src/share/vm/runtime/virtualspace.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4465
203f64878aab
child 5019
b294421fa3c5
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "oops/markOop.hpp"
    27 #include "oops/oop.inline.hpp"
    28 #include "runtime/virtualspace.hpp"
    29 #include "services/memTracker.hpp"
    30 #ifdef TARGET_OS_FAMILY_linux
    31 # include "os_linux.inline.hpp"
    32 #endif
    33 #ifdef TARGET_OS_FAMILY_solaris
    34 # include "os_solaris.inline.hpp"
    35 #endif
    36 #ifdef TARGET_OS_FAMILY_windows
    37 # include "os_windows.inline.hpp"
    38 #endif
    39 #ifdef TARGET_OS_FAMILY_bsd
    40 # include "os_bsd.inline.hpp"
    41 #endif
    44 // ReservedSpace
    45 ReservedSpace::ReservedSpace(size_t size) {
    46   initialize(size, 0, false, NULL, 0, false);
    47 }
    49 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
    50                              bool large,
    51                              char* requested_address,
    52                              const size_t noaccess_prefix) {
    53   initialize(size+noaccess_prefix, alignment, large, requested_address,
    54              noaccess_prefix, false);
    55 }
    57 ReservedSpace::ReservedSpace(size_t size, size_t alignment,
    58                              bool large,
    59                              bool executable) {
    60   initialize(size, alignment, large, NULL, 0, executable);
    61 }
    63 char *
    64 ReservedSpace::align_reserved_region(char* addr, const size_t len,
    65                                      const size_t prefix_size,
    66                                      const size_t prefix_align,
    67                                      const size_t suffix_size,
    68                                      const size_t suffix_align)
    69 {
    70   assert(addr != NULL, "sanity");
    71   const size_t required_size = prefix_size + suffix_size;
    72   assert(len >= required_size, "len too small");
    74   const size_t s = size_t(addr);
    75   const size_t beg_ofs = (s + prefix_size) & (suffix_align - 1);
    76   const size_t beg_delta = beg_ofs == 0 ? 0 : suffix_align - beg_ofs;
    78   if (len < beg_delta + required_size) {
    79      return NULL; // Cannot do proper alignment.
    80   }
    81   const size_t end_delta = len - (beg_delta + required_size);
    83   if (beg_delta != 0) {
    84     os::release_memory(addr, beg_delta);
    85   }
    87   if (end_delta != 0) {
    88     char* release_addr = (char*) (s + beg_delta + required_size);
    89     os::release_memory(release_addr, end_delta);
    90   }
    92   return (char*) (s + beg_delta);
    93 }
    95 char* ReservedSpace::reserve_and_align(const size_t reserve_size,
    96                                        const size_t prefix_size,
    97                                        const size_t prefix_align,
    98                                        const size_t suffix_size,
    99                                        const size_t suffix_align)
   100 {
   101   assert(reserve_size > prefix_size + suffix_size, "should not be here");
   103   char* raw_addr = os::reserve_memory(reserve_size, NULL, prefix_align);
   104   if (raw_addr == NULL) return NULL;
   106   char* result = align_reserved_region(raw_addr, reserve_size, prefix_size,
   107                                        prefix_align, suffix_size,
   108                                        suffix_align);
   109   if (result == NULL && !os::release_memory(raw_addr, reserve_size)) {
   110     fatal("os::release_memory failed");
   111   }
   113 #ifdef ASSERT
   114   if (result != NULL) {
   115     const size_t raw = size_t(raw_addr);
   116     const size_t res = size_t(result);
   117     assert(res >= raw, "alignment decreased start addr");
   118     assert(res + prefix_size + suffix_size <= raw + reserve_size,
   119            "alignment increased end addr");
   120     assert((res & (prefix_align - 1)) == 0, "bad alignment of prefix");
   121     assert(((res + prefix_size) & (suffix_align - 1)) == 0,
   122            "bad alignment of suffix");
   123   }
   124 #endif
   126   return result;
   127 }
   129 // Helper method.
