ary1_reg);
  3044     __ add(ary2_reg, base_offset, ary2_reg);
  3046     // renaming registers
  3047     Register chr1_reg  =  result_reg; // for characters in ary1
  3048     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3049     Register limit_reg =  tmp1_reg;   // length
  3051     // set byte count
  3052     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3054     // Compare char[] arrays aligned to 4 bytes.
  3055     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3056                           chr1_reg, chr2_reg, Ldone);
  3057     __ add(G0, 1, result_reg); // equals
  3059     __ bind(Ldone);
  3060   %}
  3062   enc_class enc_rethrow() %{
  3063     cbuf.set_insts_mark();
  3064     Register temp_reg = G3;
  3065     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3066     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3067     MacroAssembler _masm(&cbuf);
  3068 #ifdef ASSERT
  3069     __ save_frame(0);
  3070     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3071     __ sethi(last_rethrow_addrlit, L1);
  3072     Address addr(L1, last_rethrow_addrlit.low10());
  3073     __ rdpc(L2);
  3074     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3075     __ st_ptr(L2, addr);
  3076     __ restore();
  3077 #endif
  3078     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3079     __ delayed()->nop();
  3080   %}
  3082   enc_class emit_mem_nop() %{
  3083     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3084     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3085   %}
  3087   enc_class emit_fadd_nop() %{
  3088     // Generates the instruction FMOVS f31,f31
  3089     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3090   %}
  3092   enc_class emit_br_nop() %{
  3093     // Generates the instruction BPN,PN .
  3094     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3095   %}
  3097   enc_class enc_membar_acquire %{
  3098     MacroAssembler _masm(&cbuf);
  3099     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3100   %}
  3102   enc_class enc_membar_release %{
  3103     MacroAssembler _masm(&cbuf);
  3104     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3105   %}
  3107   enc_class enc_membar_volatile %{
  3108     MacroAssembler _masm(&cbuf);
  3109     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3110   %}
  3112 %}
  3114 //----------FRAME--------------------------------------------------------------
  3115 // Definition of frame structure and management information.
  3116 //
  3117 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3118 //                             |   (to get allocators register number
  3119 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3120 //  r   CALLER     |        |
  3121 //  o     |        +--------+      pad to even-align allocators stack-slot
  3122 //  w     V        |  pad0  |        numbers; owned by CALLER
  3123 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3124 //  h     ^        |   in   |  5
  3125 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3126 //  |     |        |        |  3
  3127 //  |     |        +--------+
  3128 //  V     |        | old out|      Empty on Intel, window on Sparc
  3129 //        |    old |preserve|      Must be even aligned.
  3130 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3131 //        |        |   in   |  3   area for Intel ret address
  3132 //     Owned by    |preserve|      Empty on Sparc.
  3133 //       SELF      +--------+
  3134 //        |        |  pad2  |  2   pad to align old SP
  3135 //        |        +--------+  1
  3136 //        |        | locks  |  0
  3137 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3138 //        |        |  pad1  | 11   pad to align new SP
  3139 //        |        +--------+
  3140 //        |        |        | 10
  3141 //        |        | spills |  9   spills
  3142 //        V        |        |  8   (pad0 slot for callee)
  3143 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3144 //        ^        |  out   |  7
  3145 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3146 //     Owned by    +--------+
  3147 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3148 //        |    new |preserve|      Must be even-aligned.
  3149 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3150 //        |        |        |
  3151 //
  3152 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3153 //         known from SELF's arguments and the Java calling convention.
  3154 //         Region 6-7 is determined per call site.
  3155 // Note 2: If the calling convention leaves holes in the incoming argument
  3156 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3157 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3158 //         incoming area, as the Java calling convention is completely under
  3159 //         the control of the AD file.  Doubles can be sorted and packed to
  3160 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3161 //         varargs C calling conventions.
  3162 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3163 //         even aligned with pad0 as needed.
  3164 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3165 //         region 6-11 is even aligned; it may be padded out more so that
  3166 //         the region from SP to FP meets the minimum stack alignment.
  3168 frame %{
  3169   // What direction does stack grow in (assumed to be same for native & Java)
  3170   stack_direction(TOWARDS_LOW);
  3172   // These two registers define part of the calling convention
  3173   // between compiled code and the interpreter.
  3174   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3175   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3177   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3178   cisc_spilling_operand_name(indOffset);
  3180   // Number of stack slots consumed by a Monitor enter
  3181 #ifdef _LP64
  3182   sync_stack_slots(2);
  3183 #else
  3184   sync_stack_slots(1);
  3185 #endif
  3187   // Compiled code's Frame Pointer
  3188   frame_pointer(R_SP);
  3190   // Stack alignment requirement
  3191   stack_alignment(StackAlignmentInBytes);
  3192   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3193   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3195   // Number of stack slots between incoming argument block and the start of
  3196   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3197   // EPILOG must remove this many slots.
  3198   in_preserve_stack_slots(0);
  3200   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3201   // for calls to C.  Supports the var-args backing area for register parms.
  3202   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3203 #ifdef _LP64
  3204   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3205   varargs_C_out_slots_killed(12);
  3206 #else
  3207   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3208   varargs_C_out_slots_killed( 7);
  3209 #endif
  3211   // The after-PROLOG location of the return address.  Location of
  3212   // return address specifies a type (REG or STACK) and a number
  3213   // representing the register number (i.e. - use a register name) or
  3214   // stack slot.
  3215   return_addr(REG R_I7);          // Ret Addr is in register I7
  3217   // Body of function which returns an OptoRegs array locating
  3218   // arguments either in registers or in stack slots for calling
  3219   // java
  3220   calling_convention %{
  3221     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3223   %}
  3225   // Body of function which returns an OptoRegs array locating
  3226   // arguments either in registers or in stack slots for callin
  3227   // C.
  3228   c_calling_convention %{
  3229     // This is obviously always outgoing
  3230     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3231   %}
  3233   // Location of native (C/C++) and interpreter return values.  This is specified to
  3234   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3235   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3236   // to and from the register pairs is done by the appropriate call and epilog
  3237   // opcodes.  This simplifies the register allocator.
  3238   c_return_value %{
  3239     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3240 #ifdef     _LP64
  3241     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3242     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3243     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3244     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3245 #else  // !_LP64
  3246     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3247     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3248     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3249     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3250 #endif
  3251     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3252                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3253   %}
  3255   // Location of compiled Java return values.  Same as C
  3256   return_value %{
  3257     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3258 #ifdef     _LP64
  3259     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3260     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3261     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3262     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3263 #else  // !_LP64
  3264     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3265     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3266     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3267     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3268 #endif
  3269     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3270                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3271   %}
  3273 %}
  3276 //----------ATTRIBUTES---------------------------------------------------------
  3277 //----------Operand Attributes-------------------------------------------------
  3278 op_attrib op_cost(1);          // Required cost attribute
  3280 //----------Instruction Attributes---------------------------------------------
  3281 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3282 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3283 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3284 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3285                                    // non-matching short branch variant of some
  3286                                                             // long branch?
  3288 //----------OPERANDS-----------------------------------------------------------
  3289 // Operand definitions must precede instruction definitions for correct parsing
  3290 // in the ADLC because operands constitute user defined types which are used in
  3291 // instruction definitions.
  3293 //----------Simple Operands----------------------------------------------------
  3294 // Immediate Operands
  3295 // Integer Immediate: 32-bit
  3296 operand immI() %{
  3297   match(ConI);
  3299   op_cost(0);
  3300   // formats are generated automatically for constants and base registers
  3301   format %{ %}
  3302   interface(CONST_INTER);
  3303 %}
  3305 // Integer Immediate: 8-bit
  3306 operand immI8() %{
  3307   predicate(Assembler::is_simm8(n->get_int()));
  3308   match(ConI);
  3309   op_cost(0);
  3310   format %{ %}
  3311   interface(CONST_INTER);
  3312 %}
  3314 // Integer Immediate: 13-bit
  3315 operand immI13() %{
  3316   predicate(Assembler::is_simm13(n->get_int()));
  3317   match(ConI);
  3318   op_cost(0);
  3320   format %{ %}
  3321   interface(CONST_INTER);
  3322 %}
  3324 // Integer Immediate: 13-bit minus 7
  3325 operand immI13m7() %{
  3326   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3327   match(ConI);
  3328   op_cost(0);
  3330   format %{ %}
  3331   interface(CONST_INTER);
  3332 %}
  3334 // Integer Immediate: 16-bit
  3335 operand immI16() %{
  3336   predicate(Assembler::is_simm16(n->get_int()));
  3337   match(ConI);
  3338   op_cost(0);
  3339   format %{ %}
  3340   interface(CONST_INTER);
  3341 %}
  3343 // Unsigned (positive) Integer Immediate: 13-bit
  3344 operand immU13() %{
  3345   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3346   match(ConI);
  3347   op_cost(0);
  3349   format %{ %}
  3350   interface(CONST_INTER);
  3351 %}
  3353 // Integer Immediate: 6-bit
  3354 operand immU6() %{
  3355   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3356   match(ConI);
  3357   op_cost(0);
  3358   format %{ %}
  3359   interface(CONST_INTER);
  3360 %}
  3362 // Integer Immediate: 11-bit
  3363 operand immI11() %{
  3364   predicate(Assembler::is_simm11(n->get_int()));
  3365   match(ConI);
  3366   op_cost(0);
  3367   format %{ %}
  3368   interface(CONST_INTER);
  3369 %}
  3371 // Integer Immediate: 5-bit
  3372 operand immI5() %{
  3373   predicate(Assembler::is_simm5(n->get_int()));
  3374   match(ConI);
  3375   op_cost(0);
  3376   format %{ %}
  3377   interface(CONST_INTER);
  3378 %}
  3380 // Integer Immediate: 0-bit
  3381 operand immI0() %{
  3382   predicate(n->get_int() == 0);
  3383   match(ConI);
  3384   op_cost(0);
  3386   format %{ %}
  3387   interface(CONST_INTER);
  3388 %}
  3390 // Integer Immediate: the value 10
  3391 operand immI10() %{
  3392   predicate(n->get_int() == 10);
  3393   match(ConI);
  3394   op_cost(0);
  3396   format %{ %}
  3397   interface(CONST_INTER);
  3398 %}
  3400 // Integer Immediate: the values 0-31
  3401 operand immU5() %{
  3402   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3403   match(ConI);
  3404   op_cost(0);
  3406   format %{ %}
  3407   interface(CONST_INTER);
  3408 %}
  3410 // Integer Immediate: the values 1-31
  3411 operand immI_1_31() %{
  3412   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3413   match(ConI);
  3414   op_cost(0);
  3416   format %{ %}
  3417   interface(CONST_INTER);
  3418 %}
  3420 // Integer Immediate: the values 32-63
  3421 operand immI_32_63() %{
  3422   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3423   match(ConI);
  3424   op_cost(0);
  3426   format %{ %}
  3427   interface(CONST_INTER);
  3428 %}
  3430 // Immediates for special shifts (sign extend)
  3432 // Integer Immediate: the value 16
  3433 operand immI_16() %{
  3434   predicate(n->get_int() == 16);
  3435   match(ConI);
  3436   op_cost(0);
  3438   format %{ %}
  3439   interface(CONST_INTER);
  3440 %}
  3442 // Integer Immediate: the value 24
  3443 operand immI_24() %{
  3444   predicate(n->get_int() == 24);
  3445   match(ConI);
  3446   op_cost(0);
  3448   format %{ %}
  3449   interface(CONST_INTER);
  3450 %}
  3452 // Integer Immediate: the value 255
  3453 operand immI_255() %{
  3454   predicate( n->get_int() == 255 );
  3455   match(ConI);
  3456   op_cost(0);
  3458   format %{ %}
  3459   interface(CONST_INTER);
  3460 %}
  3462 // Integer Immediate: the value 65535
  3463 operand immI_65535() %{
  3464   predicate(n->get_int() == 65535);
  3465   match(ConI);
  3466   op_cost(0);
  3468   format %{ %}
  3469   interface(CONST_INTER);
  3470 %}
  3472 // Long Immediate: the value FF
  3473 operand immL_FF() %{
  3474   predicate( n->get_long() == 0xFFL );
  3475   match(ConL);
  3476   op_cost(0);
  3478   format %{ %}
  3479   interface(CONST_INTER);
  3480 %}
  3482 // Long Immediate: the value FFFF
  3483 operand immL_FFFF() %{
  3484   predicate( n->get_long() == 0xFFFFL );
  3485   match(ConL);
  3486   op_cost(0);
  3488   format %{ %}
  3489   interface(CONST_INTER);
  3490 %}
  3492 // Pointer Immediate: 32 or 64-bit
  3493 operand immP() %{
  3494   match(ConP);
  3496   op_cost(5);
  3497   // formats are generated automatically for constants and base registers
  3498   format %{ %}
  3499   interface(CONST_INTER);
  3500 %}
  3502 #ifdef _LP64
  3503 // Pointer Immediate: 64-bit
  3504 operand immP_set() %{
  3505   predicate(!VM_Version::is_niagara_plus());
  3506   match(ConP);
  3508   op_cost(5);
  3509   // formats are generated automatically for constants and base registers
  3510   format %{ %}
  3511   interface(CONST_INTER);
  3512 %}
  3514 // Pointer Immediate: 64-bit
  3515 // From Niagara2 processors on a load should be better than materializing.
  3516 operand immP_load() %{
  3517   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3518   match(ConP);
  3520   op_cost(5);
  3521   // formats are generated automatically for constants and base registers
  3522   format %{ %}
  3523   interface(CONST_INTER);
  3524 %}
  3526 // Pointer Immediate: 64-bit
  3527 operand immP_no_oop_cheap() %{
  3528   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3529   match(ConP);
  3531   op_cost(5);
  3532   // formats are generated automatically for constants and base registers
  3533   format %{ %}
  3534   interface(CONST_INTER);
  3535 %}
  3536 #endif
  3538 operand immP13() %{
  3539   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3540   match(ConP);
  3541   op_cost(0);
  3543   format %{ %}
  3544   interface(CONST_INTER);
  3545 %}
  3547 operand immP0() %{
  3548   predicate(n->get_ptr() == 0);
  3549   match(ConP);
  3550   op_cost(0);
  3552   format %{ %}
  3553   interface(CONST_INTER);
  3554 %}
  3556 operand immP_poll() %{
  3557   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3558   match(ConP);
  3560   // formats are generated automatically for constants and base registers
  3561   format %{ %}
  3562   interface(CONST_INTER);
  3563 %}
  3565 // Pointer Immediate
  3566 operand immN()
  3567 %{
  3568   match(ConN);
  3570   op_cost(10);
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 operand immNKlass()
  3576 %{
  3577   match(ConNKlass);
  3579   op_cost(10);
  3580   format %{ %}
  3581   interface(CONST_INTER);
  3582 %}
  3584 // NULL Pointer Immediate
  3585 operand immN0()
  3586 %{
  3587   predicate(n->get_narrowcon() == 0);
  3588   match(ConN);
  3590   op_cost(0);
  3591   format %{ %}
  3592   interface(CONST_INTER);
  3593 %}
  3595 operand immL() %{
  3596   match(ConL);
  3597   op_cost(40);
  3598   // formats are generated automatically for constants and base registers
  3599   format %{ %}
  3600   interface(CONST_INTER);
  3601 %}
  3603 operand immL0() %{
  3604   predicate(n->get_long() == 0L);
  3605   match(ConL);
  3606   op_cost(0);
  3607   // formats are generated automatically for constants and base registers
  3608   format %{ %}
  3609   interface(CONST_INTER);
  3610 %}
  3612 // Integer Immediate: 5-bit
  3613 operand immL5() %{
  3614   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3615   match(ConL);
  3616   op_cost(0);
  3617   format %{ %}
  3618   interface(CONST_INTER);
  3619 %}
  3621 // Long Immediate: 13-bit
  3622 operand immL13() %{
  3623   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3624   match(ConL);
  3625   op_cost(0);
  3627   format %{ %}
  3628   interface(CONST_INTER);
  3629 %}
  3631 // Long Immediate: 13-bit minus 7
  3632 operand immL13m7() %{
  3633   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3634   match(ConL);
  3635   op_cost(0);
  3637   format %{ %}
  3638   interface(CONST_INTER);
  3639 %}
  3641 // Long Immediate: low 32-bit mask
  3642 operand immL_32bits() %{
  3643   predicate(n->get_long() == 0xFFFFFFFFL);
  3644   match(ConL);
  3645   op_cost(0);
  3647   format %{ %}
  3648   interface(CONST_INTER);
  3649 %}
  3651 // Long Immediate: cheap (materialize in <= 3 instructions)
  3652 operand immL_cheap() %{
  3653   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3654   match(ConL);
  3655   op_cost(0);
  3657   format %{ %}
  3658   interface(CONST_INTER);
  3659 %}
  3661 // Long Immediate: expensive (materialize in > 3 instructions)
  3662 operand immL_expensive() %{
  3663   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3664   match(ConL);
  3665   op_cost(0);
  3667   format %{ %}
  3668   interface(CONST_INTER);
  3669 %}
  3671 // Double Immediate
  3672 operand immD() %{
  3673   match(ConD);
  3675   op_cost(40);
  3676   format %{ %}
  3677   interface(CONST_INTER);
  3678 %}
  3680 operand immD0() %{
  3681 #ifdef _LP64
  3682   // on 64-bit architectures this comparision is faster
  3683   predicate(jlong_cast(n->getd()) == 0);
  3684 #else
  3685   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3686 #endif
  3687   match(ConD);
  3689   op_cost(0);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 // Float Immediate
  3695 operand immF() %{
  3696   match(ConF);
  3698   op_cost(20);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 // Float Immediate: 0
  3704 operand immF0() %{
  3705   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3706   match(ConF);
  3708   op_cost(0);
  3709   format %{ %}
  3710   interface(CONST_INTER);
  3711 %}
  3713 // Integer Register Operands
  3714 // Integer Register
  3715 operand iRegI() %{
  3716   constraint(ALLOC_IN_RC(int_reg));
  3717   match(RegI);
  3719   match(notemp_iRegI);
  3720   match(g1RegI);
  3721   match(o0RegI);
  3722   match(iRegIsafe);
  3724   format %{ %}
  3725   interface(REG_INTER);
  3726 %}
  3728 operand notemp_iRegI() %{
  3729   constraint(ALLOC_IN_RC(notemp_int_reg));
  3730   match(RegI);
  3732   match(o0RegI);
  3734   format %{ %}
  3735   interface(REG_INTER);
  3736 %}
  3738 operand o0RegI() %{
  3739   constraint(ALLOC_IN_RC(o0_regI));
  3740   match(iRegI);
  3742   format %{ %}
  3743   interface(REG_INTER);
  3744 %}
  3746 // Pointer Register
  3747 operand iRegP() %{
  3748   constraint(ALLOC_IN_RC(ptr_reg));
  3749   match(RegP);
  3751   match(lock_ptr_RegP);
  3752   match(g1RegP);
  3753   match(g2RegP);
  3754   match(g3RegP);
  3755   match(g4RegP);
  3756   match(i0RegP);
  3757   match(o0RegP);
  3758   match(o1RegP);
  3759   match(l7RegP);
  3761   format %{ %}
  3762   interface(REG_INTER);
  3763 %}
  3765 operand sp_ptr_RegP() %{
  3766   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3767   match(RegP);
  3768   match(iRegP);
  3770   format %{ %}
  3771   interface(REG_INTER);
  3772 %}
  3774 operand lock_ptr_RegP() %{
  3775   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3776   match(RegP);
  3777   match(i0RegP);
  3778   match(o0RegP);
  3779   match(o1RegP);
  3780   match(l7RegP);
  3782   format %{ %}
  3783   interface(REG_INTER);
  3784 %}
  3786 operand g1RegP() %{
  3787   constraint(ALLOC_IN_RC(g1_regP));
  3788   match(iRegP);
  3790   format %{ %}
  3791   interface(REG_INTER);
  3792 %}
  3794 operand g2RegP() %{
  3795   constraint(ALLOC_IN_RC(g2_regP));
  3796   match(iRegP);
  3798   format %{ %}
  3799   interface(REG_INTER);
  3800 %}
  3802 operand g3RegP() %{
  3803   constraint(ALLOC_IN_RC(g3_regP));
  3804   match(iRegP);
  3806   format %{ %}
  3807   interface(REG_INTER);
  3808 %}
  3810 operand g1RegI() %{
  3811   constraint(ALLOC_IN_RC(g1_regI));
  3812   match(iRegI);
  3814   format %{ %}
  3815   interface(REG_INTER);
  3816 %}
  3818 operand g3RegI() %{
  3819   constraint(ALLOC_IN_RC(g3_regI));
  3820   match(iRegI);
  3822   format %{ %}
  3823   interface(REG_INTER);
  3824 %}
  3826 operand g4RegI() %{
  3827   constraint(ALLOC_IN_RC(g4_regI));
  3828   match(iRegI);
  3830   format %{ %}
  3831   interface(REG_INTER);
  3832 %}
  3834 operand g4RegP() %{
  3835   constraint(ALLOC_IN_RC(g4_regP));
  3836   match(iRegP);
  3838   format %{ %}
  3839   interface(REG_INTER);
  3840 %}
  3842 operand i0RegP() %{
  3843   constraint(ALLOC_IN_RC(i0_regP));
  3844   match(iRegP);
  3846   format %{ %}
  3847   interface(REG_INTER);
  3848 %}
  3850 operand o0RegP() %{
  3851   constraint(ALLOC_IN_RC(o0_regP));
  3852   match(iRegP);
  3854   format %{ %}
  3855   interface(REG_INTER);
  3856 %}
  3858 operand o1RegP() %{
  3859   constraint(ALLOC_IN_RC(o1_regP));
  3860   match(iRegP);
  3862   format %{ %}
  3863   interface(REG_INTER);
  3864 %}
  3866 operand o2RegP() %{
  3867   constraint(ALLOC_IN_RC(o2_regP));
  3868   match(iRegP);
  3870   format %{ %}
  3871   interface(REG_INTER);
  3872 %}
  3874 operand o7RegP() %{
  3875   constraint(ALLOC_IN_RC(o7_regP));
  3876   match(iRegP);
  3878   format %{ %}
  3879   interface(REG_INTER);
  3880 %}
  3882 operand l7RegP() %{
  3883   constraint(ALLOC_IN_RC(l7_regP));
  3884   match(iRegP);
  3886   format %{ %}
  3887   interface(REG_INTER);
  3888 %}
  3890 operand o7RegI() %{
  3891   constraint(ALLOC_IN_RC(o7_regI));
  3892   match(iRegI);
  3894   format %{ %}
  3895   interface(REG_INTER);
  3896 %}
  3898 operand iRegN() %{
  3899   constraint(ALLOC_IN_RC(int_reg));
  3900   match(RegN);
  3902   format %{ %}
  3903   interface(REG_INTER);
  3904 %}
  3906 // Long Register
  3907 operand iRegL() %{
  3908   constraint(ALLOC_IN_RC(long_reg));
  3909   match(RegL);
  3911   format %{ %}
  3912   interface(REG_INTER);
  3913 %}
  3915 operand o2RegL() %{
  3916   constraint(ALLOC_IN_RC(o2_regL));
  3917   match(iRegL);
  3919   format %{ %}
  3920   interface(REG_INTER);
  3921 %}
  3923 operand o7RegL() %{
  3924   constraint(ALLOC_IN_RC(o7_regL));
  3925   match(iRegL);
  3927   format %{ %}
  3928   interface(REG_INTER);
  3929 %}
  3931 operand g1RegL() %{
  3932   constraint(ALLOC_IN_RC(g1_regL));
  3933   match(iRegL);
  3935   format %{ %}
  3936   interface(REG_INTER);
  3937 %}
  3939 operand g3RegL() %{
  3940   constraint(ALLOC_IN_RC(g3_regL));
  3941   match(iRegL);
  3943   format %{ %}
  3944   interface(REG_INTER);
  3945 %}
  3947 // Int Register safe
  3948 // This is 64bit safe
  3949 operand iRegIsafe() %{
  3950   constraint(ALLOC_IN_RC(long_reg));
  3952   match(iRegI);
  3954   format %{ %}
  3955   interface(REG_INTER);
  3956 %}
  3958 // Condition Code Flag Register
  3959 operand flagsReg() %{
  3960   constraint(ALLOC_IN_RC(int_flags));
  3961   match(RegFlags);
  3963   format %{ "ccr" %} // both ICC and XCC
  3964   interface(REG_INTER);
  3965 %}
  3967 // Condition Code Register, unsigned comparisons.
  3968 operand flagsRegU() %{
  3969   constraint(ALLOC_IN_RC(int_flags));
  3970   match(RegFlags);
  3972   format %{ "icc_U" %}
  3973   interface(REG_INTER);
  3974 %}
  3976 // Condition Code Register, pointer comparisons.
  3977 operand flagsRegP() %{
  3978   constraint(ALLOC_IN_RC(int_flags));
  3979   match(RegFlags);
  3981 #ifdef _LP64
  3982   format %{ "xcc_P" %}
  3983 #else
  3984   format %{ "icc_P" %}
  3985 #endif
  3986   interface(REG_INTER);
  3987 %}
  3989 // Condition Code Register, long comparisons.
  3990 operand flagsRegL() %{
  3991   constraint(ALLOC_IN_RC(int_flags));
  3992   match(RegFlags);
  3994   format %{ "xcc_L" %}
  3995   interface(REG_INTER);
  3996 %}
  3998 // Condition Code Register, floating comparisons, unordered same as "less".
  3999 operand flagsRegF() %{
  4000   constraint(ALLOC_IN_RC(float_flags));
  4001   match(RegFlags);
  4002   match(flagsRegF0);
  4004   format %{ %}
  4005   interface(REG_INTER);
  4006 %}
  4008 operand flagsRegF0() %{
  4009   constraint(ALLOC_IN_RC(float_flag0));
  4010   match(RegFlags);
  4012   format %{ %}
  4013   interface(REG_INTER);
  4014 %}
  4017 // Condition Code Flag Register used by long compare
  4018 operand flagsReg_long_LTGE() %{
  4019   constraint(ALLOC_IN_RC(int_flags));
  4020   match(RegFlags);
  4021   format %{ "icc_LTGE" %}
  4022   interface(REG_INTER);
  4023 %}
  4024 operand flagsReg_long_EQNE() %{
  4025   constraint(ALLOC_IN_RC(int_flags));
  4026   match(RegFlags);
  4027   format %{ "icc_EQNE" %}
  4028   interface(REG_INTER);
  4029 %}
  4030 operand flagsReg_long_LEGT() %{
  4031   constraint(ALLOC_IN_RC(int_flags));
  4032   match(RegFlags);
  4033   format %{ "icc_LEGT" %}
  4034   interface(REG_INTER);
  4035 %}
  4038 operand regD() %{
  4039   constraint(ALLOC_IN_RC(dflt_reg));
  4040   match(RegD);
  4042   match(regD_low);
  4044   format %{ %}
  4045   interface(REG_INTER);
  4046 %}
  4048 operand regF() %{
  4049   constraint(ALLOC_IN_RC(sflt_reg));
  4050   match(RegF);
  4052   format %{ %}
  4053   interface(REG_INTER);
  4054 %}
  4056 operand regD_low() %{
  4057   constraint(ALLOC_IN_RC(dflt_low_reg));
  4058   match(regD);
  4060   format %{ %}
  4061   interface(REG_INTER);
  4062 %}
  4064 // Special Registers
  4066 // Method Register
  4067 operand inline_cache_regP(iRegP reg) %{
  4068   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4069   match(reg);
  4070   format %{ %}
  4071   interface(REG_INTER);
  4072 %}
  4074 operand interpreter_method_oop_regP(iRegP reg) %{
  4075   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4076   match(reg);
  4077   format %{ %}
  4078   interface(REG_INTER);
  4079 %}
  4082 //----------Complex Operands---------------------------------------------------
  4083 // Indirect Memory Reference
  4084 operand indirect(sp_ptr_RegP reg) %{
  4085   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4086   match(reg);
  4088   op_cost(100);
  4089   format %{ "[$reg]" %}
  4090   interface(MEMORY_INTER) %{
  4091     base($reg);
  4092     index(0x0);
  4093     scale(0x0);
  4094     disp(0x0);
  4095   %}
  4096 %}
  4098 // Indirect with simm13 Offset
  4099 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4100   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4101   match(AddP reg offset);
  4103   op_cost(100);
  4104   format %{ "[$reg + $offset]" %}
  4105   interface(MEMORY_INTER) %{
  4106     base($reg);
  4107     index(0x0);
  4108     scale(0x0);
  4109     disp($offset);
  4110   %}
  4111 %}
  4113 // Indirect with simm13 Offset minus 7
  4114 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4115   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4116   match(AddP reg offset);
  4118   op_cost(100);
  4119   format %{ "[$reg + $offset]" %}
  4120   interface(MEMORY_INTER) %{
  4121     base($reg);
  4122     index(0x0);
  4123     scale(0x0);
  4124     disp($offset);
  4125   %}
  4126 %}
  4128 // Note:  Intel has a swapped version also, like this:
  4129 //operand indOffsetX(iRegI reg, immP offset) %{
  4130 //  constraint(ALLOC_IN_RC(int_reg));
  4131 //  match(AddP offset reg);
  4132 //
  4133 //  op_cost(100);
  4134 //  format %{ "[$reg + $offset]" %}
  4135 //  interface(MEMORY_INTER) %{
  4136 //    base($reg);
  4137 //    index(0x0);
  4138 //    scale(0x0);
  4139 //    disp($offset);
  4140 //  %}
  4141 //%}
  4142 //// However, it doesn't make sense for SPARC, since
  4143 // we have no particularly good way to embed oops in
  4144 // single instructions.
