src/cpu/x86/vm/vm_version_x86.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4435
92d4b5d8dde4
child 4480
522c328b8b77
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/java.hpp"
    30 #include "runtime/stubCodeGenerator.hpp"
    31 #include "vm_version_x86.hpp"
    32 #ifdef TARGET_OS_FAMILY_linux
    33 # include "os_linux.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_FAMILY_solaris
    36 # include "os_solaris.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_FAMILY_windows
    39 # include "os_windows.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_FAMILY_bsd
    42 # include "os_bsd.inline.hpp"
    43 #endif
    46 int VM_Version::_cpu;
    47 int VM_Version::_model;
    48 int VM_Version::_stepping;
    49 int VM_Version::_cpuFeatures;
    50 const char*           VM_Version::_features_str = "";
    51 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    53 static BufferBlob* stub_blob;
    54 static const int stub_size = 550;
    56 extern "C" {
    57   typedef void (*getPsrInfo_stub_t)(void*);
    58 }
    59 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    62 class VM_Version_StubGenerator: public StubCodeGenerator {
    63  public:
    65   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    67   address generate_getPsrInfo() {
    68     // Flags to test CPU type.
    69     const uint32_t HS_EFL_AC           = 0x40000;
    70     const uint32_t HS_EFL_ID           = 0x200000;
    71     // Values for when we don't have a CPUID instruction.
    72     const int      CPU_FAMILY_SHIFT = 8;
    73     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    74     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    76     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    77     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
    79     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    80 #   define __ _masm->
    82     address start = __ pc();
    84     //
    85     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    86     //
    87     // LP64: rcx and rdx are first and second argument registers on windows
    89     __ push(rbp);
    90 #ifdef _LP64
    91     __ mov(rbp, c_rarg0); // cpuid_info address
    92 #else
    93     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    94 #endif
    95     __ push(rbx);
    96     __ push(rsi);
    97     __ pushf();          // preserve rbx, and flags
    98     __ pop(rax);
    99     __ push(rax);
   100     __ mov(rcx, rax);
   101     //
   102     // if we are unable to change the AC flag, we have a 386
   103     //
   104     __ xorl(rax, HS_EFL_AC);
   105     __ push(rax);
   106     __ popf();
   107     __ pushf();
   108     __ pop(rax);
   109     __ cmpptr(rax, rcx);
   110     __ jccb(Assembler::notEqual, detect_486);
   112     __ movl(rax, CPU_FAMILY_386);
   113     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   114     __ jmp(done);
   116     //
   117     // If we are unable to change the ID flag, we have a 486 which does
   118     // not support the "cpuid" instruction.
   119     //
   120     __ bind(detect_486);
   121     __ mov(rax, rcx);
   122     __ xorl(rax, HS_EFL_ID);
   123     __ push(rax);
   124     __ popf();
   125     __ pushf();
   126     __ pop(rax);
   127     __ cmpptr(rcx, rax);
   128     __ jccb(Assembler::notEqual, detect_586);
   130     __ bind(cpu486);
   131     __ movl(rax, CPU_FAMILY_486);
   132     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   133     __ jmp(done);
   135     //
   136     // At this point, we have a chip which supports the "cpuid" instruction
   137     //
   138     __ bind(detect_586);
   139     __ xorl(rax, rax);
   140     __ cpuid();
   141     __ orl(rax, rax);
   142     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   143                                         // value of at least 1, we give up and
   144                                         // assume a 486
   145     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   146     __ movl(Address(rsi, 0), rax);
   147     __ movl(Address(rsi, 4), rbx);
   148     __ movl(Address(rsi, 8), rcx);
   149     __ movl(Address(rsi,12), rdx);
   151     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   152     __ jccb(Assembler::belowEqual, std_cpuid4);
   154     //
   155     // cpuid(0xB) Processor Topology
   156     //
   157     __ movl(rax, 0xb);
   158     __ xorl(rcx, rcx);   // Threads level
   159     __ cpuid();