   130 static bool failed_to_reserve_as_requested(char* base, char* requested_address,
   131                                            const size_t size, bool special)
   132 {
   133   if (base == requested_address || requested_address == NULL)
   134     return false; // did not fail
   136   if (base != NULL) {
   137     // Different reserve address may be acceptable in other cases
   138     // but for compressed oops heap should be at requested address.
   139     assert(UseCompressedOops, "currently requested address used only for compressed oops");
   140     if (PrintCompressedOopsMode) {
   141       tty->cr();
   142       tty->print_cr("Reserved memory not at requested address: " PTR_FORMAT " vs " PTR_FORMAT, base, requested_address);
   143     }
   144     // OS ignored requested address. Try different address.
   145     if (special) {
   146       if (!os::release_memory_special(base, size)) {
   147         fatal("os::release_memory_special failed");
   148       }
   149     } else {
   150       if (!os::release_memory(base, size)) {
   151         fatal("os::release_memory failed");
   152       }
   153     }
   154   }
   155   return true;
   156 }
   158 ReservedSpace::ReservedSpace(const size_t suffix_size,
   159                              const size_t suffix_align,
   160                              char* requested_address,
   161                              const size_t noaccess_prefix)
   162 {
   163   assert(suffix_size != 0, "sanity");
   164   assert(suffix_align != 0, "sanity");
   165   assert((suffix_size & (suffix_align - 1)) == 0,
   166     "suffix_size not divisible by suffix_align");
   168   // Assert that if noaccess_prefix is used, it is the same as prefix_align.
   169   // Add in noaccess_prefix to prefix
   170   const size_t adjusted_prefix_size = noaccess_prefix;
   171   const size_t size = adjusted_prefix_size + suffix_size;
   173   // On systems where the entire region has to be reserved and committed up
   174   // front, the compound alignment normally done by this method is unnecessary.
   175   const bool try_reserve_special = UseLargePages &&
   176     suffix_align == os::large_page_size();
   177   if (!os::can_commit_large_page_memory() && try_reserve_special) {
   178     initialize(size, suffix_align, true, requested_address, noaccess_prefix,
   179                false);
   180     return;
   181   }
   183   _base = NULL;
   184   _size = 0;
   185   _alignment = 0;
   186   _special = false;
   187   _noaccess_prefix = 0;
   188   _executable = false;
   190   // Optimistically try to reserve the exact size needed.
   191   char* addr;
   192   if (requested_address != 0) {
   193     requested_address -= noaccess_prefix; // adjust address
   194     assert(requested_address != NULL, "huge noaccess prefix?");
   195     addr = os::attempt_reserve_memory_at(size, requested_address);
   196     if (failed_to_reserve_as_requested(addr, requested_address, size, false)) {
   197       // OS ignored requested address. Try different address.
   198       addr = NULL;
   199     }
   200   } else {
   201     addr = os::reserve_memory(size, NULL, suffix_align);
   202   }
   203   if (addr == NULL) return;
   205   // Check whether the result has the needed alignment
   206   const size_t ofs = (size_t(addr) + adjusted_prefix_size) & (suffix_align - 1);
   207   if (ofs != 0) {
   208     // Wrong alignment.  Release, allocate more space and do manual alignment.
   209     //
   210     // On most operating systems, another allocation with a somewhat larger size
   211     // will return an address "close to" that of the previous allocation.  The
   212     // result is often the same address (if the kernel hands out virtual
   213     // addresses from low to high), or an address that is offset by the increase
   214     // in size.  Exploit that to minimize the amount of extra space requested.
   215     if (!os::release_memory(addr, size)) {
   216       fatal("os::release_memory failed");
   217     }
   219     const size_t extra = MAX2(ofs, suffix_align - ofs);
   220     addr = reserve_and_align(size + extra, adjusted_prefix_size, suffix_align,
   221                              suffix_size, suffix_align);
   222     if (addr == NULL) {
   223       // Try an even larger region.  If this fails, address space is exhausted.
   224       addr = reserve_and_align(size + suffix_align, adjusted_prefix_size,
   225                                suffix_align, suffix_size, suffix_align);
   226     }
   228     if (requested_address != 0 &&
   229         failed_to_reserve_as_requested(addr, requested_address, size, false)) {
   230       // As a result of the alignment constraints, the allocated addr differs
   231       // from the requested address. Return back to the caller who can
   232       // take remedial action (like try again without a requested address).