  4146 // Indirect with Register Index
  4147 operand indIndex(iRegP addr, iRegX index) %{
  4148   constraint(ALLOC_IN_RC(ptr_reg));
  4149   match(AddP addr index);
  4151   op_cost(100);
  4152   format %{ "[$addr + $index]" %}
  4153   interface(MEMORY_INTER) %{
  4154     base($addr);
  4155     index($index);
  4156     scale(0x0);
  4157     disp(0x0);
  4158   %}
  4159 %}
  4161 //----------Special Memory Operands--------------------------------------------
  4162 // Stack Slot Operand - This operand is used for loading and storing temporary
  4163 //                      values on the stack where a match requires a value to
  4164 //                      flow through memory.
  4165 operand stackSlotI(sRegI reg) %{
  4166   constraint(ALLOC_IN_RC(stack_slots));
  4167   op_cost(100);
  4168   //match(RegI);
  4169   format %{ "[$reg]" %}
  4170   interface(MEMORY_INTER) %{
  4171     base(0xE);   // R_SP
  4172     index(0x0);
  4173     scale(0x0);
  4174     disp($reg);  // Stack Offset
  4175   %}
  4176 %}
  4178 operand stackSlotP(sRegP reg) %{
  4179   constraint(ALLOC_IN_RC(stack_slots));
  4180   op_cost(100);
  4181   //match(RegP);
  4182   format %{ "[$reg]" %}
  4183   interface(MEMORY_INTER) %{
  4184     base(0xE);   // R_SP
  4185     index(0x0);
  4186     scale(0x0);
  4187     disp($reg);  // Stack Offset
  4188   %}
  4189 %}
  4191 operand stackSlotF(sRegF reg) %{
  4192   constraint(ALLOC_IN_RC(stack_slots));
  4193   op_cost(100);
  4194   //match(RegF);
  4195   format %{ "[$reg]" %}
  4196   interface(MEMORY_INTER) %{
  4197     base(0xE);   // R_SP
  4198     index(0x0);
  4199     scale(0x0);
  4200     disp($reg);  // Stack Offset
  4201   %}
  4202 %}
  4203 operand stackSlotD(sRegD reg) %{
  4204   constraint(ALLOC_IN_RC(stack_slots));
  4205   op_cost(100);
  4206   //match(RegD);
  4207   format %{ "[$reg]" %}
  4208   interface(MEMORY_INTER) %{
  4209     base(0xE);   // R_SP
  4210     index(0x0);
  4211     scale(0x0);
  4212     disp($reg);  // Stack Offset
  4213   %}
  4214 %}
  4215 operand stackSlotL(sRegL reg) %{
  4216   constraint(ALLOC_IN_RC(stack_slots));
  4217   op_cost(100);
  4218   //match(RegL);
  4219   format %{ "[$reg]" %}
  4220   interface(MEMORY_INTER) %{
  4221     base(0xE);   // R_SP
  4222     index(0x0);
  4223     scale(0x0);
  4224     disp($reg);  // Stack Offset
  4225   %}
  4226 %}
  4228 // Operands for expressing Control Flow
  4229 // NOTE:  Label is a predefined operand which should not be redefined in
  4230 //        the AD file.  It is generically handled within the ADLC.
  4232 //----------Conditional Branch Operands----------------------------------------
  4233 // Comparison Op  - This is the operation of the comparison, and is limited to
  4234 //                  the following set of codes:
  4235 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4236 //
  4237 // Other attributes of the comparison, such as unsignedness, are specified
  4238 // by the comparison instruction that sets a condition code flags register.
  4239 // That result is represented by a flags operand whose subtype is appropriate
  4240 // to the unsignedness (etc.) of the comparison.
  4241 //
  4242 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4243 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4244 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4246 operand cmpOp() %{
  4247   match(Bool);
  4249   format %{ "" %}
  4250   interface(COND_INTER) %{
  4251     equal(0x1);
  4252     not_equal(0x9);
  4253     less(0x3);
  4254     greater_equal(0xB);
  4255     less_equal(0x2);
  4256     greater(0xA);
  4257     overflow(0x7);
  4258     no_overflow(0xF);
  4259   %}
  4260 %}
  4262 // Comparison Op, unsigned
  4263 operand cmpOpU() %{
  4264   match(Bool);
  4265   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4266             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4268   format %{ "u" %}
  4269   interface(COND_INTER) %{
  4270     equal(0x1);
  4271     not_equal(0x9);
  4272     less(0x5);
  4273     greater_equal(0xD);
  4274     less_equal(0x4);
  4275     greater(0xC);
  4276     overflow(0x7);
  4277     no_overflow(0xF);
  4278   %}
  4279 %}
  4281 // Comparison Op, pointer (same as unsigned)
  4282 operand cmpOpP() %{
  4283   match(Bool);
  4284   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4285             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4287   format %{ "p" %}
  4288   interface(COND_INTER) %{
  4289     equal(0x1);
  4290     not_equal(0x9);
  4291     less(0x5);
  4292     greater_equal(0xD);
  4293     less_equal(0x4);
  4294     greater(0xC);
  4295     overflow(0x7);
  4296     no_overflow(0xF);
  4297   %}
  4298 %}
  4300 // Comparison Op, branch-register encoding
  4301 operand cmpOp_reg() %{
  4302   match(Bool);
  4303   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4304             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4306   format %{ "" %}
  4307   interface(COND_INTER) %{
  4308     equal        (0x1);
  4309     not_equal    (0x5);
  4310     less         (0x3);
  4311     greater_equal(0x7);
  4312     less_equal   (0x2);
  4313     greater      (0x6);
  4314     overflow(0x7); // not supported
  4315     no_overflow(0xF); // not supported
  4316   %}
  4317 %}
  4319 // Comparison Code, floating, unordered same as less
  4320 operand cmpOpF() %{
  4321   match(Bool);
  4322   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4323             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4325   format %{ "fl" %}
  4326   interface(COND_INTER) %{
  4327     equal(0x9);
  4328     not_equal(0x1);
  4329     less(0x3);
  4330     greater_equal(0xB);
  4331     less_equal(0xE);
  4332     greater(0x6);
  4334     overflow(0x7); // not supported
  4335     no_overflow(0xF); // not supported
  4336   %}
  4337 %}
  4339 // Used by long compare
  4340 operand cmpOp_commute() %{
  4341   match(Bool);
  4342   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4343             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4345   format %{ "" %}
  4346   interface(COND_INTER) %{
  4347     equal(0x1);
  4348     not_equal(0x9);
  4349     less(0xA);
  4350     greater_equal(0x2);
  4351     less_equal(0xB);
  4352     greater(0x3);
  4353     overflow(0x7);
  4354     no_overflow(0xF);
  4355   %}
  4356 %}
  4358 //----------OPERAND CLASSES----------------------------------------------------
  4359 // Operand Classes are groups of operands that are used to simplify
  4360 // instruction definitions by not requiring the AD writer to specify separate
  4361 // instructions for every form of operand when the instruction accepts
  4362 // multiple operand types with the same basic encoding and format.  The classic
  4363 // case of this is memory operands.
  4364 opclass memory( indirect, indOffset13, indIndex );
  4365 opclass indIndexMemory( indIndex );
  4367 //----------PIPELINE-----------------------------------------------------------
  4368 pipeline %{
  4370 //----------ATTRIBUTES---------------------------------------------------------
  4371 attributes %{
  4372   fixed_size_instructions;           // Fixed size instructions
  4373   branch_has_delay_slot;             // Branch has delay slot following
  4374   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4375   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4376   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4377   instruction_fetch_units = 1;       // of 16 bytes
  4379   // List of nop instructions
  4380   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4381 %}
  4383 //----------RESOURCES----------------------------------------------------------
  4384 // Resources are the functional units available to the machine
  4385 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4387 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4388 // Pipeline Description specifies the stages in the machine's pipeline
  4390 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4392 //----------PIPELINE CLASSES---------------------------------------------------
  4393 // Pipeline Classes describe the stages in which input and output are
  4394 // referenced by the hardware pipeline.
  4396 // Integer ALU reg-reg operation
  4397 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4398     single_instruction;
  4399     dst   : E(write);
  4400     src1  : R(read);
  4401     src2  : R(read);
  4402     IALU  : R;
  4403 %}
  4405 // Integer ALU reg-reg long operation
  4406 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4407     instruction_count(2);
  4408     dst   : E(write);
  4409     src1  : R(read);
  4410     src2  : R(read);
  4411     IALU  : R;
  4412     IALU  : R;
  4413 %}
  4415 // Integer ALU reg-reg long dependent operation
  4416 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4417     instruction_count(1); multiple_bundles;
  4418     dst   : E(write);
  4419     src1  : R(read);
  4420     src2  : R(read);
  4421     cr    : E(write);
  4422     IALU  : R(2);
  4423 %}
  4425 // Integer ALU reg-imm operaion
  4426 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4427     single_instruction;
  4428     dst   : E(write);
  4429     src1  : R(read);
  4430     IALU  : R;
  4431 %}
  4433 // Integer ALU reg-reg operation with condition code
  4434 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4435     single_instruction;
  4436     dst   : E(write);
  4437     cr    : E(write);
  4438     src1  : R(read);
  4439     src2  : R(read);
  4440     IALU  : R;
  4441 %}
  4443 // Integer ALU reg-imm operation with condition code
  4444 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4445     single_instruction;
  4446     dst   : E(write);
  4447     cr    : E(write);
  4448     src1  : R(read);
  4449     IALU  : R;
  4450 %}
  4452 // Integer ALU zero-reg operation
  4453 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4454     single_instruction;
  4455     dst   : E(write);
  4456     src2  : R(read);
  4457     IALU  : R;
  4458 %}
  4460 // Integer ALU zero-reg operation with condition code only
  4461 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4462     single_instruction;
  4463     cr    : E(write);
  4464     src   : R(read);
  4465     IALU  : R;
  4466 %}
  4468 // Integer ALU reg-reg operation with condition code only
  4469 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4470     single_instruction;
  4471     cr    : E(write);
  4472     src1  : R(read);
  4473     src2  : R(read);
  4474     IALU  : R;
  4475 %}
  4477 // Integer ALU reg-imm operation with condition code only
  4478 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4479     single_instruction;
  4480     cr    : E(write);
  4481     src1  : R(read);
  4482     IALU  : R;
  4483 %}
  4485 // Integer ALU reg-reg-zero operation with condition code only
  4486 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4487     single_instruction;
  4488     cr    : E(write);
  4489     src1  : R(read);
  4490     src2  : R(read);
  4491     IALU  : R;
  4492 %}
  4494 // Integer ALU reg-imm-zero operation with condition code only
  4495 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4496     single_instruction;
  4497     cr    : E(write);
  4498     src1  : R(read);
  4499     IALU  : R;
  4500 %}
  4502 // Integer ALU reg-reg operation with condition code, src1 modified
  4503 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4504     single_instruction;
  4505     cr    : E(write);
  4506     src1  : E(write);
  4507     src1  : R(read);
  4508     src2  : R(read);
  4509     IALU  : R;
  4510 %}
  4512 // Integer ALU reg-imm operation with condition code, src1 modified
  4513 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4514     single_instruction;
  4515     cr    : E(write);
  4516     src1  : E(write);
  4517     src1  : R(read);
  4518     IALU  : R;
  4519 %}
  4521 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4522     multiple_bundles;
  4523     dst   : E(write)+4;
  4524     cr    : E(write);
  4525     src1  : R(read);
  4526     src2  : R(read);
  4527     IALU  : R(3);
  4528     BR    : R(2);
  4529 %}
  4531 // Integer ALU operation
  4532 pipe_class ialu_none(iRegI dst) %{
  4533     single_instruction;
  4534     dst   : E(write);
  4535     IALU  : R;
  4536 %}
  4538 // Integer ALU reg operation
  4539 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4540     single_instruction; may_have_no_code;
  4541     dst   : E(write);
  4542     src   : R(read);
  4543     IALU  : R;
  4544 %}
  4546 // Integer ALU reg conditional operation
  4547 // This instruction has a 1 cycle stall, and cannot execute
  4548 // in the same cycle as the instruction setting the condition
  4549 // code. We kludge this by pretending to read the condition code
  4550 // 1 cycle earlier, and by marking the functional units as busy
  4551 // for 2 cycles with the result available 1 cycle later than
  4552 // is really the case.
  4553 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4554     single_instruction;
  4555     op2_out : C(write);
  4556     op1     : R(read);
  4557     cr      : R(read);       // This is really E, with a 1 cycle stall
  4558     BR      : R(2);
  4559     MS      : R(2);
  4560 %}
  4562 #ifdef _LP64
  4563 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4564     instruction_count(1); multiple_bundles;
  4565     dst     : C(write)+1;
  4566     src     : R(read)+1;
  4567     IALU    : R(1);
  4568     BR      : E(2);
  4569     MS      : E(2);
  4570 %}
  4571 #endif
  4573 // Integer ALU reg operation
  4574 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4575     single_instruction; may_have_no_code;
  4576     dst   : E(write);
  4577     src   : R(read);
  4578     IALU  : R;
  4579 %}
  4580 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4581     single_instruction; may_have_no_code;
  4582     dst   : E(write);
  4583     src   : R(read);
  4584     IALU  : R;
  4585 %}
  4587 // Two integer ALU reg operations
  4588 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4589     instruction_count(2);
  4590     dst   : E(write);
  4591     src   : R(read);
  4592     A0    : R;
  4593     A1    : R;
  4594 %}
  4596 // Two integer ALU reg operations
  4597 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4598     instruction_count(2); may_have_no_code;
  4599     dst   : E(write);
  4600     src   : R(read);
  4601     A0    : R;
  4602     A1    : R;
  4603 %}
  4605 // Integer ALU imm operation
  4606 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4607     single_instruction;
  4608     dst   : E(write);
  4609     IALU  : R;
  4610 %}
  4612 // Integer ALU reg-reg with carry operation
  4613 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4614     single_instruction;
  4615     dst   : E(write);
  4616     src1  : R(read);
  4617     src2  : R(read);
  4618     IALU  : R;
  4619 %}
  4621 // Integer ALU cc operation
  4622 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4623     single_instruction;
  4624     dst   : E(write);
  4625     cc    : R(read);
  4626     IALU  : R;
  4627 %}
  4629 // Integer ALU cc / second IALU operation
  4630 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4631     instruction_count(1); multiple_bundles;
  4632     dst   : E(write)+1;
  4633     src   : R(read);
  4634     IALU  : R;
  4635 %}
  4637 // Integer ALU cc / second IALU operation
  4638 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4639     instruction_count(1); multiple_bundles;
  4640     dst   : E(write)+1;
  4641     p     : R(read);
  4642     q     : R(read);
  4643     IALU  : R;
  4644 %}
  4646 // Integer ALU hi-lo-reg operation
  4647 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4648     instruction_count(1); multiple_bundles;
  4649     dst   : E(write)+1;
  4650     IALU  : R(2);
  4651 %}
  4653 // Float ALU hi-lo-reg operation (with temp)
  4654 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4655     instruction_count(1); multiple_bundles;
  4656     dst   : E(write)+1;
  4657     IALU  : R(2);
  4658 %}
  4660 // Long Constant
  4661 pipe_class loadConL( iRegL dst, immL src ) %{
  4662     instruction_count(2); multiple_bundles;
  4663     dst   : E(write)+1;
  4664     IALU  : R(2);
  4665     IALU  : R(2);
  4666 %}
  4668 // Pointer Constant
  4669 pipe_class loadConP( iRegP dst, immP src ) %{
  4670     instruction_count(0); multiple_bundles;
  4671     fixed_latency(6);
  4672 %}
  4674 // Polling Address
  4675 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4676 #ifdef _LP64
  4677     instruction_count(0); multiple_bundles;
  4678     fixed_latency(6);
  4679 #else
  4680     dst   : E(write);
  4681     IALU  : R;
  4682 #endif
  4683 %}
  4685 // Long Constant small
  4686 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4687     instruction_count(2);
  4688     dst   : E(write);
  4689     IALU  : R;
  4690     IALU  : R;
  4691 %}
  4693 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4694 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4695     instruction_count(1); multiple_bundles;
  4696     src   : R(read);
  4697     dst   : M(write)+1;
  4698     IALU  : R;
  4699     MS    : E;
  4700 %}
  4702 // Integer ALU nop operation
  4703 pipe_class ialu_nop() %{
  4704     single_instruction;
  4705     IALU  : R;
  4706 %}
  4708 // Integer ALU nop operation
  4709 pipe_class ialu_nop_A0() %{
  4710     single_instruction;
  4711     A0    : R;
  4712 %}
  4714 // Integer ALU nop operation
  4715 pipe_class ialu_nop_A1() %{
  4716     single_instruction;
  4717     A1    : R;
  4718 %}
  4720 // Integer Multiply reg-reg operation
  4721 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4722     single_instruction;
  4723     dst   : E(write);
  4724     src1  : R(read);
  4725     src2  : R(read);
  4726     MS    : R(5);
  4727 %}
  4729 // Integer Multiply reg-imm operation
  4730 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4731     single_instruction;
  4732     dst   : E(write);
  4733     src1  : R(read);
  4734     MS    : R(5);
  4735 %}
  4737 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4738     single_instruction;
  4739     dst   : E(write)+4;
  4740     src1  : R(read);
  4741     src2  : R(read);
  4742     MS    : R(6);
  4743 %}
  4745 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4746     single_instruction;
  4747     dst   : E(write)+4;
  4748     src1  : R(read);
  4749     MS    : R(6);
  4750 %}
  4752 // Integer Divide reg-reg
  4753 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4754     instruction_count(1); multiple_bundles;
  4755     dst   : E(write);
  4756     temp  : E(write);
  4757     src1  : R(read);
  4758     src2  : R(read);
  4759     temp  : R(read);
  4760     MS    : R(38);
  4761 %}
  4763 // Integer Divide reg-imm
  4764 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4765     instruction_count(1); multiple_bundles;
  4766     dst   : E(write);
  4767     temp  : E(write);
  4768     src1  : R(read);
  4769     temp  : R(read);
  4770     MS    : R(38);
  4771 %}
  4773 // Long Divide
  4774 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4775     dst  : E(write)+71;
  4776     src1 : R(read);
  4777     src2 : R(read)+1;
  4778     MS   : R(70);
  4779 %}
  4781 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4782     dst  : E(write)+71;
  4783     src1 : R(read);
  4784     MS   : R(70);
  4785 %}
  4787 // Floating Point Add Float
  4788 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4789     single_instruction;
  4790     dst   : X(write);
  4791     src1  : E(read);
  4792     src2  : E(read);
  4793     FA    : R;
  4794 %}
  4796 // Floating Point Add Double
  4797 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4798     single_instruction;
  4799     dst   : X(write);
  4800     src1  : E(read);
  4801     src2  : E(read);
  4802     FA    : R;
  4803 %}
  4805 // Floating Point Conditional Move based on integer flags
  4806 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4807     single_instruction;
  4808     dst   : X(write);
  4809     src   : E(read);
  4810     cr    : R(read);
  4811     FA    : R(2);
  4812     BR    : R(2);
  4813 %}
  4815 // Floating Point Conditional Move based on integer flags
  4816 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4817     single_instruction;
  4818     dst   : X(write);
  4819     src   : E(read);
  4820     cr    : R(read);
  4821     FA    : R(2);
  4822     BR    : R(2);
  4823 %}
  4825 // Floating Point Multiply Float
  4826 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4827     single_instruction;
  4828     dst   : X(write);
  4829     src1  : E(read);
  4830     src2  : E(read);
  4831     FM    : R;
  4832 %}
  4834 // Floating Point Multiply Double
  4835 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4836     single_instruction;
  4837     dst   : X(write);
  4838     src1  : E(read);
  4839     src2  : E(read);
  4840     FM    : R;
  4841 %}
  4843 // Floating Point Divide Float
  4844 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4845     single_instruction;
  4846     dst   : X(write);
  4847     src1  : E(read);
  4848     src2  : E(read);
  4849     FM    : R;
  4850     FDIV  : C(14);
  4851 %}
  4853 // Floating Point Divide Double
  4854 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4855     single_instruction;
  4856     dst   : X(write);
  4857     src1  : E(read);
  4858     src2  : E(read);
  4859     FM    : R;
  4860     FDIV  : C(17);
  4861 %}
  4863 // Floating Point Move/Negate/Abs Float
  4864 pipe_class faddF_reg(regF dst, regF src) %{
  4865     single_instruction;
  4866     dst   : W(write);
  4867     src   : E(read);
  4868     FA    : R(1);
  4869 %}
  4871 // Floating Point Move/Negate/Abs Double
  4872 pipe_class faddD_reg(regD dst, regD src) %{
  4873     single_instruction;
  4874     dst   : W(write);
  4875     src   : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Convert F->D
  4880 pipe_class fcvtF2D(regD dst, regF src) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src   : E(read);
  4884     FA    : R;
  4885 %}
  4887 // Floating Point Convert I->D
  4888 pipe_class fcvtI2D(regD dst, regF src) %{
  4889     single_instruction;
  4890     dst   : X(write);
  4891     src   : E(read);
  4892     FA    : R;
  4893 %}
  4895 // Floating Point Convert LHi->D
  4896 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src   : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Convert L->D
  4904 pipe_class fcvtL2D(regD dst, regF src) %{
  4905     single_instruction;
  4906     dst   : X(write);
  4907     src   : E(read);
  4908     FA    : R;
  4909 %}
  4911 // Floating Point Convert L->F
  4912 pipe_class fcvtL2F(regD dst, regF src) %{
  4913     single_instruction;
  4914     dst   : X(write);
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert D->F
  4920 pipe_class fcvtD2F(regD dst, regF src) %{
  4921     single_instruction;
  4922     dst   : X(write);
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert I->L
  4928 pipe_class fcvtI2L(regD dst, regF src) %{
  4929     single_instruction;
  4930     dst   : X(write);
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert D->F
  4936 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4937     instruction_count(1); multiple_bundles;
  4938     dst   : X(write)+6;
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Convert D->L
  4944 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4945     instruction_count(1); multiple_bundles;
  4946     dst   : X(write)+6;
  4947     src   : E(read);
  4948     FA    : R;
  4949 %}
  4951 // Floating Point Convert F->I
  4952 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4953     instruction_count(1); multiple_bundles;
  4954     dst   : X(write)+6;
  4955     src   : E(read);
  4956     FA    : R;
  4957 %}
  4959 // Floating Point Convert F->L
  4960 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4961     instruction_count(1); multiple_bundles;
  4962     dst   : X(write)+6;
  4963     src   : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Point Convert I->F
  4968 pipe_class fcvtI2F(regF dst, regF src) %{
  4969     single_instruction;
  4970     dst   : X(write);
  4971     src   : E(read);
  4972     FA    : R;
  4973 %}
  4975 // Floating Point Compare
  4976 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4977     single_instruction;
  4978     cr    : X(write);
  4979     src1  : E(read);
  4980     src2  : E(read);
  4981     FA    : R;
  4982 %}
  4984 // Floating Point Compare
  4985 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4986     single_instruction;
  4987     cr    : X(write);
  4988     src1  : E(read);
  4989     src2  : E(read);
  4990     FA    : R;
  4991 %}
  4993 // Floating Add Nop
  4994 pipe_class fadd_nop() %{
  4995     single_instruction;
  4996     FA  : R;
  4997 %}
  4999 // Integer Store to Memory
  5000 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5001     single_instruction;
  5002     mem   : R(read);
  5003     src   : C(read);
  5004     MS    : R;
  5005 %}
  5007 // Integer Store to Memory
  5008 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5009     single_instruction;
  5010     mem   : R(read);
  5011     src   : C(read);
  5012     MS    : R;
  5013 %}
  5015 // Integer Store Zero to Memory
  5016 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5017     single_instruction;
  5018     mem   : R(read);
  5019     MS    : R;
  5020 %}
  5022 // Special Stack Slot Store
  5023 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5024     single_instruction;
  5025     stkSlot : R(read);
  5026     src     : C(read);
  5027     MS      : R;
  5028 %}
  5030 // Special Stack Slot Store
  5031 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5032     instruction_count(2); multiple_bundles;
  5033     stkSlot : R(read);
  5034     src     : C(read);
  5035     MS      : R(2);
  5036 %}
  5038 // Float Store
  5039 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5040     single_instruction;
  5041     mem : R(read);
  5042     src : C(read);
  5043     MS  : R;
  5044 %}
  5046 // Float Store
  5047 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5048     single_instruction;
  5049     mem : R(read);
  5050     MS  : R;
  5051 %}
  5053 // Double Store
  5054 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5055     instruction_count(1);
  5056     mem : R(read);
  5057     src : C(read);
  5058     MS  : R;
  5059 %}
  5061 // Double Store
  5062 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5063     single_instruction;
  5064     mem : R(read);
  5065     MS  : R;
  5066 %}
  5068 // Special Stack Slot Float Store
  5069 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5070     single_instruction;
  5071     stkSlot : R(read);
  5072     src     : C(read);
  5073     MS      : R;
  5074 %}
  5076 // Special Stack Slot Double Store
  5077 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5078     single_instruction;
  5079     stkSlot : R(read);
  5080     src     : C(read);
  5081     MS      : R;
  5082 %}
  5084 // Integer Load (when sign bit propagation not needed)
  5085 pipe_class iload_mem(iRegI dst, memory mem) %{
  5086     single_instruction;
  5087     mem : R(read);
  5088     dst : C(write);
  5089     MS  : R;
  5090 %}
  5092 // Integer Load from stack operand
  5093 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5094     single_instruction;
  5095     mem : R(read);
  5096     dst : C(write);
  5097     MS  : R;
  5098 %}
  5100 // Integer Load (when sign bit propagation or masking is needed)
  5101 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5102     single_instruction;
  5103     mem : R(read);
  5104     dst : M(write);
  5105     MS  : R;
  5106 %}
  5108 // Float Load
  5109 pipe_class floadF_mem(regF dst, memory mem) %{
  5110     single_instruction;
  5111     mem : R(read);
  5112     dst : M(write);
  5113     MS  : R;
  5114 %}
  5116 // Float Load
  5117 pipe_class floadD_mem(regD dst, memory mem) %{
  5118     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5119     mem : R(read);
  5120     dst : M(write);
  5121     MS  : R;
  5122 %}
  5124 // Float Load
  5125 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5126     single_instruction;
  5127     stkSlot : R(read);
  5128     dst : M(write);
  5129     MS  : R;
  5130 %}
  5132 // Float Load
  5133 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5134     single_instruction;
  5135     stkSlot : R(read);
  5136     dst : M(write);
  5137     MS  : R;
  5138 %}
  5140 // Memory Nop
  5141 pipe_class mem_nop() %{
  5142     single_instruction;
  5143     MS  : R;
  5144 %}
  5146 pipe_class sethi(iRegP dst, immI src) %{
  5147     single_instruction;
  5148     dst  : E(write);
  5149     IALU : R;
  5150 %}
  5152 pipe_class loadPollP(iRegP poll) %{
  5153     single_instruction;
  5154     poll : R(read);
  5155     MS   : R;
  5156 %}
  5158 pipe_class br(Universe br, label labl) %{
  5159     single_instruction_with_delay_slot;
  5160     BR  : R;
  5161 %}
  5163 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5164     single_instruction_with_delay_slot;
  5165     cr    : E(read);
  5166     BR    : R;
  5167 %}
  5169 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5170     single_instruction_with_delay_slot;
  5171     op1 : E(read);
  5172     BR  : R;
  5173     MS  : R;
  5174 %}
  5176 // Compare and branch
  5177 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5178     instruction_count(2); has_delay_slot;
  5179     cr    : E(write);
  5180     src1  : R(read);
  5181     src2  : R(read);
  5182     IALU  : R;
  5183     BR    : R;
  5184 %}
  5186 // Compare and branch
  5187 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5188     instruction_count(2); has_delay_slot;
  5189     cr    : E(write);
  5190     src1  : R(read);
  5191     IALU  : R;
  5192     BR    : R;
  5193 %}
  5195 // Compare and branch using cbcond
  5196 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5197     single_instruction;
  5198     src1  : E(read);
  5199     src2  : E(read);
  5200     IALU  : R;
  5201     BR    : R;
  5202 %}
  5204 // Compare and branch using cbcond
  5205 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5206     single_instruction;
  5207     src1  : E(read);
  5208     IALU  : R;
  5209     BR    : R;
  5210 %}
  5212 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5213     single_instruction_with_delay_slot;
  5214     cr    : E(read);
  5215     BR    : R;
  5216 %}
  5218 pipe_class br_nop() %{
  5219     single_instruction;
  5220     BR  : R;
  5221 %}
  5223 pipe_class simple_call(method meth) %{
  5224     instruction_count(2); multiple_bundles; force_serialization;
  5225     fixed_latency(100);
  5226     BR  : R(1);
  5227     MS  : R(1);
  5228     A0  : R(1);
  5229 %}
  5231 pipe_class compiled_call(method meth) %{
  5232     instruction_count(1); multiple_bundles; force_serialization;
  5233     fixed_latency(100);
  5234     MS  : R(1);
  5235 %}
  5237 pipe_class call(method meth) %{
  5238     instruction_count(0); multiple_bundles; force_serialization;
  5239     fixed_latency(100);
  5240 %}
  5242 pipe_class tail_call(Universe ignore, label labl) %{
  5243     single_instruction; has_delay_slot;
  5244     fixed_latency(100);
  5245     BR  : R(1);
  5246     MS  : R(1);
  5247 %}
  5249 pipe_class ret(Universe ignore) %{
  5250     single_instruction; has_delay_slot;
  5251     BR  : R(1);
  5252     MS  : R(1);
  5253 %}
  5255 pipe_class ret_poll(g3RegP poll) %{
  5256     instruction_count(3); has_delay_slot;
  5257     poll : E(read);
  5258     MS   : R;
  5259 %}
  5261 // The real do-nothing guy
  5262 pipe_class empty( ) %{
  5263     instruction_count(0);
  5264 %}
  5266 pipe_class long_memory_op() %{
  5267     instruction_count(0); multiple_bundles; force_serialization;
  5268     fixed_latency(25);
  5269     MS  : R(1);
  5270 %}
  5272 // Check-cast
  5273 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5274     array : R(read);
  5275     match  : R(read);
  5276     IALU   : R(2);
  5277     BR     : R(2);
  5278     MS     : R;
  5279 %}
  5281 // Convert FPU flags into +1,0,-1
  5282 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5283     src1  : E(read);
  5284     src2  : E(read);
  5285     dst   : E(write);
  5286     FA    : R;
  5287     MS    : R(2);
  5288     BR    : R(2);
  5289 %}
  5291 // Compare for p < q, and conditionally add y
  5292 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5293     p     : E(read);
  5294     q     : E(read);
  5295     y     : E(read);
  5296     IALU  : R(3)
  5297 %}
  5299 // Perform a compare, then move conditionally in a branch delay slot.
