src/cpu/x86/vm/vm_version_x86.hpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4410
00af3a3a8df4
child 5353
b800986664f4
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                         : 2,
    65                monitor  : 1,
    66                         : 1,
    67                vmx      : 1,
    68                         : 1,
    69                est      : 1,
    70                         : 1,
    71                ssse3    : 1,
    72                cid      : 1,
    73                         : 2,
    74                cmpxchg16: 1,
    75                         : 4,
    76                dca      : 1,
    77                sse4_1   : 1,
    78                sse4_2   : 1,
    79                         : 2,
    80                popcnt   : 1,
    81                         : 1,
    82                aes      : 1,
    83                         : 1,
    84                osxsave  : 1,
    85                avx      : 1,
    86                         : 3;
    87     } bits;
    88   };
    90   union StdCpuid1Edx {
    91     uint32_t value;
    92     struct {
    93       uint32_t          : 4,
    94                tsc      : 1,
    95                         : 3,
    96                cmpxchg8 : 1,
    97                         : 6,
    98                cmov     : 1,
    99                         : 3,
   100                clflush  : 1,
   101                         : 3,
   102                mmx      : 1,
   103                fxsr     : 1,
   104                sse      : 1,
   105                sse2     : 1,
   106                         : 1,
   107                ht       : 1,
   108                         : 3;
   109     } bits;
   110   };
   112   union DcpCpuid4Eax {
   113     uint32_t value;
   114     struct {
   115       uint32_t cache_type    : 5,
   116                              : 21,
   117                cores_per_cpu : 6;
   118     } bits;
   119   };
   121   union DcpCpuid4Ebx {
   122     uint32_t value;
   123     struct {
   124       uint32_t L1_line_size  : 12,
   125                partitions    : 10,
   126                associativity : 10;
   127     } bits;
   128   };
   130   union TplCpuidBEbx {
   131     uint32_t value;
   132     struct {
   133       uint32_t logical_cpus : 16,
   134                             : 16;
   135     } bits;
   136   };
   138   union ExtCpuid1Ecx {
   139     uint32_t value;
   140     struct {
   141       uint32_t LahfSahf     : 1,
   142                CmpLegacy    : 1,
   143                             : 4,
   144                lzcnt        : 1,
   145                sse4a        : 1,
   146                misalignsse  : 1,
   147                prefetchw    : 1,
   148                             : 22;
   149     } bits;
   150   };
   152   union ExtCpuid1Edx {
   153     uint32_t value;
   154     struct {
   155       uint32_t           : 22,
   156                mmx_amd   : 1,
   157                mmx       : 1,
   158                fxsr      : 1,
   159                          : 4,
   160                long_mode : 1,
   161                tdnow2    : 1,
   162                tdnow     : 1;
   163     } bits;
   164   };
   166   union ExtCpuid5Ex {
   167     uint32_t value;
   168     struct {
   169       uint32_t L1_line_size : 8,
   170                L1_tag_lines : 8,
   171                L1_assoc     : 8,
   172                L1_size      : 8;
   173     } bits;
   174   };
   176   union ExtCpuid7Edx {
   177     uint32_t value;
   178     struct {
   179       uint32_t               : 8,
   180               tsc_invariance : 1,
   181                              : 23;
   182     } bits;
   183   };
   185   union ExtCpuid8Ecx {
   186     uint32_t value;
   187     struct {
   188       uint32_t cores_per_cpu : 8,
   189                              : 24;
   190     } bits;
   191   };
   193   union SefCpuid7Eax {
   194     uint32_t value;
   195   };
   197   union SefCpuid7Ebx {
   198     uint32_t value;
   199     struct {
   200       uint32_t fsgsbase : 1,
   201                         : 2,
   202                    bmi1 : 1,
   203                         : 1,
   204                    avx2 : 1,
   205                         : 2,
   206                    bmi2 : 1,
   207                    erms : 1,
   208                         : 22;
   209     } bits;
   210   };
   212   union XemXcr0Eax {
   213     uint32_t value;
   214     struct {
   215       uint32_t x87 : 1,
   216                sse : 1,
   217                ymm : 1,
   218                    : 29;
   219     } bits;
   220   };
   222 protected:
   223   static int _cpu;
   224   static int _model;
   225   static int _stepping;
   226   static int _cpuFeatures;     // features returned by the "cpuid" instruction
   227                                // 0 if this instruction is not available
   228   static const char* _features_str;
   230   enum {
   231     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   232     CPU_CMOV   = (1 << 1),
   233     CPU_FXSR   = (1 << 2),
   234     CPU_HT     = (1 << 3),
   235     CPU_MMX    = (1 << 4),
   236     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   237                                     // may not necessarily support other 3dnow instructions
   238     CPU_SSE    = (1 << 6),
   239     CPU_SSE2   = (1 << 7),
   240     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   241     CPU_SSSE3  = (1 << 9),
   242     CPU_SSE4A  = (1 << 10),
   243     CPU_SSE4_1 = (1 << 11),
   244     CPU_SSE4_2 = (1 << 12),
   245     CPU_POPCNT = (1 << 13),
   246     CPU_LZCNT  = (1 << 14),
   247     CPU_TSC    = (1 << 15),
   248     CPU_TSCINV = (1 << 16),
   249     CPU_AVX    = (1 << 17),
   250     CPU_AVX2   = (1 << 18),