   233       assert(_base == NULL, "should be");
   234       return;
   235     }
   236   }
   238   _base = addr;
   239   _size = size;
   240   _alignment = suffix_align;
   241   _noaccess_prefix = noaccess_prefix;
   242 }
   244 void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
   245                                char* requested_address,
   246                                const size_t noaccess_prefix,
   247                                bool executable) {
   248   const size_t granularity = os::vm_allocation_granularity();
   249   assert((size & (granularity - 1)) == 0,
   250          "size not aligned to os::vm_allocation_granularity()");
   251   assert((alignment & (granularity - 1)) == 0,
   252          "alignment not aligned to os::vm_allocation_granularity()");
   253   assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
   254          "not a power of 2");
   256   alignment = MAX2(alignment, (size_t)os::vm_page_size());
   258   // Assert that if noaccess_prefix is used, it is the same as alignment.
   259   assert(noaccess_prefix == 0 ||
   260          noaccess_prefix == alignment, "noaccess prefix wrong");
   262   _base = NULL;
   263   _size = 0;
   264   _special = false;
   265   _executable = executable;
   266   _alignment = 0;
   267   _noaccess_prefix = 0;
   268   if (size == 0) {
   269     return;
   270   }
   272   // If OS doesn't support demand paging for large page memory, we need
   273   // to use reserve_memory_special() to reserve and pin the entire region.
   274   bool special = large && !os::can_commit_large_page_memory();
   275   char* base = NULL;
   277   if (requested_address != 0) {
   278     requested_address -= noaccess_prefix; // adjust requested address
   279     assert(requested_address != NULL, "huge noaccess prefix?");
   280   }
   282   if (special) {
   284     base = os::reserve_memory_special(size, requested_address, executable);
   286     if (base != NULL) {
   287       if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
   288         // OS ignored requested address. Try different address.
   289         return;
   290       }
   291       // Check alignment constraints
   292       assert((uintptr_t) base % alignment == 0,
   293              "Large pages returned a non-aligned address");
   294       _special = true;
   295     } else {
   296       // failed; try to reserve regular memory below
   297       if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
   298                             !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
   299         if (PrintCompressedOopsMode) {
   300           tty->cr();
   301           tty->print_cr("Reserve regular memory without large pages.");
   302         }
   303       }
   304     }
   305   }
   307   if (base == NULL) {
   308     // Optimistically assume that the OSes returns an aligned base pointer.
   309     // When reserving a large address range, most OSes seem to align to at
   310     // least 64K.
   312     // If the memory was requested at a particular address, use
   313     // os::attempt_reserve_memory_at() to avoid over mapping something
   314     // important.  If available space is not detected, return NULL.
   316     if (requested_address != 0) {
   317       base = os::attempt_reserve_memory_at(size, requested_address);
   318       if (failed_to_reserve_as_requested(base, requested_address, size, false)) {
   319         // OS ignored requested address. Try different address.
   320         base = NULL;
   321       }
   322     } else {
   323       base = os::reserve_memory(size, NULL, alignment);
   324     }
   326     if (base == NULL) return;
   328     // Check alignment constraints
   329     if ((((size_t)base + noaccess_prefix) & (alignment - 1)) != 0) {
   330       // Base not aligned, retry
   331       if (!os::release_memory(base, size)) fatal("os::release_memory failed");
   332       // Make sure that size is aligned
   333       size = align_size_up(size, alignment);
   334       base = os::reserve_memory_aligned(size, alignment);
   336       if (requested_address != 0 &&
   337           failed_to_reserve_as_requested(base, requested_address, size, false)) {
   338         // As a result of the alignment constraints, the allocated base differs
   339         // from the requested address. Return back to the caller who can
   340         // take remedial action (like try again without a requested address).
   341         assert(_base == NULL, "should be");
   342         return;
   343       }
   344     }
   345   }
   346   // Done
   347   _base = base;
   348   _size = size;
   349   _alignment = alignment;
   350   _noaccess_prefix = noaccess_prefix;
   352   // Assert that if noaccess_prefix is used, it is the same as alignment.