  5300 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5301     src2   : E(read);
  5302     srcdst : E(read);
  5303     IALU   : R;
  5304     BR     : R;
  5305 %}
  5307 // Define the class for the Nop node
  5308 define %{
  5309    MachNop = ialu_nop;
  5310 %}
  5312 %}
  5314 //----------INSTRUCTIONS-------------------------------------------------------
  5316 //------------Special Stack Slot instructions - no match rules-----------------
  5317 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5318   // No match rule to avoid chain rule match.
  5319   effect(DEF dst, USE src);
  5320   ins_cost(MEMORY_REF_COST);
  5321   size(4);
  5322   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5323   opcode(Assembler::ldf_op3);
  5324   ins_encode(simple_form3_mem_reg(src, dst));
  5325   ins_pipe(floadF_stk);
  5326 %}
  5328 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5329   // No match rule to avoid chain rule match.
  5330   effect(DEF dst, USE src);
  5331   ins_cost(MEMORY_REF_COST);
  5332   size(4);
  5333   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5334   opcode(Assembler::lddf_op3);
  5335   ins_encode(simple_form3_mem_reg(src, dst));
  5336   ins_pipe(floadD_stk);
  5337 %}
  5339 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5340   // No match rule to avoid chain rule match.
  5341   effect(DEF dst, USE src);
  5342   ins_cost(MEMORY_REF_COST);
  5343   size(4);
  5344   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5345   opcode(Assembler::stf_op3);
  5346   ins_encode(simple_form3_mem_reg(dst, src));
  5347   ins_pipe(fstoreF_stk_reg);
  5348 %}
  5350 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5351   // No match rule to avoid chain rule match.
  5352   effect(DEF dst, USE src);
  5353   ins_cost(MEMORY_REF_COST);
  5354   size(4);
  5355   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5356   opcode(Assembler::stdf_op3);
  5357   ins_encode(simple_form3_mem_reg(dst, src));
  5358   ins_pipe(fstoreD_stk_reg);
  5359 %}
  5361 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5362   effect(DEF dst, USE src);
  5363   ins_cost(MEMORY_REF_COST*2);
  5364   size(8);
  5365   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5366             "STW    R_G0,$dst.lo" %}
  5367   opcode(Assembler::stw_op3);
  5368   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5369   ins_pipe(lstoreI_stk_reg);
  5370 %}
  5372 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5373   // No match rule to avoid chain rule match.
  5374   effect(DEF dst, USE src);
  5375   ins_cost(MEMORY_REF_COST);
  5376   size(4);
  5377   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5378   opcode(Assembler::stx_op3);
  5379   ins_encode(simple_form3_mem_reg( dst, src ) );
  5380   ins_pipe(istore_stk_reg);
  5381 %}
  5383 //---------- Chain stack slots between similar types --------
  5385 // Load integer from stack slot
  5386 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5387   match(Set dst src);
  5388   ins_cost(MEMORY_REF_COST);
  5390   size(4);
  5391   format %{ "LDUW   $src,$dst\t!stk" %}
  5392   opcode(Assembler::lduw_op3);
  5393   ins_encode(simple_form3_mem_reg( src, dst ) );
  5394   ins_pipe(iload_mem);
  5395 %}
  5397 // Store integer to stack slot
  5398 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5399   match(Set dst src);
  5400   ins_cost(MEMORY_REF_COST);
  5402   size(4);
  5403   format %{ "STW    $src,$dst\t!stk" %}
  5404   opcode(Assembler::stw_op3);
  5405   ins_encode(simple_form3_mem_reg( dst, src ) );
  5406   ins_pipe(istore_mem_reg);
  5407 %}
  5409 // Load long from stack slot
  5410 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5411   match(Set dst src);
  5413   ins_cost(MEMORY_REF_COST);
  5414   size(4);
  5415   format %{ "LDX    $src,$dst\t! long" %}
  5416   opcode(Assembler::ldx_op3);
  5417   ins_encode(simple_form3_mem_reg( src, dst ) );
  5418   ins_pipe(iload_mem);
  5419 %}
  5421 // Store long to stack slot
  5422 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5423   match(Set dst src);
  5425   ins_cost(MEMORY_REF_COST);
  5426   size(4);
  5427   format %{ "STX    $src,$dst\t! long" %}
  5428   opcode(Assembler::stx_op3);
  5429   ins_encode(simple_form3_mem_reg( dst, src ) );
  5430   ins_pipe(istore_mem_reg);
  5431 %}
  5433 #ifdef _LP64
  5434 // Load pointer from stack slot, 64-bit encoding
  5435 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5436   match(Set dst src);
  5437   ins_cost(MEMORY_REF_COST);
  5438   size(4);
  5439   format %{ "LDX    $src,$dst\t!ptr" %}
  5440   opcode(Assembler::ldx_op3);
  5441   ins_encode(simple_form3_mem_reg( src, dst ) );
  5442   ins_pipe(iload_mem);
  5443 %}
  5445 // Store pointer to stack slot
  5446 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5447   match(Set dst src);
  5448   ins_cost(MEMORY_REF_COST);
  5449   size(4);
  5450   format %{ "STX    $src,$dst\t!ptr" %}
  5451   opcode(Assembler::stx_op3);
  5452   ins_encode(simple_form3_mem_reg( dst, src ) );
  5453   ins_pipe(istore_mem_reg);
  5454 %}
  5455 #else // _LP64
  5456 // Load pointer from stack slot, 32-bit encoding
  5457 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5458   match(Set dst src);
  5459   ins_cost(MEMORY_REF_COST);
  5460   format %{ "LDUW   $src,$dst\t!ptr" %}
  5461   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5462   ins_encode(simple_form3_mem_reg( src, dst ) );
  5463   ins_pipe(iload_mem);
  5464 %}
  5466 // Store pointer to stack slot
  5467 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5468   match(Set dst src);
  5469   ins_cost(MEMORY_REF_COST);
  5470   format %{ "STW    $src,$dst\t!ptr" %}
  5471   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5472   ins_encode(simple_form3_mem_reg( dst, src ) );
  5473   ins_pipe(istore_mem_reg);
  5474 %}
  5475 #endif // _LP64
  5477 //------------Special Nop instructions for bundling - no match rules-----------
  5478 // Nop using the A0 functional unit
  5479 instruct Nop_A0() %{
  5480   ins_cost(0);
  5482   format %{ "NOP    ! Alu Pipeline" %}
  5483   opcode(Assembler::or_op3, Assembler::arith_op);
  5484   ins_encode( form2_nop() );
  5485   ins_pipe(ialu_nop_A0);
  5486 %}
  5488 // Nop using the A1 functional unit
  5489 instruct Nop_A1( ) %{
  5490   ins_cost(0);
  5492   format %{ "NOP    ! Alu Pipeline" %}
  5493   opcode(Assembler::or_op3, Assembler::arith_op);
  5494   ins_encode( form2_nop() );
  5495   ins_pipe(ialu_nop_A1);
  5496 %}
  5498 // Nop using the memory functional unit
  5499 instruct Nop_MS( ) %{
  5500   ins_cost(0);
  5502   format %{ "NOP    ! Memory Pipeline" %}
  5503   ins_encode( emit_mem_nop );
  5504   ins_pipe(mem_nop);
  5505 %}
  5507 // Nop using the floating add functional unit
  5508 instruct Nop_FA( ) %{
  5509   ins_cost(0);
  5511   format %{ "NOP    ! Floating Add Pipeline" %}
  5512   ins_encode( emit_fadd_nop );
  5513   ins_pipe(fadd_nop);
  5514 %}
  5516 // Nop using the branch functional unit
  5517 instruct Nop_BR( ) %{
  5518   ins_cost(0);
  5520   format %{ "NOP    ! Branch Pipeline" %}
  5521   ins_encode( emit_br_nop );
  5522   ins_pipe(br_nop);
  5523 %}
  5525 //----------Load/Store/Move Instructions---------------------------------------
  5526 //----------Load Instructions--------------------------------------------------
  5527 // Load Byte (8bit signed)
  5528 instruct loadB(iRegI dst, memory mem) %{
  5529   match(Set dst (LoadB mem));
  5530   ins_cost(MEMORY_REF_COST);
  5532   size(4);
  5533   format %{ "LDSB   $mem,$dst\t! byte" %}
  5534   ins_encode %{
  5535     __ ldsb($mem$$Address, $dst$$Register);
  5536   %}
  5537   ins_pipe(iload_mask_mem);
  5538 %}
  5540 // Load Byte (8bit signed) into a Long Register
  5541 instruct loadB2L(iRegL dst, memory mem) %{
  5542   match(Set dst (ConvI2L (LoadB mem)));
  5543   ins_cost(MEMORY_REF_COST);
  5545   size(4);
  5546   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5547   ins_encode %{
  5548     __ ldsb($mem$$Address, $dst$$Register);
  5549   %}
  5550   ins_pipe(iload_mask_mem);
  5551 %}
  5553 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5554 instruct loadUB(iRegI dst, memory mem) %{
  5555   match(Set dst (LoadUB mem));
  5556   ins_cost(MEMORY_REF_COST);
  5558   size(4);
  5559   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5560   ins_encode %{
  5561     __ ldub($mem$$Address, $dst$$Register);
  5562   %}
  5563   ins_pipe(iload_mem);
  5564 %}
  5566 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5567 instruct loadUB2L(iRegL dst, memory mem) %{
  5568   match(Set dst (ConvI2L (LoadUB mem)));
  5569   ins_cost(MEMORY_REF_COST);
  5571   size(4);
  5572   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5573   ins_encode %{
  5574     __ ldub($mem$$Address, $dst$$Register);
  5575   %}
  5576   ins_pipe(iload_mem);
  5577 %}
  5579 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5580 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5581   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5582   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5584   size(2*4);
  5585   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5586             "AND    $dst,$mask,$dst" %}
  5587   ins_encode %{
  5588     __ ldub($mem$$Address, $dst$$Register);
  5589     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5590   %}
  5591   ins_pipe(iload_mem);
  5592 %}
  5594 // Load Short (16bit signed)
  5595 instruct loadS(iRegI dst, memory mem) %{
  5596   match(Set dst (LoadS mem));
  5597   ins_cost(MEMORY_REF_COST);
  5599   size(4);
  5600   format %{ "LDSH   $mem,$dst\t! short" %}
  5601   ins_encode %{
  5602     __ ldsh($mem$$Address, $dst$$Register);
  5603   %}
  5604   ins_pipe(iload_mask_mem);
  5605 %}
  5607 // Load Short (16 bit signed) to Byte (8 bit signed)
  5608 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5609   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5610   ins_cost(MEMORY_REF_COST);
  5612   size(4);
  5614   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5615   ins_encode %{
  5616     __ ldsb($mem$$Address, $dst$$Register, 1);
  5617   %}
  5618   ins_pipe(iload_mask_mem);
  5619 %}
  5621 // Load Short (16bit signed) into a Long Register
  5622 instruct loadS2L(iRegL dst, memory mem) %{
  5623   match(Set dst (ConvI2L (LoadS mem)));
  5624   ins_cost(MEMORY_REF_COST);
  5626   size(4);
  5627   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5628   ins_encode %{
  5629     __ ldsh($mem$$Address, $dst$$Register);
  5630   %}
  5631   ins_pipe(iload_mask_mem);
  5632 %}
  5634 // Load Unsigned Short/Char (16bit UNsigned)
  5635 instruct loadUS(iRegI dst, memory mem) %{
  5636   match(Set dst (LoadUS mem));
  5637   ins_cost(MEMORY_REF_COST);
  5639   size(4);
  5640   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5641   ins_encode %{
  5642     __ lduh($mem$$Address, $dst$$Register);
  5643   %}
  5644   ins_pipe(iload_mem);
  5645 %}
  5647 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5648 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5649   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5650   ins_cost(MEMORY_REF_COST);
  5652   size(4);
  5653   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5654   ins_encode %{
  5655     __ ldsb($mem$$Address, $dst$$Register, 1);
  5656   %}
  5657   ins_pipe(iload_mask_mem);
  5658 %}
  5660 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5661 instruct loadUS2L(iRegL dst, memory mem) %{
  5662   match(Set dst (ConvI2L (LoadUS mem)));
  5663   ins_cost(MEMORY_REF_COST);
  5665   size(4);
  5666   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5667   ins_encode %{
  5668     __ lduh($mem$$Address, $dst$$Register);
  5669   %}
  5670   ins_pipe(iload_mem);
  5671 %}
  5673 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5674 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5675   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5676   ins_cost(MEMORY_REF_COST);
  5678   size(4);
  5679   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5680   ins_encode %{
  5681     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5682   %}
  5683   ins_pipe(iload_mem);
  5684 %}
  5686 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5687 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5688   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5689   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5691   size(2*4);
  5692   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5693             "AND    $dst,$mask,$dst" %}
  5694   ins_encode %{
  5695     Register Rdst = $dst$$Register;
  5696     __ lduh($mem$$Address, Rdst);
  5697     __ and3(Rdst, $mask$$constant, Rdst);
  5698   %}
  5699   ins_pipe(iload_mem);
  5700 %}
  5702 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5703 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5704   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5705   effect(TEMP dst, TEMP tmp);
  5706   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5708   size((3+1)*4);  // set may use two instructions.
  5709   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5710             "SET    $mask,$tmp\n\t"
  5711             "AND    $dst,$tmp,$dst" %}
  5712   ins_encode %{
  5713     Register Rdst = $dst$$Register;
  5714     Register Rtmp = $tmp$$Register;
  5715     __ lduh($mem$$Address, Rdst);
  5716     __ set($mask$$constant, Rtmp);
  5717     __ and3(Rdst, Rtmp, Rdst);
  5718   %}
  5719   ins_pipe(iload_mem);
  5720 %}
  5722 // Load Integer
  5723 instruct loadI(iRegI dst, memory mem) %{
  5724   match(Set dst (LoadI mem));
  5725   ins_cost(MEMORY_REF_COST);
  5727   size(4);
  5728   format %{ "LDUW   $mem,$dst\t! int" %}
  5729   ins_encode %{
  5730     __ lduw($mem$$Address, $dst$$Register);
  5731   %}
  5732   ins_pipe(iload_mem);
  5733 %}
  5735 // Load Integer to Byte (8 bit signed)
  5736 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5737   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5738   ins_cost(MEMORY_REF_COST);
  5740   size(4);
  5742   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5743   ins_encode %{
  5744     __ ldsb($mem$$Address, $dst$$Register, 3);
  5745   %}
  5746   ins_pipe(iload_mask_mem);
  5747 %}
  5749 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5750 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5751   match(Set dst (AndI (LoadI mem) mask));
  5752   ins_cost(MEMORY_REF_COST);
  5754   size(4);
  5756   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5757   ins_encode %{
  5758     __ ldub($mem$$Address, $dst$$Register, 3);
  5759   %}
  5760   ins_pipe(iload_mask_mem);
  5761 %}
  5763 // Load Integer to Short (16 bit signed)
  5764 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5765   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5766   ins_cost(MEMORY_REF_COST);
  5768   size(4);
  5770   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5771   ins_encode %{
  5772     __ ldsh($mem$$Address, $dst$$Register, 2);
  5773   %}
  5774   ins_pipe(iload_mask_mem);
  5775 %}
  5777 // Load Integer to Unsigned Short (16 bit UNsigned)
  5778 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5779   match(Set dst (AndI (LoadI mem) mask));
  5780   ins_cost(MEMORY_REF_COST);
  5782   size(4);
  5784   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5785   ins_encode %{
  5786     __ lduh($mem$$Address, $dst$$Register, 2);
  5787   %}
  5788   ins_pipe(iload_mask_mem);
  5789 %}
  5791 // Load Integer into a Long Register
  5792 instruct loadI2L(iRegL dst, memory mem) %{
  5793   match(Set dst (ConvI2L (LoadI mem)));
  5794   ins_cost(MEMORY_REF_COST);
  5796   size(4);
  5797   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5798   ins_encode %{
  5799     __ ldsw($mem$$Address, $dst$$Register);
  5800   %}
  5801   ins_pipe(iload_mask_mem);
  5802 %}
  5804 // Load Integer with mask 0xFF into a Long Register
  5805 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5806   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5807   ins_cost(MEMORY_REF_COST);
  5809   size(4);
  5810   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5811   ins_encode %{
  5812     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5813   %}
  5814   ins_pipe(iload_mem);
  5815 %}
  5817 // Load Integer with mask 0xFFFF into a Long Register
  5818 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5819   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5820   ins_cost(MEMORY_REF_COST);
  5822   size(4);
  5823   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5824   ins_encode %{
  5825     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5826   %}
  5827   ins_pipe(iload_mem);
  5828 %}
  5830 // Load Integer with a 13-bit mask into a Long Register
  5831 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5832   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5833   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5835   size(2*4);
  5836   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5837             "AND    $dst,$mask,$dst" %}
  5838   ins_encode %{
  5839     Register Rdst = $dst$$Register;
  5840     __ lduw($mem$$Address, Rdst);
  5841     __ and3(Rdst, $mask$$constant, Rdst);
  5842   %}
  5843   ins_pipe(iload_mem);
  5844 %}
  5846 // Load Integer with a 32-bit mask into a Long Register
  5847 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5848   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5849   effect(TEMP dst, TEMP tmp);
  5850   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5852   size((3+1)*4);  // set may use two instructions.
  5853   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5854             "SET    $mask,$tmp\n\t"
  5855             "AND    $dst,$tmp,$dst" %}
  5856   ins_encode %{
  5857     Register Rdst = $dst$$Register;
  5858     Register Rtmp = $tmp$$Register;
  5859     __ lduw($mem$$Address, Rdst);
  5860     __ set($mask$$constant, Rtmp);
  5861     __ and3(Rdst, Rtmp, Rdst);
  5862   %}
  5863   ins_pipe(iload_mem);
  5864 %}
  5866 // Load Unsigned Integer into a Long Register
  5867 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5868   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5869   ins_cost(MEMORY_REF_COST);
  5871   size(4);
  5872   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5873   ins_encode %{
  5874     __ lduw($mem$$Address, $dst$$Register);
  5875   %}
  5876   ins_pipe(iload_mem);
  5877 %}
  5879 // Load Long - aligned
  5880 instruct loadL(iRegL dst, memory mem ) %{
  5881   match(Set dst (LoadL mem));
  5882   ins_cost(MEMORY_REF_COST);
  5884   size(4);
  5885   format %{ "LDX    $mem,$dst\t! long" %}
  5886   ins_encode %{
  5887     __ ldx($mem$$Address, $dst$$Register);
  5888   %}
  5889   ins_pipe(iload_mem);
  5890 %}
  5892 // Load Long - UNaligned
  5893 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5894   match(Set dst (LoadL_unaligned mem));
  5895   effect(KILL tmp);
  5896   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5897   size(16);
  5898   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5899           "\tLDUW   $mem  ,$dst\n"
  5900           "\tSLLX   #32, $dst, $dst\n"
  5901           "\tOR     $dst, R_O7, $dst" %}
  5902   opcode(Assembler::lduw_op3);
  5903   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5904   ins_pipe(iload_mem);
  5905 %}
  5907 // Load Range
  5908 instruct loadRange(iRegI dst, memory mem) %{
  5909   match(Set dst (LoadRange mem));
  5910   ins_cost(MEMORY_REF_COST);
  5912   size(4);
  5913   format %{ "LDUW   $mem,$dst\t! range" %}
  5914   opcode(Assembler::lduw_op3);
  5915   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5916   ins_pipe(iload_mem);
  5917 %}
  5919 // Load Integer into %f register (for fitos/fitod)
  5920 instruct loadI_freg(regF dst, memory mem) %{
  5921   match(Set dst (LoadI mem));
  5922   ins_cost(MEMORY_REF_COST);
  5923   size(4);
  5925   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5926   opcode(Assembler::ldf_op3);
  5927   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5928   ins_pipe(floadF_mem);
  5929 %}
  5931 // Load Pointer
  5932 instruct loadP(iRegP dst, memory mem) %{
  5933   match(Set dst (LoadP mem));
  5934   ins_cost(MEMORY_REF_COST);
  5935   size(4);
  5937 #ifndef _LP64
  5938   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5939   ins_encode %{
  5940     __ lduw($mem$$Address, $dst$$Register);
  5941   %}
  5942 #else
  5943   format %{ "LDX    $mem,$dst\t! ptr" %}
  5944   ins_encode %{
  5945     __ ldx($mem$$Address, $dst$$Register);
  5946   %}
  5947 #endif
  5948   ins_pipe(iload_mem);
  5949 %}
  5951 // Load Compressed Pointer
  5952 instruct loadN(iRegN dst, memory mem) %{
  5953   match(Set dst (LoadN mem));
  5954   ins_cost(MEMORY_REF_COST);
  5955   size(4);
  5957   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5958   ins_encode %{
  5959     __ lduw($mem$$Address, $dst$$Register);
  5960   %}
  5961   ins_pipe(iload_mem);
  5962 %}
  5964 // Load Klass Pointer
  5965 instruct loadKlass(iRegP dst, memory mem) %{
  5966   match(Set dst (LoadKlass mem));
  5967   ins_cost(MEMORY_REF_COST);
  5968   size(4);
  5970 #ifndef _LP64
  5971   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5972   ins_encode %{
  5973     __ lduw($mem$$Address, $dst$$Register);
  5974   %}
  5975 #else
  5976   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5977   ins_encode %{
  5978     __ ldx($mem$$Address, $dst$$Register);
  5979   %}
  5980 #endif
  5981   ins_pipe(iload_mem);
  5982 %}
  5984 // Load narrow Klass Pointer
  5985 instruct loadNKlass(iRegN dst, memory mem) %{
  5986   match(Set dst (LoadNKlass mem));
  5987   ins_cost(MEMORY_REF_COST);
  5988   size(4);
  5990   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5991   ins_encode %{
  5992     __ lduw($mem$$Address, $dst$$Register);
  5993   %}
  5994   ins_pipe(iload_mem);
  5995 %}
  5997 // Load Double
  5998 instruct loadD(regD dst, memory mem) %{
  5999   match(Set dst (LoadD mem));
  6000   ins_cost(MEMORY_REF_COST);
  6002   size(4);
  6003   format %{ "LDDF   $mem,$dst" %}
  6004   opcode(Assembler::lddf_op3);
  6005   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6006   ins_pipe(floadD_mem);
  6007 %}
  6009 // Load Double - UNaligned
  6010 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6011   match(Set dst (LoadD_unaligned mem));
  6012   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6013   size(8);
  6014   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6015           "\tLDF    $mem+4,$dst.lo\t!" %}
  6016   opcode(Assembler::ldf_op3);
  6017   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6018   ins_pipe(iload_mem);
  6019 %}
  6021 // Load Float
  6022 instruct loadF(regF dst, memory mem) %{
  6023   match(Set dst (LoadF mem));
  6024   ins_cost(MEMORY_REF_COST);
  6026   size(4);
  6027   format %{ "LDF    $mem,$dst" %}
  6028   opcode(Assembler::ldf_op3);
  6029   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6030   ins_pipe(floadF_mem);
  6031 %}
  6033 // Load Constant
  6034 instruct loadConI( iRegI dst, immI src ) %{
  6035   match(Set dst src);
  6036   ins_cost(DEFAULT_COST * 3/2);
  6037   format %{ "SET    $src,$dst" %}
  6038   ins_encode( Set32(src, dst) );
  6039   ins_pipe(ialu_hi_lo_reg);
  6040 %}
  6042 instruct loadConI13( iRegI dst, immI13 src ) %{
  6043   match(Set dst src);
  6045   size(4);
  6046   format %{ "MOV    $src,$dst" %}
  6047   ins_encode( Set13( src, dst ) );
  6048   ins_pipe(ialu_imm);
  6049 %}
  6051 #ifndef _LP64
  6052 instruct loadConP(iRegP dst, immP con) %{
  6053   match(Set dst con);
  6054   ins_cost(DEFAULT_COST * 3/2);
  6055   format %{ "SET    $con,$dst\t!ptr" %}
  6056   ins_encode %{
  6057     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6058       intptr_t val = $con$$constant;
  6059     if (constant_reloc == relocInfo::oop_type) {
  6060       __ set_oop_constant((jobject) val, $dst$$Register);
  6061     } else if (constant_reloc == relocInfo::metadata_type) {
  6062       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6063     } else {          // non-oop pointers, e.g. card mark base, heap top
  6064       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6065       __ set(val, $dst$$Register);
  6067   %}
  6068   ins_pipe(loadConP);
  6069 %}
  6070 #else
  6071 instruct loadConP_set(iRegP dst, immP_set con) %{
  6072   match(Set dst con);
  6073   ins_cost(DEFAULT_COST * 3/2);
  6074   format %{ "SET    $con,$dst\t! ptr" %}
  6075   ins_encode %{
  6076     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6077       intptr_t val = $con$$constant;
  6078     if (constant_reloc == relocInfo::oop_type) {
  6079       __ set_oop_constant((jobject) val, $dst$$Register);
  6080     } else if (constant_reloc == relocInfo::metadata_type) {
  6081       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6082     } else {          // non-oop pointers, e.g. card mark base, heap top
  6083       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6084       __ set(val, $dst$$Register);
  6086   %}
  6087   ins_pipe(loadConP);
  6088 %}
  6090 instruct loadConP_load(iRegP dst, immP_load con) %{
  6091   match(Set dst con);
  6092   ins_cost(MEMORY_REF_COST);
  6093   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6094   ins_encode %{
  6095     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6096     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6097   %}
  6098   ins_pipe(loadConP);
  6099 %}
  6101 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6102   match(Set dst con);
  6103   ins_cost(DEFAULT_COST * 3/2);
  6104   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6105   ins_encode %{
  6106     __ set($con$$constant, $dst$$Register);
  6107   %}
  6108   ins_pipe(loadConP);
  6109 %}
  6110 #endif // _LP64
  6112 instruct loadConP0(iRegP dst, immP0 src) %{
  6113   match(Set dst src);
  6115   size(4);
  6116   format %{ "CLR    $dst\t!ptr" %}
  6117   ins_encode %{
  6118     __ clr($dst$$Register);
  6119   %}
  6120   ins_pipe(ialu_imm);
  6121 %}
  6123 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6124   match(Set dst src);
  6125   ins_cost(DEFAULT_COST);
  6126   format %{ "SET    $src,$dst\t!ptr" %}
  6127   ins_encode %{
  6128     AddressLiteral polling_page(os::get_polling_page());
  6129     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6130   %}
  6131   ins_pipe(loadConP_poll);
  6132 %}
  6134 instruct loadConN0(iRegN dst, immN0 src) %{
  6135   match(Set dst src);
  6137   size(4);
  6138   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6139   ins_encode %{
  6140     __ clr($dst$$Register);
  6141   %}
  6142   ins_pipe(ialu_imm);
  6143 %}
  6145 instruct loadConN(iRegN dst, immN src) %{
  6146   match(Set dst src);
  6147   ins_cost(DEFAULT_COST * 3/2);
  6148   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6149   ins_encode %{
  6150     Register dst = $dst$$Register;
  6151     __ set_narrow_oop((jobject)$src$$constant, dst);
  6152   %}
  6153   ins_pipe(ialu_hi_lo_reg);
  6154 %}
  6156 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6157   match(Set dst src);
  6158   ins_cost(DEFAULT_COST * 3/2);
  6159   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6160   ins_encode %{
  6161     Register dst = $dst$$Register;
  6162     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6163   %}
  6164   ins_pipe(ialu_hi_lo_reg);
  6165 %}
  6167 // Materialize long value (predicated by immL_cheap).