   161     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   162     __ movl(Address(rsi, 0), rax);
   163     __ movl(Address(rsi, 4), rbx);
   164     __ movl(Address(rsi, 8), rcx);
   165     __ movl(Address(rsi,12), rdx);
   167     __ movl(rax, 0xb);
   168     __ movl(rcx, 1);     // Cores level
   169     __ cpuid();
   170     __ push(rax);
   171     __ andl(rax, 0x1f);  // Determine if valid topology level
   172     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   173     __ andl(rax, 0xffff);
   174     __ pop(rax);
   175     __ jccb(Assembler::equal, std_cpuid4);
   177     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   178     __ movl(Address(rsi, 0), rax);
   179     __ movl(Address(rsi, 4), rbx);
   180     __ movl(Address(rsi, 8), rcx);
   181     __ movl(Address(rsi,12), rdx);
   183     __ movl(rax, 0xb);
   184     __ movl(rcx, 2);     // Packages level
   185     __ cpuid();
   186     __ push(rax);
   187     __ andl(rax, 0x1f);  // Determine if valid topology level
   188     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   189     __ andl(rax, 0xffff);
   190     __ pop(rax);
   191     __ jccb(Assembler::equal, std_cpuid4);
   193     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   194     __ movl(Address(rsi, 0), rax);
   195     __ movl(Address(rsi, 4), rbx);
   196     __ movl(Address(rsi, 8), rcx);
   197     __ movl(Address(rsi,12), rdx);
   199     //
   200     // cpuid(0x4) Deterministic cache params
   201     //
   202     __ bind(std_cpuid4);
   203     __ movl(rax, 4);
   204     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   205     __ jccb(Assembler::greater, std_cpuid1);
   207     __ xorl(rcx, rcx);   // L1 cache
   208     __ cpuid();
   209     __ push(rax);
   210     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   211     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   212     __ pop(rax);
   213     __ jccb(Assembler::equal, std_cpuid1);
   215     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   216     __ movl(Address(rsi, 0), rax);
   217     __ movl(Address(rsi, 4), rbx);
   218     __ movl(Address(rsi, 8), rcx);
   219     __ movl(Address(rsi,12), rdx);
   221     //
   222     // Standard cpuid(0x1)
   223     //
   224     __ bind(std_cpuid1);
   225     __ movl(rax, 1);
   226     __ cpuid();
   227     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   228     __ movl(Address(rsi, 0), rax);
   229     __ movl(Address(rsi, 4), rbx);
   230     __ movl(Address(rsi, 8), rcx);
   231     __ movl(Address(rsi,12), rdx);
   233     //
   234     // Check if OS has enabled XGETBV instruction to access XCR0
   235     // (OSXSAVE feature flag) and CPU supports AVX
   236     //
   237     __ andl(rcx, 0x18000000);
   238     __ cmpl(rcx, 0x18000000);
   239     __ jccb(Assembler::notEqual, sef_cpuid);
   241     //
   242     // XCR0, XFEATURE_ENABLED_MASK register
   243     //
   244     __ xorl(rcx, rcx);   // zero for XCR0 register
   245     __ xgetbv();
   246     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   247     __ movl(Address(rsi, 0), rax);
   248     __ movl(Address(rsi, 4), rdx);
   250     //
   251     // cpuid(0x7) Structured Extended Features
   252     //
   253     __ bind(sef_cpuid);
   254     __ movl(rax, 7);
   255     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   256     __ jccb(Assembler::greater, ext_cpuid);
   258     __ xorl(rcx, rcx);
   259     __ cpuid();
   260     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   261     __ movl(Address(rsi, 0), rax);
   262     __ movl(Address(rsi, 4), rbx);
   264     //
   265     // Extended cpuid(0x80000000)
   266     //
   267     __ bind(ext_cpuid);
   268     __ movl(rax, 0x80000000);
   269     __ cpuid();
   270     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   271     __ jcc(Assembler::belowEqual, done);
   272     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   273     __ jccb(Assembler::belowEqual, ext_cpuid1);
   274     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
   275     __ jccb(Assembler::belowEqual, ext_cpuid5);
   276     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   277     __ jccb(Assembler::belowEqual, ext_cpuid7);
   278     //
   279     // Extended cpuid(0x80000008)
   280     //
   281     __ movl(rax, 0x80000008);
   282     __ cpuid();
   283     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   284     __ movl(Address(rsi, 0), rax);
   285     __ movl(Address(rsi, 4), rbx);