   353   assert(noaccess_prefix == 0 ||
   354          noaccess_prefix == _alignment, "noaccess prefix wrong");
   356   assert(markOopDesc::encode_pointer_as_mark(_base)->decode_pointer() == _base,
   357          "area must be distinguisable from marks for mark-sweep");
   358   assert(markOopDesc::encode_pointer_as_mark(&_base[size])->decode_pointer() == &_base[size],
   359          "area must be distinguisable from marks for mark-sweep");
   360 }
   363 ReservedSpace::ReservedSpace(char* base, size_t size, size_t alignment,
   364                              bool special, bool executable) {
   365   assert((size % os::vm_allocation_granularity()) == 0,
   366          "size not allocation aligned");
   367   _base = base;
   368   _size = size;
   369   _alignment = alignment;
   370   _noaccess_prefix = 0;
   371   _special = special;
   372   _executable = executable;
   373 }
   376 ReservedSpace ReservedSpace::first_part(size_t partition_size, size_t alignment,
   377                                         bool split, bool realloc) {
   378   assert(partition_size <= size(), "partition failed");
   379   if (split) {
   380     os::split_reserved_memory(base(), size(), partition_size, realloc);
   381   }
   382   ReservedSpace result(base(), partition_size, alignment, special(),
   383                        executable());
   384   return result;
   385 }
   388 ReservedSpace
   389 ReservedSpace::last_part(size_t partition_size, size_t alignment) {
   390   assert(partition_size <= size(), "partition failed");
   391   ReservedSpace result(base() + partition_size, size() - partition_size,
   392                        alignment, special(), executable());
   393   return result;
   394 }
   397 size_t ReservedSpace::page_align_size_up(size_t size) {
   398   return align_size_up(size, os::vm_page_size());
   399 }
   402 size_t ReservedSpace::page_align_size_down(size_t size) {
   403   return align_size_down(size, os::vm_page_size());
   404 }
   407 size_t ReservedSpace::allocation_align_size_up(size_t size) {
   408   return align_size_up(size, os::vm_allocation_granularity());
   409 }
   412 size_t ReservedSpace::allocation_align_size_down(size_t size) {
   413   return align_size_down(size, os::vm_allocation_granularity());
   414 }
   417 void ReservedSpace::release() {
   418   if (is_reserved()) {
   419     char *real_base = _base - _noaccess_prefix;
   420     const size_t real_size = _size + _noaccess_prefix;
   421     if (special()) {
   422       os::release_memory_special(real_base, real_size);
   423     } else{
   424       os::release_memory(real_base, real_size);
   425     }
   426     _base = NULL;
   427     _size = 0;
   428     _noaccess_prefix = 0;
   429     _special = false;
   430     _executable = false;
   431   }
   432 }
   434 void ReservedSpace::protect_noaccess_prefix(const size_t size) {
   435   assert( (_noaccess_prefix != 0) == (UseCompressedOops && _base != NULL &&
   436                                       (Universe::narrow_oop_base() != NULL) &&
   437                                       Universe::narrow_oop_use_implicit_null_checks()),
   438          "noaccess_prefix should be used only with non zero based compressed oops");
   440   // If there is no noaccess prefix, return.
   441   if (_noaccess_prefix == 0) return;
   443   assert(_noaccess_prefix >= (size_t)os::vm_page_size(),
   444          "must be at least page size big");
   446   // Protect memory at the base of the allocated region.
   447   // If special, the page was committed (only matters on windows)
   448   if (!os::protect_memory(_base, _noaccess_prefix, os::MEM_PROT_NONE,
   449                           _special)) {
   450     fatal("cannot protect protection page");
   451   }
   452   if (PrintCompressedOopsMode) {
   453     tty->cr();
   454     tty->print_cr("Protected page at the reserved heap base: " PTR_FORMAT " / " INTX_FORMAT " bytes", _base, _noaccess_prefix);
   455   }
   457   _base += _noaccess_prefix;
   458   _size -= _noaccess_prefix;
   459   assert((size == _size) && ((uintptr_t)_base % _alignment == 0),
   460          "must be exactly of required size and alignment");
   461 }
   463 ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
   464                                      bool large, char* requested_address) :
   465   ReservedSpace(size, alignment, large,
   466                 requested_address,
   467                 (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
   468                  Universe::narrow_oop_use_implicit_null_checks()) ?
   469                   lcm(os::vm_page_size(), alignment) : 0) {
   470   if (base() > 0) {
   471     MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
   472   }
   474   // Only reserved space for the java heap should have a noaccess_prefix
   475   // if using compressed oops.