  6168 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6169   match(Set dst con);
  6170   effect(KILL tmp);
  6171   ins_cost(DEFAULT_COST * 3);
  6172   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6173   ins_encode %{
  6174     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6175   %}
  6176   ins_pipe(loadConL);
  6177 %}
  6179 // Load long value from constant table (predicated by immL_expensive).
  6180 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6181   match(Set dst con);
  6182   ins_cost(MEMORY_REF_COST);
  6183   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6184   ins_encode %{
  6185       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6186     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6187   %}
  6188   ins_pipe(loadConL);
  6189 %}
  6191 instruct loadConL0( iRegL dst, immL0 src ) %{
  6192   match(Set dst src);
  6193   ins_cost(DEFAULT_COST);
  6194   size(4);
  6195   format %{ "CLR    $dst\t! long" %}
  6196   ins_encode( Set13( src, dst ) );
  6197   ins_pipe(ialu_imm);
  6198 %}
  6200 instruct loadConL13( iRegL dst, immL13 src ) %{
  6201   match(Set dst src);
  6202   ins_cost(DEFAULT_COST * 2);
  6204   size(4);
  6205   format %{ "MOV    $src,$dst\t! long" %}
  6206   ins_encode( Set13( src, dst ) );
  6207   ins_pipe(ialu_imm);
  6208 %}
  6210 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6211   match(Set dst con);
  6212   effect(KILL tmp);
  6213   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6214   ins_encode %{
  6215       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6216     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6217   %}
  6218   ins_pipe(loadConFD);
  6219 %}
  6221 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6222   match(Set dst con);
  6223   effect(KILL tmp);
  6224   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6225   ins_encode %{
  6226     // XXX This is a quick fix for 6833573.
  6227     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6228     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6229     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6230   %}
  6231   ins_pipe(loadConFD);
  6232 %}
  6234 // Prefetch instructions.
  6235 // Must be safe to execute with invalid address (cannot fault).
  6237 instruct prefetchr( memory mem ) %{
  6238   match( PrefetchRead mem );
  6239   ins_cost(MEMORY_REF_COST);
  6240   size(4);
  6242   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6243   opcode(Assembler::prefetch_op3);
  6244   ins_encode( form3_mem_prefetch_read( mem ) );
  6245   ins_pipe(iload_mem);
  6246 %}
  6248 instruct prefetchw( memory mem ) %{
  6249   match( PrefetchWrite mem );
  6250   ins_cost(MEMORY_REF_COST);
  6251   size(4);
  6253   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6254   opcode(Assembler::prefetch_op3);
  6255   ins_encode( form3_mem_prefetch_write( mem ) );
  6256   ins_pipe(iload_mem);
  6257 %}
  6259 // Prefetch instructions for allocation.
  6261 instruct prefetchAlloc( memory mem ) %{
  6262   predicate(AllocatePrefetchInstr == 0);
  6263   match( PrefetchAllocation mem );
  6264   ins_cost(MEMORY_REF_COST);
  6265   size(4);
  6267   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6268   opcode(Assembler::prefetch_op3);
  6269   ins_encode( form3_mem_prefetch_write( mem ) );
  6270   ins_pipe(iload_mem);
  6271 %}
  6273 // Use BIS instruction to prefetch for allocation.
  6274 // Could fault, need space at the end of TLAB.
  6275 instruct prefetchAlloc_bis( iRegP dst ) %{
  6276   predicate(AllocatePrefetchInstr == 1);
  6277   match( PrefetchAllocation dst );
  6278   ins_cost(MEMORY_REF_COST);
  6279   size(4);
  6281   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6282   ins_encode %{
  6283     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6284   %}
  6285   ins_pipe(istore_mem_reg);
  6286 %}
  6288 // Next code is used for finding next cache line address to prefetch.
  6289 #ifndef _LP64
  6290 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6291   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6292   ins_cost(DEFAULT_COST);
  6293   size(4);
  6295   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6296   ins_encode %{
  6297     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6298   %}
  6299   ins_pipe(ialu_reg_imm);
  6300 %}
  6301 #else
  6302 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6303   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6304   ins_cost(DEFAULT_COST);
  6305   size(4);
  6307   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6308   ins_encode %{
  6309     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6310   %}
  6311   ins_pipe(ialu_reg_imm);
  6312 %}
  6313 #endif
  6315 //----------Store Instructions-------------------------------------------------
  6316 // Store Byte
  6317 instruct storeB(memory mem, iRegI src) %{
  6318   match(Set mem (StoreB mem src));
  6319   ins_cost(MEMORY_REF_COST);
  6321   size(4);
  6322   format %{ "STB    $src,$mem\t! byte" %}
  6323   opcode(Assembler::stb_op3);
  6324   ins_encode(simple_form3_mem_reg( mem, src ) );
  6325   ins_pipe(istore_mem_reg);
  6326 %}
  6328 instruct storeB0(memory mem, immI0 src) %{
  6329   match(Set mem (StoreB mem src));
  6330   ins_cost(MEMORY_REF_COST);
  6332   size(4);
  6333   format %{ "STB    $src,$mem\t! byte" %}
  6334   opcode(Assembler::stb_op3);
  6335   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6336   ins_pipe(istore_mem_zero);
  6337 %}
  6339 instruct storeCM0(memory mem, immI0 src) %{
  6340   match(Set mem (StoreCM mem src));
  6341   ins_cost(MEMORY_REF_COST);
  6343   size(4);
  6344   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6345   opcode(Assembler::stb_op3);
  6346   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6347   ins_pipe(istore_mem_zero);
  6348 %}
  6350 // Store Char/Short
  6351 instruct storeC(memory mem, iRegI src) %{
  6352   match(Set mem (StoreC mem src));
  6353   ins_cost(MEMORY_REF_COST);
  6355   size(4);
  6356   format %{ "STH    $src,$mem\t! short" %}
  6357   opcode(Assembler::sth_op3);
  6358   ins_encode(simple_form3_mem_reg( mem, src ) );
  6359   ins_pipe(istore_mem_reg);
  6360 %}
  6362 instruct storeC0(memory mem, immI0 src) %{
  6363   match(Set mem (StoreC mem src));
  6364   ins_cost(MEMORY_REF_COST);
  6366   size(4);
  6367   format %{ "STH    $src,$mem\t! short" %}
  6368   opcode(Assembler::sth_op3);
  6369   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6370   ins_pipe(istore_mem_zero);
  6371 %}
  6373 // Store Integer
  6374 instruct storeI(memory mem, iRegI src) %{
  6375   match(Set mem (StoreI mem src));
  6376   ins_cost(MEMORY_REF_COST);
  6378   size(4);
  6379   format %{ "STW    $src,$mem" %}
  6380   opcode(Assembler::stw_op3);
  6381   ins_encode(simple_form3_mem_reg( mem, src ) );
  6382   ins_pipe(istore_mem_reg);
  6383 %}
  6385 // Store Long
  6386 instruct storeL(memory mem, iRegL src) %{
  6387   match(Set mem (StoreL mem src));
  6388   ins_cost(MEMORY_REF_COST);
  6389   size(4);
  6390   format %{ "STX    $src,$mem\t! long" %}
  6391   opcode(Assembler::stx_op3);
  6392   ins_encode(simple_form3_mem_reg( mem, src ) );
  6393   ins_pipe(istore_mem_reg);
  6394 %}
  6396 instruct storeI0(memory mem, immI0 src) %{
  6397   match(Set mem (StoreI mem src));
  6398   ins_cost(MEMORY_REF_COST);
  6400   size(4);
  6401   format %{ "STW    $src,$mem" %}
  6402   opcode(Assembler::stw_op3);
  6403   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6404   ins_pipe(istore_mem_zero);
  6405 %}
  6407 instruct storeL0(memory mem, immL0 src) %{
  6408   match(Set mem (StoreL mem src));
  6409   ins_cost(MEMORY_REF_COST);
  6411   size(4);
  6412   format %{ "STX    $src,$mem" %}
  6413   opcode(Assembler::stx_op3);
  6414   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6415   ins_pipe(istore_mem_zero);
  6416 %}
  6418 // Store Integer from float register (used after fstoi)
  6419 instruct storeI_Freg(memory mem, regF src) %{
  6420   match(Set mem (StoreI mem src));
  6421   ins_cost(MEMORY_REF_COST);
  6423   size(4);
  6424   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6425   opcode(Assembler::stf_op3);
  6426   ins_encode(simple_form3_mem_reg( mem, src ) );
  6427   ins_pipe(fstoreF_mem_reg);
  6428 %}
  6430 // Store Pointer
  6431 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6432   match(Set dst (StoreP dst src));
  6433   ins_cost(MEMORY_REF_COST);
  6434   size(4);
  6436 #ifndef _LP64
  6437   format %{ "STW    $src,$dst\t! ptr" %}
  6438   opcode(Assembler::stw_op3, 0, REGP_OP);
  6439 #else
  6440   format %{ "STX    $src,$dst\t! ptr" %}
  6441   opcode(Assembler::stx_op3, 0, REGP_OP);
  6442 #endif
  6443   ins_encode( form3_mem_reg( dst, src ) );
  6444   ins_pipe(istore_mem_spORreg);
  6445 %}
  6447 instruct storeP0(memory dst, immP0 src) %{
  6448   match(Set dst (StoreP dst src));
  6449   ins_cost(MEMORY_REF_COST);
  6450   size(4);
  6452 #ifndef _LP64
  6453   format %{ "STW    $src,$dst\t! ptr" %}
  6454   opcode(Assembler::stw_op3, 0, REGP_OP);
  6455 #else
  6456   format %{ "STX    $src,$dst\t! ptr" %}
  6457   opcode(Assembler::stx_op3, 0, REGP_OP);
  6458 #endif
  6459   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6460   ins_pipe(istore_mem_zero);
  6461 %}
  6463 // Store Compressed Pointer
  6464 instruct storeN(memory dst, iRegN src) %{
  6465    match(Set dst (StoreN dst src));
  6466    ins_cost(MEMORY_REF_COST);
  6467    size(4);
  6469    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6470    ins_encode %{
  6471      Register base = as_Register($dst$$base);
  6472      Register index = as_Register($dst$$index);
  6473      Register src = $src$$Register;
  6474      if (index != G0) {
  6475        __ stw(src, base, index);
  6476      } else {
  6477        __ stw(src, base, $dst$$disp);
  6479    %}
  6480    ins_pipe(istore_mem_spORreg);
  6481 %}
  6483 instruct storeNKlass(memory dst, iRegN src) %{
  6484    match(Set dst (StoreNKlass dst src));
  6485    ins_cost(MEMORY_REF_COST);
  6486    size(4);
  6488    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6489    ins_encode %{
  6490      Register base = as_Register($dst$$base);
  6491      Register index = as_Register($dst$$index);
  6492      Register src = $src$$Register;
  6493      if (index != G0) {
  6494        __ stw(src, base, index);
  6495      } else {
  6496        __ stw(src, base, $dst$$disp);
  6498    %}
  6499    ins_pipe(istore_mem_spORreg);
  6500 %}
  6502 instruct storeN0(memory dst, immN0 src) %{
  6503    match(Set dst (StoreN dst src));
  6504    ins_cost(MEMORY_REF_COST);
  6505    size(4);
  6507    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6508    ins_encode %{
  6509      Register base = as_Register($dst$$base);
  6510      Register index = as_Register($dst$$index);
  6511      if (index != G0) {
  6512        __ stw(0, base, index);
  6513      } else {
  6514        __ stw(0, base, $dst$$disp);
  6516    %}
  6517    ins_pipe(istore_mem_zero);
  6518 %}
  6520 // Store Double
  6521 instruct storeD( memory mem, regD src) %{
  6522   match(Set mem (StoreD mem src));
  6523   ins_cost(MEMORY_REF_COST);
  6525   size(4);
  6526   format %{ "STDF   $src,$mem" %}
  6527   opcode(Assembler::stdf_op3);
  6528   ins_encode(simple_form3_mem_reg( mem, src ) );
  6529   ins_pipe(fstoreD_mem_reg);
  6530 %}
  6532 instruct storeD0( memory mem, immD0 src) %{
  6533   match(Set mem (StoreD mem src));
  6534   ins_cost(MEMORY_REF_COST);
  6536   size(4);
  6537   format %{ "STX    $src,$mem" %}
  6538   opcode(Assembler::stx_op3);
  6539   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6540   ins_pipe(fstoreD_mem_zero);
  6541 %}
  6543 // Store Float
  6544 instruct storeF( memory mem, regF src) %{
  6545   match(Set mem (StoreF mem src));
  6546   ins_cost(MEMORY_REF_COST);
  6548   size(4);
  6549   format %{ "STF    $src,$mem" %}
  6550   opcode(Assembler::stf_op3);
  6551   ins_encode(simple_form3_mem_reg( mem, src ) );
  6552   ins_pipe(fstoreF_mem_reg);
  6553 %}
  6555 instruct storeF0( memory mem, immF0 src) %{
  6556   match(Set mem (StoreF mem src));
  6557   ins_cost(MEMORY_REF_COST);
  6559   size(4);
  6560   format %{ "STW    $src,$mem\t! storeF0" %}
  6561   opcode(Assembler::stw_op3);
  6562   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6563   ins_pipe(fstoreF_mem_zero);
  6564 %}
  6566 // Convert oop pointer into compressed form
  6567 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6568   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6569   match(Set dst (EncodeP src));
  6570   format %{ "encode_heap_oop $src, $dst" %}
  6571   ins_encode %{
  6572     __ encode_heap_oop($src$$Register, $dst$$Register);
  6573   %}
  6574   ins_pipe(ialu_reg);
  6575 %}
  6577 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6578   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6579   match(Set dst (EncodeP src));
  6580   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6581   ins_encode %{
  6582     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6583   %}
  6584   ins_pipe(ialu_reg);
  6585 %}
  6587 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6588   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6589             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6590   match(Set dst (DecodeN src));
  6591   format %{ "decode_heap_oop $src, $dst" %}
  6592   ins_encode %{
  6593     __ decode_heap_oop($src$$Register, $dst$$Register);
  6594   %}
  6595   ins_pipe(ialu_reg);
  6596 %}
  6598 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6599   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6600             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6601   match(Set dst (DecodeN src));
  6602   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6603   ins_encode %{
  6604     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6605   %}
  6606   ins_pipe(ialu_reg);
  6607 %}
  6609 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6610   match(Set dst (EncodePKlass src));
  6611   format %{ "encode_klass_not_null $src, $dst" %}
  6612   ins_encode %{
  6613     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6614   %}
  6615   ins_pipe(ialu_reg);
  6616 %}
  6618 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6619   match(Set dst (DecodeNKlass src));
  6620   format %{ "decode_klass_not_null $src, $dst" %}
  6621   ins_encode %{
  6622     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6623   %}
  6624   ins_pipe(ialu_reg);
  6625 %}
  6627 //----------MemBar Instructions-----------------------------------------------
  6628 // Memory barrier flavors
  6630 instruct membar_acquire() %{
  6631   match(MemBarAcquire);
  6632   ins_cost(4*MEMORY_REF_COST);
  6634   size(0);
  6635   format %{ "MEMBAR-acquire" %}
  6636   ins_encode( enc_membar_acquire );
  6637   ins_pipe(long_memory_op);
  6638 %}
  6640 instruct membar_acquire_lock() %{
  6641   match(MemBarAcquireLock);
  6642   ins_cost(0);
  6644   size(0);
  6645   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6646   ins_encode( );
  6647   ins_pipe(empty);
  6648 %}
  6650 instruct membar_release() %{
  6651   match(MemBarRelease);
  6652   ins_cost(4*MEMORY_REF_COST);
  6654   size(0);
  6655   format %{ "MEMBAR-release" %}
  6656   ins_encode( enc_membar_release );
  6657   ins_pipe(long_memory_op);
  6658 %}
  6660 instruct membar_release_lock() %{
  6661   match(MemBarReleaseLock);
  6662   ins_cost(0);
  6664   size(0);
  6665   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6666   ins_encode( );
  6667   ins_pipe(empty);
  6668 %}
  6670 instruct membar_volatile() %{
  6671   match(MemBarVolatile);
  6672   ins_cost(4*MEMORY_REF_COST);
  6674   size(4);
  6675   format %{ "MEMBAR-volatile" %}
  6676   ins_encode( enc_membar_volatile );
  6677   ins_pipe(long_memory_op);
  6678 %}
  6680 instruct unnecessary_membar_volatile() %{
  6681   match(MemBarVolatile);
  6682   predicate(Matcher::post_store_load_barrier(n));
  6683   ins_cost(0);
  6685   size(0);
  6686   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6687   ins_encode( );
  6688   ins_pipe(empty);
  6689 %}
  6691 instruct membar_storestore() %{
  6692   match(MemBarStoreStore);
  6693   ins_cost(0);
  6695   size(0);
  6696   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6697   ins_encode( );
  6698   ins_pipe(empty);
  6699 %}
  6701 //----------Register Move Instructions-----------------------------------------
  6702 instruct roundDouble_nop(regD dst) %{
  6703   match(Set dst (RoundDouble dst));
  6704   ins_cost(0);
  6705   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6706   ins_encode( );
  6707   ins_pipe(empty);
  6708 %}
  6711 instruct roundFloat_nop(regF dst) %{
  6712   match(Set dst (RoundFloat dst));
  6713   ins_cost(0);
  6714   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6715   ins_encode( );
  6716   ins_pipe(empty);
  6717 %}
  6720 // Cast Index to Pointer for unsafe natives
  6721 instruct castX2P(iRegX src, iRegP dst) %{
  6722   match(Set dst (CastX2P src));
  6724   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6725   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6726   ins_pipe(ialu_reg);
  6727 %}
  6729 // Cast Pointer to Index for unsafe natives
  6730 instruct castP2X(iRegP src, iRegX dst) %{
  6731   match(Set dst (CastP2X src));
  6733   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6734   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6735   ins_pipe(ialu_reg);
  6736 %}
  6738 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6739   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6740   match(Set stkSlot src);   // chain rule
  6741   ins_cost(MEMORY_REF_COST);
  6742   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6743   opcode(Assembler::stdf_op3);
  6744   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6745   ins_pipe(fstoreD_stk_reg);
  6746 %}
  6748 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6749   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6750   match(Set dst stkSlot);   // chain rule
  6751   ins_cost(MEMORY_REF_COST);
  6752   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6753   opcode(Assembler::lddf_op3);
  6754   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6755   ins_pipe(floadD_stk);
  6756 %}
  6758 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6759   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6760   match(Set stkSlot src);   // chain rule
  6761   ins_cost(MEMORY_REF_COST);
  6762   format %{ "STF   $src,$stkSlot\t!stk" %}
  6763   opcode(Assembler::stf_op3);
  6764   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6765   ins_pipe(fstoreF_stk_reg);
  6766 %}
  6768 //----------Conditional Move---------------------------------------------------
  6769 // Conditional move
  6770 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6771   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6772   ins_cost(150);
  6773   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6774   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6775   ins_pipe(ialu_reg);
  6776 %}
  6778 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6779   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6780   ins_cost(140);
  6781   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6782   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6783   ins_pipe(ialu_imm);
  6784 %}
  6786 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6787   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6788   ins_cost(150);
  6789   size(4);
  6790   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6791   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6792   ins_pipe(ialu_reg);
  6793 %}
  6795 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6796   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6797   ins_cost(140);
  6798   size(4);
  6799   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6800   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6801   ins_pipe(ialu_imm);
  6802 %}
  6804 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6805   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6806   ins_cost(150);
  6807   size(4);
  6808   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6809   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6810   ins_pipe(ialu_reg);
  6811 %}
  6813 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6814   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6815   ins_cost(140);
  6816   size(4);
  6817   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6818   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6819   ins_pipe(ialu_imm);
  6820 %}
  6822 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6823   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6824   ins_cost(150);
  6825   size(4);
  6826   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6827   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6828   ins_pipe(ialu_reg);
  6829 %}
  6831 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6832   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6833   ins_cost(140);
  6834   size(4);
  6835   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6836   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6837   ins_pipe(ialu_imm);
  6838 %}
  6840 // Conditional move for RegN. Only cmov(reg,reg).
  6841 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6842   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6843   ins_cost(150);
  6844   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6845   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6846   ins_pipe(ialu_reg);
  6847 %}
  6849 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6850 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6851   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6852   ins_cost(150);
  6853   size(4);
  6854   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6855   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6856   ins_pipe(ialu_reg);
  6857 %}
  6859 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6860 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6861   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6862   ins_cost(150);
  6863   size(4);
  6864   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6865   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6866   ins_pipe(ialu_reg);
  6867 %}
  6869 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6870   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6871   ins_cost(150);
  6872   size(4);
  6873   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6874   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6875   ins_pipe(ialu_reg);
  6876 %}
  6878 // Conditional move
  6879 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6880   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6881   ins_cost(150);
  6882   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6883   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6884   ins_pipe(ialu_reg);
  6885 %}
  6887 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6888   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6889   ins_cost(140);
  6890   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6891   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6892   ins_pipe(ialu_imm);
  6893 %}
  6895 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6896 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6897   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6898   ins_cost(150);
  6900   size(4);
  6901   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6902   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6903   ins_pipe(ialu_reg);
  6904 %}
  6906 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6907   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6908   ins_cost(150);
  6910   size(4);
  6911   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6912   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6913   ins_pipe(ialu_reg);
  6914 %}
  6916 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6917   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6918   ins_cost(140);
  6920   size(4);
  6921   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6922   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6923   ins_pipe(ialu_imm);
  6924 %}
  6926 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6927   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6928   ins_cost(140);
  6930   size(4);
  6931   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6932   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6933   ins_pipe(ialu_imm);
  6934 %}
  6936 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6937   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6938   ins_cost(150);
  6939   size(4);
  6940   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6941   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6942   ins_pipe(ialu_imm);
  6943 %}
  6945 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6946   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6947   ins_cost(140);
  6948   size(4);
  6949   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6950   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6951   ins_pipe(ialu_imm);
  6952 %}
  6954 // Conditional move
  6955 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6956   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6957   ins_cost(150);
  6958   opcode(0x101);
  6959   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6960   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6961   ins_pipe(int_conditional_float_move);
  6962 %}
  6964 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6965   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6966   ins_cost(150);
  6968   size(4);
  6969   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6970   opcode(0x101);
  6971   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6972   ins_pipe(int_conditional_float_move);
  6973 %}
  6975 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6976   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6977   ins_cost(150);
  6979   size(4);
  6980   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6981   opcode(0x101);
  6982   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6983   ins_pipe(int_conditional_float_move);
  6984 %}
  6986 // Conditional move,
  6987 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6988   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6989   ins_cost(150);
  6990   size(4);
  6991   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6992   opcode(0x1);
  6993   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6994   ins_pipe(int_conditional_double_move);
  6995 %}
  6997 // Conditional move
  6998 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6999   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7000   ins_cost(150);
  7001   size(4);
  7002   opcode(0x102);
  7003   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7004   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7005   ins_pipe(int_conditional_double_move);
  7006 %}
  7008 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7009   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7010   ins_cost(150);
  7012   size(4);
  7013   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7014   opcode(0x102);
  7015   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7016   ins_pipe(int_conditional_double_move);
  7017 %}
  7019 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7020   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7021   ins_cost(150);
  7023   size(4);
  7024   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7025   opcode(0x102);
  7026   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7027   ins_pipe(int_conditional_double_move);
  7028 %}
  7030 // Conditional move,
  7031 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7032   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7033   ins_cost(150);
  7034   size(4);
  7035   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7036   opcode(0x2);
  7037   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7038   ins_pipe(int_conditional_double_move);
  7039 %}
  7041 // Conditional move
  7042 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7043   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7044   ins_cost(150);
  7045   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7046   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7047   ins_pipe(ialu_reg);
  7048 %}
  7050 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7051   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7052   ins_cost(140);
  7053   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7054   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7055   ins_pipe(ialu_imm);
  7056 %}
  7058 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7059   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7060   ins_cost(150);
  7062   size(4);
  7063   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7064   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7065   ins_pipe(ialu_reg);
  7066 %}
  7069 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7070   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7071   ins_cost(150);
  7073   size(4);
  7074   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7075   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7076   ins_pipe(ialu_reg);
  7077 %}
  7080 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7081   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7082   ins_cost(150);
  7084   size(4);
  7085   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7086   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7087   ins_pipe(ialu_reg);
  7088 %}
  7092 //----------OS and Locking Instructions----------------------------------------
  7094 // This name is KNOWN by the ADLC and cannot be changed.
  7095 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7096 // for this guy.
  7097 instruct tlsLoadP(g2RegP dst) %{
  7098   match(Set dst (ThreadLocal));
  7100   size(0);
  7101   ins_cost(0);
  7102   format %{ "# TLS is in G2" %}
  7103   ins_encode( /*empty encoding*/ );
  7104   ins_pipe(ialu_none);
  7105 %}
  7107 instruct checkCastPP( iRegP dst ) %{
  7108   match(Set dst (CheckCastPP dst));
  7110   size(0);
  7111   format %{ "# checkcastPP of $dst" %}
  7112   ins_encode( /*empty encoding*/ );
  7113   ins_pipe(empty);
  7114 %}
  7117 instruct castPP( iRegP dst ) %{
  7118   match(Set dst (CastPP dst));
  7119   format %{ "# castPP of $dst" %}
  7120   ins_encode( /*empty encoding*/ );
  7121   ins_pipe(empty);
  7122 %}
  7124 instruct castII( iRegI dst ) %{
  7125   match(Set dst (CastII dst));
  7126   format %{ "# castII of $dst" %}
  7127   ins_encode( /*empty encoding*/ );
  7128   ins_cost(0);
  7129   ins_pipe(empty);
  7130 %}
  7132 //----------Arithmetic Instructions--------------------------------------------
  7133 // Addition Instructions
  7134 // Register Addition
  7135 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7136   match(Set dst (AddI src1 src2));
  7138   size(4);
  7139   format %{ "ADD    $src1,$src2,$dst" %}
  7140   ins_encode %{
  7141     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7142   %}
  7143   ins_pipe(ialu_reg_reg);
  7144 %}
  7146 // Immediate Addition
  7147 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7148   match(Set dst (AddI src1 src2));
  7150   size(4);
  7151   format %{ "ADD    $src1,$src2,$dst" %}
  7152   opcode(Assembler::add_op3, Assembler::arith_op);
  7153   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7154   ins_pipe(ialu_reg_imm);
  7155 %}
  7157 // Pointer Register Addition
  7158 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7159   match(Set dst (AddP src1 src2));
  7161   size(4);
  7162   format %{ "ADD    $src1,$src2,$dst" %}
  7163   opcode(Assembler::add_op3, Assembler::arith_op);
  7164   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7165   ins_pipe(ialu_reg_reg);
  7166 %}
  7168 // Pointer Immediate Addition
  7169 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7170   match(Set dst (AddP src1 src2));
  7172   size(4);
  7173   format %{ "ADD    $src1,$src2,$dst" %}
  7174   opcode(Assembler::add_op3, Assembler::arith_op);
  7175   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7176   ins_pipe(ialu_reg_imm);
  7177 %}
  7179 // Long Addition
  7180 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7181   match(Set dst (AddL src1 src2));
  7183   size(4);
  7184   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7185   opcode(Assembler::add_op3, Assembler::arith_op);
  7186   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7187   ins_pipe(ialu_reg_reg);
  7188 %}
  7190 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7191   match(Set dst (AddL src1 con));
  7193   size(4);
  7194   format %{ "ADD    $src1,$con,$dst" %}
  7195   opcode(Assembler::add_op3, Assembler::arith_op);
  7196   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7197   ins_pipe(ialu_reg_imm);
  7198 %}
  7200 //----------Conditional_store--------------------------------------------------
  7201 // Conditional-store of the updated heap-top.