   286     __ movl(Address(rsi, 8), rcx);
   287     __ movl(Address(rsi,12), rdx);
   289     //
   290     // Extended cpuid(0x80000007)
   291     //
   292     __ bind(ext_cpuid7);
   293     __ movl(rax, 0x80000007);
   294     __ cpuid();
   295     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
   296     __ movl(Address(rsi, 0), rax);
   297     __ movl(Address(rsi, 4), rbx);
   298     __ movl(Address(rsi, 8), rcx);
   299     __ movl(Address(rsi,12), rdx);
   301     //
   302     // Extended cpuid(0x80000005)
   303     //
   304     __ bind(ext_cpuid5);
   305     __ movl(rax, 0x80000005);
   306     __ cpuid();
   307     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   308     __ movl(Address(rsi, 0), rax);
   309     __ movl(Address(rsi, 4), rbx);
   310     __ movl(Address(rsi, 8), rcx);
   311     __ movl(Address(rsi,12), rdx);
   313     //
   314     // Extended cpuid(0x80000001)
   315     //
   316     __ bind(ext_cpuid1);
   317     __ movl(rax, 0x80000001);
   318     __ cpuid();
   319     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   320     __ movl(Address(rsi, 0), rax);
   321     __ movl(Address(rsi, 4), rbx);
   322     __ movl(Address(rsi, 8), rcx);
   323     __ movl(Address(rsi,12), rdx);
   325     //
   326     // return
   327     //
   328     __ bind(done);
   329     __ popf();
   330     __ pop(rsi);
   331     __ pop(rbx);
   332     __ pop(rbp);
   333     __ ret(0);
   335 #   undef __
   337     return start;
   338   };
   339 };
   342 void VM_Version::get_processor_features() {
   344   _cpu = 4; // 486 by default
   345   _model = 0;
   346   _stepping = 0;
   347   _cpuFeatures = 0;
   348   _logical_processors_per_package = 1;
   350   if (!Use486InstrsOnly) {
   351     // Get raw processor info
   352     getPsrInfo_stub(&_cpuid_info);
   353     assert_is_initialized();
   354     _cpu = extended_cpu_family();
   355     _model = extended_cpu_model();
   356     _stepping = cpu_stepping();
   358     if (cpu_family() > 4) { // it supports CPUID
   359       _cpuFeatures = feature_flags();
   360       // Logical processors are only available on P4s and above,
   361       // and only if hyperthreading is available.
   362       _logical_processors_per_package = logical_processor_count();
   363     }
   364   }
   366   _supports_cx8 = supports_cmpxchg8();
   367   // xchg and xadd instructions
   368   _supports_atomic_getset4 = true;
   369   _supports_atomic_getadd4 = true;
   370   LP64_ONLY(_supports_atomic_getset8 = true);
   371   LP64_ONLY(_supports_atomic_getadd8 = true);
   373 #ifdef _LP64
   374   // OS should support SSE for x64 and hardware should support at least SSE2.
   375   if (!VM_Version::supports_sse2()) {
   376     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   377   }
   378   // in 64 bit the use of SSE2 is the minimum
   379   if (UseSSE < 2) UseSSE = 2;
   380 #endif
   382 #ifdef AMD64
   383   // flush_icache_stub have to be generated first.
   384   // That is why Icache line size is hard coded in ICache class,
   385   // see icache_x86.hpp. It is also the reason why we can't use
   386   // clflush instruction in 32-bit VM since it could be running
   387   // on CPU which does not support it.
   388   //
   389   // The only thing we can do is to verify that flushed
   390   // ICache::line_size has correct value.
   391   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   392   // clflush_size is size in quadwords (8 bytes).
   393   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   394 #endif
   396   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   397   if (!os::supports_sse())
   398     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   400   if (UseSSE < 4) {
   401     _cpuFeatures &= ~CPU_SSE4_1;
   402     _cpuFeatures &= ~CPU_SSE4_2;
   403   }
   405   if (UseSSE < 3) {
   406     _cpuFeatures &= ~CPU_SSE3;
   407     _cpuFeatures &= ~CPU_SSSE3;
   408     _cpuFeatures &= ~CPU_SSE4A;
   409   }
   411   if (UseSSE < 2)
   412     _cpuFeatures &= ~CPU_SSE2;
   414   if (UseSSE < 1)
   415     _cpuFeatures &= ~CPU_SSE;
   417   if (UseAVX < 2)
   418     _cpuFeatures &= ~CPU_AVX2;
   420   if (UseAVX < 1)
   421     _cpuFeatures &= ~CPU_AVX;
   423   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
   424     _cpuFeatures &= ~CPU_AES;
   426   if (logical_processors_per_package() == 1) {
   427     // HT processor could be installed on a system which doesn't support HT.