   476   protect_noaccess_prefix(size);
   477 }
   479 ReservedHeapSpace::ReservedHeapSpace(const size_t heap_space_size,
   480                                      const size_t alignment,
   481                                      char* requested_address) :
   482   ReservedSpace(heap_space_size, alignment,
   483                 requested_address,
   484                 (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
   485                  Universe::narrow_oop_use_implicit_null_checks()) ?
   486                   lcm(os::vm_page_size(), alignment) : 0) {
   487   if (base() > 0) {
   488     MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
   489   }
   490   protect_noaccess_prefix(heap_space_size);
   491 }
   493 // Reserve space for code segment.  Same as Java heap only we mark this as
   494 // executable.
   495 ReservedCodeSpace::ReservedCodeSpace(size_t r_size,
   496                                      size_t rs_align,
   497                                      bool large) :
   498   ReservedSpace(r_size, rs_align, large, /*executable*/ true) {
   499   MemTracker::record_virtual_memory_type((address)base(), mtCode);
   500 }
   502 // VirtualSpace
   504 VirtualSpace::VirtualSpace() {
   505   _low_boundary           = NULL;
   506   _high_boundary          = NULL;
   507   _low                    = NULL;
   508   _high                   = NULL;
   509   _lower_high             = NULL;
   510   _middle_high            = NULL;
   511   _upper_high             = NULL;
   512   _lower_high_boundary    = NULL;
   513   _middle_high_boundary   = NULL;
   514   _upper_high_boundary    = NULL;
   515   _lower_alignment        = 0;
   516   _middle_alignment       = 0;
   517   _upper_alignment        = 0;
   518   _special                = false;
   519   _executable             = false;
   520 }
   523 bool VirtualSpace::initialize(ReservedSpace rs, size_t committed_size) {
   524   if(!rs.is_reserved()) return false;  // allocation failed.
   525   assert(_low_boundary == NULL, "VirtualSpace already initialized");
   526   _low_boundary  = rs.base();
   527   _high_boundary = low_boundary() + rs.size();
   529   _low = low_boundary();
   530   _high = low();
   532   _special = rs.special();
   533   _executable = rs.executable();
   535   // When a VirtualSpace begins life at a large size, make all future expansion
   536   // and shrinking occur aligned to a granularity of large pages.  This avoids
   537   // fragmentation of physical addresses that inhibits the use of large pages
   538   // by the OS virtual memory system.  Empirically,  we see that with a 4MB
   539   // page size, the only spaces that get handled this way are codecache and
   540   // the heap itself, both of which provide a substantial performance
   541   // boost in many benchmarks when covered by large pages.
   542   //
   543   // No attempt is made to force large page alignment at the very top and
   544   // bottom of the space if they are not aligned so already.
   545   _lower_alignment  = os::vm_page_size();
   546   _middle_alignment = os::page_size_for_region(rs.size(), rs.size(), 1);
   547   _upper_alignment  = os::vm_page_size();
   549   // End of each region
   550   _lower_high_boundary = (char*) round_to((intptr_t) low_boundary(), middle_alignment());
   551   _middle_high_boundary = (char*) round_down((intptr_t) high_boundary(), middle_alignment());
   552   _upper_high_boundary = high_boundary();
   554   // High address of each region
   555   _lower_high = low_boundary();
   556   _middle_high = lower_high_boundary();
   557   _upper_high = middle_high_boundary();
   559   // commit to initial size
   560   if (committed_size > 0) {
   561     if (!expand_by(committed_size)) {
   562       return false;
   563     }
   564   }
   565   return true;
   566 }
   569 VirtualSpace::~VirtualSpace() {
   570   release();
   571 }
   574 void VirtualSpace::release() {
   575   // This does not release memory it never reserved.