  7202 // Used during allocation of the shared heap.
  7203 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7205 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7206 instruct loadPLocked(iRegP dst, memory mem) %{
  7207   match(Set dst (LoadPLocked mem));
  7208   ins_cost(MEMORY_REF_COST);
  7210 #ifndef _LP64
  7211   size(4);
  7212   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7213   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7214 #else
  7215   format %{ "LDX    $mem,$dst\t! ptr" %}
  7216   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7217 #endif
  7218   ins_encode( form3_mem_reg( mem, dst ) );
  7219   ins_pipe(iload_mem);
  7220 %}
  7222 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7223   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7224   effect( KILL newval );
  7225   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7226             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7227   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7228   ins_pipe( long_memory_op );
  7229 %}
  7231 // Conditional-store of an int value.
  7232 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7233   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7234   effect( KILL newval );
  7235   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7236             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7237   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7238   ins_pipe( long_memory_op );
  7239 %}
  7241 // Conditional-store of a long value.
  7242 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7243   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7244   effect( KILL newval );
  7245   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7246             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7247   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7248   ins_pipe( long_memory_op );
  7249 %}
  7251 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7253 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7254   predicate(VM_Version::supports_cx8());
  7255   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7256   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7257   format %{
  7258             "MOV    $newval,O7\n\t"
  7259             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7260             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7261             "MOV    1,$res\n\t"
  7262             "MOVne  xcc,R_G0,$res"
  7263   %}
  7264   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7265               enc_lflags_ne_to_boolean(res) );
  7266   ins_pipe( long_memory_op );
  7267 %}
  7270 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7271   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7272   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7273   format %{
  7274             "MOV    $newval,O7\n\t"
  7275             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7276             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7277             "MOV    1,$res\n\t"
  7278             "MOVne  icc,R_G0,$res"
  7279   %}
  7280   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7281               enc_iflags_ne_to_boolean(res) );
  7282   ins_pipe( long_memory_op );
  7283 %}
  7285 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7286 #ifdef _LP64
  7287   predicate(VM_Version::supports_cx8());
  7288 #endif
  7289   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7290   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7291   format %{
  7292             "MOV    $newval,O7\n\t"
  7293             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7294             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7295             "MOV    1,$res\n\t"
  7296             "MOVne  xcc,R_G0,$res"
  7297   %}
  7298 #ifdef _LP64
  7299   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7300               enc_lflags_ne_to_boolean(res) );
  7301 #else
  7302   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7303               enc_iflags_ne_to_boolean(res) );
  7304 #endif
  7305   ins_pipe( long_memory_op );
  7306 %}
  7308 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7309   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7310   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7311   format %{
  7312             "MOV    $newval,O7\n\t"
  7313             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7314             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7315             "MOV    1,$res\n\t"
  7316             "MOVne  icc,R_G0,$res"
  7317   %}
  7318   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7319               enc_iflags_ne_to_boolean(res) );
  7320   ins_pipe( long_memory_op );
  7321 %}
  7323 instruct xchgI( memory mem, iRegI newval) %{
  7324   match(Set newval (GetAndSetI mem newval));
  7325   format %{ "SWAP  [$mem],$newval" %}
  7326   size(4);
  7327   ins_encode %{
  7328     __ swap($mem$$Address, $newval$$Register);
  7329   %}
  7330   ins_pipe( long_memory_op );
  7331 %}
  7333 #ifndef _LP64
  7334 instruct xchgP( memory mem, iRegP newval) %{
  7335   match(Set newval (GetAndSetP mem newval));
  7336   format %{ "SWAP  [$mem],$newval" %}
  7337   size(4);
  7338   ins_encode %{
  7339     __ swap($mem$$Address, $newval$$Register);
  7340   %}
  7341   ins_pipe( long_memory_op );
  7342 %}
  7343 #endif
  7345 instruct xchgN( memory mem, iRegN newval) %{
  7346   match(Set newval (GetAndSetN mem newval));
  7347   format %{ "SWAP  [$mem],$newval" %}
  7348   size(4);
  7349   ins_encode %{
  7350     __ swap($mem$$Address, $newval$$Register);
  7351   %}
  7352   ins_pipe( long_memory_op );
  7353 %}
  7355 //---------------------
  7356 // Subtraction Instructions
  7357 // Register Subtraction
  7358 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7359   match(Set dst (SubI src1 src2));
  7361   size(4);
  7362   format %{ "SUB    $src1,$src2,$dst" %}
  7363   opcode(Assembler::sub_op3, Assembler::arith_op);
  7364   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7365   ins_pipe(ialu_reg_reg);
  7366 %}
  7368 // Immediate Subtraction
  7369 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7370   match(Set dst (SubI src1 src2));
  7372   size(4);
  7373   format %{ "SUB    $src1,$src2,$dst" %}
  7374   opcode(Assembler::sub_op3, Assembler::arith_op);
  7375   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7376   ins_pipe(ialu_reg_imm);
  7377 %}
  7379 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7380   match(Set dst (SubI zero src2));
  7382   size(4);
  7383   format %{ "NEG    $src2,$dst" %}
  7384   opcode(Assembler::sub_op3, Assembler::arith_op);
  7385   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7386   ins_pipe(ialu_zero_reg);
  7387 %}
  7389 // Long subtraction
  7390 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7391   match(Set dst (SubL src1 src2));
  7393   size(4);
  7394   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7395   opcode(Assembler::sub_op3, Assembler::arith_op);
  7396   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7397   ins_pipe(ialu_reg_reg);
  7398 %}
  7400 // Immediate Subtraction
  7401 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7402   match(Set dst (SubL src1 con));
  7404   size(4);
  7405   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7406   opcode(Assembler::sub_op3, Assembler::arith_op);
  7407   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7408   ins_pipe(ialu_reg_imm);
  7409 %}
  7411 // Long negation
  7412 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7413   match(Set dst (SubL zero src2));
  7415   size(4);
  7416   format %{ "NEG    $src2,$dst\t! long" %}
  7417   opcode(Assembler::sub_op3, Assembler::arith_op);
  7418   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7419   ins_pipe(ialu_zero_reg);
  7420 %}
  7422 // Multiplication Instructions
  7423 // Integer Multiplication
  7424 // Register Multiplication
  7425 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7426   match(Set dst (MulI src1 src2));
  7428   size(4);
  7429   format %{ "MULX   $src1,$src2,$dst" %}
  7430   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7431   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7432   ins_pipe(imul_reg_reg);
  7433 %}
  7435 // Immediate Multiplication
  7436 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7437   match(Set dst (MulI src1 src2));
  7439   size(4);
  7440   format %{ "MULX   $src1,$src2,$dst" %}
  7441   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7442   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7443   ins_pipe(imul_reg_imm);
  7444 %}
  7446 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7447   match(Set dst (MulL src1 src2));
  7448   ins_cost(DEFAULT_COST * 5);
  7449   size(4);
  7450   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7451   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7452   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7453   ins_pipe(mulL_reg_reg);
  7454 %}
  7456 // Immediate Multiplication
  7457 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7458   match(Set dst (MulL src1 src2));
  7459   ins_cost(DEFAULT_COST * 5);
  7460   size(4);
  7461   format %{ "MULX   $src1,$src2,$dst" %}
  7462   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7463   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7464   ins_pipe(mulL_reg_imm);
  7465 %}
  7467 // Integer Division
  7468 // Register Division
  7469 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7470   match(Set dst (DivI src1 src2));
  7471   ins_cost((2+71)*DEFAULT_COST);
  7473   format %{ "SRA     $src2,0,$src2\n\t"
  7474             "SRA     $src1,0,$src1\n\t"
  7475             "SDIVX   $src1,$src2,$dst" %}
  7476   ins_encode( idiv_reg( src1, src2, dst ) );
  7477   ins_pipe(sdiv_reg_reg);
  7478 %}
  7480 // Immediate Division
  7481 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7482   match(Set dst (DivI src1 src2));
  7483   ins_cost((2+71)*DEFAULT_COST);
  7485   format %{ "SRA     $src1,0,$src1\n\t"
  7486             "SDIVX   $src1,$src2,$dst" %}
  7487   ins_encode( idiv_imm( src1, src2, dst ) );
  7488   ins_pipe(sdiv_reg_imm);
  7489 %}
  7491 //----------Div-By-10-Expansion------------------------------------------------
  7492 // Extract hi bits of a 32x32->64 bit multiply.
  7493 // Expand rule only, not matched
  7494 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7495   effect( DEF dst, USE src1, USE src2 );
  7496   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7497             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7498   ins_encode( enc_mul_hi(dst,src1,src2));
  7499   ins_pipe(sdiv_reg_reg);
  7500 %}
  7502 // Magic constant, reciprocal of 10
  7503 instruct loadConI_x66666667(iRegIsafe dst) %{
  7504   effect( DEF dst );
  7506   size(8);
  7507   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7508   ins_encode( Set32(0x66666667, dst) );
  7509   ins_pipe(ialu_hi_lo_reg);
  7510 %}
  7512 // Register Shift Right Arithmetic Long by 32-63
  7513 instruct sra_31( iRegI dst, iRegI src ) %{
  7514   effect( DEF dst, USE src );
  7515   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7516   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7517   ins_pipe(ialu_reg_reg);
  7518 %}
  7520 // Arithmetic Shift Right by 8-bit immediate
  7521 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7522   effect( DEF dst, USE src );
  7523   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7524   opcode(Assembler::sra_op3, Assembler::arith_op);
  7525   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7526   ins_pipe(ialu_reg_imm);
  7527 %}
  7529 // Integer DIV with 10
  7530 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7531   match(Set dst (DivI src div));
  7532   ins_cost((6+6)*DEFAULT_COST);
  7533   expand %{
  7534     iRegIsafe tmp1;               // Killed temps;
  7535     iRegIsafe tmp2;               // Killed temps;
  7536     iRegI tmp3;                   // Killed temps;
  7537     iRegI tmp4;                   // Killed temps;
  7538     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7539     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7540     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7541     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7542     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7543   %}
  7544 %}
  7546 // Register Long Division
  7547 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7548   match(Set dst (DivL src1 src2));
  7549   ins_cost(DEFAULT_COST*71);
  7550   size(4);
  7551   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7552   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7553   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7554   ins_pipe(divL_reg_reg);
  7555 %}
  7557 // Register Long Division
  7558 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7559   match(Set dst (DivL src1 src2));
  7560   ins_cost(DEFAULT_COST*71);
  7561   size(4);
  7562   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7563   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7564   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7565   ins_pipe(divL_reg_imm);
  7566 %}
  7568 // Integer Remainder
  7569 // Register Remainder
  7570 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7571   match(Set dst (ModI src1 src2));
  7572   effect( KILL ccr, KILL temp);
  7574   format %{ "SREM   $src1,$src2,$dst" %}
  7575   ins_encode( irem_reg(src1, src2, dst, temp) );
  7576   ins_pipe(sdiv_reg_reg);
  7577 %}
  7579 // Immediate Remainder
  7580 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7581   match(Set dst (ModI src1 src2));
  7582   effect( KILL ccr, KILL temp);
  7584   format %{ "SREM   $src1,$src2,$dst" %}
  7585   ins_encode( irem_imm(src1, src2, dst, temp) );
  7586   ins_pipe(sdiv_reg_imm);
  7587 %}
  7589 // Register Long Remainder
  7590 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7591   effect(DEF dst, USE src1, USE src2);
  7592   size(4);
  7593   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7594   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7595   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7596   ins_pipe(divL_reg_reg);
  7597 %}
  7599 // Register Long Division
  7600 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7601   effect(DEF dst, USE src1, USE src2);
  7602   size(4);
  7603   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7604   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7605   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7606   ins_pipe(divL_reg_imm);
  7607 %}
  7609 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7610   effect(DEF dst, USE src1, USE src2);
  7611   size(4);
  7612   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7613   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7614   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7615   ins_pipe(mulL_reg_reg);
  7616 %}
  7618 // Immediate Multiplication
  7619 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7620   effect(DEF dst, USE src1, USE src2);
  7621   size(4);
  7622   format %{ "MULX   $src1,$src2,$dst" %}
  7623   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7624   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7625   ins_pipe(mulL_reg_imm);
  7626 %}
  7628 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7629   effect(DEF dst, USE src1, USE src2);
  7630   size(4);
  7631   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7632   opcode(Assembler::sub_op3, Assembler::arith_op);
  7633   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7634   ins_pipe(ialu_reg_reg);
  7635 %}
  7637 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7638   effect(DEF dst, USE src1, USE src2);
  7639   size(4);
  7640   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7641   opcode(Assembler::sub_op3, Assembler::arith_op);
  7642   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7643   ins_pipe(ialu_reg_reg);
  7644 %}
  7646 // Register Long Remainder
  7647 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7648   match(Set dst (ModL src1 src2));
  7649   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7650   expand %{
  7651     iRegL tmp1;
  7652     iRegL tmp2;
  7653     divL_reg_reg_1(tmp1, src1, src2);
  7654     mulL_reg_reg_1(tmp2, tmp1, src2);
  7655     subL_reg_reg_1(dst,  src1, tmp2);
  7656   %}
  7657 %}
  7659 // Register Long Remainder
  7660 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7661   match(Set dst (ModL src1 src2));
  7662   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7663   expand %{
  7664     iRegL tmp1;
  7665     iRegL tmp2;
  7666     divL_reg_imm13_1(tmp1, src1, src2);
  7667     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7668     subL_reg_reg_2  (dst,  src1, tmp2);
  7669   %}
  7670 %}
  7672 // Integer Shift Instructions
  7673 // Register Shift Left
  7674 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7675   match(Set dst (LShiftI src1 src2));
  7677   size(4);
  7678   format %{ "SLL    $src1,$src2,$dst" %}
  7679   opcode(Assembler::sll_op3, Assembler::arith_op);
  7680   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7681   ins_pipe(ialu_reg_reg);
  7682 %}
  7684 // Register Shift Left Immediate
  7685 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7686   match(Set dst (LShiftI src1 src2));
  7688   size(4);
  7689   format %{ "SLL    $src1,$src2,$dst" %}
  7690   opcode(Assembler::sll_op3, Assembler::arith_op);
  7691   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7692   ins_pipe(ialu_reg_imm);
  7693 %}
  7695 // Register Shift Left
  7696 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7697   match(Set dst (LShiftL src1 src2));
  7699   size(4);
  7700   format %{ "SLLX   $src1,$src2,$dst" %}
  7701   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7702   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7703   ins_pipe(ialu_reg_reg);
  7704 %}
  7706 // Register Shift Left Immediate
  7707 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7708   match(Set dst (LShiftL src1 src2));
  7710   size(4);
  7711   format %{ "SLLX   $src1,$src2,$dst" %}
  7712   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7713   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7714   ins_pipe(ialu_reg_imm);
  7715 %}
  7717 // Register Arithmetic Shift Right
  7718 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7719   match(Set dst (RShiftI src1 src2));
  7720   size(4);
  7721   format %{ "SRA    $src1,$src2,$dst" %}
  7722   opcode(Assembler::sra_op3, Assembler::arith_op);
  7723   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7724   ins_pipe(ialu_reg_reg);
  7725 %}
  7727 // Register Arithmetic Shift Right Immediate
  7728 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7729   match(Set dst (RShiftI src1 src2));
  7731   size(4);
  7732   format %{ "SRA    $src1,$src2,$dst" %}
  7733   opcode(Assembler::sra_op3, Assembler::arith_op);
  7734   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7735   ins_pipe(ialu_reg_imm);
  7736 %}
  7738 // Register Shift Right Arithmatic Long
  7739 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7740   match(Set dst (RShiftL src1 src2));
  7742   size(4);
  7743   format %{ "SRAX   $src1,$src2,$dst" %}
  7744   opcode(Assembler::srax_op3, Assembler::arith_op);
  7745   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7746   ins_pipe(ialu_reg_reg);
  7747 %}
  7749 // Register Shift Left Immediate
  7750 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7751   match(Set dst (RShiftL src1 src2));
  7753   size(4);
  7754   format %{ "SRAX   $src1,$src2,$dst" %}
  7755   opcode(Assembler::srax_op3, Assembler::arith_op);
  7756   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7757   ins_pipe(ialu_reg_imm);
  7758 %}
  7760 // Register Shift Right
  7761 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7762   match(Set dst (URShiftI src1 src2));
  7764   size(4);
  7765   format %{ "SRL    $src1,$src2,$dst" %}
  7766   opcode(Assembler::srl_op3, Assembler::arith_op);
  7767   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7768   ins_pipe(ialu_reg_reg);
  7769 %}
  7771 // Register Shift Right Immediate
  7772 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7773   match(Set dst (URShiftI src1 src2));
  7775   size(4);
  7776   format %{ "SRL    $src1,$src2,$dst" %}
  7777   opcode(Assembler::srl_op3, Assembler::arith_op);
  7778   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7779   ins_pipe(ialu_reg_imm);
  7780 %}
  7782 // Register Shift Right
  7783 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7784   match(Set dst (URShiftL src1 src2));
  7786   size(4);
  7787   format %{ "SRLX   $src1,$src2,$dst" %}
  7788   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7789   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7790   ins_pipe(ialu_reg_reg);
  7791 %}
  7793 // Register Shift Right Immediate
  7794 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7795   match(Set dst (URShiftL src1 src2));
  7797   size(4);
  7798   format %{ "SRLX   $src1,$src2,$dst" %}
  7799   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7800   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7801   ins_pipe(ialu_reg_imm);
  7802 %}
  7804 // Register Shift Right Immediate with a CastP2X
  7805 #ifdef _LP64
  7806 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7807   match(Set dst (URShiftL (CastP2X src1) src2));
  7808   size(4);
  7809   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7810   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7811   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7812   ins_pipe(ialu_reg_imm);
  7813 %}
  7814 #else
  7815 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7816   match(Set dst (URShiftI (CastP2X src1) src2));
  7817   size(4);
  7818   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7819   opcode(Assembler::srl_op3, Assembler::arith_op);
  7820   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7821   ins_pipe(ialu_reg_imm);
  7822 %}
  7823 #endif
  7826 //----------Floating Point Arithmetic Instructions-----------------------------
  7828 //  Add float single precision
  7829 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7830   match(Set dst (AddF src1 src2));
  7832   size(4);
  7833   format %{ "FADDS  $src1,$src2,$dst" %}
  7834   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7835   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7836   ins_pipe(faddF_reg_reg);
  7837 %}
  7839 //  Add float double precision
  7840 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7841   match(Set dst (AddD src1 src2));
  7843   size(4);
  7844   format %{ "FADDD  $src1,$src2,$dst" %}
  7845   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7846   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7847   ins_pipe(faddD_reg_reg);
  7848 %}
  7850 //  Sub float single precision
  7851 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7852   match(Set dst (SubF src1 src2));
  7854   size(4);
  7855   format %{ "FSUBS  $src1,$src2,$dst" %}
  7856   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7857   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7858   ins_pipe(faddF_reg_reg);
  7859 %}
  7861 //  Sub float double precision
  7862 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7863   match(Set dst (SubD src1 src2));
  7865   size(4);
  7866   format %{ "FSUBD  $src1,$src2,$dst" %}
  7867   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7868   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7869   ins_pipe(faddD_reg_reg);
  7870 %}
  7872 //  Mul float single precision
  7873 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7874   match(Set dst (MulF src1 src2));
  7876   size(4);
  7877   format %{ "FMULS  $src1,$src2,$dst" %}
  7878   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7879   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7880   ins_pipe(fmulF_reg_reg);
  7881 %}
  7883 //  Mul float double precision
  7884 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7885   match(Set dst (MulD src1 src2));
  7887   size(4);
  7888   format %{ "FMULD  $src1,$src2,$dst" %}
  7889   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7890   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7891   ins_pipe(fmulD_reg_reg);
  7892 %}
  7894 //  Div float single precision
  7895 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7896   match(Set dst (DivF src1 src2));
  7898   size(4);
  7899   format %{ "FDIVS  $src1,$src2,$dst" %}
  7900   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7901   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7902   ins_pipe(fdivF_reg_reg);
  7903 %}
  7905 //  Div float double precision
  7906 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7907   match(Set dst (DivD src1 src2));
  7909   size(4);
  7910   format %{ "FDIVD  $src1,$src2,$dst" %}
  7911   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7912   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7913   ins_pipe(fdivD_reg_reg);
  7914 %}
  7916 //  Absolute float double precision
  7917 instruct absD_reg(regD dst, regD src) %{
  7918   match(Set dst (AbsD src));
  7920   format %{ "FABSd  $src,$dst" %}
  7921   ins_encode(fabsd(dst, src));
  7922   ins_pipe(faddD_reg);
  7923 %}
  7925 //  Absolute float single precision
  7926 instruct absF_reg(regF dst, regF src) %{
  7927   match(Set dst (AbsF src));
  7929   format %{ "FABSs  $src,$dst" %}
  7930   ins_encode(fabss(dst, src));
  7931   ins_pipe(faddF_reg);
  7932 %}
  7934 instruct negF_reg(regF dst, regF src) %{
  7935   match(Set dst (NegF src));
  7937   size(4);
  7938   format %{ "FNEGs  $src,$dst" %}
  7939   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7940   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7941   ins_pipe(faddF_reg);
  7942 %}
  7944 instruct negD_reg(regD dst, regD src) %{
  7945   match(Set dst (NegD src));
  7947   format %{ "FNEGd  $src,$dst" %}
  7948   ins_encode(fnegd(dst, src));
  7949   ins_pipe(faddD_reg);
  7950 %}
  7952 //  Sqrt float double precision
  7953 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7954   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7956   size(4);
  7957   format %{ "FSQRTS $src,$dst" %}
  7958   ins_encode(fsqrts(dst, src));
  7959   ins_pipe(fdivF_reg_reg);
  7960 %}
  7962 //  Sqrt float double precision
  7963 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7964   match(Set dst (SqrtD src));
  7966   size(4);
  7967   format %{ "FSQRTD $src,$dst" %}
  7968   ins_encode(fsqrtd(dst, src));
  7969   ins_pipe(fdivD_reg_reg);
  7970 %}
  7972 //----------Logical Instructions-----------------------------------------------
  7973 // And Instructions
  7974 // Register And
  7975 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7976   match(Set dst (AndI src1 src2));
  7978   size(4);
  7979   format %{ "AND    $src1,$src2,$dst" %}
  7980   opcode(Assembler::and_op3, Assembler::arith_op);
  7981   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7982   ins_pipe(ialu_reg_reg);
  7983 %}
  7985 // Immediate And
  7986 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7987   match(Set dst (AndI src1 src2));
  7989   size(4);
  7990   format %{ "AND    $src1,$src2,$dst" %}
  7991   opcode(Assembler::and_op3, Assembler::arith_op);
  7992   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7993   ins_pipe(ialu_reg_imm);
  7994 %}
  7996 // Register And Long
  7997 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7998   match(Set dst (AndL src1 src2));
  8000   ins_cost(DEFAULT_COST);
  8001   size(4);
  8002   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8003   opcode(Assembler::and_op3, Assembler::arith_op);
  8004   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8005   ins_pipe(ialu_reg_reg);
  8006 %}
  8008 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8009   match(Set dst (AndL src1 con));
  8011   ins_cost(DEFAULT_COST);
  8012   size(4);
  8013   format %{ "AND    $src1,$con,$dst\t! long" %}
  8014   opcode(Assembler::and_op3, Assembler::arith_op);
  8015   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8016   ins_pipe(ialu_reg_imm);
  8017 %}
  8019 // Or Instructions
  8020 // Register Or
  8021 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8022   match(Set dst (OrI src1 src2));
  8024   size(4);
  8025   format %{ "OR     $src1,$src2,$dst" %}
  8026   opcode(Assembler::or_op3, Assembler::arith_op);
  8027   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8028   ins_pipe(ialu_reg_reg);
  8029 %}
  8031 // Immediate Or
  8032 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8033   match(Set dst (OrI src1 src2));
  8035   size(4);
  8036   format %{ "OR     $src1,$src2,$dst" %}
  8037   opcode(Assembler::or_op3, Assembler::arith_op);
  8038   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8039   ins_pipe(ialu_reg_imm);
  8040 %}
  8042 // Register Or Long
  8043 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8044   match(Set dst (OrL src1 src2));
  8046   ins_cost(DEFAULT_COST);
  8047   size(4);
  8048   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8049   opcode(Assembler::or_op3, Assembler::arith_op);
  8050   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8051   ins_pipe(ialu_reg_reg);
  8052 %}
  8054 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8055   match(Set dst (OrL src1 con));
  8056   ins_cost(DEFAULT_COST*2);
  8058   ins_cost(DEFAULT_COST);
  8059   size(4);
  8060   format %{ "OR     $src1,$con,$dst\t! long" %}
  8061   opcode(Assembler::or_op3, Assembler::arith_op);
  8062   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8063   ins_pipe(ialu_reg_imm);
  8064 %}
  8066 #ifndef _LP64
  8068 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8069 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8070   match(Set dst (OrI src1 (CastP2X src2)));
  8072   size(4);
  8073   format %{ "OR     $src1,$src2,$dst" %}
  8074   opcode(Assembler::or_op3, Assembler::arith_op);
  8075   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8076   ins_pipe(ialu_reg_reg);
  8077 %}
  8079 #else
  8081 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8082   match(Set dst (OrL src1 (CastP2X src2)));
  8084   ins_cost(DEFAULT_COST);
  8085   size(4);
  8086   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8087   opcode(Assembler::or_op3, Assembler::arith_op);
  8088   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8089   ins_pipe(ialu_reg_reg);
  8090 %}
  8092 #endif
  8094 // Xor Instructions
  8095 // Register Xor
  8096 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8097   match(Set dst (XorI src1 src2));
  8099   size(4);
  8100   format %{ "XOR    $src1,$src2,$dst" %}
  8101   opcode(Assembler::xor_op3, Assembler::arith_op);
  8102   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8103   ins_pipe(ialu_reg_reg);
  8104 %}
  8106 // Immediate Xor
  8107 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8108   match(Set dst (XorI src1 src2));
  8110   size(4);
  8111   format %{ "XOR    $src1,$src2,$dst" %}
  8112   opcode(Assembler::xor_op3, Assembler::arith_op);
  8113   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8114   ins_pipe(ialu_reg_imm);
  8115 %}
  8117 // Register Xor Long
  8118 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8119   match(Set dst (XorL src1 src2));
  8121   ins_cost(DEFAULT_COST);
  8122   size(4);
  8123   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8124   opcode(Assembler::xor_op3, Assembler::arith_op);
  8125   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8126   ins_pipe(ialu_reg_reg);
  8127 %}
  8129 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8130   match(Set dst (XorL src1 con));
  8132   ins_cost(DEFAULT_COST);
  8133   size(4);
  8134   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8135   opcode(Assembler::xor_op3, Assembler::arith_op);
  8136   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8137   ins_pipe(ialu_reg_imm);
  8138 %}
  8140 //----------Convert to Boolean-------------------------------------------------
  8141 // Nice hack for 32-bit tests but doesn't work for
  8142 // 64-bit pointers.
  8143 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8144   match(Set dst (Conv2B src));
  8145   effect( KILL ccr );
  8146   ins_cost(DEFAULT_COST*2);
  8147   format %{ "CMP    R_G0,$src\n\t"
  8148             "ADDX   R_G0,0,$dst" %}
  8149   ins_encode( enc_to_bool( src, dst ) );
  8150   ins_pipe(ialu_reg_ialu);
  8151 %}
  8153 #ifndef _LP64
  8154 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8155   match(Set dst (Conv2B src));
  8156   effect( KILL ccr );
  8157   ins_cost(DEFAULT_COST*2);
  8158   format %{ "CMP    R_G0,$src\n\t"
  8159             "ADDX   R_G0,0,$dst" %}
  8160   ins_encode( enc_to_bool( src, dst ) );
  8161   ins_pipe(ialu_reg_ialu);
  8162 %}
  8163 #else
  8164 instruct convP2B( iRegI dst, iRegP src ) %{
  8165   match(Set dst (Conv2B src));
  8166   ins_cost(DEFAULT_COST*2);
  8167   format %{ "MOV    $src,$dst\n\t"
  8168             "MOVRNZ $src,1,$dst" %}
  8169   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8170   ins_pipe(ialu_clr_and_mover);
  8171 %}
  8172 #endif
  8174 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8175   match(Set dst (CmpLTMask src zero));
  8176   effect(KILL ccr);
  8177   size(4);
  8178   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8179   ins_encode %{
  8180     __ sra($src$$Register, 31, $dst$$Register);
  8181   %}
  8182   ins_pipe(ialu_reg_imm);
  8183 %}
  8185 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8186   match(Set dst (CmpLTMask p q));
  8187   effect( KILL ccr );
  8188   ins_cost(DEFAULT_COST*4);
  8189   format %{ "CMP    $p,$q\n\t"
  8190             "MOV    #0,$dst\n\t"
  8191             "BLT,a  .+8\n\t"
  8192             "MOV    #-1,$dst" %}
  8193   ins_encode( enc_ltmask(p,q,dst) );
  8194   ins_pipe(ialu_reg_reg_ialu);
  8195 %}
  8197 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8198   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8199   effect(KILL ccr, TEMP tmp);
  8200   ins_cost(DEFAULT_COST*3);
  8202   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8203             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8204             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8205   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8206   ins_pipe(cadd_cmpltmask);
  8207 %}
  8209 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8210   match(Set p (AndI (CmpLTMask p q) y));
  8211   effect(KILL ccr);
  8212   ins_cost(DEFAULT_COST*3);
  8214   format %{ "CMP  $p,$q\n\t"
  8215             "MOV  $y,$p\n\t"
  8216             "MOVge G0,$p" %}
  8217   ins_encode %{
  8218     __ cmp($p$$Register, $q$$Register);
  8219     __ mov($y$$Register, $p$$Register);
  8220     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8221   %}
  8222   ins_pipe(ialu_reg_reg_ialu);
  8223 %}
  8225 //-----------------------------------------------------------------
  8226 // Direct raw moves between float and general registers using VIS3.
  8228 //  ins_pipe(faddF_reg);
  8229 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8230   predicate(UseVIS >= 3);
  8231   match(Set dst (MoveF2I src));
  8233   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8234   ins_encode %{
  8235     __ movstouw($src$$FloatRegister, $dst$$Register);
  8236   %}
  8237   ins_pipe(ialu_reg_reg);
  8238 %}
  8240 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8241   predicate(UseVIS >= 3);
  8242   match(Set dst (MoveI2F src));
  8244   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8245   ins_encode %{
  8246     __ movwtos($src$$Register, $dst$$FloatRegister);
  8247   %}
  8248   ins_pipe(ialu_reg_reg);
  8249 %}
  8251 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8252   predicate(UseVIS >= 3);
  8253   match(Set dst (MoveD2L src));
  8255   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8256   ins_encode %{
  8257     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8258   %}
  8259   ins_pipe(ialu_reg_reg);
  8260 %}
  8262 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8263   predicate(UseVIS >= 3);
  8264   match(Set dst (MoveL2D src));
  8266   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8267   ins_encode %{
  8268     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8269   %}
  8270   ins_pipe(ialu_reg_reg);
  8271 %}
  8274 // Raw moves between float and general registers using stack.
  8276 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8277   match(Set dst (MoveF2I src));
  8278   effect(DEF dst, USE src);
  8279   ins_cost(MEMORY_REF_COST);
  8281   size(4);
  8282   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8283   opcode(Assembler::lduw_op3);
  8284   ins_encode(simple_form3_mem_reg( src, dst ) );
  8285   ins_pipe(iload_mem);
  8286 %}
  8288 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8289   match(Set dst (MoveI2F src));
  8290   effect(DEF dst, USE src);
  8291   ins_cost(MEMORY_REF_COST);
  8293   size(4);
  8294   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8295   opcode(Assembler::ldf_op3);
  8296   ins_encode(simple_form3_mem_reg(src, dst));
  8297   ins_pipe(floadF_stk);
  8298 %}
  8300 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8301   match(Set dst (MoveD2L src));
  8302   effect(DEF dst, USE src);
  8303   ins_cost(MEMORY_REF_COST);
  8305   size(4);
  8306   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8307   opcode(Assembler::ldx_op3);
  8308   ins_encode(simple_form3_mem_reg( src, dst ) );
  8309   ins_pipe(iload_mem);
  8310 %}
  8312 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8313   match(Set dst (MoveL2D src));
  8314   effect(DEF dst, USE src);
  8315   ins_cost(MEMORY_REF_COST);
  8317   size(4);
  8318   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8319   opcode(Assembler::lddf_op3);
  8320   ins_encode(simple_form3_mem_reg(src, dst));
  8321   ins_pipe(floadD_stk);
  8322 %}
  8324 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8325   match(Set dst (MoveF2I src));
  8326   effect(DEF dst, USE src);
  8327   ins_cost(MEMORY_REF_COST);
  8329   size(4);
  8330   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8331   opcode(Assembler::stf_op3);
  8332   ins_encode(simple_form3_mem_reg(dst, src));
  8333   ins_pipe(fstoreF_stk_reg);
  8334 %}
  8336 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8337   match(Set dst (MoveI2F src));
  8338   effect(DEF dst, USE src);
  8339   ins_cost(MEMORY_REF_COST);
  8341   size(4);
  8342   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8343   opcode(Assembler::stw_op3);
  8344   ins_encode(simple_form3_mem_reg( dst, src ) );
  8345   ins_pipe(istore_mem_reg);
  8346 %}
  8348 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8349   match(Set dst (MoveD2L src));
  8350   effect(DEF dst, USE src);
  8351   ins_cost(MEMORY_REF_COST);
  8353   size(4);
  8354   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8355   opcode(Assembler::stdf_op3);
  8356   ins_encode(simple_form3_mem_reg(dst, src));
  8357   ins_pipe(fstoreD_stk_reg);
  8358 %}
  8360 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8361   match(Set dst (MoveL2D src));
  8362   effect(DEF dst, USE src);
  8363   ins_cost(MEMORY_REF_COST);
  8365   size(4);
  8366   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8367   opcode(Assembler::stx_op3);
  8368   ins_encode(simple_form3_mem_reg( dst, src ) );
  8369   ins_pipe(istore_mem_reg);
  8370 %}
  8373 //----------Arithmetic Conversion Instructions---------------------------------
  8374 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8376 instruct convD2F_reg(regF dst, regD src) %{
  8377   match(Set dst (ConvD2F src));
  8378   size(4);
  8379   format %{ "FDTOS  $src,$dst" %}
  8380   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8381   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8382   ins_pipe(fcvtD2F);
  8383 %}
  8386 // Convert a double to an int in a float register.
  8387 // If the double is a NAN, stuff a zero in instead.
  8388 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8389   effect(DEF dst, USE src, KILL fcc0);
  8390   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8391             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8392             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8393             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8394             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8395       "skip:" %}
  8396   ins_encode(form_d2i_helper(src,dst));
  8397   ins_pipe(fcvtD2I);
  8398 %}
  8400 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8401   match(Set dst (ConvD2I src));
  8402   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8403   expand %{
  8404     regF tmp;
  8405     convD2I_helper(tmp, src);
  8406     regF_to_stkI(dst, tmp);
  8407   %}
  8408 %}
  8410 instruct convD2I_reg(iRegI dst, regD src) %{
  8411   predicate(UseVIS >= 3);
  8412   match(Set dst (ConvD2I src));
  8413   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8414   expand %{
  8415     regF tmp;
  8416     convD2I_helper(tmp, src);
  8417     MoveF2I_reg_reg(dst, tmp);
  8418   %}
  8419 %}
  8422 // Convert a double to a long in a double register.
  8423 // If the double is a NAN, stuff a zero in instead.
  8424 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8425   effect(DEF dst, USE src, KILL fcc0);
  8426   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8427             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8428             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8429             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8430             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8431       "skip:" %}
  8432   ins_encode(form_d2l_helper(src,dst));
  8433   ins_pipe(fcvtD2L);
  8434 %}
  8436 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8437   match(Set dst (ConvD2L src));
  8438   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8439   expand %{
  8440     regD tmp;
  8441     convD2L_helper(tmp, src);
  8442     regD_to_stkL(dst, tmp);
  8443   %}
  8444 %}
  8446 instruct convD2L_reg(iRegL dst, regD src) %{
  8447   predicate(UseVIS >= 3);
  8448   match(Set dst (ConvD2L src));
  8449   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8450   expand %{
  8451     regD tmp;
  8452     convD2L_helper(tmp, src);
  8453     MoveD2L_reg_reg(dst, tmp);
  8454   %}
  8455 %}
  8458 instruct convF2D_reg(regD dst, regF src) %{
  8459   match(Set dst (ConvF2D src));
  8460   format %{ "FSTOD  $src,$dst" %}
  8461   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8462   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8463   ins_pipe(fcvtF2D);
  8464 %}
  8467 // Convert a float to an int in a float register.
  8468 // If the float is a NAN, stuff a zero in instead.
  8469 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8470   effect(DEF dst, USE src, KILL fcc0);
  8471   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8472             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8473             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8474             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8475             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8476       "skip:" %}
  8477   ins_encode(form_f2i_helper(src,dst));
  8478   ins_pipe(fcvtF2I);
  8479 %}
  8481 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8482   match(Set dst (ConvF2I src));
  8483   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8484   expand %{
  8485     regF tmp;
  8486     convF2I_helper(tmp, src);
  8487     regF_to_stkI(dst, tmp);
  8488   %}
  8489 %}
  8491 instruct convF2I_reg(iRegI dst, regF src) %{
  8492   predicate(UseVIS >= 3);
  8493   match(Set dst (ConvF2I src));
  8494   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8495   expand %{
  8496     regF tmp;
  8497     convF2I_helper(tmp, src);
  8498     MoveF2I_reg_reg(dst, tmp);
  8499   %}
  8500 %}
  8503 // Convert a float to a long in a float register.
  8504 // If the float is a NAN, stuff a zero in instead.
  8505 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8506   effect(DEF dst, USE src, KILL fcc0);
  8507   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8508             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8509             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8510             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8511             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8512       "skip:" %}
  8513   ins_encode(form_f2l_helper(src,dst));
  8514   ins_pipe(fcvtF2L);
  8515 %}
  8517 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8518   match(Set dst (ConvF2L src));
  8519   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8520   expand %{
  8521     regD tmp;
  8522     convF2L_helper(tmp, src);
  8523     regD_to_stkL(dst, tmp);
  8524   %}
  8525 %}
  8527 instruct convF2L_reg(iRegL dst, regF src) %{
  8528   predicate(UseVIS >= 3);
  8529   match(Set dst (ConvF2L src));
  8530   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8531   expand %{
  8532     regD tmp;
  8533     convF2L_helper(tmp, src);
  8534     MoveD2L_reg_reg(dst, tmp);
  8535   %}
  8536 %}
  8539 instruct convI2D_helper(regD dst, regF tmp) %{
  8540   effect(USE tmp, DEF dst);
  8541   format %{ "FITOD  $tmp,$dst" %}
  8542   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8543   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8544   ins_pipe(fcvtI2D);
  8545 %}
  8547 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8548   match(Set dst (ConvI2D src));
  8549   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8550   expand %{
  8551     regF tmp;
  8552     stkI_to_regF(tmp, src);
  8553     convI2D_helper(dst, tmp);
  8554   %}
  8555 %}
  8557 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8558   predicate(UseVIS >= 3);
  8559   match(Set dst (ConvI2D src));
  8560   expand %{
  8561     regF tmp;
  8562     MoveI2F_reg_reg(tmp, src);
  8563     convI2D_helper(dst, tmp);
  8564   %}
  8565 %}
  8567 instruct convI2D_mem(regD_low dst, memory mem) %{
  8568   match(Set dst (ConvI2D (LoadI mem)));
  8569   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8570   size(8);
  8571   format %{ "LDF    $mem,$dst\n\t"
  8572             "FITOD  $dst,$dst" %}
  8573   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8574   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8575   ins_pipe(floadF_mem);
  8576 %}
  8579 instruct convI2F_helper(regF dst, regF tmp) %{
  8580   effect(DEF dst, USE tmp);
  8581   format %{ "FITOS  $tmp,$dst" %}
  8582   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8583   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8584   ins_pipe(fcvtI2F);
  8585 %}
  8587 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8588   match(Set dst (ConvI2F src));
  8589   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8590   expand %{
  8591     regF tmp;
  8592     stkI_to_regF(tmp,src);
  8593     convI2F_helper(dst, tmp);
  8594   %}
  8595 %}
  8597 instruct convI2F_reg(regF dst, iRegI src) %{
  8598   predicate(UseVIS >= 3);
  8599   match(Set dst (ConvI2F src));
  8600   ins_cost(DEFAULT_COST);
  8601   expand %{
  8602     regF tmp;
  8603     MoveI2F_reg_reg(tmp, src);
  8604     convI2F_helper(dst, tmp);
  8605   %}
  8606 %}
  8608 instruct convI2F_mem( regF dst, memory mem ) %{
  8609   match(Set dst (ConvI2F (LoadI mem)));
  8610   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8611   size(8);
  8612   format %{ "LDF    $mem,$dst\n\t"
  8613             "FITOS  $dst,$dst" %}
  8614   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8615   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8616   ins_pipe(floadF_mem);
  8617 %}
  8620 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8621   match(Set dst (ConvI2L src));
  8622   size(4);
  8623   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8624   opcode(Assembler::sra_op3, Assembler::arith_op);
  8625   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8626   ins_pipe(ialu_reg_reg);
  8627 %}
  8629 // Zero-extend convert int to long
  8630 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8631   match(Set dst (AndL (ConvI2L src) mask) );
  8632   size(4);
  8633   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8634   opcode(Assembler::srl_op3, Assembler::arith_op);
  8635   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8636   ins_pipe(ialu_reg_reg);
  8637 %}
  8639 // Zero-extend long
  8640 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8641   match(Set dst (AndL src mask) );
  8642   size(4);
  8643   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8644   opcode(Assembler::srl_op3, Assembler::arith_op);
  8645   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8646   ins_pipe(ialu_reg_reg);
  8647 %}
  8650 //-----------
  8651 // Long to Double conversion using V8 opcodes.
  8652 // Still useful because cheetah traps and becomes
  8653 // amazingly slow for some common numbers.
  8655 // Magic constant, 0x43300000
  8656 instruct loadConI_x43300000(iRegI dst) %{
  8657   effect(DEF dst);
  8658   size(4);
  8659   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8660   ins_encode(SetHi22(0x43300000, dst));
  8661   ins_pipe(ialu_none);
  8662 %}
  8664 // Magic constant, 0x41f00000
  8665 instruct loadConI_x41f00000(iRegI dst) %{
  8666   effect(DEF dst);
  8667   size(4);
  8668   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8669   ins_encode(SetHi22(0x41f00000, dst));
  8670   ins_pipe(ialu_none);
  8671 %}
  8673 // Construct a double from two float halves
  8674 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8675   effect(DEF dst, USE src1, USE src2);
  8676   size(8);
  8677   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8678             "FMOVS  $src2.lo,$dst.lo" %}
  8679   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8680   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8681   ins_pipe(faddD_reg_reg);
  8682 %}
  8684 // Convert integer in high half of a double register (in the lower half of
  8685 // the double register file) to double
  8686 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8687   effect(DEF dst, USE src);
  8688   size(4);
  8689   format %{ "FITOD  $src,$dst" %}
  8690   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8691   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8692   ins_pipe(fcvtLHi2D);
  8693 %}
  8695 // Add float double precision
  8696 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8697   effect(DEF dst, USE src1, USE src2);
  8698   size(4);
  8699   format %{ "FADDD  $src1,$src2,$dst" %}
  8700   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8701   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8702   ins_pipe(faddD_reg_reg);
  8703 %}
  8705 // Sub float double precision
  8706 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8707   effect(DEF dst, USE src1, USE src2);
  8708   size(4);
  8709   format %{ "FSUBD  $src1,$src2,$dst" %}
  8710   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8711   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8712   ins_pipe(faddD_reg_reg);
  8713 %}
  8715 // Mul float double precision
  8716 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8717   effect(DEF dst, USE src1, USE src2);
  8718   size(4);
  8719   format %{ "FMULD  $src1,$src2,$dst" %}
  8720   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8721   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8722   ins_pipe(fmulD_reg_reg);
  8723 %}
  8725 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8726   match(Set dst (ConvL2D src));
  8727   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8729   expand %{
  8730     regD_low   tmpsrc;
  8731     iRegI      ix43300000;
  8732     iRegI      ix41f00000;
  8733     stackSlotL lx43300000;
  8734     stackSlotL lx41f00000;
  8735     regD_low   dx43300000;
  8736     regD       dx41f00000;
  8737     regD       tmp1;
  8738     regD_low   tmp2;
  8739     regD       tmp3;
  8740     regD       tmp4;
  8742     stkL_to_regD(tmpsrc, src);
  8744     loadConI_x43300000(ix43300000);
  8745     loadConI_x41f00000(ix41f00000);
  8746     regI_to_stkLHi(lx43300000, ix43300000);
  8747     regI_to_stkLHi(lx41f00000, ix41f00000);
  8748     stkL_to_regD(dx43300000, lx43300000);
  8749     stkL_to_regD(dx41f00000, lx41f00000);
  8751     convI2D_regDHi_regD(tmp1, tmpsrc);
  8752     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8753     subD_regD_regD(tmp3, tmp2, dx43300000);
  8754     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8755     addD_regD_regD(dst, tmp3, tmp4);
  8756   %}
  8757 %}
  8759 // Long to Double conversion using fast fxtof
  8760 instruct convL2D_helper(regD dst, regD tmp) %{
  8761   effect(DEF dst, USE tmp);
  8762   size(4);
  8763   format %{ "FXTOD  $tmp,$dst" %}
  8764   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8765   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8766   ins_pipe(fcvtL2D);
  8767 %}
  8769 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8770   predicate(VM_Version::has_fast_fxtof());
  8771   match(Set dst (ConvL2D src));
  8772   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8773   expand %{
  8774     regD tmp;
  8775     stkL_to_regD(tmp, src);
  8776     convL2D_helper(dst, tmp);
  8777   %}
  8778 %}
  8780 instruct convL2D_reg(regD dst, iRegL src) %{
  8781   predicate(UseVIS >= 3);
  8782   match(Set dst (ConvL2D src));
  8783   expand %{
  8784     regD tmp;
  8785     MoveL2D_reg_reg(tmp, src);
  8786     convL2D_helper(dst, tmp);
  8787   %}
  8788 %}
  8790 // Long to Float conversion using fast fxtof
  8791 instruct convL2F_helper(regF dst, regD tmp) %{
  8792   effect(DEF dst, USE tmp);
  8793   size(4);
  8794   format %{ "FXTOS  $tmp,$dst" %}
  8795   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8796   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8797   ins_pipe(fcvtL2F);
  8798 %}
  8800 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8801   match(Set dst (ConvL2F src));
  8802   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8803   expand %{
  8804     regD tmp;
  8805     stkL_to_regD(tmp, src);
  8806     convL2F_helper(dst, tmp);
  8807   %}
  8808 %}
  8810 instruct convL2F_reg(regF dst, iRegL src) %{
  8811   predicate(UseVIS >= 3);
  8812   match(Set dst (ConvL2F src));
  8813   ins_cost(DEFAULT_COST);
  8814   expand %{
  8815     regD tmp;
  8816     MoveL2D_reg_reg(tmp, src);
  8817     convL2F_helper(dst, tmp);
  8818   %}
  8819 %}
  8821 //-----------
  8823 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8824   match(Set dst (ConvL2I src));
  8825 #ifndef _LP64
  8826   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8827   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8828   ins_pipe(ialu_move_reg_I_to_L);
  8829 #else
  8830   size(4);
  8831   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8832   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8833   ins_pipe(ialu_reg);
  8834 #endif
  8835 %}
  8837 // Register Shift Right Immediate
  8838 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8839   match(Set dst (ConvL2I (RShiftL src cnt)));
  8841   size(4);
  8842   format %{ "SRAX   $src,$cnt,$dst" %}
  8843   opcode(Assembler::srax_op3, Assembler::arith_op);
  8844   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8845   ins_pipe(ialu_reg_imm);
  8846 %}
  8848 //----------Control Flow Instructions------------------------------------------
  8849 // Compare Instructions
  8850 // Compare Integers
  8851 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8852   match(Set icc (CmpI op1 op2));
  8853   effect( DEF icc, USE op1, USE op2 );
  8855   size(4);
  8856   format %{ "CMP    $op1,$op2" %}
  8857   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8858   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8859   ins_pipe(ialu_cconly_reg_reg);
  8860 %}
  8862 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8863   match(Set icc (CmpU op1 op2));
  8865   size(4);
  8866   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8867   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8868   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8869   ins_pipe(ialu_cconly_reg_reg);
  8870 %}
  8872 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8873   match(Set icc (CmpI op1 op2));
  8874   effect( DEF icc, USE op1 );
  8876   size(4);
  8877   format %{ "CMP    $op1,$op2" %}
  8878   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8879   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8880   ins_pipe(ialu_cconly_reg_imm);
  8881 %}
  8883 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8884   match(Set icc (CmpI (AndI op1 op2) zero));
  8886   size(4);
  8887   format %{ "BTST   $op2,$op1" %}
  8888   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8889   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8890   ins_pipe(ialu_cconly_reg_reg_zero);
  8891 %}
  8893 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8894   match(Set icc (CmpI (AndI op1 op2) zero));
  8896   size(4);
  8897   format %{ "BTST   $op2,$op1" %}
  8898   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8899   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8900   ins_pipe(ialu_cconly_reg_imm_zero);
  8901 %}
  8903 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8904   match(Set xcc (CmpL op1 op2));
  8905   effect( DEF xcc, USE op1, USE op2 );
  8907   size(4);
  8908   format %{ "CMP    $op1,$op2\t\t! long" %}
  8909   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8910   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8911   ins_pipe(ialu_cconly_reg_reg);
  8912 %}
  8914 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8915   match(Set xcc (CmpL op1 con));
  8916   effect( DEF xcc, USE op1, USE con );
  8918   size(4);
  8919   format %{ "CMP    $op1,$con\t\t! long" %}
  8920   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8921   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8922   ins_pipe(ialu_cconly_reg_reg);
  8923 %}
  8925 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8926   match(Set xcc (CmpL (AndL op1 op2) zero));
  8927   effect( DEF xcc, USE op1, USE op2 );
  8929   size(4);
  8930   format %{ "BTST   $op1,$op2\t\t! long" %}
  8931   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8932   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8933   ins_pipe(ialu_cconly_reg_reg);
  8934 %}
  8936 // useful for checking the alignment of a pointer:
  8937 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8938   match(Set xcc (CmpL (AndL op1 con) zero));
  8939   effect( DEF xcc, USE op1, USE con );
  8941   size(4);
  8942   format %{ "BTST   $op1,$con\t\t! long" %}
  8943   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8944   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8945   ins_pipe(ialu_cconly_reg_reg);
  8946 %}
  8948 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8949   match(Set icc (CmpU op1 op2));
  8951   size(4);
  8952   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8953   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8954   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8955   ins_pipe(ialu_cconly_reg_imm);
  8956 %}
  8958 // Compare Pointers
  8959 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8960   match(Set pcc (CmpP op1 op2));
  8962   size(4);
  8963   format %{ "CMP    $op1,$op2\t! ptr" %}
  8964   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8965   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8966   ins_pipe(ialu_cconly_reg_reg);
  8967 %}
  8969 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8970   match(Set pcc (CmpP op1 op2));
  8972   size(4);
  8973   format %{ "CMP    $op1,$op2\t! ptr" %}
  8974   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8975   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8976   ins_pipe(ialu_cconly_reg_imm);
  8977 %}
  8979 // Compare Narrow oops
  8980 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8981   match(Set icc (CmpN op1 op2));
  8983   size(4);
  8984   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8985   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8986   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8987   ins_pipe(ialu_cconly_reg_reg);
  8988 %}
  8990 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8991   match(Set icc (CmpN op1 op2));
  8993   size(4);
  8994   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8995   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8996   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8997   ins_pipe(ialu_cconly_reg_imm);
  8998 %}
  9000 //----------Max and Min--------------------------------------------------------
  9001 // Min Instructions
  9002 // Conditional move for min
  9003 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9004   effect( USE_DEF op2, USE op1, USE icc );
  9006   size(4);
  9007   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9008   opcode(Assembler::less);
  9009   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9010   ins_pipe(ialu_reg_flags);
  9011 %}
  9013 // Min Register with Register.
  9014 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9015   match(Set op2 (MinI op1 op2));
  9016   ins_cost(DEFAULT_COST*2);
  9017   expand %{
  9018     flagsReg icc;
  9019     compI_iReg(icc,op1,op2);
  9020     cmovI_reg_lt(op2,op1,icc);
  9021   %}
  9022 %}
  9024 // Max Instructions
  9025 // Conditional move for max
  9026 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9027   effect( USE_DEF op2, USE op1, USE icc );
  9028   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9029   opcode(Assembler::greater);
  9030   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9031   ins_pipe(ialu_reg_flags);
  9032 %}
  9034 // Max Register with Register
  9035 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9036   match(Set op2 (MaxI op1 op2));
  9037   ins_cost(DEFAULT_COST*2);
  9038   expand %{
  9039     flagsReg icc;
  9040     compI_iReg(icc,op1,op2);
  9041     cmovI_reg_gt(op2,op1,icc);
  9042   %}
  9043 %}
  9046 //----------Float Compares----------------------------------------------------
  9047 // Compare floating, generate condition code
  9048 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9049   match(Set fcc (CmpF src1 src2));
  9051   size(4);
  9052   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9053   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9054   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9055   ins_pipe(faddF_fcc_reg_reg_zero);
  9056 %}
  9058 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9059   match(Set fcc (CmpD src1 src2));
  9061   size(4);
  9062   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9063   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9064   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9065   ins_pipe(faddD_fcc_reg_reg_zero);
  9066 %}
  9069 // Compare floating, generate -1,0,1
  9070 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9071   match(Set dst (CmpF3 src1 src2));
  9072   effect(KILL fcc0);
  9073   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9074   format %{ "fcmpl  $dst,$src1,$src2" %}
  9075   // Primary = float
  9076   opcode( true );
  9077   ins_encode( floating_cmp( dst, src1, src2 ) );
  9078   ins_pipe( floating_cmp );
  9079 %}
  9081 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9082   match(Set dst (CmpD3 src1 src2));
  9083   effect(KILL fcc0);
  9084   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9085   format %{ "dcmpl  $dst,$src1,$src2" %}
  9086   // Primary = double (not float)
  9087   opcode( false );
  9088   ins_encode( floating_cmp( dst, src1, src2 ) );
  9089   ins_pipe( floating_cmp );
  9090 %}
  9092 //----------Branches---------------------------------------------------------
  9093 // Jump
  9094 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9095 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9096   match(Jump switch_val);
  9097   effect(TEMP table);
  9099   ins_cost(350);
  9101   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9102              "LD     [O7 + $switch_val], O7\n\t"
  9103              "JUMP   O7" %}
  9104   ins_encode %{
  9105     // Calculate table address into a register.
  9106     Register table_reg;
  9107     Register label_reg = O7;
  9108     // If we are calculating the size of this instruction don't trust
  9109     // zero offsets because they might change when
  9110     // MachConstantBaseNode decides to optimize the constant table
  9111     // base.
  9112     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9113       table_reg = $constanttablebase;
  9114     } else {
  9115       table_reg = O7;
  9116       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9117       __ add($constanttablebase, con_offset, table_reg);
  9120     // Jump to base address + switch value
  9121     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9122     __ jmp(label_reg, G0);
  9123     __ delayed()->nop();
  9124   %}
  9125   ins_pipe(ialu_reg_reg);
  9126 %}
  9128 // Direct Branch.  Use V8 version with longer range.