   428     _cpuFeatures &= ~CPU_HT;
   429   }
   431   char buf[256];
   432   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   433                cores_per_cpu(), threads_per_core(),
   434                cpu_family(), _model, _stepping,
   435                (supports_cmov() ? ", cmov" : ""),
   436                (supports_cmpxchg8() ? ", cx8" : ""),
   437                (supports_fxsr() ? ", fxsr" : ""),
   438                (supports_mmx()  ? ", mmx"  : ""),
   439                (supports_sse()  ? ", sse"  : ""),
   440                (supports_sse2() ? ", sse2" : ""),
   441                (supports_sse3() ? ", sse3" : ""),
   442                (supports_ssse3()? ", ssse3": ""),
   443                (supports_sse4_1() ? ", sse4.1" : ""),
   444                (supports_sse4_2() ? ", sse4.2" : ""),
   445                (supports_popcnt() ? ", popcnt" : ""),
   446                (supports_avx()    ? ", avx" : ""),
   447                (supports_avx2()   ? ", avx2" : ""),
   448                (supports_aes()    ? ", aes" : ""),
   449                (supports_erms()   ? ", erms" : ""),
   450                (supports_mmx_ext() ? ", mmxext" : ""),
   451                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   452                (supports_lzcnt()   ? ", lzcnt": ""),
   453                (supports_sse4a()   ? ", sse4a": ""),
   454                (supports_ht() ? ", ht": ""),
   455                (supports_tsc() ? ", tsc": ""),
   456                (supports_tscinv_bit() ? ", tscinvbit": ""),
   457                (supports_tscinv() ? ", tscinv": ""));
   458   _features_str = strdup(buf);
   460   // UseSSE is set to the smaller of what hardware supports and what
   461   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   462   // older Pentiums which do not support it.
   463   if (UseSSE > 4) UseSSE=4;
   464   if (UseSSE < 0) UseSSE=0;
   465   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   466     UseSSE = MIN2((intx)3,UseSSE);
   467   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   468     UseSSE = MIN2((intx)2,UseSSE);
   469   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   470     UseSSE = MIN2((intx)1,UseSSE);
   471   if (!supports_sse ()) // Drop to 0 if no SSE  support
   472     UseSSE = 0;
   474   if (UseAVX > 2) UseAVX=2;
   475   if (UseAVX < 0) UseAVX=0;
   476   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   477     UseAVX = MIN2((intx)1,UseAVX);
   478   if (!supports_avx ()) // Drop to 0 if no AVX  support
   479     UseAVX = 0;
   481   // Use AES instructions if available.
   482   if (supports_aes()) {
   483     if (FLAG_IS_DEFAULT(UseAES)) {
   484       UseAES = true;
   485     }
   486   } else if (UseAES) {
   487     if (!FLAG_IS_DEFAULT(UseAES))
   488       warning("AES instructions not available on this CPU");
   489     FLAG_SET_DEFAULT(UseAES, false);
   490   }
   492   // The AES intrinsic stubs require AES instruction support (of course)
   493   // but also require sse3 mode for instructions it use.
   494   if (UseAES && (UseSSE > 2)) {
   495     if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   496       UseAESIntrinsics = true;
   497     }
   498   } else if (UseAESIntrinsics) {
   499     if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
   500       warning("AES intrinsics not available on this CPU");
   501     FLAG_SET_DEFAULT(UseAESIntrinsics, false);
   502   }
   504 #ifdef COMPILER2
   505   if (UseFPUForSpilling) {
   506     if (UseSSE < 2) {
   507       // Only supported with SSE2+
   508       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   509     }
   510   }
   511   if (MaxVectorSize > 0) {
   512     if (!is_power_of_2(MaxVectorSize)) {
   513       warning("MaxVectorSize must be a power of 2");
   514       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   515     }
   516     if (MaxVectorSize > 32) {
   517       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   518     }
   519     if (MaxVectorSize > 16 && UseAVX == 0) {
   520       // Only supported with AVX+
   521       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   522     }
   523     if (UseSSE < 2) {
   524       // Only supported with SSE2+
   525       FLAG_SET_DEFAULT(MaxVectorSize, 0);
   526     }
   527   }
   528 #endif
   530   // On new cpus instructions which update whole XMM register should be used
   531   // to prevent partial register stall due to dependencies on high half.