   576   // Caller must release via rs.release();
   577   _low_boundary           = NULL;
   578   _high_boundary          = NULL;
   579   _low                    = NULL;
   580   _high                   = NULL;
   581   _lower_high             = NULL;
   582   _middle_high            = NULL;
   583   _upper_high             = NULL;
   584   _lower_high_boundary    = NULL;
   585   _middle_high_boundary   = NULL;
   586   _upper_high_boundary    = NULL;
   587   _lower_alignment        = 0;
   588   _middle_alignment       = 0;
   589   _upper_alignment        = 0;
   590   _special                = false;
   591   _executable             = false;
   592 }
   595 size_t VirtualSpace::committed_size() const {
   596   return pointer_delta(high(), low(), sizeof(char));
   597 }
   600 size_t VirtualSpace::reserved_size() const {
   601   return pointer_delta(high_boundary(), low_boundary(), sizeof(char));
   602 }
   605 size_t VirtualSpace::uncommitted_size()  const {
   606   return reserved_size() - committed_size();
   607 }
   610 bool VirtualSpace::contains(const void* p) const {
   611   return low() <= (const char*) p && (const char*) p < high();
   612 }
   614 /*
   615    First we need to determine if a particular virtual space is using large
   616    pages.  This is done at the initialize function and only virtual spaces
   617    that are larger than LargePageSizeInBytes use large pages.  Once we
   618    have determined this, all expand_by and shrink_by calls must grow and
   619    shrink by large page size chunks.  If a particular request
   620    is within the current large page, the call to commit and uncommit memory
   621    can be ignored.  In the case that the low and high boundaries of this
   622    space is not large page aligned, the pages leading to the first large
   623    page address and the pages after the last large page address must be
   624    allocated with default pages.
   625 */
   626 bool VirtualSpace::expand_by(size_t bytes, bool pre_touch) {
   627   if (uncommitted_size() < bytes) return false;
   629   if (special()) {
   630     // don't commit memory if the entire space is pinned in memory
   631     _high += bytes;
   632     return true;
   633   }
   635   char* previous_high = high();
   636   char* unaligned_new_high = high() + bytes;
   637   assert(unaligned_new_high <= high_boundary(),
   638          "cannot expand by more than upper boundary");
   640   // Calculate where the new high for each of the regions should be.  If
   641   // the low_boundary() and high_boundary() are LargePageSizeInBytes aligned
   642   // then the unaligned lower and upper new highs would be the
   643   // lower_high() and upper_high() respectively.
   644   char* unaligned_lower_new_high =
   645     MIN2(unaligned_new_high, lower_high_boundary());
   646   char* unaligned_middle_new_high =
   647     MIN2(unaligned_new_high, middle_high_boundary());
   648   char* unaligned_upper_new_high =
   649     MIN2(unaligned_new_high, upper_high_boundary());
   651   // Align the new highs based on the regions alignment.  lower and upper
   652   // alignment will always be default page size.  middle alignment will be
   653   // LargePageSizeInBytes if the actual size of the virtual space is in
   654   // fact larger than LargePageSizeInBytes.
   655   char* aligned_lower_new_high =
   656     (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
   657   char* aligned_middle_new_high =
   658     (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
   659   char* aligned_upper_new_high =
   660     (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
   662   // Determine which regions need to grow in this expand_by call.
   663   // If you are growing in the lower region, high() must be in that
   664   // region so calcuate the size based on high().  For the middle and
   665   // upper regions, determine the starting point of growth based on the
   666   // location of high().  By getting the MAX of the region's low address
   667   // (or the prevoius region's high address) and high(), we can tell if it
   668   // is an intra or inter region growth.
   669   size_t lower_needs = 0;
   670   if (aligned_lower_new_high > lower_high()) {
   671     lower_needs =
   672       pointer_delta(aligned_lower_new_high, lower_high(), sizeof(char));
   673   }
   674   size_t middle_needs = 0;
   675   if (aligned_middle_new_high > middle_high()) {
   676     middle_needs =
   677       pointer_delta(aligned_middle_new_high, middle_high(), sizeof(char));
   678   }
   679   size_t upper_needs = 0;
   680   if (aligned_upper_new_high > upper_high()) {
   681     upper_needs =
   682       pointer_delta(aligned_upper_new_high, upper_high(), sizeof(char));
   683   }
   685   // Check contiguity.