  9129 instruct branch(label labl) %{
  9130   match(Goto);
  9131   effect(USE labl);
  9133   size(8);
  9134   ins_cost(BRANCH_COST);
  9135   format %{ "BA     $labl" %}
  9136   ins_encode %{
  9137     Label* L = $labl$$label;
  9138     __ ba(*L);
  9139     __ delayed()->nop();
  9140   %}
  9141   ins_pipe(br);
  9142 %}
  9144 // Direct Branch, short with no delay slot
  9145 instruct branch_short(label labl) %{
  9146   match(Goto);
  9147   predicate(UseCBCond);
  9148   effect(USE labl);
  9150   size(4);
  9151   ins_cost(BRANCH_COST);
  9152   format %{ "BA     $labl\t! short branch" %}
  9153   ins_encode %{ 
  9154     Label* L = $labl$$label;
  9155     assert(__ use_cbcond(*L), "back to back cbcond");
  9156     __ ba_short(*L);
  9157   %}
  9158   ins_short_branch(1);
  9159   ins_avoid_back_to_back(1);
  9160   ins_pipe(cbcond_reg_imm);
  9161 %}
  9163 // Conditional Direct Branch
  9164 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9165   match(If cmp icc);
  9166   effect(USE labl);
  9168   size(8);
  9169   ins_cost(BRANCH_COST);
  9170   format %{ "BP$cmp   $icc,$labl" %}
  9171   // Prim = bits 24-22, Secnd = bits 31-30
  9172   ins_encode( enc_bp( labl, cmp, icc ) );
  9173   ins_pipe(br_cc);
  9174 %}
  9176 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9177   match(If cmp icc);
  9178   effect(USE labl);
  9180   ins_cost(BRANCH_COST);
  9181   format %{ "BP$cmp  $icc,$labl" %}
  9182   // Prim = bits 24-22, Secnd = bits 31-30
  9183   ins_encode( enc_bp( labl, cmp, icc ) );
  9184   ins_pipe(br_cc);
  9185 %}
  9187 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9188   match(If cmp pcc);
  9189   effect(USE labl);
  9191   size(8);
  9192   ins_cost(BRANCH_COST);
  9193   format %{ "BP$cmp  $pcc,$labl" %}
  9194   ins_encode %{
  9195     Label* L = $labl$$label;
  9196     Assembler::Predict predict_taken =
  9197       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9199     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9200     __ delayed()->nop();
  9201   %}
  9202   ins_pipe(br_cc);
  9203 %}
  9205 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9206   match(If cmp fcc);
  9207   effect(USE labl);
  9209   size(8);
  9210   ins_cost(BRANCH_COST);
  9211   format %{ "FBP$cmp $fcc,$labl" %}
  9212   ins_encode %{
  9213     Label* L = $labl$$label;
  9214     Assembler::Predict predict_taken =
  9215       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9217     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9218     __ delayed()->nop();
  9219   %}
  9220   ins_pipe(br_fcc);
  9221 %}
  9223 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9224   match(CountedLoopEnd cmp icc);
  9225   effect(USE labl);
  9227   size(8);
  9228   ins_cost(BRANCH_COST);
  9229   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9230   // Prim = bits 24-22, Secnd = bits 31-30
  9231   ins_encode( enc_bp( labl, cmp, icc ) );
  9232   ins_pipe(br_cc);
  9233 %}
  9235 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9236   match(CountedLoopEnd cmp icc);
  9237   effect(USE labl);
  9239   size(8);
  9240   ins_cost(BRANCH_COST);
  9241   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9242   // Prim = bits 24-22, Secnd = bits 31-30
  9243   ins_encode( enc_bp( labl, cmp, icc ) );
  9244   ins_pipe(br_cc);
  9245 %}
  9247 // Compare and branch instructions
  9248 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9249   match(If cmp (CmpI op1 op2));
  9250   effect(USE labl, KILL icc);
  9252   size(12);
  9253   ins_cost(BRANCH_COST);
  9254   format %{ "CMP    $op1,$op2\t! int\n\t"
  9255             "BP$cmp   $labl" %}
  9256   ins_encode %{
  9257     Label* L = $labl$$label;
  9258     Assembler::Predict predict_taken =
  9259       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9260     __ cmp($op1$$Register, $op2$$Register);
  9261     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9262     __ delayed()->nop();
  9263   %}
  9264   ins_pipe(cmp_br_reg_reg);
  9265 %}
  9267 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9268   match(If cmp (CmpI op1 op2));
  9269   effect(USE labl, KILL icc);
  9271   size(12);
  9272   ins_cost(BRANCH_COST);
  9273   format %{ "CMP    $op1,$op2\t! int\n\t"
  9274             "BP$cmp   $labl" %}
  9275   ins_encode %{
  9276     Label* L = $labl$$label;
  9277     Assembler::Predict predict_taken =
  9278       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9279     __ cmp($op1$$Register, $op2$$constant);
  9280     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9281     __ delayed()->nop();
  9282   %}
  9283   ins_pipe(cmp_br_reg_imm);
  9284 %}
  9286 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9287   match(If cmp (CmpU op1 op2));
  9288   effect(USE labl, KILL icc);
  9290   size(12);
  9291   ins_cost(BRANCH_COST);
  9292   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9293             "BP$cmp  $labl" %}
  9294   ins_encode %{
  9295     Label* L = $labl$$label;
  9296     Assembler::Predict predict_taken =
  9297       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9298     __ cmp($op1$$Register, $op2$$Register);
  9299     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9300     __ delayed()->nop();
  9301   %}
  9302   ins_pipe(cmp_br_reg_reg);
  9303 %}
  9305 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9306   match(If cmp (CmpU op1 op2));
  9307   effect(USE labl, KILL icc);
  9309   size(12);
  9310   ins_cost(BRANCH_COST);
  9311   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9312             "BP$cmp  $labl" %}
  9313   ins_encode %{
  9314     Label* L = $labl$$label;
  9315     Assembler::Predict predict_taken =
  9316       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9317     __ cmp($op1$$Register, $op2$$constant);
  9318     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9319     __ delayed()->nop();
  9320   %}
  9321   ins_pipe(cmp_br_reg_imm);
  9322 %}
  9324 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9325   match(If cmp (CmpL op1 op2));
  9326   effect(USE labl, KILL xcc);
  9328   size(12);
  9329   ins_cost(BRANCH_COST);
  9330   format %{ "CMP    $op1,$op2\t! long\n\t"
  9331             "BP$cmp   $labl" %}
  9332   ins_encode %{
  9333     Label* L = $labl$$label;
  9334     Assembler::Predict predict_taken =
  9335       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9336     __ cmp($op1$$Register, $op2$$Register);
  9337     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9338     __ delayed()->nop();
  9339   %}
  9340   ins_pipe(cmp_br_reg_reg);
  9341 %}
  9343 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9344   match(If cmp (CmpL op1 op2));
  9345   effect(USE labl, KILL xcc);
  9347   size(12);
  9348   ins_cost(BRANCH_COST);
  9349   format %{ "CMP    $op1,$op2\t! long\n\t"
  9350             "BP$cmp   $labl" %}
  9351   ins_encode %{
  9352     Label* L = $labl$$label;
  9353     Assembler::Predict predict_taken =
  9354       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9355     __ cmp($op1$$Register, $op2$$constant);
  9356     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9357     __ delayed()->nop();
  9358   %}
  9359   ins_pipe(cmp_br_reg_imm);
  9360 %}
  9362 // Compare Pointers and branch
  9363 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9364   match(If cmp (CmpP op1 op2));
  9365   effect(USE labl, KILL pcc);
  9367   size(12);
  9368   ins_cost(BRANCH_COST);
  9369   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9370             "B$cmp   $labl" %}
  9371   ins_encode %{
  9372     Label* L = $labl$$label;
  9373     Assembler::Predict predict_taken =
  9374       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9375     __ cmp($op1$$Register, $op2$$Register);
  9376     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9377     __ delayed()->nop();
  9378   %}
  9379   ins_pipe(cmp_br_reg_reg);
  9380 %}
  9382 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9383   match(If cmp (CmpP op1 null));
  9384   effect(USE labl, KILL pcc);
  9386   size(12);
  9387   ins_cost(BRANCH_COST);
  9388   format %{ "CMP    $op1,0\t! ptr\n\t"
  9389             "B$cmp   $labl" %}
  9390   ins_encode %{
  9391     Label* L = $labl$$label;
  9392     Assembler::Predict predict_taken =
  9393       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9394     __ cmp($op1$$Register, G0);
  9395     // bpr() is not used here since it has shorter distance.
  9396     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9397     __ delayed()->nop();
  9398   %}
  9399   ins_pipe(cmp_br_reg_reg);
  9400 %}
  9402 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9403   match(If cmp (CmpN op1 op2));
  9404   effect(USE labl, KILL icc);
  9406   size(12);
  9407   ins_cost(BRANCH_COST);
  9408   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9409             "BP$cmp   $labl" %}
  9410   ins_encode %{
  9411     Label* L = $labl$$label;
  9412     Assembler::Predict predict_taken =
  9413       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9414     __ cmp($op1$$Register, $op2$$Register);
  9415     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9416     __ delayed()->nop();
  9417   %}
  9418   ins_pipe(cmp_br_reg_reg);
  9419 %}
  9421 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9422   match(If cmp (CmpN op1 null));
  9423   effect(USE labl, KILL icc);
  9425   size(12);
  9426   ins_cost(BRANCH_COST);
  9427   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9428             "BP$cmp   $labl" %}
  9429   ins_encode %{
  9430     Label* L = $labl$$label;
  9431     Assembler::Predict predict_taken =
  9432       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9433     __ cmp($op1$$Register, G0);
  9434     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9435     __ delayed()->nop();
  9436   %}
  9437   ins_pipe(cmp_br_reg_reg);
  9438 %}
  9440 // Loop back branch
  9441 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9442   match(CountedLoopEnd cmp (CmpI op1 op2));
  9443   effect(USE labl, KILL icc);
  9445   size(12);
  9446   ins_cost(BRANCH_COST);
  9447   format %{ "CMP    $op1,$op2\t! int\n\t"
  9448             "BP$cmp   $labl\t! Loop end" %}
  9449   ins_encode %{
  9450     Label* L = $labl$$label;
  9451     Assembler::Predict predict_taken =
  9452       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9453     __ cmp($op1$$Register, $op2$$Register);
  9454     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9455     __ delayed()->nop();
  9456   %}
  9457   ins_pipe(cmp_br_reg_reg);
  9458 %}
  9460 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9461   match(CountedLoopEnd cmp (CmpI op1 op2));
  9462   effect(USE labl, KILL icc);
  9464   size(12);
  9465   ins_cost(BRANCH_COST);
  9466   format %{ "CMP    $op1,$op2\t! int\n\t"
  9467             "BP$cmp   $labl\t! Loop end" %}
  9468   ins_encode %{
  9469     Label* L = $labl$$label;
  9470     Assembler::Predict predict_taken =
  9471       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9472     __ cmp($op1$$Register, $op2$$constant);
  9473     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9474     __ delayed()->nop();
  9475   %}
  9476   ins_pipe(cmp_br_reg_imm);
  9477 %}
  9479 // Short compare and branch instructions
  9480 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9481   match(If cmp (CmpI op1 op2));
  9482   predicate(UseCBCond);
  9483   effect(USE labl, KILL icc);
  9485   size(4);
  9486   ins_cost(BRANCH_COST);
  9487   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9488   ins_encode %{
  9489     Label* L = $labl$$label;
  9490     assert(__ use_cbcond(*L), "back to back cbcond");
  9491     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9492   %}
  9493   ins_short_branch(1);
  9494   ins_avoid_back_to_back(1);
  9495   ins_pipe(cbcond_reg_reg);
  9496 %}
  9498 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9499   match(If cmp (CmpI op1 op2));
  9500   predicate(UseCBCond);
  9501   effect(USE labl, KILL icc);
  9503   size(4);
  9504   ins_cost(BRANCH_COST);
  9505   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9506   ins_encode %{
  9507     Label* L = $labl$$label;
  9508     assert(__ use_cbcond(*L), "back to back cbcond");
  9509     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9510   %}
  9511   ins_short_branch(1);
  9512   ins_avoid_back_to_back(1);
  9513   ins_pipe(cbcond_reg_imm);
  9514 %}
  9516 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9517   match(If cmp (CmpU op1 op2));
  9518   predicate(UseCBCond);
  9519   effect(USE labl, KILL icc);
  9521   size(4);
  9522   ins_cost(BRANCH_COST);
  9523   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9524   ins_encode %{
  9525     Label* L = $labl$$label;
  9526     assert(__ use_cbcond(*L), "back to back cbcond");
  9527     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9528   %}
  9529   ins_short_branch(1);
  9530   ins_avoid_back_to_back(1);
  9531   ins_pipe(cbcond_reg_reg);
  9532 %}
  9534 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9535   match(If cmp (CmpU op1 op2));
  9536   predicate(UseCBCond);
  9537   effect(USE labl, KILL icc);
  9539   size(4);
  9540   ins_cost(BRANCH_COST);
  9541   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9542   ins_encode %{
  9543     Label* L = $labl$$label;
  9544     assert(__ use_cbcond(*L), "back to back cbcond");
  9545     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9546   %}
  9547   ins_short_branch(1);
  9548   ins_avoid_back_to_back(1);
  9549   ins_pipe(cbcond_reg_imm);
  9550 %}
  9552 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9553   match(If cmp (CmpL op1 op2));
  9554   predicate(UseCBCond);
  9555   effect(USE labl, KILL xcc);
  9557   size(4);
  9558   ins_cost(BRANCH_COST);
  9559   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9560   ins_encode %{
  9561     Label* L = $labl$$label;
  9562     assert(__ use_cbcond(*L), "back to back cbcond");
  9563     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9564   %}
  9565   ins_short_branch(1);
  9566   ins_avoid_back_to_back(1);
  9567   ins_pipe(cbcond_reg_reg);
  9568 %}
  9570 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9571   match(If cmp (CmpL op1 op2));
  9572   predicate(UseCBCond);
  9573   effect(USE labl, KILL xcc);
  9575   size(4);
  9576   ins_cost(BRANCH_COST);
  9577   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9578   ins_encode %{
  9579     Label* L = $labl$$label;
  9580     assert(__ use_cbcond(*L), "back to back cbcond");
  9581     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9582   %}
  9583   ins_short_branch(1);
  9584   ins_avoid_back_to_back(1);
  9585   ins_pipe(cbcond_reg_imm);
  9586 %}
  9588 // Compare Pointers and branch
  9589 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9590   match(If cmp (CmpP op1 op2));
  9591   predicate(UseCBCond);
  9592   effect(USE labl, KILL pcc);
  9594   size(4);
  9595   ins_cost(BRANCH_COST);
  9596 #ifdef _LP64
  9597   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9598 #else
  9599   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9600 #endif
  9601   ins_encode %{
  9602     Label* L = $labl$$label;
  9603     assert(__ use_cbcond(*L), "back to back cbcond");
  9604     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9605   %}
  9606   ins_short_branch(1);
  9607   ins_avoid_back_to_back(1);
  9608   ins_pipe(cbcond_reg_reg);
  9609 %}
  9611 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9612   match(If cmp (CmpP op1 null));
  9613   predicate(UseCBCond);
  9614   effect(USE labl, KILL pcc);
  9616   size(4);
  9617   ins_cost(BRANCH_COST);
  9618 #ifdef _LP64
  9619   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9620 #else
  9621   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9622 #endif
  9623   ins_encode %{
  9624     Label* L = $labl$$label;
  9625     assert(__ use_cbcond(*L), "back to back cbcond");
  9626     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9627   %}
  9628   ins_short_branch(1);
  9629   ins_avoid_back_to_back(1);
  9630   ins_pipe(cbcond_reg_reg);
  9631 %}
  9633 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9634   match(If cmp (CmpN op1 op2));
  9635   predicate(UseCBCond);
  9636   effect(USE labl, KILL icc);
  9638   size(4);
  9639   ins_cost(BRANCH_COST);
  9640   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9641   ins_encode %{
  9642     Label* L = $labl$$label;
  9643     assert(__ use_cbcond(*L), "back to back cbcond");
  9644     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9645   %}
  9646   ins_short_branch(1);
  9647   ins_avoid_back_to_back(1);
  9648   ins_pipe(cbcond_reg_reg);
  9649 %}
  9651 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9652   match(If cmp (CmpN op1 null));
  9653   predicate(UseCBCond);
  9654   effect(USE labl, KILL icc);
  9656   size(4);
  9657   ins_cost(BRANCH_COST);
  9658   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9659   ins_encode %{
  9660     Label* L = $labl$$label;
  9661     assert(__ use_cbcond(*L), "back to back cbcond");
  9662     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9663   %}
  9664   ins_short_branch(1);
  9665   ins_avoid_back_to_back(1);
  9666   ins_pipe(cbcond_reg_reg);
  9667 %}
  9669 // Loop back branch
  9670 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9671   match(CountedLoopEnd cmp (CmpI op1 op2));
  9672   predicate(UseCBCond);
  9673   effect(USE labl, KILL icc);
  9675   size(4);
  9676   ins_cost(BRANCH_COST);
  9677   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9678   ins_encode %{
  9679     Label* L = $labl$$label;
  9680     assert(__ use_cbcond(*L), "back to back cbcond");
  9681     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9682   %}
  9683   ins_short_branch(1);
  9684   ins_avoid_back_to_back(1);
  9685   ins_pipe(cbcond_reg_reg);
  9686 %}
  9688 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9689   match(CountedLoopEnd cmp (CmpI op1 op2));
  9690   predicate(UseCBCond);
  9691   effect(USE labl, KILL icc);
  9693   size(4);
  9694   ins_cost(BRANCH_COST);
  9695   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9696   ins_encode %{
  9697     Label* L = $labl$$label;
  9698     assert(__ use_cbcond(*L), "back to back cbcond");
  9699     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9700   %}
  9701   ins_short_branch(1);
  9702   ins_avoid_back_to_back(1);
  9703   ins_pipe(cbcond_reg_imm);
  9704 %}
  9706 // Branch-on-register tests all 64 bits.  We assume that values
  9707 // in 64-bit registers always remains zero or sign extended
  9708 // unless our code munges the high bits.  Interrupts can chop
  9709 // the high order bits to zero or sign at any time.
  9710 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9711   match(If cmp (CmpI op1 zero));
  9712   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9713   effect(USE labl);
  9715   size(8);
  9716   ins_cost(BRANCH_COST);
  9717   format %{ "BR$cmp   $op1,$labl" %}
  9718   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9719   ins_pipe(br_reg);
  9720 %}
  9722 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9723   match(If cmp (CmpP op1 null));
  9724   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9725   effect(USE labl);
  9727   size(8);
  9728   ins_cost(BRANCH_COST);
  9729   format %{ "BR$cmp   $op1,$labl" %}
  9730   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9731   ins_pipe(br_reg);
  9732 %}
  9734 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9735   match(If cmp (CmpL op1 zero));
  9736   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9737   effect(USE labl);
  9739   size(8);
  9740   ins_cost(BRANCH_COST);
  9741   format %{ "BR$cmp   $op1,$labl" %}
  9742   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9743   ins_pipe(br_reg);
  9744 %}
  9747 // ============================================================================
  9748 // Long Compare
  9749 //
  9750 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9751 // is tricky.  The flavor of compare used depends on whether we are testing
  9752 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9753 // The GE test is the negated LT test.  The LE test can be had by commuting
  9754 // the operands (yielding a GE test) and then negating; negate again for the
  9755 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9756 // NE test is negated from that.
  9758 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9759 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9760 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9761 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9762 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9763 // foo match ends up with the wrong leaf.  One fix is to not match both
  9764 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9765 // both forms beat the trinary form of long-compare and both are very useful
  9766 // on Intel which has so few registers.
  9768 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9769   match(If cmp xcc);
  9770   effect(USE labl);
  9772   size(8);
  9773   ins_cost(BRANCH_COST);
  9774   format %{ "BP$cmp   $xcc,$labl" %}
  9775   ins_encode %{
  9776     Label* L = $labl$$label;
  9777     Assembler::Predict predict_taken =
  9778       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9780     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9781     __ delayed()->nop();
  9782   %}
  9783   ins_pipe(br_cc);
  9784 %}
  9786 // Manifest a CmpL3 result in an integer register.  Very painful.
  9787 // This is the test to avoid.
  9788 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9789   match(Set dst (CmpL3 src1 src2) );
  9790   effect( KILL ccr );
  9791   ins_cost(6*DEFAULT_COST);
  9792   size(24);
  9793   format %{ "CMP    $src1,$src2\t\t! long\n"
  9794           "\tBLT,a,pn done\n"
  9795           "\tMOV    -1,$dst\t! delay slot\n"
  9796           "\tBGT,a,pn done\n"
  9797           "\tMOV    1,$dst\t! delay slot\n"
  9798           "\tCLR    $dst\n"
  9799     "done:"     %}
  9800   ins_encode( cmpl_flag(src1,src2,dst) );
  9801   ins_pipe(cmpL_reg);
  9802 %}
  9804 // Conditional move
  9805 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9806   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9807   ins_cost(150);
  9808   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9809   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9810   ins_pipe(ialu_reg);
  9811 %}
  9813 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9814   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9815   ins_cost(140);
  9816   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9817   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9818   ins_pipe(ialu_imm);
  9819 %}
  9821 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9822   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9823   ins_cost(150);
  9824   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9825   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9826   ins_pipe(ialu_reg);
  9827 %}
  9829 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9830   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9831   ins_cost(140);
  9832   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9833   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9834   ins_pipe(ialu_imm);
  9835 %}
  9837 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9838   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9839   ins_cost(150);
  9840   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9841   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9842   ins_pipe(ialu_reg);
  9843 %}
  9845 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9846   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9847   ins_cost(150);
  9848   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9849   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9850   ins_pipe(ialu_reg);
  9851 %}
  9853 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9854   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9855   ins_cost(140);
  9856   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9857   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9858   ins_pipe(ialu_imm);
  9859 %}
  9861 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9862   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9863   ins_cost(150);
  9864   opcode(0x101);
  9865   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9866   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9867   ins_pipe(int_conditional_float_move);
  9868 %}
  9870 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9871   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9872   ins_cost(150);
  9873   opcode(0x102);
  9874   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9875   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9876   ins_pipe(int_conditional_float_move);
  9877 %}
  9879 // ============================================================================
  9880 // Safepoint Instruction
  9881 instruct safePoint_poll(iRegP poll) %{
  9882   match(SafePoint poll);
  9883   effect(USE poll);
  9885   size(4);
  9886 #ifdef _LP64
  9887   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9888 #else
  9889   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9890 #endif
  9891   ins_encode %{
  9892     __ relocate(relocInfo::poll_type);
  9893     __ ld_ptr($poll$$Register, 0, G0);
  9894   %}
  9895   ins_pipe(loadPollP);
  9896 %}
  9898 // ============================================================================
  9899 // Call Instructions
  9900 // Call Java Static Instruction
  9901 instruct CallStaticJavaDirect( method meth ) %{
  9902   match(CallStaticJava);
  9903   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9904   effect(USE meth);
  9906   size(8);
  9907   ins_cost(CALL_COST);
  9908   format %{ "CALL,static  ; NOP ==> " %}
  9909   ins_encode( Java_Static_Call( meth ), call_epilog );
  9910   ins_pipe(simple_call);
  9911 %}
  9913 // Call Java Static Instruction (method handle version)
  9914 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9915   match(CallStaticJava);
  9916   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9917   effect(USE meth, KILL l7_mh_SP_save);
  9919   size(16);
  9920   ins_cost(CALL_COST);
  9921   format %{ "CALL,static/MethodHandle" %}
  9922   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9923   ins_pipe(simple_call);
  9924 %}
  9926 // Call Java Dynamic Instruction
  9927 instruct CallDynamicJavaDirect( method meth ) %{
  9928   match(CallDynamicJava);
  9929   effect(USE meth);
  9931   ins_cost(CALL_COST);
  9932   format %{ "SET    (empty),R_G5\n\t"
  9933             "CALL,dynamic  ; NOP ==> " %}
  9934   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9935   ins_pipe(call);
  9936 %}
  9938 // Call Runtime Instruction
  9939 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9940   match(CallRuntime);
  9941   effect(USE meth, KILL l7);
  9942   ins_cost(CALL_COST);
  9943   format %{ "CALL,runtime" %}
  9944   ins_encode( Java_To_Runtime( meth ),
  9945               call_epilog, adjust_long_from_native_call );
  9946   ins_pipe(simple_call);
  9947 %}
  9949 // Call runtime without safepoint - same as CallRuntime
  9950 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9951   match(CallLeaf);
  9952   effect(USE meth, KILL l7);
  9953   ins_cost(CALL_COST);
  9954   format %{ "CALL,runtime leaf" %}
  9955   ins_encode( Java_To_Runtime( meth ),
  9956               call_epilog,
  9957               adjust_long_from_native_call );
  9958   ins_pipe(simple_call);
  9959 %}
  9961 // Call runtime without safepoint - same as CallLeaf
  9962 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9963   match(CallLeafNoFP);
  9964   effect(USE meth, KILL l7);
  9965   ins_cost(CALL_COST);
  9966   format %{ "CALL,runtime leaf nofp" %}
  9967   ins_encode( Java_To_Runtime( meth ),
  9968               call_epilog,
  9969               adjust_long_from_native_call );
  9970   ins_pipe(simple_call);
  9971 %}
  9973 // Tail Call; Jump from runtime stub to Java code.
  9974 // Also known as an 'interprocedural jump'.
  9975 // Target of jump will eventually return to caller.
  9976 // TailJump below removes the return address.
  9977 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9978   match(TailCall jump_target method_oop );
  9980   ins_cost(CALL_COST);
  9981   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9982   ins_encode(form_jmpl(jump_target));
  9983   ins_pipe(tail_call);
  9984 %}
  9987 // Return Instruction
  9988 instruct Ret() %{
  9989   match(Return);
  9991   // The epilogue node did the ret already.
  9992   size(0);
  9993   format %{ "! return" %}
  9994   ins_encode();
  9995   ins_pipe(empty);
  9996 %}
  9999 // Tail Jump; remove the return address; jump to target.
 10000 // TailCall above leaves the return address around.
 10001 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10002 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10003 // "restore" before this instruction (in Epilogue), we need to materialize it
 10004 // in %i0.
 10005 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10006   match( TailJump jump_target ex_oop );
 10007   ins_cost(CALL_COST);
 10008   format %{ "! discard R_O7\n\t"
 10009             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10010   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10011   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10012   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10013   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10014   ins_pipe(tail_call);
 10015 %}
 10017 // Create exception oop: created by stack-crawling runtime code.
 10018 // Created exception is now available to this handler, and is setup
 10019 // just prior to jumping to this handler.  No code emitted.
 10020 instruct CreateException( o0RegP ex_oop )
 10021 %{
 10022   match(Set ex_oop (CreateEx));
 10023   ins_cost(0);
 10025   size(0);
 10026   // use the following format syntax
 10027   format %{ "! exception oop is in R_O0; no code emitted" %}
 10028   ins_encode();
 10029   ins_pipe(empty);
 10030 %}
 10033 // Rethrow exception:
 10034 // The exception oop will come in the first argument position.
 10035 // Then JUMP (not call) to the rethrow stub code.
 10036 instruct RethrowException()
 10037 %{
 10038   match(Rethrow);
 10039   ins_cost(CALL_COST);
 10041   // use the following format syntax
 10042   format %{ "Jmp    rethrow_stub" %}
 10043   ins_encode(enc_rethrow);
 10044   ins_pipe(tail_call);
 10045 %}
 10048 // Die now
 10049 instruct ShouldNotReachHere( )
 10050 %{
 10051   match(Halt);
 10052   ins_cost(CALL_COST);
 10054   size(4);
 10055   // Use the following format syntax
 10056   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10057   ins_encode( form2_illtrap() );
 10058   ins_pipe(tail_call);
 10059 %}
 10061 // ============================================================================
 10062 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10063 // array for an instance of the superklass.  Set a hidden internal cache on a
 10064 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10065 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10066 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10067   match(Set index (PartialSubtypeCheck sub super));
 10068   effect( KILL pcc, KILL o7 );
 10069   ins_cost(DEFAULT_COST*10);
 10070   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10071   ins_encode( enc_PartialSubtypeCheck() );
 10072   ins_pipe(partial_subtype_check_pipe);
 10073 %}
 10075 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10076   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10077   effect( KILL idx, KILL o7 );
 10078   ins_cost(DEFAULT_COST*10);
 10079   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10080   ins_encode( enc_PartialSubtypeCheck() );
 10081   ins_pipe(partial_subtype_check_pipe);
 10082 %}
 10085 // ============================================================================
 10086 // inlined locking and unlocking
 10088 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10089   match(Set pcc (FastLock object box));
 10091   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10092   ins_cost(100);
 10094   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10095   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10096   ins_pipe(long_memory_op);
 10097 %}
 10100 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10101   match(Set pcc (FastUnlock object box));
 10102   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10103   ins_cost(100);
 10105   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10106   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10107   ins_pipe(long_memory_op);
 10108 %}
 10110 // The encodings are generic.