   532   //
   533   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   534   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   535   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   536   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   538   if( is_amd() ) { // AMD cpus specific settings
   539     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   540       // Use it on new AMD cpus starting from Opteron.
   541       UseAddressNop = true;
   542     }
   543     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   544       // Use it on new AMD cpus starting from Opteron.
   545       UseNewLongLShift = true;
   546     }
   547     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   548       if( supports_sse4a() ) {
   549         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   550       } else {
   551         UseXmmLoadAndClearUpper = false;
   552       }
   553     }
   554     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   555       if( supports_sse4a() ) {
   556         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   557       } else {
   558         UseXmmRegToRegMoveAll = false;
   559       }
   560     }
   561     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   562       if( supports_sse4a() ) {
   563         UseXmmI2F = true;
   564       } else {
   565         UseXmmI2F = false;
   566       }
   567     }
   568     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   569       if( supports_sse4a() ) {
   570         UseXmmI2D = true;
   571       } else {
   572         UseXmmI2D = false;
   573       }
   574     }
   575     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   576       if( supports_sse4_2() && UseSSE >= 4 ) {
   577         UseSSE42Intrinsics = true;
   578       }
   579     }
   581     // Use count leading zeros count instruction if available.
   582     if (supports_lzcnt()) {
   583       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   584         UseCountLeadingZerosInstruction = true;
   585       }
   586     }
   588     // some defaults for AMD family 15h
   589     if ( cpu_family() == 0x15 ) {
   590       // On family 15h processors default is no sw prefetch
   591       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   592         AllocatePrefetchStyle = 0;
   593       }
   594       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   595       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   596         AllocatePrefetchInstr = 3;
   597       }
   598       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   599       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   600         UseXMMForArrayCopy = true;
   601       }
   602       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   603         UseUnalignedLoadStores = true;
   604       }
   605     }
   607 #ifdef COMPILER2
   608     if (MaxVectorSize > 16) {
   609       // Limit vectors size to 16 bytes on current AMD cpus.
   610       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   611     }
   612 #endif // COMPILER2
   613   }
   615   if( is_intel() ) { // Intel cpus specific settings
   616     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   617       UseStoreImmI16 = false; // don't use it on Intel cpus
   618     }
   619     if( cpu_family() == 6 || cpu_family() == 15 ) {
   620       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   621         // Use it on all Intel cpus starting from PentiumPro
   622         UseAddressNop = true;
   623       }
   624     }
   625     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   626       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   627     }
   628     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   629       if( supports_sse3() ) {
   630         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   631       } else {
   632         UseXmmRegToRegMoveAll = false;
   633       }
   634     }
   635     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   636 #ifdef COMPILER2
   637       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   638         // For new Intel cpus do the next optimization:
   639         // don't align the beginning of a loop if there are enough instructions
   640         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   641         // in current fetch line (OptoLoopAlignment) or the padding
   642         // is big (> MaxLoopPad).
   643         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   644         // generated NOP instructions. 11 is the largest size of one
   645         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   646         MaxLoopPad = 11;
   647       }
   648 #endif // COMPILER2
   649       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   650         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   651       }
   652       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
   653         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   654           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   655         }
   656       }
   657       if (supports_sse4_2() && UseSSE >= 4) {
   658         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   659           UseSSE42Intrinsics = true;
   660         }
   661       }
   662     }
   663   }
   665   // Use population count instruction if available.
   666   if (supports_popcnt()) {
   667     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   668       UsePopCountInstruction = true;
   669     }
   670   } else if (UsePopCountInstruction) {
   671     warning("POPCNT instruction is not available on this CPU");
   672     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   673   }
   675   // Use fast-string operations if available.