   686   assert(low_boundary() <= lower_high() &&
   687          lower_high() <= lower_high_boundary(),
   688          "high address must be contained within the region");
   689   assert(lower_high_boundary() <= middle_high() &&
   690          middle_high() <= middle_high_boundary(),
   691          "high address must be contained within the region");
   692   assert(middle_high_boundary() <= upper_high() &&
   693          upper_high() <= upper_high_boundary(),
   694          "high address must be contained within the region");
   696   // Commit regions
   697   if (lower_needs > 0) {
   698     assert(low_boundary() <= lower_high() &&
   699            lower_high() + lower_needs <= lower_high_boundary(),
   700            "must not expand beyond region");
   701     if (!os::commit_memory(lower_high(), lower_needs, _executable)) {
   702       debug_only(warning("os::commit_memory failed"));
   703       return false;
   704     } else {
   705       _lower_high += lower_needs;
   706      }
   707   }
   708   if (middle_needs > 0) {
   709     assert(lower_high_boundary() <= middle_high() &&
   710            middle_high() + middle_needs <= middle_high_boundary(),
   711            "must not expand beyond region");
   712     if (!os::commit_memory(middle_high(), middle_needs, middle_alignment(),
   713                            _executable)) {
   714       debug_only(warning("os::commit_memory failed"));
   715       return false;
   716     }
   717     _middle_high += middle_needs;
   718   }
   719   if (upper_needs > 0) {
   720     assert(middle_high_boundary() <= upper_high() &&
   721            upper_high() + upper_needs <= upper_high_boundary(),
   722            "must not expand beyond region");
   723     if (!os::commit_memory(upper_high(), upper_needs, _executable)) {
   724       debug_only(warning("os::commit_memory failed"));
   725       return false;
   726     } else {
   727       _upper_high += upper_needs;
   728     }
   729   }
   731   if (pre_touch || AlwaysPreTouch) {
   732     int vm_ps = os::vm_page_size();
   733     for (char* curr = previous_high;
   734          curr < unaligned_new_high;
   735          curr += vm_ps) {
   736       // Note the use of a write here; originally we tried just a read, but
   737       // since the value read was unused, the optimizer removed the read.
   738       // If we ever have a concurrent touchahead thread, we'll want to use
   739       // a read, to avoid the potential of overwriting data (if a mutator
   740       // thread beats the touchahead thread to a page).  There are various
   741       // ways of making sure this read is not optimized away: for example,
   742       // generating the code for a read procedure at runtime.
   743       *curr = 0;
   744     }
   745   }
   747   _high += bytes;
   748   return true;
   749 }
   751 // A page is uncommitted if the contents of the entire page is deemed unusable.
   752 // Continue to decrement the high() pointer until it reaches a page boundary
   753 // in which case that particular page can now be uncommitted.
   754 void VirtualSpace::shrink_by(size_t size) {
   755   if (committed_size() < size)
   756     fatal("Cannot shrink virtual space to negative size");
   758   if (special()) {
   759     // don't uncommit if the entire space is pinned in memory
   760     _high -= size;
   761     return;
   762   }
   764   char* unaligned_new_high = high() - size;
   765   assert(unaligned_new_high >= low_boundary(), "cannot shrink past lower boundary");
   767   // Calculate new unaligned address
   768   char* unaligned_upper_new_high =
   769     MAX2(unaligned_new_high, middle_high_boundary());
   770   char* unaligned_middle_new_high =
   771     MAX2(unaligned_new_high, lower_high_boundary());
   772   char* unaligned_lower_new_high =
   773     MAX2(unaligned_new_high, low_boundary());
   775   // Align address to region's alignment
   776   char* aligned_upper_new_high =
   777     (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
   778   char* aligned_middle_new_high =
   779     (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
   780   char* aligned_lower_new_high =
   781     (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
   783   // Determine which regions need to shrink
   784   size_t upper_needs = 0;
   785   if (aligned_upper_new_high < upper_high()) {
   786     upper_needs =
   787       pointer_delta(upper_high(), aligned_upper_new_high, sizeof(char));
   788   }
   789   size_t middle_needs = 0;
   790   if (aligned_middle_new_high < middle_high()) {
   791     middle_needs =
   792       pointer_delta(middle_high(), aligned_middle_new_high, sizeof(char));
   793   }
   794   size_t lower_needs = 0;
   795   if (aligned_lower_new_high < lower_high()) {
   796     lower_needs =
   797       pointer_delta(lower_high(), aligned_lower_new_high, sizeof(char));
   798   }
   800   // Check contiguity.
   801   assert(middle_high_boundary() <= upper_high() &&
   802          upper_high() <= upper_high_boundary(),
   803          "high address must be contained within the region");
   804   assert(lower_high_boundary() <= middle_high() &&
   805          middle_high() <= middle_high_boundary(),
   806          "high address must be contained within the region");
   807   assert(low_boundary() <= lower_high() &&
   808          lower_high() <= lower_high_boundary(),
   809          "high address must be contained within the region");
   811   // Uncommit
   812   if (upper_needs > 0) {
   813     assert(middle_high_boundary() <= aligned_upper_new_high &&
   814            aligned_upper_new_high + upper_needs <= upper_high_boundary(),
   815            "must not shrink beyond region");
   816     if (!os::uncommit_memory(aligned_upper_new_high, upper_needs)) {
   817       debug_only(warning("os::uncommit_memory failed"));
   818       return;
   819     } else {
   820       _upper_high -= upper_needs;
   821     }
   822   }
   823   if (middle_needs > 0) {
   824     assert(lower_high_boundary() <= aligned_middle_new_high &&
   825            aligned_middle_new_high + middle_needs <= middle_high_boundary(),
   826            "must not shrink beyond region");
   827     if (!os::uncommit_memory(aligned_middle_new_high, middle_needs)) {
   828       debug_only(warning("os::uncommit_memory failed"));
   829       return;
   830     } else {
   831       _middle_high -= middle_needs;
   832     }
   833   }
   834   if (lower_needs > 0) {
   835     assert(low_boundary() <= aligned_lower_new_high &&
   836            aligned_lower_new_high + lower_needs <= lower_high_boundary(),
   837            "must not shrink beyond region");
   838     if (!os::uncommit_memory(aligned_lower_new_high, lower_needs)) {
   839       debug_only(warning("os::uncommit_memory failed"));
   840       return;
   841     } else {
   842       _lower_high -= lower_needs;
   843     }
   844   }
   846   _high -= size;
   847 }
   849 #ifndef PRODUCT
   850 void VirtualSpace::check_for_contiguity() {
   851   // Check contiguity.
   852   assert(low_boundary() <= lower_high() &&
   853          lower_high() <= lower_high_boundary(),
   854          "high address must be contained within the region");
   855   assert(lower_high_boundary() <= middle_high() &&
   856          middle_high() <= middle_high_boundary(),
   857          "high address must be contained within the region");
   858   assert(middle_high_boundary() <= upper_high() &&
   859          upper_high() <= upper_high_boundary(),
   860          "high address must be contained within the region");
   861   assert(low() >= low_boundary(), "low");
   862   assert(low_boundary() <= lower_high_boundary(), "lower high boundary");
   863   assert(upper_high_boundary() <= high_boundary(), "upper high boundary");
   864   assert(high() <= upper_high(), "upper high");
   865 }
   867 void VirtualSpace::print() {
   868   tty->print   ("Virtual space:");
   869   if (special()) tty->print(" (pinned in memory)");
   870   tty->cr();
   871   tty->print_cr(" - committed: " SIZE_FORMAT, committed_size());
   872   tty->print_cr(" - reserved:  " SIZE_FORMAT, reserved_size());
   873   tty->print_cr(" - [low, high]:     [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",  low(), high());
   874   tty->print_cr(" - [low_b, high_b]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",  low_boundary(), high_boundary());
   875 }
   877 #endif

mercurial