 10111 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10112   predicate(!use_block_zeroing(n->in(2)) );
 10113   match(Set dummy (ClearArray cnt base));
 10114   effect(TEMP temp, KILL ccr);
 10115   ins_cost(300);
 10116   format %{ "MOV    $cnt,$temp\n"
 10117     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10118     "        BRge   loop\t\t! Clearing loop\n"
 10119     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10121   ins_encode %{
 10122     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10123     Register nof_bytes_arg    = $cnt$$Register;
 10124     Register nof_bytes_tmp    = $temp$$Register;
 10125     Register base_pointer_arg = $base$$Register;
 10127     Label loop;
 10128     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10130     // Loop and clear, walking backwards through the array.
 10131     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10132     __ bind(loop);
 10133     __ deccc(nof_bytes_tmp, 8);
 10134     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10135     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10136     // %%%% this mini-loop must not cross a cache boundary!
 10137   %}
 10138   ins_pipe(long_memory_op);
 10139 %}
 10141 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10142   predicate(use_block_zeroing(n->in(2)));
 10143   match(Set dummy (ClearArray cnt base));
 10144   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10145   ins_cost(300);
 10146   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10148   ins_encode %{
 10150     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10151     Register to    = $base$$Register;
 10152     Register count = $cnt$$Register;
 10154     Label Ldone;
 10155     __ nop(); // Separate short branches
 10156     // Use BIS for zeroing (temp is not used).
 10157     __ bis_zeroing(to, count, G0, Ldone);
 10158     __ bind(Ldone);
 10160   %}
 10161   ins_pipe(long_memory_op);
 10162 %}
 10164 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10165   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10166   match(Set dummy (ClearArray cnt base));
 10167   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10168   ins_cost(300);
 10169   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10171   ins_encode %{
 10173     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10174     Register to    = $base$$Register;
 10175     Register count = $cnt$$Register;
 10176     Register temp  = $tmp$$Register;
 10178     Label Ldone;
 10179     __ nop(); // Separate short branches
 10180     // Use BIS for zeroing
 10181     __ bis_zeroing(to, count, temp, Ldone);
 10182     __ bind(Ldone);
 10184   %}
 10185   ins_pipe(long_memory_op);
 10186 %}
 10188 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10189                         o7RegI tmp, flagsReg ccr) %{
 10190   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10191   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10192   ins_cost(300);
 10193   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10194   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10195   ins_pipe(long_memory_op);
 10196 %}
 10198 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10199                        o7RegI tmp, flagsReg ccr) %{
 10200   match(Set result (StrEquals (Binary str1 str2) cnt));
 10201   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10202   ins_cost(300);
 10203   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10204   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10205   ins_pipe(long_memory_op);
 10206 %}
 10208 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10209                       o7RegI tmp2, flagsReg ccr) %{
 10210   match(Set result (AryEq ary1 ary2));
 10211   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10212   ins_cost(300);
 10213   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10214   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10215   ins_pipe(long_memory_op);
 10216 %}
 10219 //---------- Zeros Count Instructions ------------------------------------------
 10221 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10222   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10223   match(Set dst (CountLeadingZerosI src));
 10224   effect(TEMP dst, TEMP tmp, KILL cr);
 10226   // x |= (x >> 1);
 10227   // x |= (x >> 2);
 10228   // x |= (x >> 4);
 10229   // x |= (x >> 8);
 10230   // x |= (x >> 16);
 10231   // return (WORDBITS - popc(x));
 10232   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10233             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10234             "OR      $dst,$tmp,$dst\n\t"
 10235             "SRL     $dst,2,$tmp\n\t"
 10236             "OR      $dst,$tmp,$dst\n\t"
 10237             "SRL     $dst,4,$tmp\n\t"
 10238             "OR      $dst,$tmp,$dst\n\t"
 10239             "SRL     $dst,8,$tmp\n\t"
 10240             "OR      $dst,$tmp,$dst\n\t"
 10241             "SRL     $dst,16,$tmp\n\t"
 10242             "OR      $dst,$tmp,$dst\n\t"
 10243             "POPC    $dst,$dst\n\t"
 10244             "MOV     32,$tmp\n\t"
 10245             "SUB     $tmp,$dst,$dst" %}
 10246   ins_encode %{
 10247     Register Rdst = $dst$$Register;
 10248     Register Rsrc = $src$$Register;
 10249     Register Rtmp = $tmp$$Register;
 10250     __ srl(Rsrc, 1,    Rtmp);
 10251     __ srl(Rsrc, 0,    Rdst);
 10252     __ or3(Rdst, Rtmp, Rdst);
 10253     __ srl(Rdst, 2,    Rtmp);
 10254     __ or3(Rdst, Rtmp, Rdst);
 10255     __ srl(Rdst, 4,    Rtmp);
 10256     __ or3(Rdst, Rtmp, Rdst);
 10257     __ srl(Rdst, 8,    Rtmp);
 10258     __ or3(Rdst, Rtmp, Rdst);
 10259     __ srl(Rdst, 16,   Rtmp);
 10260     __ or3(Rdst, Rtmp, Rdst);
 10261     __ popc(Rdst, Rdst);
 10262     __ mov(BitsPerInt, Rtmp);
 10263     __ sub(Rtmp, Rdst, Rdst);
 10264   %}
 10265   ins_pipe(ialu_reg);
 10266 %}
 10268 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10269   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10270   match(Set dst (CountLeadingZerosL src));
 10271   effect(TEMP dst, TEMP tmp, KILL cr);
 10273   // x |= (x >> 1);
 10274   // x |= (x >> 2);
 10275   // x |= (x >> 4);
 10276   // x |= (x >> 8);
 10277   // x |= (x >> 16);
 10278   // x |= (x >> 32);
 10279   // return (WORDBITS - popc(x));
 10280   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10281             "OR      $src,$tmp,$dst\n\t"
 10282             "SRLX    $dst,2,$tmp\n\t"
 10283             "OR      $dst,$tmp,$dst\n\t"
 10284             "SRLX    $dst,4,$tmp\n\t"
 10285             "OR      $dst,$tmp,$dst\n\t"
 10286             "SRLX    $dst,8,$tmp\n\t"
 10287             "OR      $dst,$tmp,$dst\n\t"
 10288             "SRLX    $dst,16,$tmp\n\t"
 10289             "OR      $dst,$tmp,$dst\n\t"
 10290             "SRLX    $dst,32,$tmp\n\t"
 10291             "OR      $dst,$tmp,$dst\n\t"
 10292             "POPC    $dst,$dst\n\t"
 10293             "MOV     64,$tmp\n\t"
 10294             "SUB     $tmp,$dst,$dst" %}
 10295   ins_encode %{
 10296     Register Rdst = $dst$$Register;
 10297     Register Rsrc = $src$$Register;
 10298     Register Rtmp = $tmp$$Register;
 10299     __ srlx(Rsrc, 1,    Rtmp);
 10300     __ or3( Rsrc, Rtmp, Rdst);
 10301     __ srlx(Rdst, 2,    Rtmp);
 10302     __ or3( Rdst, Rtmp, Rdst);
 10303     __ srlx(Rdst, 4,    Rtmp);
 10304     __ or3( Rdst, Rtmp, Rdst);
 10305     __ srlx(Rdst, 8,    Rtmp);
 10306     __ or3( Rdst, Rtmp, Rdst);
 10307     __ srlx(Rdst, 16,   Rtmp);
 10308     __ or3( Rdst, Rtmp, Rdst);
 10309     __ srlx(Rdst, 32,   Rtmp);
 10310     __ or3( Rdst, Rtmp, Rdst);
 10311     __ popc(Rdst, Rdst);
 10312     __ mov(BitsPerLong, Rtmp);
 10313     __ sub(Rtmp, Rdst, Rdst);
 10314   %}
 10315   ins_pipe(ialu_reg);
 10316 %}
 10318 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10319   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10320   match(Set dst (CountTrailingZerosI src));
 10321   effect(TEMP dst, KILL cr);
 10323   // return popc(~x & (x - 1));
 10324   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10325             "ANDN    $dst,$src,$dst\n\t"
 10326             "SRL     $dst,R_G0,$dst\n\t"
 10327             "POPC    $dst,$dst" %}
 10328   ins_encode %{
 10329     Register Rdst = $dst$$Register;
 10330     Register Rsrc = $src$$Register;
 10331     __ sub(Rsrc, 1, Rdst);
 10332     __ andn(Rdst, Rsrc, Rdst);
 10333     __ srl(Rdst, G0, Rdst);
 10334     __ popc(Rdst, Rdst);
 10335   %}
 10336   ins_pipe(ialu_reg);
 10337 %}
 10339 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10340   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10341   match(Set dst (CountTrailingZerosL src));
 10342   effect(TEMP dst, KILL cr);
 10344   // return popc(~x & (x - 1));
 10345   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10346             "ANDN    $dst,$src,$dst\n\t"
 10347             "POPC    $dst,$dst" %}
 10348   ins_encode %{
 10349     Register Rdst = $dst$$Register;
 10350     Register Rsrc = $src$$Register;
 10351     __ sub(Rsrc, 1, Rdst);
 10352     __ andn(Rdst, Rsrc, Rdst);
 10353     __ popc(Rdst, Rdst);
 10354   %}
 10355   ins_pipe(ialu_reg);
 10356 %}
 10359 //---------- Population Count Instructions -------------------------------------
 10361 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10362   predicate(UsePopCountInstruction);
 10363   match(Set dst (PopCountI src));
 10365   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10366             "POPC   $dst, $dst" %}
 10367   ins_encode %{
 10368     __ srl($src$$Register, G0, $dst$$Register);
 10369     __ popc($dst$$Register, $dst$$Register);
 10370   %}
 10371   ins_pipe(ialu_reg);
 10372 %}
 10374 // Note: Long.bitCount(long) returns an int.
 10375 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10376   predicate(UsePopCountInstruction);
 10377   match(Set dst (PopCountL src));
 10379   format %{ "POPC   $src, $dst" %}
 10380   ins_encode %{
 10381     __ popc($src$$Register, $dst$$Register);
 10382   %}
 10383   ins_pipe(ialu_reg);
 10384 %}
 10387 // ============================================================================
 10388 //------------Bytes reverse--------------------------------------------------
 10390 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10391   match(Set dst (ReverseBytesI src));
 10393   // Op cost is artificially doubled to make sure that load or store
 10394   // instructions are preferred over this one which requires a spill
 10395   // onto a stack slot.
 10396   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10397   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10399   ins_encode %{
 10400     __ set($src$$disp + STACK_BIAS, O7);
 10401     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10402   %}
 10403   ins_pipe( iload_mem );
 10404 %}
 10406 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10407   match(Set dst (ReverseBytesL src));
 10409   // Op cost is artificially doubled to make sure that load or store
 10410   // instructions are preferred over this one which requires a spill
 10411   // onto a stack slot.
 10412   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10413   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10415   ins_encode %{
 10416     __ set($src$$disp + STACK_BIAS, O7);
 10417     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10418   %}
 10419   ins_pipe( iload_mem );
 10420 %}
 10422 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10423   match(Set dst (ReverseBytesUS src));
 10425   // Op cost is artificially doubled to make sure that load or store
 10426   // instructions are preferred over this one which requires a spill
 10427   // onto a stack slot.
 10428   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10429   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10431   ins_encode %{
 10432     // the value was spilled as an int so bias the load
 10433     __ set($src$$disp + STACK_BIAS + 2, O7);
 10434     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10435   %}
 10436   ins_pipe( iload_mem );
 10437 %}
 10439 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10440   match(Set dst (ReverseBytesS src));
 10442   // Op cost is artificially doubled to make sure that load or store
 10443   // instructions are preferred over this one which requires a spill
 10444   // onto a stack slot.
 10445   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10446   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10448   ins_encode %{
 10449     // the value was spilled as an int so bias the load
 10450     __ set($src$$disp + STACK_BIAS + 2, O7);
 10451     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10452   %}
 10453   ins_pipe( iload_mem );
 10454 %}
 10456 // Load Integer reversed byte order
 10457 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10458   match(Set dst (ReverseBytesI (LoadI src)));
 10460   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10461   size(4);
 10462   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10464   ins_encode %{
 10465     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10466   %}
 10467   ins_pipe(iload_mem);
 10468 %}
 10470 // Load Long - aligned and reversed
 10471 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10472   match(Set dst (ReverseBytesL (LoadL src)));
 10474   ins_cost(MEMORY_REF_COST);
 10475   size(4);
 10476   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10478   ins_encode %{
 10479     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10480   %}
 10481   ins_pipe(iload_mem);
 10482 %}
 10484 // Load unsigned short / char reversed byte order
 10485 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10486   match(Set dst (ReverseBytesUS (LoadUS src)));
 10488   ins_cost(MEMORY_REF_COST);
 10489   size(4);
 10490   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10492   ins_encode %{
 10493     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10494   %}
 10495   ins_pipe(iload_mem);
 10496 %}
 10498 // Load short reversed byte order
 10499 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10500   match(Set dst (ReverseBytesS (LoadS src)));
 10502   ins_cost(MEMORY_REF_COST);
 10503   size(4);
 10504   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10506   ins_encode %{
 10507     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10508   %}
 10509   ins_pipe(iload_mem);
 10510 %}
 10512 // Store Integer reversed byte order
 10513 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10514   match(Set dst (StoreI dst (ReverseBytesI src)));
 10516   ins_cost(MEMORY_REF_COST);
 10517   size(4);
 10518   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10520   ins_encode %{
 10521     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10522   %}
 10523   ins_pipe(istore_mem_reg);
 10524 %}
 10526 // Store Long reversed byte order
 10527 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10528   match(Set dst (StoreL dst (ReverseBytesL src)));
 10530   ins_cost(MEMORY_REF_COST);
 10531   size(4);
 10532   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10534   ins_encode %{
 10535     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10536   %}
 10537   ins_pipe(istore_mem_reg);
 10538 %}
 10540 // Store unsighed short/char reversed byte order
 10541 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10542   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10544   ins_cost(MEMORY_REF_COST);
 10545   size(4);
 10546   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10548   ins_encode %{
 10549     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10550   %}
 10551   ins_pipe(istore_mem_reg);
 10552 %}
 10554 // Store short reversed byte order
 10555 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10556   match(Set dst (StoreC dst (ReverseBytesS src)));
 10558   ins_cost(MEMORY_REF_COST);
 10559   size(4);
 10560   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10562   ins_encode %{
 10563     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10564   %}
 10565   ins_pipe(istore_mem_reg);
 10566 %}
 10568 // ====================VECTOR INSTRUCTIONS=====================================
 10570 // Load Aligned Packed values into a Double Register
 10571 instruct loadV8(regD dst, memory mem) %{
 10572   predicate(n->as_LoadVector()->memory_size() == 8);
 10573   match(Set dst (LoadVector mem));
 10574   ins_cost(MEMORY_REF_COST);
 10575   size(4);
 10576   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10577   ins_encode %{
 10578     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10579   %}
 10580   ins_pipe(floadD_mem);
 10581 %}
 10583 // Store Vector in Double register to memory
 10584 instruct storeV8(memory mem, regD src) %{
 10585   predicate(n->as_StoreVector()->memory_size() == 8);
 10586   match(Set mem (StoreVector mem src));
 10587   ins_cost(MEMORY_REF_COST);
 10588   size(4);
 10589   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10590   ins_encode %{
 10591     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10592   %}
 10593   ins_pipe(fstoreD_mem_reg);
 10594 %}
 10596 // Store Zero into vector in memory
 10597 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10598   predicate(n->as_StoreVector()->memory_size() == 8);
 10599   match(Set mem (StoreVector mem (ReplicateB zero)));
 10600   ins_cost(MEMORY_REF_COST);
 10601   size(4);
 10602   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10603   ins_encode %{
 10604     __ stx(G0, $mem$$Address);
 10605   %}
 10606   ins_pipe(fstoreD_mem_zero);
 10607 %}
 10609 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10610   predicate(n->as_StoreVector()->memory_size() == 8);
 10611   match(Set mem (StoreVector mem (ReplicateS zero)));
 10612   ins_cost(MEMORY_REF_COST);
 10613   size(4);
 10614   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10615   ins_encode %{
 10616     __ stx(G0, $mem$$Address);
 10617   %}
 10618   ins_pipe(fstoreD_mem_zero);
 10619 %}
 10621 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10622   predicate(n->as_StoreVector()->memory_size() == 8);
 10623   match(Set mem (StoreVector mem (ReplicateI zero)));
 10624   ins_cost(MEMORY_REF_COST);
 10625   size(4);
 10626   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10627   ins_encode %{
 10628     __ stx(G0, $mem$$Address);
 10629   %}
 10630   ins_pipe(fstoreD_mem_zero);
 10631 %}
 10633 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10634   predicate(n->as_StoreVector()->memory_size() == 8);
 10635   match(Set mem (StoreVector mem (ReplicateF zero)));
 10636   ins_cost(MEMORY_REF_COST);
 10637   size(4);
 10638   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10639   ins_encode %{
 10640     __ stx(G0, $mem$$Address);
 10641   %}
 10642   ins_pipe(fstoreD_mem_zero);
 10643 %}
 10645 // Replicate scalar to packed byte values into Double register
 10646 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10647   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10648   match(Set dst (ReplicateB src));
 10649   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10650   format %{ "SLLX  $src,56,$tmp\n\t"
 10651             "SRLX  $tmp, 8,$tmp2\n\t"
 10652             "OR    $tmp,$tmp2,$tmp\n\t"
 10653             "SRLX  $tmp,16,$tmp2\n\t"
 10654             "OR    $tmp,$tmp2,$tmp\n\t"
 10655             "SRLX  $tmp,32,$tmp2\n\t"
 10656             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10657             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10658   ins_encode %{
 10659     Register Rsrc = $src$$Register;
 10660     Register Rtmp = $tmp$$Register;
 10661     Register Rtmp2 = $tmp2$$Register;
 10662     __ sllx(Rsrc,    56, Rtmp);
 10663     __ srlx(Rtmp,     8, Rtmp2);
 10664     __ or3 (Rtmp, Rtmp2, Rtmp);
 10665     __ srlx(Rtmp,    16, Rtmp2);
 10666     __ or3 (Rtmp, Rtmp2, Rtmp);
 10667     __ srlx(Rtmp,    32, Rtmp2);
 10668     __ or3 (Rtmp, Rtmp2, Rtmp);
 10669     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10670   %}
 10671   ins_pipe(ialu_reg);
 10672 %}
 10674 // Replicate scalar to packed byte values into Double stack
 10675 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10676   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10677   match(Set dst (ReplicateB src));
 10678   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10679   format %{ "SLLX  $src,56,$tmp\n\t"
 10680             "SRLX  $tmp, 8,$tmp2\n\t"
 10681             "OR    $tmp,$tmp2,$tmp\n\t"
 10682             "SRLX  $tmp,16,$tmp2\n\t"
 10683             "OR    $tmp,$tmp2,$tmp\n\t"
 10684             "SRLX  $tmp,32,$tmp2\n\t"
 10685             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10686             "STX   $tmp,$dst\t! regL to stkD" %}
 10687   ins_encode %{
 10688     Register Rsrc = $src$$Register;
 10689     Register Rtmp = $tmp$$Register;
 10690     Register Rtmp2 = $tmp2$$Register;
 10691     __ sllx(Rsrc,    56, Rtmp);
 10692     __ srlx(Rtmp,     8, Rtmp2);
 10693     __ or3 (Rtmp, Rtmp2, Rtmp);
 10694     __ srlx(Rtmp,    16, Rtmp2);
 10695     __ or3 (Rtmp, Rtmp2, Rtmp);
 10696     __ srlx(Rtmp,    32, Rtmp2);
 10697     __ or3 (Rtmp, Rtmp2, Rtmp);
 10698     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10699     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10700   %}
 10701   ins_pipe(ialu_reg);
 10702 %}
 10704 // Replicate scalar constant to packed byte values in Double register
 10705 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10706   predicate(n->as_Vector()->length() == 8);
 10707   match(Set dst (ReplicateB con));
 10708   effect(KILL tmp);
 10709   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10710   ins_encode %{
 10711     // XXX This is a quick fix for 6833573.
 10712     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10713     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10714     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10715   %}
 10716   ins_pipe(loadConFD);
 10717 %}
 10719 // Replicate scalar to packed char/short values into Double register
 10720 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10721   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10722   match(Set dst (ReplicateS src));
 10723   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10724   format %{ "SLLX  $src,48,$tmp\n\t"
 10725             "SRLX  $tmp,16,$tmp2\n\t"
 10726             "OR    $tmp,$tmp2,$tmp\n\t"
 10727             "SRLX  $tmp,32,$tmp2\n\t"
 10728             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10729             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10730   ins_encode %{
 10731     Register Rsrc = $src$$Register;
 10732     Register Rtmp = $tmp$$Register;
 10733     Register Rtmp2 = $tmp2$$Register;
 10734     __ sllx(Rsrc,    48, Rtmp);
 10735     __ srlx(Rtmp,    16, Rtmp2);
 10736     __ or3 (Rtmp, Rtmp2, Rtmp);
 10737     __ srlx(Rtmp,    32, Rtmp2);
 10738     __ or3 (Rtmp, Rtmp2, Rtmp);
 10739     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10740   %}
 10741   ins_pipe(ialu_reg);
 10742 %}
 10744 // Replicate scalar to packed char/short values into Double stack
 10745 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10746   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10747   match(Set dst (ReplicateS src));
 10748   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10749   format %{ "SLLX  $src,48,$tmp\n\t"
 10750             "SRLX  $tmp,16,$tmp2\n\t"
 10751             "OR    $tmp,$tmp2,$tmp\n\t"
 10752             "SRLX  $tmp,32,$tmp2\n\t"
 10753             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10754             "STX   $tmp,$dst\t! regL to stkD" %}
 10755   ins_encode %{
 10756     Register Rsrc = $src$$Register;
 10757     Register Rtmp = $tmp$$Register;
 10758     Register Rtmp2 = $tmp2$$Register;
 10759     __ sllx(Rsrc,    48, Rtmp);
 10760     __ srlx(Rtmp,    16, Rtmp2);
 10761     __ or3 (Rtmp, Rtmp2, Rtmp);
 10762     __ srlx(Rtmp,    32, Rtmp2);
 10763     __ or3 (Rtmp, Rtmp2, Rtmp);
 10764     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10765     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10766   %}
 10767   ins_pipe(ialu_reg);
 10768 %}
 10770 // Replicate scalar constant to packed char/short values in Double register
 10771 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10772   predicate(n->as_Vector()->length() == 4);
 10773   match(Set dst (ReplicateS con));
 10774   effect(KILL tmp);
 10775   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10776   ins_encode %{
 10777     // XXX This is a quick fix for 6833573.
 10778     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10779     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10780     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10781   %}
 10782   ins_pipe(loadConFD);
 10783 %}
 10785 // Replicate scalar to packed int values into Double register
 10786 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10787   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10788   match(Set dst (ReplicateI src));
 10789   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10790   format %{ "SLLX  $src,32,$tmp\n\t"
 10791             "SRLX  $tmp,32,$tmp2\n\t"
 10792             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10793             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10794   ins_encode %{
 10795     Register Rsrc = $src$$Register;
 10796     Register Rtmp = $tmp$$Register;
 10797     Register Rtmp2 = $tmp2$$Register;
 10798     __ sllx(Rsrc,    32, Rtmp);
 10799     __ srlx(Rtmp,    32, Rtmp2);
 10800     __ or3 (Rtmp, Rtmp2, Rtmp);
 10801     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10802   %}
 10803   ins_pipe(ialu_reg);
 10804 %}
 10806 // Replicate scalar to packed int values into Double stack
 10807 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10808   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10809   match(Set dst (ReplicateI src));
 10810   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10811   format %{ "SLLX  $src,32,$tmp\n\t"
 10812             "SRLX  $tmp,32,$tmp2\n\t"
 10813             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10814             "STX   $tmp,$dst\t! regL to stkD" %}
 10815   ins_encode %{
 10816     Register Rsrc = $src$$Register;
 10817     Register Rtmp = $tmp$$Register;
 10818     Register Rtmp2 = $tmp2$$Register;
 10819     __ sllx(Rsrc,    32, Rtmp);
 10820     __ srlx(Rtmp,    32, Rtmp2);
 10821     __ or3 (Rtmp, Rtmp2, Rtmp);
 10822     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10823     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10824   %}
 10825   ins_pipe(ialu_reg);
 10826 %}
 10828 // Replicate scalar zero constant to packed int values in Double register
 10829 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10830   predicate(n->as_Vector()->length() == 2);
 10831   match(Set dst (ReplicateI con));
 10832   effect(KILL tmp);
 10833   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10834   ins_encode %{
 10835     // XXX This is a quick fix for 6833573.
 10836     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10837     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10838     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10839   %}
 10840   ins_pipe(loadConFD);
 10841 %}
 10843 // Replicate scalar to packed float values into Double stack
 10844 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10845   predicate(n->as_Vector()->length() == 2);
 10846   match(Set dst (ReplicateF src));
 10847   ins_cost(MEMORY_REF_COST*2);
 10848   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10849             "STF    $src,$dst.lo" %}
 10850   opcode(Assembler::stf_op3);
 10851   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10852   ins_pipe(fstoreF_stk_reg);
 10853 %}
 10855 // Replicate scalar zero constant to packed float values in Double register
 10856 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10857   predicate(n->as_Vector()->length() == 2);
 10858   match(Set dst (ReplicateF con));
 10859   effect(KILL tmp);
 10860   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10861   ins_encode %{
 10862     // XXX This is a quick fix for 6833573.
 10863     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10864     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10865     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10866   %}
 10867   ins_pipe(loadConFD);
 10868 %}
 10870 //----------PEEPHOLE RULES-----------------------------------------------------
 10871 // These must follow all instruction definitions as they use the names
 10872 // defined in the instructions definitions.
 10873 //
 10874 // peepmatch ( root_instr_name [preceding_instruction]* );
 10875 //
 10876 // peepconstraint %{
 10877 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10878 //  [, ...] );
 10879 // // instruction numbers are zero-based using left to right order in peepmatch
 10880 //
 10881 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10882 // // provide an instruction_number.operand_name for each operand that appears
 10883 // // in the replacement instruction's match rule
 10884 //
 10885 // ---------VM FLAGS---------------------------------------------------------
 10886 //
 10887 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10888 //
 10889 // Each peephole rule is given an identifying number starting with zero and
 10890 // increasing by one in the order seen by the parser.  An individual peephole
 10891 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10892 // on the command-line.
 10893 //
 10894 // ---------CURRENT LIMITATIONS----------------------------------------------
 10895 //
 10896 // Only match adjacent instructions in same basic block
 10897 // Only equality constraints
 10898 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10899 // Only one replacement instruction
 10900 //
 10901 // ---------EXAMPLE----------------------------------------------------------
 10902 //
 10903 // // pertinent parts of existing instructions in architecture description
 10904 // instruct movI(eRegI dst, eRegI src) %{
 10905 //   match(Set dst (CopyI src));
 10906 // %}
 10907 //
 10908 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10909 //   match(Set dst (AddI dst src));
 10910 //   effect(KILL cr);
 10911 // %}
 10912 //
 10913 // // Change (inc mov) to lea
 10914 // peephole %{
 10915 //   // increment preceeded by register-register move
 10916 //   peepmatch ( incI_eReg movI );
 10917 //   // require that the destination register of the increment
 10918 //   // match the destination register of the move
 10919 //   peepconstraint ( 0.dst == 1.dst );
 10920 //   // construct a replacement instruction that sets
 10921 //   // the destination to ( move's source register + one )
 10922 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10923 // %}
 10924 //
 10926 // // Change load of spilled value to only a spill
 10927 // instruct storeI(memory mem, eRegI src) %{
 10928 //   match(Set mem (StoreI mem src));
 10929 // %}
 10930 //
 10931 // instruct loadI(eRegI dst, memory mem) %{
 10932 //   match(Set dst (LoadI mem));
 10933 // %}
 10934 //
 10935 // peephole %{
 10936 //   peepmatch ( loadI storeI );
 10937 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10938 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10939 // %}
 10941 //----------SMARTSPILL RULES---------------------------------------------------
 10942 // These must follow all instruction definitions as they use the names
 10943 // defined in the instructions definitions.
 10944 //
 10945 // SPARC will probably not have any of these rules due to RISC instruction set.
 10947 //----------PIPELINE-----------------------------------------------------------
 10948 // Rules which define the behavior of the target architectures pipeline.

mercurial