   676   if (supports_erms()) {
   677     if (FLAG_IS_DEFAULT(UseFastStosb)) {
   678       UseFastStosb = true;
   679     }
   680   } else if (UseFastStosb) {
   681     warning("fast-string operations are not available on this CPU");
   682     FLAG_SET_DEFAULT(UseFastStosb, false);
   683   }
   685 #ifdef COMPILER2
   686   if (FLAG_IS_DEFAULT(AlignVector)) {
   687     // Modern processors allow misaligned memory operations for vectors.
   688     AlignVector = !UseUnalignedLoadStores;
   689   }
   690 #endif // COMPILER2
   692   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   693   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   695   // set valid Prefetch instruction
   696   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   697   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   698   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   699   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   701   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   702   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   703   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   704   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   706   // Allocation prefetch settings
   707   intx cache_line_size = prefetch_data_size();
   708   if( cache_line_size > AllocatePrefetchStepSize )
   709     AllocatePrefetchStepSize = cache_line_size;
   711   assert(AllocatePrefetchLines > 0, "invalid value");
   712   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
   713     AllocatePrefetchLines = 3;
   714   assert(AllocateInstancePrefetchLines > 0, "invalid value");
   715   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
   716     AllocateInstancePrefetchLines = 1;
   718   AllocatePrefetchDistance = allocate_prefetch_distance();
   719   AllocatePrefetchStyle    = allocate_prefetch_style();
   721   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   722     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   723 #ifdef _LP64
   724       AllocatePrefetchDistance = 384;
   725 #else
   726       AllocatePrefetchDistance = 320;
   727 #endif
   728     }
   729     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   730       AllocatePrefetchDistance = 192;
   731       AllocatePrefetchLines = 4;
   732 #ifdef COMPILER2
   733       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   734         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   735       }
   736 #endif
   737     }
   738   }
   739   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   741 #ifdef _LP64
   742   // Prefetch settings
   743   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   744   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   745   PrefetchFieldsAhead         = prefetch_fields_ahead();
   746 #endif
   748   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
   749      (cache_line_size > ContendedPaddingWidth))
   750      ContendedPaddingWidth = cache_line_size;
   752 #ifndef PRODUCT
   753   if (PrintMiscellaneous && Verbose) {
   754     tty->print_cr("Logical CPUs per core: %u",
   755                   logical_processors_per_package());
   756     tty->print("UseSSE=%d",UseSSE);
   757     if (UseAVX > 0) {
   758       tty->print("  UseAVX=%d",UseAVX);
   759     }
   760     if (UseAES) {
   761       tty->print("  UseAES=1");
   762     }
   763     tty->cr();
   764     tty->print("Allocation");
   765     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   766       tty->print_cr(": no prefetching");
   767     } else {
   768       tty->print(" prefetching: ");
   769       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   770         tty->print("PREFETCHW");
   771       } else if (UseSSE >= 1) {
   772         if (AllocatePrefetchInstr == 0) {
   773           tty->print("PREFETCHNTA");
   774         } else if (AllocatePrefetchInstr == 1) {
   775           tty->print("PREFETCHT0");
   776         } else if (AllocatePrefetchInstr == 2) {
   777           tty->print("PREFETCHT2");
   778         } else if (AllocatePrefetchInstr == 3) {
   779           tty->print("PREFETCHW");
   780         }
   781       }
   782       if (AllocatePrefetchLines > 1) {
   783         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   784       } else {
   785         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
   786       }
   787     }
   789     if (PrefetchCopyIntervalInBytes > 0) {
   790       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   791     }
   792     if (PrefetchScanIntervalInBytes > 0) {
   793       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   794     }
   795     if (PrefetchFieldsAhead > 0) {
   796       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   797     }
   798     if (ContendedPaddingWidth > 0) {
   799       tty->print_cr("ContendedPaddingWidth %d", ContendedPaddingWidth);
   800     }
   801   }
   802 #endif // !PRODUCT
   803 }
   805 void VM_Version::initialize() {
   806   ResourceMark rm;
   807   // Making this stub must be FIRST use of assembler
   809   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   810   if (stub_blob == NULL) {
   811     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   812   }
   813   CodeBuffer c(stub_blob);
   814   VM_Version_StubGenerator g(&c);
   815   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   816                                    g.generate_getPsrInfo());
   818   get_processor_features();
   819 }

mercurial