   251     CPU_AES    = (1 << 19),
   252     CPU_ERMS   = (1 << 20) // enhanced 'rep movsb/stosb' instructions
   253   } cpuFeatureFlags;
   255   enum {
   256     // AMD
   257     CPU_FAMILY_AMD_11H       = 0x11,
   258     // Intel
   259     CPU_FAMILY_INTEL_CORE    = 6,
   260     CPU_MODEL_NEHALEM        = 0x1e,
   261     CPU_MODEL_NEHALEM_EP     = 0x1a,
   262     CPU_MODEL_NEHALEM_EX     = 0x2e,
   263     CPU_MODEL_WESTMERE       = 0x25,
   264     CPU_MODEL_WESTMERE_EP    = 0x2c,
   265     CPU_MODEL_WESTMERE_EX    = 0x2f,
   266     CPU_MODEL_SANDYBRIDGE    = 0x2a,
   267     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
   268     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
   269   } cpuExtendedFamily;
   271   // cpuid information block.  All info derived from executing cpuid with
   272   // various function numbers is stored here.  Intel and AMD info is
   273   // merged in this block: accessor methods disentangle it.
   274   //
   275   // The info block is laid out in subblocks of 4 dwords corresponding to
   276   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   277   struct CpuidInfo {
   278     // cpuid function 0
   279     uint32_t std_max_function;
   280     uint32_t std_vendor_name_0;
   281     uint32_t std_vendor_name_1;
   282     uint32_t std_vendor_name_2;
   284     // cpuid function 1
   285     StdCpuid1Eax std_cpuid1_eax;
   286     StdCpuid1Ebx std_cpuid1_ebx;
   287     StdCpuid1Ecx std_cpuid1_ecx;
   288     StdCpuid1Edx std_cpuid1_edx;
   290     // cpuid function 4 (deterministic cache parameters)
   291     DcpCpuid4Eax dcp_cpuid4_eax;
   292     DcpCpuid4Ebx dcp_cpuid4_ebx;
   293     uint32_t     dcp_cpuid4_ecx; // unused currently
   294     uint32_t     dcp_cpuid4_edx; // unused currently
   296     // cpuid function 7 (structured extended features)
   297     SefCpuid7Eax sef_cpuid7_eax;
   298     SefCpuid7Ebx sef_cpuid7_ebx;
   299     uint32_t     sef_cpuid7_ecx; // unused currently
   300     uint32_t     sef_cpuid7_edx; // unused currently
   302     // cpuid function 0xB (processor topology)
   303     // ecx = 0
   304     uint32_t     tpl_cpuidB0_eax;
   305     TplCpuidBEbx tpl_cpuidB0_ebx;
   306     uint32_t     tpl_cpuidB0_ecx; // unused currently
   307     uint32_t     tpl_cpuidB0_edx; // unused currently
   309     // ecx = 1
   310     uint32_t     tpl_cpuidB1_eax;
   311     TplCpuidBEbx tpl_cpuidB1_ebx;
   312     uint32_t     tpl_cpuidB1_ecx; // unused currently
   313     uint32_t     tpl_cpuidB1_edx; // unused currently
   315     // ecx = 2
   316     uint32_t     tpl_cpuidB2_eax;
   317     TplCpuidBEbx tpl_cpuidB2_ebx;
   318     uint32_t     tpl_cpuidB2_ecx; // unused currently
   319     uint32_t     tpl_cpuidB2_edx; // unused currently
   321     // cpuid function 0x80000000 // example, unused
   322     uint32_t ext_max_function;
   323     uint32_t ext_vendor_name_0;
   324     uint32_t ext_vendor_name_1;
   325     uint32_t ext_vendor_name_2;
   327     // cpuid function 0x80000001
   328     uint32_t     ext_cpuid1_eax; // reserved
   329     uint32_t     ext_cpuid1_ebx; // reserved
   330     ExtCpuid1Ecx ext_cpuid1_ecx;
   331     ExtCpuid1Edx ext_cpuid1_edx;
   333     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   334     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   335     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   336     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   338     // cpuid function 0x80000005 // AMD L1, Intel reserved
   339     uint32_t     ext_cpuid5_eax; // unused currently
   340     uint32_t     ext_cpuid5_ebx; // reserved
   341     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   342     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   344     // cpuid function 0x80000007
   345     uint32_t     ext_cpuid7_eax; // reserved
   346     uint32_t     ext_cpuid7_ebx; // reserved
   347     uint32_t     ext_cpuid7_ecx; // reserved
   348     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
   350     // cpuid function 0x80000008
   351     uint32_t     ext_cpuid8_eax; // unused currently
   352     uint32_t     ext_cpuid8_ebx; // reserved
   353     ExtCpuid8Ecx ext_cpuid8_ecx;
   354     uint32_t     ext_cpuid8_edx; // reserved
   356     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
   357     XemXcr0Eax   xem_xcr0_eax;
   358     uint32_t     xem_xcr0_edx; // reserved
   359   };
   361   // The actual cpuid info block
   362   static CpuidInfo _cpuid_info;
   364   // Extractors and predicates
   365   static uint32_t extended_cpu_family() {
   366     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   367     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   368     return result;
   369   }
   371   static uint32_t extended_cpu_model() {
   372     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   373     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   374     return result;
   375   }
   377   static uint32_t cpu_stepping() {
   378     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   379     return result;
   380   }
   382   static uint logical_processor_count() {
   383     uint result = threads_per_core();
   384     return result;
   385   }
   387   static uint32_t feature_flags() {
   388     uint32_t result = 0;
   389     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   390       result |= CPU_CX8;
   391     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   392       result |= CPU_CMOV;
   393     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   394         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   395       result |= CPU_FXSR;
   396     // HT flag is set for multi-core processors also.
   397     if (threads_per_core() > 1)
   398       result |= CPU_HT;
   399     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   400         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   401       result |= CPU_MMX;
   402     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   403       result |= CPU_SSE;
   404     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   405       result |= CPU_SSE2;
   406     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   407       result |= CPU_SSE3;
   408     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   409       result |= CPU_SSSE3;
   410     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   411       result |= CPU_SSE4_1;
   412     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   413       result |= CPU_SSE4_2;
   414     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   415       result |= CPU_POPCNT;
   416     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
   417         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
   418         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
   419         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
   420       result |= CPU_AVX;
   421       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
   422         result |= CPU_AVX2;
   423     }
   424     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
   425       result |= CPU_TSC;
   426     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
   427       result |= CPU_TSCINV;
   428     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
   429       result |= CPU_AES;
   430     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
   431       result |= CPU_ERMS;
   433     // AMD features.
   434     if (is_amd()) {
   435       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   436           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   437         result |= CPU_3DNOW_PREFETCH;
   438       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   439         result |= CPU_LZCNT;
   440       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   441         result |= CPU_SSE4A;
   442     }
   444     return result;
   445   }
   447   static void get_processor_features();
   449 public:
   450   // Offsets for cpuid asm stub
   451   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   452   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   453   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   454   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
   455   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   456   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   457   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
   458   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   459   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   460   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   461   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   462   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
   464   // Initialization
   465   static void initialize();
   467   // Asserts
   468   static void assert_is_initialized() {
   469     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   470   }
   472   //
   473   // Processor family:
   474   //       3   -  386
   475   //       4   -  486
   476   //       5   -  Pentium
   477   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   478   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   479   //    family 6 model:   9,        13,       14,        15
   480   //    0x0f   -  Pentium 4, Opteron
   481   //
   482   // Note: The cpu family should be used to select between
   483   //       instruction sequences which are valid on all Intel
   484   //       processors.  Use the feature test functions below to
   485   //       determine whether a particular instruction is supported.
   486   //
   487   static int  cpu_family()        { return _cpu;}
   488   static bool is_P6()             { return cpu_family() >= 6; }
   489   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   490   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   492   static bool supports_processor_topology() {
   493     return (_cpuid_info.std_max_function >= 0xB) &&
   494            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   495            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   496            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   497   }
   499   static uint cores_per_cpu()  {
   500     uint result = 1;
   501     if (is_intel()) {
   502       if (supports_processor_topology()) {
   503         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   504                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   505       } else {
   506         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   507       }
   508     } else if (is_amd()) {
   509       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   510     }
   511     return result;
   512   }
   514   static uint threads_per_core()  {
   515     uint result = 1;
   516     if (is_intel() && supports_processor_topology()) {
   517       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   518     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   519       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   520                cores_per_cpu();
   521     }
   522     return result;
   523   }
   525   static intx prefetch_data_size()  {
   526     intx result = 0;
   527     if (is_intel()) {
   528       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   529     } else if (is_amd()) {
   530       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   531     }
   532     if (result < 32) // not defined ?
   533       result = 32;   // 32 bytes by default on x86 and other x64
   534     return result;
   535   }
   537   //
   538   // Feature identification
   539   //
   540   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   541   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   542   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   543   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   544   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   545   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   546   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   547   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   548   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   549   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   550   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   551   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   552   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   553   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
   554   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
   555   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
   556   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
   557   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
   559   // Intel features
   560   static bool is_intel_family_core() { return is_intel() &&
   561                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
   563   static bool is_intel_tsc_synched_at_init()  {
   564     if (is_intel_family_core()) {
   565       uint32_t ext_model = extended_cpu_model();
   566       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
   567           ext_model == CPU_MODEL_WESTMERE_EP    ||
   568           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
   569           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
   570         // <= 2-socket invariant tsc support. EX versions are usually used
   571         // in > 2-socket systems and likely don't synchronize tscs at
   572         // initialization.
   573         // Code that uses tsc values must be prepared for them to arbitrarily
   574         // jump forward or backward.
   575         return true;
   576       }
   577     }
   578     return false;
   579   }
   581   // AMD features
   582   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   583   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   584   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   585   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   587   static bool is_amd_Barcelona()  { return is_amd() &&
   588                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
   590   // Intel and AMD newer cores support fast timestamps well
   591   static bool supports_tscinv_bit() {
   592     return (_cpuFeatures & CPU_TSCINV) != 0;
   593   }
   594   static bool supports_tscinv() {
   595     return supports_tscinv_bit() &&
   596            ( (is_amd() && !is_amd_Barcelona()) ||
   597              is_intel_tsc_synched_at_init() );
   598   }
   600   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   601   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   602                                            supports_sse3() && _model != 0x1C; }
   604   static bool supports_compare_and_exchange() { return true; }
   606   static const char* cpu_features()           { return _features_str; }
   608   static intx allocate_prefetch_distance() {
   609     // This method should be called before allocate_prefetch_style().
   610     //
   611     // Hardware prefetching (distance/size in bytes):
   612     // Pentium 3 -  64 /  32
   613     // Pentium 4 - 256 / 128
   614     // Athlon    -  64 /  32 ????
   615     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   616     // Core      - 128 /  64
   617     //
   618     // Software prefetching (distance in bytes / instruction with best score):
   619     // Pentium 3 - 128 / prefetchnta
   620     // Pentium 4 - 512 / prefetchnta
   621     // Athlon    - 128 / prefetchnta
   622     // Opteron   - 256 / prefetchnta
   623     // Core      - 256 / prefetchnta
   624     // It will be used only when AllocatePrefetchStyle > 0
   626     intx count = AllocatePrefetchDistance;
   627     if (count < 0) {   // default ?
   628       if (is_amd()) {  // AMD
   629         if (supports_sse2())
   630           count = 256; // Opteron
   631         else
   632           count = 128; // Athlon
   633       } else {         // Intel
   634         if (supports_sse2())
   635           if (cpu_family() == 6) {
   636             count = 256; // Pentium M, Core, Core2
   637           } else {
   638             count = 512; // Pentium 4
   639           }
   640         else
   641           count = 128; // Pentium 3 (and all other old CPUs)
   642       }
   643     }
   644     return count;
   645   }
   646   static intx allocate_prefetch_style() {
   647     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   648     // Return 0 if AllocatePrefetchDistance was not defined.
   649     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   650   }
   652   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   653   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   654   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   655   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   657   // gc copy/scan is disabled if prefetchw isn't supported, because
   658   // Prefetch::write emits an inlined prefetchw on Linux.
   659   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   660   // The used prefetcht0 instruction works for both amd64 and em64t.
   661   static intx prefetch_copy_interval_in_bytes() {
   662     intx interval = PrefetchCopyIntervalInBytes;
   663     return interval >= 0 ? interval : 576;
   664   }
   665   static intx prefetch_scan_interval_in_bytes() {
   666     intx interval = PrefetchScanIntervalInBytes;
   667     return interval >= 0 ? interval : 576;
   668   }
   669   static intx prefetch_fields_ahead() {
   670     intx count = PrefetchFieldsAhead;
   671     return count >= 0 ? count : 1;
   672   }
   673 };
   675 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial