src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4318
cd3d6a6b95d9
child 4873
e961c11b85fe
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class RegisterSaver {
    49   // Capture info about frame layout
    50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    51   enum layout {
    52                 fpu_state_off = 0,
    53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
    54                 st0_off, st0H_off,
    55                 st1_off, st1H_off,
    56                 st2_off, st2H_off,
    57                 st3_off, st3H_off,
    58                 st4_off, st4H_off,
    59                 st5_off, st5H_off,
    60                 st6_off, st6H_off,
    61                 st7_off, st7H_off,
    62                 xmm_off,
    63                 DEF_XMM_OFFS(0),
    64                 DEF_XMM_OFFS(1),
    65                 DEF_XMM_OFFS(2),
    66                 DEF_XMM_OFFS(3),
    67                 DEF_XMM_OFFS(4),
    68                 DEF_XMM_OFFS(5),
    69                 DEF_XMM_OFFS(6),
    70                 DEF_XMM_OFFS(7),
    71                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
    72                 rdi_off,
    73                 rsi_off,
    74                 ignore_off,  // extra copy of rbp,
    75                 rsp_off,
    76                 rbx_off,
    77                 rdx_off,
    78                 rcx_off,
    79                 rax_off,
    80                 // The frame sender code expects that rbp will be in the "natural" place and
    81                 // will override any oopMap setting for it. We must therefore force the layout
    82                 // so that it agrees with the frame sender code.
    83                 rbp_off,
    84                 return_off,      // slot for return address
    85                 reg_save_size };
    86   enum { FPU_regs_live = flags_off - fpu_state_end };
    88   public:
    90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    91                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
    92   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
    94   static int rax_offset() { return rax_off; }
    95   static int rbx_offset() { return rbx_off; }
    97   // Offsets into the register save area
    98   // Used by deoptimization when it is managing result register
    99   // values on its own
   101   static int raxOffset(void) { return rax_off; }
   102   static int rdxOffset(void) { return rdx_off; }
   103   static int rbxOffset(void) { return rbx_off; }
   104   static int xmm0Offset(void) { return xmm0_off; }
   105   // This really returns a slot in the fp save area, which one is not important
   106   static int fpResultOffset(void) { return st0_off; }
   108   // During deoptimization only the result register need to be restored
   109   // all the other values have already been extracted.
   111   static void restore_result_registers(MacroAssembler* masm);
   113 };
   115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   116                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
   117   int vect_words = 0;
   118 #ifdef COMPILER2
   119   if (save_vectors) {
   120     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   121     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   122     // Save upper half of YMM registes
   123     vect_words = 8 * 16 / wordSize;
   124     additional_frame_words += vect_words;
   125   }
   126 #else
   127   assert(!save_vectors, "vectors are generated only by C2");
   128 #endif
   129   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
   130   int frame_words = frame_size_in_bytes / wordSize;
   131   *total_frame_words = frame_words;
   133   assert(FPUStateSizeInWords == 27, "update stack layout");
   135   // save registers, fpu state, and flags
   136   // We assume caller has already has return address slot on the stack
   137   // We push epb twice in this sequence because we want the real rbp,
   138   // to be under the return like a normal enter and we want to use pusha
   139   // We push by hand instead of pusing push
   140   __ enter();
   141   __ pusha();
   142   __ pushf();
   143   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
   144   __ push_FPU_state();          // Save FPU state & init
   146   if (verify_fpu) {
   147     // Some stubs may have non standard FPU control word settings so
   148     // only check and reset the value when it required to be the
   149     // standard value.  The safepoint blob in particular can be used
   150     // in methods which are using the 24 bit control word for
   151     // optimized float math.
   153 #ifdef ASSERT
   154     // Make sure the control word has the expected value
   155     Label ok;
   156     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   157     __ jccb(Assembler::equal, ok);
   158     __ stop("corrupted control word detected");
   159     __ bind(ok);
   160 #endif
   162     // Reset the control word to guard against exceptions being unmasked
   163     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   164     // into the on stack copy and then reload that to make sure that the
   165     // current and future values are correct.
   166     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   167   }
   169   __ frstor(Address(rsp, 0));
   170   if (!verify_fpu) {
   171     // Set the control word so that exceptions are masked for the
   172     // following code.
   173     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   174   }
   176   // Save the FPU registers in de-opt-able form
   178   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   179   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   180   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   181   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   182   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   183   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   184   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   185   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   187   if( UseSSE == 1 ) {           // Save the XMM state
   188     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   189     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   190     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   191     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   192     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   193     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   194     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   195     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   196   } else if( UseSSE >= 2 ) {
   197     // Save whole 128bit (16 bytes) XMM regiters
   198     __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0);
   199     __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1);
   200     __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2);
   201     __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3);
   202     __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4);
   203     __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5);
   204     __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6);
   205     __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7);
   206   }
   208   if (vect_words > 0) {
   209     assert(vect_words*wordSize == 128, "");
   210     __ subptr(rsp, 128); // Save upper half of YMM registes
   211     __ vextractf128h(Address(rsp,  0),xmm0);
   212     __ vextractf128h(Address(rsp, 16),xmm1);
   213     __ vextractf128h(Address(rsp, 32),xmm2);
   214     __ vextractf128h(Address(rsp, 48),xmm3);
   215     __ vextractf128h(Address(rsp, 64),xmm4);
   216     __ vextractf128h(Address(rsp, 80),xmm5);
   217     __ vextractf128h(Address(rsp, 96),xmm6);
   218     __ vextractf128h(Address(rsp,112),xmm7);
   219   }
   221   // Set an oopmap for the call site.  This oopmap will map all
   222   // oop-registers and debug-info registers as callee-saved.  This
   223   // will allow deoptimization at this safepoint to find all possible
   224   // debug-info recordings, as well as let GC find all oops.
   226   OopMapSet *oop_maps = new OopMapSet();
   227   OopMap* map =  new OopMap( frame_words, 0 );
   229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   231   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   232   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   233   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   234   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   235   // rbp, location is known implicitly, no oopMap
   236   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   237   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   238   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   239   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   240   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   241   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   242   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   243   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   244   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   245   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   246   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   247   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   248   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   249   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   250   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   251   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   252   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   253   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   254   // %%% This is really a waste but we'll keep things as they were for now
   255   if (true) {
   256 #define NEXTREG(x) (x)->as_VMReg()->next()
   257     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   258     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   259     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   260     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   261     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   262     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   263     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   264     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   265     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   266     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   267     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   268     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   269     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   270     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   271     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   272     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   273 #undef NEXTREG
   274 #undef STACK_OFFSET
   275   }
   277   return map;
   279 }
   281 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
   282   // Recover XMM & FPU state
   283   int additional_frame_bytes = 0;
   284 #ifdef COMPILER2
   285   if (restore_vectors) {
   286     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   287     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   288     additional_frame_bytes = 128;
   289   }
   290 #else
   291   assert(!restore_vectors, "vectors are generated only by C2");
   292 #endif
   293   if (UseSSE == 1) {
   294     assert(additional_frame_bytes == 0, "");
   295     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   296     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   297     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   298     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   299     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   300     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   301     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   302     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   303   } else if (UseSSE >= 2) {
   304 #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes)
   305     __ movdqu(xmm0,STACK_ADDRESS(xmm0_off));
   306     __ movdqu(xmm1,STACK_ADDRESS(xmm1_off));
   307     __ movdqu(xmm2,STACK_ADDRESS(xmm2_off));
   308     __ movdqu(xmm3,STACK_ADDRESS(xmm3_off));
   309     __ movdqu(xmm4,STACK_ADDRESS(xmm4_off));
   310     __ movdqu(xmm5,STACK_ADDRESS(xmm5_off));
   311     __ movdqu(xmm6,STACK_ADDRESS(xmm6_off));
   312     __ movdqu(xmm7,STACK_ADDRESS(xmm7_off));
   313 #undef STACK_ADDRESS
   314   }
   315   if (restore_vectors) {
   316     // Restore upper half of YMM registes.
   317     assert(additional_frame_bytes == 128, "");
   318     __ vinsertf128h(xmm0, Address(rsp,  0));
   319     __ vinsertf128h(xmm1, Address(rsp, 16));
   320     __ vinsertf128h(xmm2, Address(rsp, 32));
   321     __ vinsertf128h(xmm3, Address(rsp, 48));
   322     __ vinsertf128h(xmm4, Address(rsp, 64));
   323     __ vinsertf128h(xmm5, Address(rsp, 80));
   324     __ vinsertf128h(xmm6, Address(rsp, 96));
   325     __ vinsertf128h(xmm7, Address(rsp,112));
   326     __ addptr(rsp, additional_frame_bytes);
   327   }
   328   __ pop_FPU_state();
   329   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
   331   __ popf();
   332   __ popa();
   333   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   334   __ pop(rbp);
   336 }
   338 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   340   // Just restore result register. Only used by deoptimization. By
   341   // now any callee save register that needs to be restore to a c2
   342   // caller of the deoptee has been extracted into the vframeArray
   343   // and will be stuffed into the c2i adapter we create for later
   344   // restoration so only result registers need to be restored here.
   345   //
   347   __ frstor(Address(rsp, 0));      // Restore fpu state
   349   // Recover XMM & FPU state
   350   if( UseSSE == 1 ) {
   351     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   352   } else if( UseSSE >= 2 ) {
   353     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   354   }
   355   __ movptr(rax, Address(rsp, rax_off*wordSize));
   356   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   357   // Pop all of the register save are off the stack except the return address
   358   __ addptr(rsp, return_off * wordSize);
   359 }
   361 // Is vector's size (in bytes) bigger than a size saved by default?
   362 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
   363 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
   364 bool SharedRuntime::is_wide_vector(int size) {
   365   return size > 16;
   366 }
   368 // The java_calling_convention describes stack locations as ideal slots on
   369 // a frame with no abi restrictions. Since we must observe abi restrictions
   370 // (like the placement of the register window) the slots must be biased by
   371 // the following value.
   372 static int reg2offset_in(VMReg r) {
   373   // Account for saved rbp, and return address
   374   // This should really be in_preserve_stack_slots
   375   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   376 }
   378 static int reg2offset_out(VMReg r) {
   379   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   380 }
   382 // ---------------------------------------------------------------------------
   383 // Read the array of BasicTypes from a signature, and compute where the
   384 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   385 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   386 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   387 // as framesizes are fixed.
   388 // VMRegImpl::stack0 refers to the first slot 0(sp).
   389 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   390 // up to RegisterImpl::number_of_registers) are the 32-bit
   391 // integer registers.
   393 // Pass first two oop/int args in registers ECX and EDX.
   394 // Pass first two float/double args in registers XMM0 and XMM1.
   395 // Doubles have precedence, so if you pass a mix of floats and doubles
   396 // the doubles will grab the registers before the floats will.
   398 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   399 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   400 // units regardless of build. Of course for i486 there is no 64 bit build
   403 // ---------------------------------------------------------------------------
   404 // The compiled Java calling convention.
   405 // Pass first two oop/int args in registers ECX and EDX.
   406 // Pass first two float/double args in registers XMM0 and XMM1.
   407 // Doubles have precedence, so if you pass a mix of floats and doubles
   408 // the doubles will grab the registers before the floats will.
   409 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   410                                            VMRegPair *regs,
   411                                            int total_args_passed,
   412                                            int is_outgoing) {
   413   uint    stack = 0;          // Starting stack position for args on stack
   416   // Pass first two oop/int args in registers ECX and EDX.
   417   uint reg_arg0 = 9999;
   418   uint reg_arg1 = 9999;
   420   // Pass first two float/double args in registers XMM0 and XMM1.
   421   // Doubles have precedence, so if you pass a mix of floats and doubles
   422   // the doubles will grab the registers before the floats will.
   423   // CNC - TURNED OFF FOR non-SSE.
   424   //       On Intel we have to round all doubles (and most floats) at
   425   //       call sites by storing to the stack in any case.
   426   // UseSSE=0 ==> Don't Use ==> 9999+0
   427   // UseSSE=1 ==> Floats only ==> 9999+1
   428   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   429   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   430   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   431   uint freg_arg0 = 9999+fargs;
   432   uint freg_arg1 = 9999+fargs;
   434   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   435   int i;
   436   for( i = 0; i < total_args_passed; i++) {
   437     if( sig_bt[i] == T_DOUBLE ) {
   438       // first 2 doubles go in registers
   439       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   440       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   441       else // Else double is passed low on the stack to be aligned.
   442         stack += 2;
   443     } else if( sig_bt[i] == T_LONG ) {
   444       stack += 2;
   445     }
   446   }
   447   int dstack = 0;             // Separate counter for placing doubles
   449   // Now pick where all else goes.
   450   for( i = 0; i < total_args_passed; i++) {
   451     // From the type and the argument number (count) compute the location
   452     switch( sig_bt[i] ) {
   453     case T_SHORT:
   454     case T_CHAR:
   455     case T_BYTE:
   456     case T_BOOLEAN:
   457     case T_INT:
   458     case T_ARRAY:
   459     case T_OBJECT:
   460     case T_ADDRESS:
   461       if( reg_arg0 == 9999 )  {
   462         reg_arg0 = i;
   463         regs[i].set1(rcx->as_VMReg());
   464       } else if( reg_arg1 == 9999 )  {
   465         reg_arg1 = i;
   466         regs[i].set1(rdx->as_VMReg());
   467       } else {
   468         regs[i].set1(VMRegImpl::stack2reg(stack++));
   469       }
   470       break;
   471     case T_FLOAT:
   472       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   473         freg_arg0 = i;
   474         regs[i].set1(xmm0->as_VMReg());
   475       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   476         freg_arg1 = i;
   477         regs[i].set1(xmm1->as_VMReg());
   478       } else {
   479         regs[i].set1(VMRegImpl::stack2reg(stack++));
   480       }
   481       break;
   482     case T_LONG:
   483       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   484       regs[i].set2(VMRegImpl::stack2reg(dstack));
   485       dstack += 2;
   486       break;
   487     case T_DOUBLE:
   488       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   489       if( freg_arg0 == (uint)i ) {
   490         regs[i].set2(xmm0->as_VMReg());
   491       } else if( freg_arg1 == (uint)i ) {
   492         regs[i].set2(xmm1->as_VMReg());
   493       } else {
   494         regs[i].set2(VMRegImpl::stack2reg(dstack));
   495         dstack += 2;
   496       }
   497       break;
   498     case T_VOID: regs[i].set_bad(); break;
   499       break;
   500     default:
   501       ShouldNotReachHere();
   502       break;
   503     }
   504   }
   506   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   507   return round_to(stack, 2);
   508 }
   510 // Patch the callers callsite with entry to compiled code if it exists.
   511 static void patch_callers_callsite(MacroAssembler *masm) {
   512   Label L;
   513   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   514   __ jcc(Assembler::equal, L);
   515   // Schedule the branch target address early.
   516   // Call into the VM to patch the caller, then jump to compiled callee
   517   // rax, isn't live so capture return address while we easily can
   518   __ movptr(rax, Address(rsp, 0));
   519   __ pusha();
   520   __ pushf();
   522   if (UseSSE == 1) {
   523     __ subptr(rsp, 2*wordSize);
   524     __ movflt(Address(rsp, 0), xmm0);
   525     __ movflt(Address(rsp, wordSize), xmm1);
   526   }
   527   if (UseSSE >= 2) {
   528     __ subptr(rsp, 4*wordSize);
   529     __ movdbl(Address(rsp, 0), xmm0);
   530     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   531   }
   532 #ifdef COMPILER2
   533   // C2 may leave the stack dirty if not in SSE2+ mode
   534   if (UseSSE >= 2) {
   535     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   536   } else {
   537     __ empty_FPU_stack();
   538   }
   539 #endif /* COMPILER2 */
   541   // VM needs caller's callsite
   542   __ push(rax);
   543   // VM needs target method
   544   __ push(rbx);
   545   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   546   __ addptr(rsp, 2*wordSize);
   548   if (UseSSE == 1) {
   549     __ movflt(xmm0, Address(rsp, 0));
   550     __ movflt(xmm1, Address(rsp, wordSize));
   551     __ addptr(rsp, 2*wordSize);
   552   }
   553   if (UseSSE >= 2) {
   554     __ movdbl(xmm0, Address(rsp, 0));
   555     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   556     __ addptr(rsp, 4*wordSize);
   557   }
   559   __ popf();
   560   __ popa();
   561   __ bind(L);
   562 }
   565 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   566   int next_off = st_off - Interpreter::stackElementSize;
   567   __ movdbl(Address(rsp, next_off), r);
   568 }
   570 static void gen_c2i_adapter(MacroAssembler *masm,
   571                             int total_args_passed,
   572                             int comp_args_on_stack,
   573                             const BasicType *sig_bt,
   574                             const VMRegPair *regs,
   575                             Label& skip_fixup) {
   576   // Before we get into the guts of the C2I adapter, see if we should be here
   577   // at all.  We've come from compiled code and are attempting to jump to the
   578   // interpreter, which means the caller made a static call to get here
   579   // (vcalls always get a compiled target if there is one).  Check for a
   580   // compiled target.  If there is one, we need to patch the caller's call.
   581   patch_callers_callsite(masm);
   583   __ bind(skip_fixup);
   585 #ifdef COMPILER2
   586   // C2 may leave the stack dirty if not in SSE2+ mode
   587   if (UseSSE >= 2) {
   588     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   589   } else {
   590     __ empty_FPU_stack();
   591   }
   592 #endif /* COMPILER2 */
   594   // Since all args are passed on the stack, total_args_passed * interpreter_
   595   // stack_element_size  is the
   596   // space we need.
   597   int extraspace = total_args_passed * Interpreter::stackElementSize;
   599   // Get return address
   600   __ pop(rax);
   602   // set senderSP value
   603   __ movptr(rsi, rsp);
   605   __ subptr(rsp, extraspace);
   607   // Now write the args into the outgoing interpreter space
   608   for (int i = 0; i < total_args_passed; i++) {
   609     if (sig_bt[i] == T_VOID) {
   610       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   611       continue;
   612     }
   614     // st_off points to lowest address on stack.
   615     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
   616     int next_off = st_off - Interpreter::stackElementSize;
   618     // Say 4 args:
   619     // i   st_off
   620     // 0   12 T_LONG
   621     // 1    8 T_VOID
   622     // 2    4 T_OBJECT
   623     // 3    0 T_BOOL
   624     VMReg r_1 = regs[i].first();
   625     VMReg r_2 = regs[i].second();
   626     if (!r_1->is_valid()) {
   627       assert(!r_2->is_valid(), "");
   628       continue;
   629     }
   631     if (r_1->is_stack()) {
   632       // memory to memory use fpu stack top
   633       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   635       if (!r_2->is_valid()) {
   636         __ movl(rdi, Address(rsp, ld_off));
   637         __ movptr(Address(rsp, st_off), rdi);
   638       } else {
   640         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   641         // st_off == MSW, st_off-wordSize == LSW
   643         __ movptr(rdi, Address(rsp, ld_off));
   644         __ movptr(Address(rsp, next_off), rdi);
   645 #ifndef _LP64
   646         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   647         __ movptr(Address(rsp, st_off), rdi);
   648 #else
   649 #ifdef ASSERT
   650         // Overwrite the unused slot with known junk
   651         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   652         __ movptr(Address(rsp, st_off), rax);
   653 #endif /* ASSERT */
   654 #endif // _LP64
   655       }
   656     } else if (r_1->is_Register()) {
   657       Register r = r_1->as_Register();
   658       if (!r_2->is_valid()) {
   659         __ movl(Address(rsp, st_off), r);
   660       } else {
   661         // long/double in gpr
   662         NOT_LP64(ShouldNotReachHere());
   663         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   664         // T_DOUBLE and T_LONG use two slots in the interpreter
   665         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   666           // long/double in gpr
   667 #ifdef ASSERT
   668           // Overwrite the unused slot with known junk
   669           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   670           __ movptr(Address(rsp, st_off), rax);
   671 #endif /* ASSERT */
   672           __ movptr(Address(rsp, next_off), r);
   673         } else {
   674           __ movptr(Address(rsp, st_off), r);
   675         }
   676       }
   677     } else {
   678       assert(r_1->is_XMMRegister(), "");
   679       if (!r_2->is_valid()) {
   680         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   681       } else {
   682         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   683         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   684       }
   685     }
   686   }
   688   // Schedule the branch target address early.
   689   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
   690   // And repush original return address
   691   __ push(rax);
   692   __ jmp(rcx);
   693 }
   696 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   697   int next_val_off = ld_off - Interpreter::stackElementSize;
   698   __ movdbl(r, Address(saved_sp, next_val_off));
   699 }
   701 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   702                         address code_start, address code_end,
   703                         Label& L_ok) {
   704   Label L_fail;
   705   __ lea(temp_reg, ExternalAddress(code_start));
   706   __ cmpptr(pc_reg, temp_reg);
   707   __ jcc(Assembler::belowEqual, L_fail);
   708   __ lea(temp_reg, ExternalAddress(code_end));
   709   __ cmpptr(pc_reg, temp_reg);
   710   __ jcc(Assembler::below, L_ok);
   711   __ bind(L_fail);
   712 }
   714 static void gen_i2c_adapter(MacroAssembler *masm,
   715                             int total_args_passed,
   716                             int comp_args_on_stack,
   717                             const BasicType *sig_bt,
   718                             const VMRegPair *regs) {
   720   // Note: rsi contains the senderSP on entry. We must preserve it since
   721   // we may do a i2c -> c2i transition if we lose a race where compiled
   722   // code goes non-entrant while we get args ready.
   724   // Adapters can be frameless because they do not require the caller
   725   // to perform additional cleanup work, such as correcting the stack pointer.
   726   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   727   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   728   // even if a callee has modified the stack pointer.
   729   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   730   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   731   // up via the senderSP register).
   732   // In other words, if *either* the caller or callee is interpreted, we can
   733   // get the stack pointer repaired after a call.
   734   // This is why c2i and i2c adapters cannot be indefinitely composed.
   735   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   736   // both caller and callee would be compiled methods, and neither would
   737   // clean up the stack pointer changes performed by the two adapters.
   738   // If this happens, control eventually transfers back to the compiled
   739   // caller, but with an uncorrected stack, causing delayed havoc.
   741   // Pick up the return address
   742   __ movptr(rax, Address(rsp, 0));
   744   if (VerifyAdapterCalls &&
   745       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   746     // So, let's test for cascading c2i/i2c adapters right now.
   747     //  assert(Interpreter::contains($return_addr) ||
   748     //         StubRoutines::contains($return_addr),
   749     //         "i2c adapter must return to an interpreter frame");
   750     __ block_comment("verify_i2c { ");
   751     Label L_ok;
   752     if (Interpreter::code() != NULL)
   753       range_check(masm, rax, rdi,
   754                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   755                   L_ok);
   756     if (StubRoutines::code1() != NULL)
   757       range_check(masm, rax, rdi,
   758                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   759                   L_ok);
   760     if (StubRoutines::code2() != NULL)
   761       range_check(masm, rax, rdi,
   762                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   763                   L_ok);
   764     const char* msg = "i2c adapter must return to an interpreter frame";
   765     __ block_comment(msg);
   766     __ stop(msg);
   767     __ bind(L_ok);
   768     __ block_comment("} verify_i2ce ");
   769   }
   771   // Must preserve original SP for loading incoming arguments because
   772   // we need to align the outgoing SP for compiled code.
   773   __ movptr(rdi, rsp);
   775   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   776   // in registers, we will occasionally have no stack args.
   777   int comp_words_on_stack = 0;
   778   if (comp_args_on_stack) {
   779     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   780     // registers are below.  By subtracting stack0, we either get a negative
   781     // number (all values in registers) or the maximum stack slot accessed.
   782     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   783     // Convert 4-byte stack slots to words.
   784     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   785     // Round up to miminum stack alignment, in wordSize
   786     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   787     __ subptr(rsp, comp_words_on_stack * wordSize);
   788   }
   790   // Align the outgoing SP
   791   __ andptr(rsp, -(StackAlignmentInBytes));
   793   // push the return address on the stack (note that pushing, rather
   794   // than storing it, yields the correct frame alignment for the callee)
   795   __ push(rax);
   797   // Put saved SP in another register
   798   const Register saved_sp = rax;
   799   __ movptr(saved_sp, rdi);
   802   // Will jump to the compiled code just as if compiled code was doing it.
   803   // Pre-load the register-jump target early, to schedule it better.
   804   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
   806   // Now generate the shuffle code.  Pick up all register args and move the
   807   // rest through the floating point stack top.
   808   for (int i = 0; i < total_args_passed; i++) {
   809     if (sig_bt[i] == T_VOID) {
   810       // Longs and doubles are passed in native word order, but misaligned
   811       // in the 32-bit build.
   812       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   813       continue;
   814     }
   816     // Pick up 0, 1 or 2 words from SP+offset.
   818     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   819             "scrambled load targets?");
   820     // Load in argument order going down.
   821     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
   822     // Point to interpreter value (vs. tag)
   823     int next_off = ld_off - Interpreter::stackElementSize;
   824     //
   825     //
   826     //
   827     VMReg r_1 = regs[i].first();
   828     VMReg r_2 = regs[i].second();
   829     if (!r_1->is_valid()) {
   830       assert(!r_2->is_valid(), "");
   831       continue;
   832     }
   833     if (r_1->is_stack()) {
   834       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   835       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   837       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   838       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   839       // we be generated.
   840       if (!r_2->is_valid()) {
   841         // __ fld_s(Address(saved_sp, ld_off));
   842         // __ fstp_s(Address(rsp, st_off));
   843         __ movl(rsi, Address(saved_sp, ld_off));
   844         __ movptr(Address(rsp, st_off), rsi);
   845       } else {
   846         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   847         // are accessed as negative so LSW is at LOW address
   849         // ld_off is MSW so get LSW
   850         // st_off is LSW (i.e. reg.first())
   851         // __ fld_d(Address(saved_sp, next_off));
   852         // __ fstp_d(Address(rsp, st_off));
   853         //
   854         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   855         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   856         // So we must adjust where to pick up the data to match the interpreter.
   857         //
   858         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   859         // are accessed as negative so LSW is at LOW address
   861         // ld_off is MSW so get LSW
   862         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   863                            next_off : ld_off;
   864         __ movptr(rsi, Address(saved_sp, offset));
   865         __ movptr(Address(rsp, st_off), rsi);
   866 #ifndef _LP64
   867         __ movptr(rsi, Address(saved_sp, ld_off));
   868         __ movptr(Address(rsp, st_off + wordSize), rsi);
   869 #endif // _LP64
   870       }
   871     } else if (r_1->is_Register()) {  // Register argument
   872       Register r = r_1->as_Register();
   873       assert(r != rax, "must be different");
   874       if (r_2->is_valid()) {
   875         //
   876         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   877         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   878         // So we must adjust where to pick up the data to match the interpreter.
   880         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   881                            next_off : ld_off;
   883         // this can be a misaligned move
   884         __ movptr(r, Address(saved_sp, offset));
   885 #ifndef _LP64
   886         assert(r_2->as_Register() != rax, "need another temporary register");
   887         // Remember r_1 is low address (and LSB on x86)
   888         // So r_2 gets loaded from high address regardless of the platform
   889         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   890 #endif // _LP64
   891       } else {
   892         __ movl(r, Address(saved_sp, ld_off));
   893       }
   894     } else {
   895       assert(r_1->is_XMMRegister(), "");
   896       if (!r_2->is_valid()) {
   897         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   898       } else {
   899         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   900       }
   901     }
   902   }
   904   // 6243940 We might end up in handle_wrong_method if
   905   // the callee is deoptimized as we race thru here. If that
   906   // happens we don't want to take a safepoint because the
   907   // caller frame will look interpreted and arguments are now
   908   // "compiled" so it is much better to make this transition
   909   // invisible to the stack walking code. Unfortunately if
   910   // we try and find the callee by normal means a safepoint
   911   // is possible. So we stash the desired callee in the thread
   912   // and the vm will find there should this case occur.
   914   __ get_thread(rax);
   915   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   917   // move Method* to rax, in case we end up in an c2i adapter.
   918   // the c2i adapters expect Method* in rax, (c2) because c2's
   919   // resolve stubs return the result (the method) in rax,.
   920   // I'd love to fix this.
   921   __ mov(rax, rbx);
   923   __ jmp(rdi);
   924 }
   926 // ---------------------------------------------------------------
   927 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   928                                                             int total_args_passed,
   929                                                             int comp_args_on_stack,
   930                                                             const BasicType *sig_bt,
   931                                                             const VMRegPair *regs,
   932                                                             AdapterFingerPrint* fingerprint) {
   933   address i2c_entry = __ pc();
   935   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   937   // -------------------------------------------------------------------------
   938   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
   939   // to the interpreter.  The args start out packed in the compiled layout.  They
   940   // need to be unpacked into the interpreter layout.  This will almost always
   941   // require some stack space.  We grow the current (compiled) stack, then repack
   942   // the args.  We  finally end in a jump to the generic interpreter entry point.
   943   // On exit from the interpreter, the interpreter will restore our SP (lest the
   944   // compiled code, which relys solely on SP and not EBP, get sick).
   946   address c2i_unverified_entry = __ pc();
   947   Label skip_fixup;
   949   Register holder = rax;
   950   Register receiver = rcx;
   951   Register temp = rbx;
   953   {
   955     Label missed;
   956     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   957     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
   958     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
   959     __ jcc(Assembler::notEqual, missed);
   960     // Method might have been compiled since the call site was patched to
   961     // interpreted if that is the case treat it as a miss so we can get
   962     // the call site corrected.
   963     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   964     __ jcc(Assembler::equal, skip_fixup);
   966     __ bind(missed);
   967     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   968   }
   970   address c2i_entry = __ pc();
   972   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   974   __ flush();
   975   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   976 }
   978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   979                                          VMRegPair *regs,
   980                                          int total_args_passed) {
   981 // We return the amount of VMRegImpl stack slots we need to reserve for all
   982 // the arguments NOT counting out_preserve_stack_slots.
   984   uint    stack = 0;        // All arguments on stack
   986   for( int i = 0; i < total_args_passed; i++) {
   987     // From the type and the argument number (count) compute the location
   988     switch( sig_bt[i] ) {
   989     case T_BOOLEAN:
   990     case T_CHAR:
   991     case T_FLOAT:
   992     case T_BYTE:
   993     case T_SHORT:
   994     case T_INT:
   995     case T_OBJECT:
   996     case T_ARRAY:
   997     case T_ADDRESS:
   998     case T_METADATA:
   999       regs[i].set1(VMRegImpl::stack2reg(stack++));
  1000       break;
  1001     case T_LONG:
  1002     case T_DOUBLE: // The stack numbering is reversed from Java
  1003       // Since C arguments do not get reversed, the ordering for
  1004       // doubles on the stack must be opposite the Java convention
  1005       assert(sig_bt[i+1] == T_VOID, "missing Half" );
  1006       regs[i].set2(VMRegImpl::stack2reg(stack));
  1007       stack += 2;
  1008       break;
  1009     case T_VOID: regs[i].set_bad(); break;
  1010     default:
  1011       ShouldNotReachHere();
  1012       break;
  1015   return stack;
  1018 // A simple move of integer like type
  1019 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1020   if (src.first()->is_stack()) {
  1021     if (dst.first()->is_stack()) {
  1022       // stack to stack
  1023       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1024       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1025       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
  1026       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1027     } else {
  1028       // stack to reg
  1029       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
  1031   } else if (dst.first()->is_stack()) {
  1032     // reg to stack
  1033     // no need to sign extend on 64bit
  1034     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1035   } else {
  1036     if (dst.first() != src.first()) {
  1037       __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1042 // An oop arg. Must pass a handle not the oop itself
  1043 static void object_move(MacroAssembler* masm,
  1044                         OopMap* map,
  1045                         int oop_handle_offset,
  1046                         int framesize_in_slots,
  1047                         VMRegPair src,
  1048                         VMRegPair dst,
  1049                         bool is_receiver,
  1050                         int* receiver_offset) {
  1052   // Because of the calling conventions we know that src can be a
  1053   // register or a stack location. dst can only be a stack location.
  1055   assert(dst.first()->is_stack(), "must be stack");
  1056   // must pass a handle. First figure out the location we use as a handle
  1058   if (src.first()->is_stack()) {
  1059     // Oop is already on the stack as an argument
  1060     Register rHandle = rax;
  1061     Label nil;
  1062     __ xorptr(rHandle, rHandle);
  1063     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1064     __ jcc(Assembler::equal, nil);
  1065     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1066     __ bind(nil);
  1067     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1069     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1070     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1071     if (is_receiver) {
  1072       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1074   } else {
  1075     // Oop is in an a register we must store it to the space we reserve
  1076     // on the stack for oop_handles
  1077     const Register rOop = src.first()->as_Register();
  1078     const Register rHandle = rax;
  1079     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
  1080     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1081     Label skip;
  1082     __ movptr(Address(rsp, offset), rOop);
  1083     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1084     __ xorptr(rHandle, rHandle);
  1085     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1086     __ jcc(Assembler::equal, skip);
  1087     __ lea(rHandle, Address(rsp, offset));
  1088     __ bind(skip);
  1089     // Store the handle parameter
  1090     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1091     if (is_receiver) {
  1092       *receiver_offset = offset;
  1097 // A float arg may have to do float reg int reg conversion
  1098 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1099   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1101   // Because of the calling convention we know that src is either a stack location
  1102   // or an xmm register. dst can only be a stack location.
  1104   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
  1106   if (src.first()->is_stack()) {
  1107     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1108     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1109   } else {
  1110     // reg to stack
  1111     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1115 // A long move
  1116 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1118   // The only legal possibility for a long_move VMRegPair is:
  1119   // 1: two stack slots (possibly unaligned)
  1120   // as neither the java  or C calling convention will use registers
  1121   // for longs.
  1123   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1124     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1125     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1126     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1127     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1128     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1129   } else {
  1130     ShouldNotReachHere();
  1134 // A double move
  1135 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1137   // The only legal possibilities for a double_move VMRegPair are:
  1138   // The painful thing here is that like long_move a VMRegPair might be
  1140   // Because of the calling convention we know that src is either
  1141   //   1: a single physical register (xmm registers only)
  1142   //   2: two stack slots (possibly unaligned)
  1143   // dst can only be a pair of stack slots.
  1145   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1147   if (src.first()->is_stack()) {
  1148     // source is all stack
  1149     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1150     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1151     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1152     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1153   } else {
  1154     // reg to stack
  1155     // No worries about stack alignment
  1156     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1161 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1162   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1163   // which by this time is free to use
  1164   switch (ret_type) {
  1165   case T_FLOAT:
  1166     __ fstp_s(Address(rbp, -wordSize));
  1167     break;
  1168   case T_DOUBLE:
  1169     __ fstp_d(Address(rbp, -2*wordSize));
  1170     break;
  1171   case T_VOID:  break;
  1172   case T_LONG:
  1173     __ movptr(Address(rbp, -wordSize), rax);
  1174     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1175     break;
  1176   default: {
  1177     __ movptr(Address(rbp, -wordSize), rax);
  1182 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1183   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1184   // which by this time is free to use
  1185   switch (ret_type) {
  1186   case T_FLOAT:
  1187     __ fld_s(Address(rbp, -wordSize));
  1188     break;
  1189   case T_DOUBLE:
  1190     __ fld_d(Address(rbp, -2*wordSize));
  1191     break;
  1192   case T_LONG:
  1193     __ movptr(rax, Address(rbp, -wordSize));
  1194     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1195     break;
  1196   case T_VOID:  break;
  1197   default: {
  1198     __ movptr(rax, Address(rbp, -wordSize));
  1204 static void save_or_restore_arguments(MacroAssembler* masm,
  1205                                       const int stack_slots,
  1206                                       const int total_in_args,
  1207                                       const int arg_save_area,
  1208                                       OopMap* map,
  1209                                       VMRegPair* in_regs,
  1210                                       BasicType* in_sig_bt) {
  1211   // if map is non-NULL then the code should store the values,
  1212   // otherwise it should load them.
  1213   int handle_index = 0;
  1214   // Save down double word first
  1215   for ( int i = 0; i < total_in_args; i++) {
  1216     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1217       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1218       int offset = slot * VMRegImpl::stack_slot_size;
  1219       handle_index += 2;
  1220       assert(handle_index <= stack_slots, "overflow");
  1221       if (map != NULL) {
  1222         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1223       } else {
  1224         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1227     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
  1228       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1229       int offset = slot * VMRegImpl::stack_slot_size;
  1230       handle_index += 2;
  1231       assert(handle_index <= stack_slots, "overflow");
  1232       if (map != NULL) {
  1233         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
  1234         if (in_regs[i].second()->is_Register()) {
  1235           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
  1237       } else {
  1238         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1239         if (in_regs[i].second()->is_Register()) {
  1240           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
  1245   // Save or restore single word registers
  1246   for ( int i = 0; i < total_in_args; i++) {
  1247     if (in_regs[i].first()->is_Register()) {
  1248       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1249       int offset = slot * VMRegImpl::stack_slot_size;
  1250       assert(handle_index <= stack_slots, "overflow");
  1251       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1252         map->set_oop(VMRegImpl::stack2reg(slot));;
  1255       // Value is in an input register pass we must flush it to the stack
  1256       const Register reg = in_regs[i].first()->as_Register();
  1257       switch (in_sig_bt[i]) {
  1258         case T_ARRAY:
  1259           if (map != NULL) {
  1260             __ movptr(Address(rsp, offset), reg);
  1261           } else {
  1262             __ movptr(reg, Address(rsp, offset));
  1264           break;
  1265         case T_BOOLEAN:
  1266         case T_CHAR:
  1267         case T_BYTE:
  1268         case T_SHORT:
  1269         case T_INT:
  1270           if (map != NULL) {
  1271             __ movl(Address(rsp, offset), reg);
  1272           } else {
  1273             __ movl(reg, Address(rsp, offset));
  1275           break;
  1276         case T_OBJECT:
  1277         default: ShouldNotReachHere();
  1279     } else if (in_regs[i].first()->is_XMMRegister()) {
  1280       if (in_sig_bt[i] == T_FLOAT) {
  1281         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1282         int offset = slot * VMRegImpl::stack_slot_size;
  1283         assert(handle_index <= stack_slots, "overflow");
  1284         if (map != NULL) {
  1285           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1286         } else {
  1287           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1290     } else if (in_regs[i].first()->is_stack()) {
  1291       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1292         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1293         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1299 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1300 // keeps a new JNI critical region from starting until a GC has been
  1301 // forced.  Save down any oops in registers and describe them in an
  1302 // OopMap.
  1303 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1304                                                Register thread,
  1305                                                int stack_slots,
  1306                                                int total_c_args,
  1307                                                int total_in_args,
  1308                                                int arg_save_area,
  1309                                                OopMapSet* oop_maps,
  1310                                                VMRegPair* in_regs,
  1311                                                BasicType* in_sig_bt) {
  1312   __ block_comment("check GC_locker::needs_gc");
  1313   Label cont;
  1314   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1315   __ jcc(Assembler::equal, cont);
  1317   // Save down any incoming oops and call into the runtime to halt for a GC
  1319   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1321   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1322                             arg_save_area, map, in_regs, in_sig_bt);
  1324   address the_pc = __ pc();
  1325   oop_maps->add_gc_map( __ offset(), map);
  1326   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
  1328   __ block_comment("block_for_jni_critical");
  1329   __ push(thread);
  1330   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1331   __ increment(rsp, wordSize);
  1333   __ get_thread(thread);
  1334   __ reset_last_Java_frame(thread, false, true);
  1336   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1337                             arg_save_area, NULL, in_regs, in_sig_bt);
  1339   __ bind(cont);
  1340 #ifdef ASSERT
  1341   if (StressCriticalJNINatives) {
  1342     // Stress register saving
  1343     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1344     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1345                               arg_save_area, map, in_regs, in_sig_bt);
  1346     // Destroy argument registers
  1347     for (int i = 0; i < total_in_args - 1; i++) {
  1348       if (in_regs[i].first()->is_Register()) {
  1349         const Register reg = in_regs[i].first()->as_Register();
  1350         __ xorptr(reg, reg);
  1351       } else if (in_regs[i].first()->is_XMMRegister()) {
  1352         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1353       } else if (in_regs[i].first()->is_FloatRegister()) {
  1354         ShouldNotReachHere();
  1355       } else if (in_regs[i].first()->is_stack()) {
  1356         // Nothing to do
  1357       } else {
  1358         ShouldNotReachHere();
  1360       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1361         i++;
  1365     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1366                               arg_save_area, NULL, in_regs, in_sig_bt);
  1368 #endif
  1371 // Unpack an array argument into a pointer to the body and the length
  1372 // if the array is non-null, otherwise pass 0 for both.
  1373 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1374   Register tmp_reg = rax;
  1375   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1376          "possible collision");
  1377   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1378          "possible collision");
  1380   // Pass the length, ptr pair
  1381   Label is_null, done;
  1382   VMRegPair tmp(tmp_reg->as_VMReg());
  1383   if (reg.first()->is_stack()) {
  1384     // Load the arg up from the stack
  1385     simple_move32(masm, reg, tmp);
  1386     reg = tmp;
  1388   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1389   __ jccb(Assembler::equal, is_null);
  1390   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1391   simple_move32(masm, tmp, body_arg);
  1392   // load the length relative to the body.
  1393   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1394                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1395   simple_move32(masm, tmp, length_arg);
  1396   __ jmpb(done);
  1397   __ bind(is_null);
  1398   // Pass zeros
  1399   __ xorptr(tmp_reg, tmp_reg);
  1400   simple_move32(masm, tmp, body_arg);
  1401   simple_move32(masm, tmp, length_arg);
  1402   __ bind(done);
  1405 static void verify_oop_args(MacroAssembler* masm,
  1406                             methodHandle method,
  1407                             const BasicType* sig_bt,
  1408                             const VMRegPair* regs) {
  1409   Register temp_reg = rbx;  // not part of any compiled calling seq
  1410   if (VerifyOops) {
  1411     for (int i = 0; i < method->size_of_parameters(); i++) {
  1412       if (sig_bt[i] == T_OBJECT ||
  1413           sig_bt[i] == T_ARRAY) {
  1414         VMReg r = regs[i].first();
  1415         assert(r->is_valid(), "bad oop arg");
  1416         if (r->is_stack()) {
  1417           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1418           __ verify_oop(temp_reg);
  1419         } else {
  1420           __ verify_oop(r->as_Register());
  1427 static void gen_special_dispatch(MacroAssembler* masm,
  1428                                  methodHandle method,
  1429                                  const BasicType* sig_bt,
  1430                                  const VMRegPair* regs) {
  1431   verify_oop_args(masm, method, sig_bt, regs);
  1432   vmIntrinsics::ID iid = method->intrinsic_id();
  1434   // Now write the args into the outgoing interpreter space
  1435   bool     has_receiver   = false;
  1436   Register receiver_reg   = noreg;
  1437   int      member_arg_pos = -1;
  1438   Register member_reg     = noreg;
  1439   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1440   if (ref_kind != 0) {
  1441     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1442     member_reg = rbx;  // known to be free at this point
  1443     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1444   } else if (iid == vmIntrinsics::_invokeBasic) {
  1445     has_receiver = true;
  1446   } else {
  1447     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1450   if (member_reg != noreg) {
  1451     // Load the member_arg into register, if necessary.
  1452     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1453     VMReg r = regs[member_arg_pos].first();
  1454     if (r->is_stack()) {
  1455       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1456     } else {
  1457       // no data motion is needed
  1458       member_reg = r->as_Register();
  1462   if (has_receiver) {
  1463     // Make sure the receiver is loaded into a register.
  1464     assert(method->size_of_parameters() > 0, "oob");
  1465     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1466     VMReg r = regs[0].first();
  1467     assert(r->is_valid(), "bad receiver arg");
  1468     if (r->is_stack()) {
  1469       // Porting note:  This assumes that compiled calling conventions always
  1470       // pass the receiver oop in a register.  If this is not true on some
  1471       // platform, pick a temp and load the receiver from stack.
  1472       fatal("receiver always in a register");
  1473       receiver_reg = rcx;  // known to be free at this point
  1474       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1475     } else {
  1476       // no data motion is needed
  1477       receiver_reg = r->as_Register();
  1481   // Figure out which address we are really jumping to:
  1482   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1483                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1486 // ---------------------------------------------------------------------------
  1487 // Generate a native wrapper for a given method.  The method takes arguments
  1488 // in the Java compiled code convention, marshals them to the native
  1489 // convention (handlizes oops, etc), transitions to native, makes the call,
  1490 // returns to java state (possibly blocking), unhandlizes any result and
  1491 // returns.
  1492 //
  1493 // Critical native functions are a shorthand for the use of
  1494 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1495 // functions.  The wrapper is expected to unpack the arguments before
  1496 // passing them to the callee and perform checks before and after the
  1497 // native call to ensure that they GC_locker
  1498 // lock_critical/unlock_critical semantics are followed.  Some other
  1499 // parts of JNI setup are skipped like the tear down of the JNI handle
  1500 // block and the check for pending exceptions it's impossible for them
  1501 // to be thrown.
  1502 //
  1503 // They are roughly structured like this:
  1504 //    if (GC_locker::needs_gc())
  1505 //      SharedRuntime::block_for_jni_critical();
  1506 //    tranistion to thread_in_native
  1507 //    unpack arrray arguments and call native entry point
  1508 //    check for safepoint in progress
  1509 //    check if any thread suspend flags are set
  1510 //      call into JVM and possible unlock the JNI critical
  1511 //      if a GC was suppressed while in the critical native.
  1512 //    transition back to thread_in_Java
  1513 //    return to caller
  1514 //
  1515 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1516                                                 methodHandle method,
  1517                                                 int compile_id,
  1518                                                 BasicType* in_sig_bt,
  1519                                                 VMRegPair* in_regs,
  1520                                                 BasicType ret_type) {
  1521   if (method->is_method_handle_intrinsic()) {
  1522     vmIntrinsics::ID iid = method->intrinsic_id();
  1523     intptr_t start = (intptr_t)__ pc();
  1524     int vep_offset = ((intptr_t)__ pc()) - start;
  1525     gen_special_dispatch(masm,
  1526                          method,
  1527                          in_sig_bt,
  1528                          in_regs);
  1529     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1530     __ flush();
  1531     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1532     return nmethod::new_native_nmethod(method,
  1533                                        compile_id,
  1534                                        masm->code(),
  1535                                        vep_offset,
  1536                                        frame_complete,
  1537                                        stack_slots / VMRegImpl::slots_per_word,
  1538                                        in_ByteSize(-1),
  1539                                        in_ByteSize(-1),
  1540                                        (OopMapSet*)NULL);
  1542   bool is_critical_native = true;
  1543   address native_func = method->critical_native_function();
  1544   if (native_func == NULL) {
  1545     native_func = method->native_function();
  1546     is_critical_native = false;
  1548   assert(native_func != NULL, "must have function");
  1550   // An OopMap for lock (and class if static)
  1551   OopMapSet *oop_maps = new OopMapSet();
  1553   // We have received a description of where all the java arg are located
  1554   // on entry to the wrapper. We need to convert these args to where
  1555   // the jni function will expect them. To figure out where they go
  1556   // we convert the java signature to a C signature by inserting
  1557   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1559   const int total_in_args = method->size_of_parameters();
  1560   int total_c_args = total_in_args;
  1561   if (!is_critical_native) {
  1562     total_c_args += 1;
  1563     if (method->is_static()) {
  1564       total_c_args++;
  1566   } else {
  1567     for (int i = 0; i < total_in_args; i++) {
  1568       if (in_sig_bt[i] == T_ARRAY) {
  1569         total_c_args++;
  1574   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1575   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1576   BasicType* in_elem_bt = NULL;
  1578   int argc = 0;
  1579   if (!is_critical_native) {
  1580     out_sig_bt[argc++] = T_ADDRESS;
  1581     if (method->is_static()) {
  1582       out_sig_bt[argc++] = T_OBJECT;
  1585     for (int i = 0; i < total_in_args ; i++ ) {
  1586       out_sig_bt[argc++] = in_sig_bt[i];
  1588   } else {
  1589     Thread* THREAD = Thread::current();
  1590     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1591     SignatureStream ss(method->signature());
  1592     for (int i = 0; i < total_in_args ; i++ ) {
  1593       if (in_sig_bt[i] == T_ARRAY) {
  1594         // Arrays are passed as int, elem* pair
  1595         out_sig_bt[argc++] = T_INT;
  1596         out_sig_bt[argc++] = T_ADDRESS;
  1597         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1598         const char* at = atype->as_C_string();
  1599         if (strlen(at) == 2) {
  1600           assert(at[0] == '[', "must be");
  1601           switch (at[1]) {
  1602             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1603             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1604             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1605             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1606             case 'I': in_elem_bt[i]  = T_INT; break;
  1607             case 'J': in_elem_bt[i]  = T_LONG; break;
  1608             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1609             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1610             default: ShouldNotReachHere();
  1613       } else {
  1614         out_sig_bt[argc++] = in_sig_bt[i];
  1615         in_elem_bt[i] = T_VOID;
  1617       if (in_sig_bt[i] != T_VOID) {
  1618         assert(in_sig_bt[i] == ss.type(), "must match");
  1619         ss.next();
  1624   // Now figure out where the args must be stored and how much stack space
  1625   // they require.
  1626   int out_arg_slots;
  1627   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1629   // Compute framesize for the wrapper.  We need to handlize all oops in
  1630   // registers a max of 2 on x86.
  1632   // Calculate the total number of stack slots we will need.
  1634   // First count the abi requirement plus all of the outgoing args
  1635   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1637   // Now the space for the inbound oop handle area
  1638   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
  1639   if (is_critical_native) {
  1640     // Critical natives may have to call out so they need a save area
  1641     // for register arguments.
  1642     int double_slots = 0;
  1643     int single_slots = 0;
  1644     for ( int i = 0; i < total_in_args; i++) {
  1645       if (in_regs[i].first()->is_Register()) {
  1646         const Register reg = in_regs[i].first()->as_Register();
  1647         switch (in_sig_bt[i]) {
  1648           case T_ARRAY:  // critical array (uses 2 slots on LP64)
  1649           case T_BOOLEAN:
  1650           case T_BYTE:
  1651           case T_SHORT:
  1652           case T_CHAR:
  1653           case T_INT:  single_slots++; break;
  1654           case T_LONG: double_slots++; break;
  1655           default:  ShouldNotReachHere();
  1657       } else if (in_regs[i].first()->is_XMMRegister()) {
  1658         switch (in_sig_bt[i]) {
  1659           case T_FLOAT:  single_slots++; break;
  1660           case T_DOUBLE: double_slots++; break;
  1661           default:  ShouldNotReachHere();
  1663       } else if (in_regs[i].first()->is_FloatRegister()) {
  1664         ShouldNotReachHere();
  1667     total_save_slots = double_slots * 2 + single_slots;
  1668     // align the save area
  1669     if (double_slots != 0) {
  1670       stack_slots = round_to(stack_slots, 2);
  1674   int oop_handle_offset = stack_slots;
  1675   stack_slots += total_save_slots;
  1677   // Now any space we need for handlizing a klass if static method
  1679   int klass_slot_offset = 0;
  1680   int klass_offset = -1;
  1681   int lock_slot_offset = 0;
  1682   bool is_static = false;
  1684   if (method->is_static()) {
  1685     klass_slot_offset = stack_slots;
  1686     stack_slots += VMRegImpl::slots_per_word;
  1687     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1688     is_static = true;
  1691   // Plus a lock if needed
  1693   if (method->is_synchronized()) {
  1694     lock_slot_offset = stack_slots;
  1695     stack_slots += VMRegImpl::slots_per_word;
  1698   // Now a place (+2) to save return values or temp during shuffling
  1699   // + 2 for return address (which we own) and saved rbp,
  1700   stack_slots += 4;
  1702   // Ok The space we have allocated will look like:
  1703   //
  1704   //
  1705   // FP-> |                     |
  1706   //      |---------------------|
  1707   //      | 2 slots for moves   |
  1708   //      |---------------------|
  1709   //      | lock box (if sync)  |
  1710   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1711   //      | klass (if static)   |
  1712   //      |---------------------| <- klass_slot_offset
  1713   //      | oopHandle area      |
  1714   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1715   //      | outbound memory     |
  1716   //      | based arguments     |
  1717   //      |                     |
  1718   //      |---------------------|
  1719   //      |                     |
  1720   // SP-> | out_preserved_slots |
  1721   //
  1722   //
  1723   // ****************************************************************************
  1724   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1725   // arguments off of the stack after the jni call. Before the call we can use
  1726   // instructions that are SP relative. After the jni call we switch to FP
  1727   // relative instructions instead of re-adjusting the stack on windows.
  1728   // ****************************************************************************
  1731   // Now compute actual number of stack words we need rounding to make
  1732   // stack properly aligned.
  1733   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1735   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1737   intptr_t start = (intptr_t)__ pc();
  1739   // First thing make an ic check to see if we should even be here
  1741   // We are free to use all registers as temps without saving them and
  1742   // restoring them except rbp. rbp is the only callee save register
  1743   // as far as the interpreter and the compiler(s) are concerned.
  1746   const Register ic_reg = rax;
  1747   const Register receiver = rcx;
  1748   Label hit;
  1749   Label exception_pending;
  1751   __ verify_oop(receiver);
  1752   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1753   __ jcc(Assembler::equal, hit);
  1755   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1757   // verified entry must be aligned for code patching.
  1758   // and the first 5 bytes must be in the same cache line
  1759   // if we align at 8 then we will be sure 5 bytes are in the same line
  1760   __ align(8);
  1762   __ bind(hit);
  1764   int vep_offset = ((intptr_t)__ pc()) - start;
  1766 #ifdef COMPILER1
  1767   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1768     // Object.hashCode can pull the hashCode from the header word
  1769     // instead of doing a full VM transition once it's been computed.
  1770     // Since hashCode is usually polymorphic at call sites we can't do
  1771     // this optimization at the call site without a lot of work.
  1772     Label slowCase;
  1773     Register receiver = rcx;
  1774     Register result = rax;
  1775     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1777     // check if locked
  1778     __ testptr(result, markOopDesc::unlocked_value);
  1779     __ jcc (Assembler::zero, slowCase);
  1781     if (UseBiasedLocking) {
  1782       // Check if biased and fall through to runtime if so
  1783       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1784       __ jcc (Assembler::notZero, slowCase);
  1787     // get hash
  1788     __ andptr(result, markOopDesc::hash_mask_in_place);
  1789     // test if hashCode exists
  1790     __ jcc  (Assembler::zero, slowCase);
  1791     __ shrptr(result, markOopDesc::hash_shift);
  1792     __ ret(0);
  1793     __ bind (slowCase);
  1795 #endif // COMPILER1
  1797   // The instruction at the verified entry point must be 5 bytes or longer
  1798   // because it can be patched on the fly by make_non_entrant. The stack bang
  1799   // instruction fits that requirement.
  1801   // Generate stack overflow check
  1803   if (UseStackBanging) {
  1804     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1805   } else {
  1806     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1807     __ fat_nop();
  1810   // Generate a new frame for the wrapper.
  1811   __ enter();
  1812   // -2 because return address is already present and so is saved rbp
  1813   __ subptr(rsp, stack_size - 2*wordSize);
  1815   // Frame is now completed as far as size and linkage.
  1816   int frame_complete = ((intptr_t)__ pc()) - start;
  1818   // Calculate the difference between rsp and rbp,. We need to know it
  1819   // after the native call because on windows Java Natives will pop
  1820   // the arguments and it is painful to do rsp relative addressing
  1821   // in a platform independent way. So after the call we switch to
  1822   // rbp, relative addressing.
  1824   int fp_adjustment = stack_size - 2*wordSize;
  1826 #ifdef COMPILER2
  1827   // C2 may leave the stack dirty if not in SSE2+ mode
  1828   if (UseSSE >= 2) {
  1829     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1830   } else {
  1831     __ empty_FPU_stack();
  1833 #endif /* COMPILER2 */
  1835   // Compute the rbp, offset for any slots used after the jni call
  1837   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1839   // We use rdi as a thread pointer because it is callee save and
  1840   // if we load it once it is usable thru the entire wrapper
  1841   const Register thread = rdi;
  1843   // We use rsi as the oop handle for the receiver/klass
  1844   // It is callee save so it survives the call to native
  1846   const Register oop_handle_reg = rsi;
  1848   __ get_thread(thread);
  1850   if (is_critical_native) {
  1851     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
  1852                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  1855   //
  1856   // We immediately shuffle the arguments so that any vm call we have to
  1857   // make from here on out (sync slow path, jvmti, etc.) we will have
  1858   // captured the oops from our caller and have a valid oopMap for
  1859   // them.
  1861   // -----------------
  1862   // The Grand Shuffle
  1863   //
  1864   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1865   // and, if static, the class mirror instead of a receiver.  This pretty much
  1866   // guarantees that register layout will not match (and x86 doesn't use reg
  1867   // parms though amd does).  Since the native abi doesn't use register args
  1868   // and the java conventions does we don't have to worry about collisions.
  1869   // All of our moved are reg->stack or stack->stack.
  1870   // We ignore the extra arguments during the shuffle and handle them at the
  1871   // last moment. The shuffle is described by the two calling convention
  1872   // vectors we have in our possession. We simply walk the java vector to
  1873   // get the source locations and the c vector to get the destinations.
  1875   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
  1877   // Record rsp-based slot for receiver on stack for non-static methods
  1878   int receiver_offset = -1;
  1880   // This is a trick. We double the stack slots so we can claim
  1881   // the oops in the caller's frame. Since we are sure to have
  1882   // more args than the caller doubling is enough to make
  1883   // sure we can capture all the incoming oop args from the
  1884   // caller.
  1885   //
  1886   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1888   // Mark location of rbp,
  1889   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1891   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1892   // Are free to temporaries if we have to do  stack to steck moves.
  1893   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1895   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
  1896     switch (in_sig_bt[i]) {
  1897       case T_ARRAY:
  1898         if (is_critical_native) {
  1899           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  1900           c_arg++;
  1901           break;
  1903       case T_OBJECT:
  1904         assert(!is_critical_native, "no oop arguments");
  1905         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1906                     ((i == 0) && (!is_static)),
  1907                     &receiver_offset);
  1908         break;
  1909       case T_VOID:
  1910         break;
  1912       case T_FLOAT:
  1913         float_move(masm, in_regs[i], out_regs[c_arg]);
  1914           break;
  1916       case T_DOUBLE:
  1917         assert( i + 1 < total_in_args &&
  1918                 in_sig_bt[i + 1] == T_VOID &&
  1919                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1920         double_move(masm, in_regs[i], out_regs[c_arg]);
  1921         break;
  1923       case T_LONG :
  1924         long_move(masm, in_regs[i], out_regs[c_arg]);
  1925         break;
  1927       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1929       default:
  1930         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1934   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1935   // the normal JNI call code.
  1936   if (method->is_static() && !is_critical_native) {
  1938     //  load opp into a register
  1939     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
  1941     // Now handlize the static class mirror it's known not-null.
  1942     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1943     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1945     // Now get the handle
  1946     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1947     // store the klass handle as second argument
  1948     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1951   // Change state to native (we save the return address in the thread, since it might not
  1952   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1953   // points into the right code segment. It does not have to be the correct return pc.
  1954   // We use the same pc/oopMap repeatedly when we call out
  1956   intptr_t the_pc = (intptr_t) __ pc();
  1957   oop_maps->add_gc_map(the_pc - start, map);
  1959   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1962   // We have all of the arguments setup at this point. We must not touch any register
  1963   // argument registers at this point (what if we save/restore them there are no oop?
  1966     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1967     __ mov_metadata(rax, method());
  1968     __ call_VM_leaf(
  1969          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1970          thread, rax);
  1973   // RedefineClasses() tracing support for obsolete method entry
  1974   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1975     __ mov_metadata(rax, method());
  1976     __ call_VM_leaf(
  1977          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1978          thread, rax);
  1981   // These are register definitions we need for locking/unlocking
  1982   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1983   const Register obj_reg  = rcx;  // Will contain the oop
  1984   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1986   Label slow_path_lock;
  1987   Label lock_done;
  1989   // Lock a synchronized method
  1990   if (method->is_synchronized()) {
  1991     assert(!is_critical_native, "unhandled");
  1994     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1996     // Get the handle (the 2nd argument)
  1997     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1999     // Get address of the box
  2001     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  2003     // Load the oop from the handle
  2004     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2006     if (UseBiasedLocking) {
  2007       // Note that oop_handle_reg is trashed during this call
  2008       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  2011     // Load immediate 1 into swap_reg %rax,
  2012     __ movptr(swap_reg, 1);
  2014     // Load (object->mark() | 1) into swap_reg %rax,
  2015     __ orptr(swap_reg, Address(obj_reg, 0));
  2017     // Save (object->mark() | 1) into BasicLock's displaced header
  2018     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2020     if (os::is_MP()) {
  2021       __ lock();
  2024     // src -> dest iff dest == rax, else rax, <- dest
  2025     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  2026     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  2027     __ jcc(Assembler::equal, lock_done);
  2029     // Test if the oopMark is an obvious stack pointer, i.e.,
  2030     //  1) (mark & 3) == 0, and
  2031     //  2) rsp <= mark < mark + os::pagesize()
  2032     // These 3 tests can be done by evaluating the following
  2033     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  2034     // assuming both stack pointer and pagesize have their
  2035     // least significant 2 bits clear.
  2036     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  2038     __ subptr(swap_reg, rsp);
  2039     __ andptr(swap_reg, 3 - os::vm_page_size());
  2041     // Save the test result, for recursive case, the result is zero
  2042     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2043     __ jcc(Assembler::notEqual, slow_path_lock);
  2044     // Slow path will re-enter here
  2045     __ bind(lock_done);
  2047     if (UseBiasedLocking) {
  2048       // Re-fetch oop_handle_reg as we trashed it above
  2049       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  2054   // Finally just about ready to make the JNI call
  2057   // get JNIEnv* which is first argument to native
  2058   if (!is_critical_native) {
  2059     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  2060     __ movptr(Address(rsp, 0), rdx);
  2063   // Now set thread in native
  2064   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  2066   __ call(RuntimeAddress(native_func));
  2068   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  2069   // arguments off of the stack. We could just re-adjust the stack pointer here
  2070   // and continue to do SP relative addressing but we instead switch to FP
  2071   // relative addressing.
  2073   // Unpack native results.
  2074   switch (ret_type) {
  2075   case T_BOOLEAN: __ c2bool(rax);            break;
  2076   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  2077   case T_BYTE   : __ sign_extend_byte (rax); break;
  2078   case T_SHORT  : __ sign_extend_short(rax); break;
  2079   case T_INT    : /* nothing to do */        break;
  2080   case T_DOUBLE :
  2081   case T_FLOAT  :
  2082     // Result is in st0 we'll save as needed
  2083     break;
  2084   case T_ARRAY:                 // Really a handle
  2085   case T_OBJECT:                // Really a handle
  2086       break; // can't de-handlize until after safepoint check
  2087   case T_VOID: break;
  2088   case T_LONG: break;
  2089   default       : ShouldNotReachHere();
  2092   // Switch thread to "native transition" state before reading the synchronization state.
  2093   // This additional state is necessary because reading and testing the synchronization
  2094   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2095   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2096   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2097   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2098   //     didn't see any synchronization is progress, and escapes.
  2099   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2101   if(os::is_MP()) {
  2102     if (UseMembar) {
  2103       // Force this write out before the read below
  2104       __ membar(Assembler::Membar_mask_bits(
  2105            Assembler::LoadLoad | Assembler::LoadStore |
  2106            Assembler::StoreLoad | Assembler::StoreStore));
  2107     } else {
  2108       // Write serialization page so VM thread can do a pseudo remote membar.
  2109       // We use the current thread pointer to calculate a thread specific
  2110       // offset to write to within the page. This minimizes bus traffic
  2111       // due to cache line collision.
  2112       __ serialize_memory(thread, rcx);
  2116   if (AlwaysRestoreFPU) {
  2117     // Make sure the control word is correct.
  2118     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2121   Label after_transition;
  2123   // check for safepoint operation in progress and/or pending suspend requests
  2124   { Label Continue;
  2126     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2127              SafepointSynchronize::_not_synchronized);
  2129     Label L;
  2130     __ jcc(Assembler::notEqual, L);
  2131     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  2132     __ jcc(Assembler::equal, Continue);
  2133     __ bind(L);
  2135     // Don't use call_VM as it will see a possible pending exception and forward it
  2136     // and never return here preventing us from clearing _last_native_pc down below.
  2137     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2138     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2139     // by hand.
  2140     //
  2141     save_native_result(masm, ret_type, stack_slots);
  2142     __ push(thread);
  2143     if (!is_critical_native) {
  2144       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2145                                               JavaThread::check_special_condition_for_native_trans)));
  2146     } else {
  2147       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2148                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
  2150     __ increment(rsp, wordSize);
  2151     // Restore any method result value
  2152     restore_native_result(masm, ret_type, stack_slots);
  2154     if (is_critical_native) {
  2155       // The call above performed the transition to thread_in_Java so
  2156       // skip the transition logic below.
  2157       __ jmpb(after_transition);
  2160     __ bind(Continue);
  2163   // change thread state
  2164   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2165   __ bind(after_transition);
  2167   Label reguard;
  2168   Label reguard_done;
  2169   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2170   __ jcc(Assembler::equal, reguard);
  2172   // slow path reguard  re-enters here
  2173   __ bind(reguard_done);
  2175   // Handle possible exception (will unlock if necessary)
  2177   // native result if any is live
  2179   // Unlock
  2180   Label slow_path_unlock;
  2181   Label unlock_done;
  2182   if (method->is_synchronized()) {
  2184     Label done;
  2186     // Get locked oop from the handle we passed to jni
  2187     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2189     if (UseBiasedLocking) {
  2190       __ biased_locking_exit(obj_reg, rbx, done);
  2193     // Simple recursive lock?
  2195     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  2196     __ jcc(Assembler::equal, done);
  2198     // Must save rax, if if it is live now because cmpxchg must use it
  2199     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2200       save_native_result(masm, ret_type, stack_slots);
  2203     //  get old displaced header
  2204     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  2206     // get address of the stack lock
  2207     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2209     // Atomic swap old header if oop still contains the stack lock
  2210     if (os::is_MP()) {
  2211     __ lock();
  2214     // src -> dest iff dest == rax, else rax, <- dest
  2215     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  2216     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  2217     __ jcc(Assembler::notEqual, slow_path_unlock);
  2219     // slow path re-enters here
  2220     __ bind(unlock_done);
  2221     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2222       restore_native_result(masm, ret_type, stack_slots);
  2225     __ bind(done);
  2230     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  2231     // Tell dtrace about this method exit
  2232     save_native_result(masm, ret_type, stack_slots);
  2233     __ mov_metadata(rax, method());
  2234     __ call_VM_leaf(
  2235          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2236          thread, rax);
  2237     restore_native_result(masm, ret_type, stack_slots);
  2240   // We can finally stop using that last_Java_frame we setup ages ago
  2242   __ reset_last_Java_frame(thread, false, true);
  2244   // Unpack oop result
  2245   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2246       Label L;
  2247       __ cmpptr(rax, (int32_t)NULL_WORD);
  2248       __ jcc(Assembler::equal, L);
  2249       __ movptr(rax, Address(rax, 0));
  2250       __ bind(L);
  2251       __ verify_oop(rax);
  2254   if (!is_critical_native) {
  2255     // reset handle block
  2256     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  2257     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  2259     // Any exception pending?
  2260     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2261     __ jcc(Assembler::notEqual, exception_pending);
  2264   // no exception, we're almost done
  2266   // check that only result value is on FPU stack
  2267   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  2269   // Fixup floating pointer results so that result looks like a return from a compiled method
  2270   if (ret_type == T_FLOAT) {
  2271     if (UseSSE >= 1) {
  2272       // Pop st0 and store as float and reload into xmm register
  2273       __ fstp_s(Address(rbp, -4));
  2274       __ movflt(xmm0, Address(rbp, -4));
  2276   } else if (ret_type == T_DOUBLE) {
  2277     if (UseSSE >= 2) {
  2278       // Pop st0 and store as double and reload into xmm register
  2279       __ fstp_d(Address(rbp, -8));
  2280       __ movdbl(xmm0, Address(rbp, -8));
  2284   // Return
  2286   __ leave();
  2287   __ ret(0);
  2289   // Unexpected paths are out of line and go here
  2291   // Slow path locking & unlocking
  2292   if (method->is_synchronized()) {
  2294     // BEGIN Slow path lock
  2296     __ bind(slow_path_lock);
  2298     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2299     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2300     __ push(thread);
  2301     __ push(lock_reg);
  2302     __ push(obj_reg);
  2303     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  2304     __ addptr(rsp, 3*wordSize);
  2306 #ifdef ASSERT
  2307     { Label L;
  2308     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2309     __ jcc(Assembler::equal, L);
  2310     __ stop("no pending exception allowed on exit from monitorenter");
  2311     __ bind(L);
  2313 #endif
  2314     __ jmp(lock_done);
  2316     // END Slow path lock
  2318     // BEGIN Slow path unlock
  2319     __ bind(slow_path_unlock);
  2321     // Slow path unlock
  2323     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2324       save_native_result(masm, ret_type, stack_slots);
  2326     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2328     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2329     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  2332     // should be a peal
  2333     // +wordSize because of the push above
  2334     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2335     __ push(rax);
  2337     __ push(obj_reg);
  2338     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2339     __ addptr(rsp, 2*wordSize);
  2340 #ifdef ASSERT
  2342       Label L;
  2343       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2344       __ jcc(Assembler::equal, L);
  2345       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2346       __ bind(L);
  2348 #endif /* ASSERT */
  2350     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2352     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2353       restore_native_result(masm, ret_type, stack_slots);
  2355     __ jmp(unlock_done);
  2356     // END Slow path unlock
  2360   // SLOW PATH Reguard the stack if needed
  2362   __ bind(reguard);
  2363   save_native_result(masm, ret_type, stack_slots);
  2365     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2367   restore_native_result(masm, ret_type, stack_slots);
  2368   __ jmp(reguard_done);
  2371   // BEGIN EXCEPTION PROCESSING
  2373   if (!is_critical_native) {
  2374     // Forward  the exception
  2375     __ bind(exception_pending);
  2377     // remove possible return value from FPU register stack
  2378     __ empty_FPU_stack();
  2380     // pop our frame
  2381     __ leave();
  2382     // and forward the exception
  2383     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2386   __ flush();
  2388   nmethod *nm = nmethod::new_native_nmethod(method,
  2389                                             compile_id,
  2390                                             masm->code(),
  2391                                             vep_offset,
  2392                                             frame_complete,
  2393                                             stack_slots / VMRegImpl::slots_per_word,
  2394                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2395                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2396                                             oop_maps);
  2398   if (is_critical_native) {
  2399     nm->set_lazy_critical_native(true);
  2402   return nm;
  2406 #ifdef HAVE_DTRACE_H
  2407 // ---------------------------------------------------------------------------
  2408 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2409 // in the Java compiled code convention, marshals them to the native
  2410 // abi and then leaves nops at the position you would expect to call a native
  2411 // function. When the probe is enabled the nops are replaced with a trap
  2412 // instruction that dtrace inserts and the trace will cause a notification
  2413 // to dtrace.
  2414 //
  2415 // The probes are only able to take primitive types and java/lang/String as
  2416 // arguments.  No other java types are allowed. Strings are converted to utf8
  2417 // strings so that from dtrace point of view java strings are converted to C
  2418 // strings. There is an arbitrary fixed limit on the total space that a method
  2419 // can use for converting the strings. (256 chars per string in the signature).
  2420 // So any java string larger then this is truncated.
  2422 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2423     MacroAssembler *masm, methodHandle method) {
  2425   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2426   // be single threaded in this method.
  2427   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2429   // Fill in the signature array, for the calling-convention call.
  2430   int total_args_passed = method->size_of_parameters();
  2432   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2433   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2435   // The signature we are going to use for the trap that dtrace will see
  2436   // java/lang/String is converted. We drop "this" and any other object
  2437   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2438   // is converted to a two-slot long, which is why we double the allocation).
  2439   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2440   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2442   int i=0;
  2443   int total_strings = 0;
  2444   int first_arg_to_pass = 0;
  2445   int total_c_args = 0;
  2447   if( !method->is_static() ) {  // Pass in receiver first
  2448     in_sig_bt[i++] = T_OBJECT;
  2449     first_arg_to_pass = 1;
  2452   // We need to convert the java args to where a native (non-jni) function
  2453   // would expect them. To figure out where they go we convert the java
  2454   // signature to a C signature.
  2456   SignatureStream ss(method->signature());
  2457   for ( ; !ss.at_return_type(); ss.next()) {
  2458     BasicType bt = ss.type();
  2459     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2460     out_sig_bt[total_c_args++] = bt;
  2461     if( bt == T_OBJECT) {
  2462       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2463       if (s == vmSymbols::java_lang_String()) {
  2464         total_strings++;
  2465         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2466       } else if (s == vmSymbols::java_lang_Boolean() ||
  2467                  s == vmSymbols::java_lang_Character() ||
  2468                  s == vmSymbols::java_lang_Byte() ||
  2469                  s == vmSymbols::java_lang_Short() ||
  2470                  s == vmSymbols::java_lang_Integer() ||
  2471                  s == vmSymbols::java_lang_Float()) {
  2472         out_sig_bt[total_c_args-1] = T_INT;
  2473       } else if (s == vmSymbols::java_lang_Long() ||
  2474                  s == vmSymbols::java_lang_Double()) {
  2475         out_sig_bt[total_c_args-1] = T_LONG;
  2476         out_sig_bt[total_c_args++] = T_VOID;
  2478     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2479       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2480       out_sig_bt[total_c_args++] = T_VOID;
  2484   assert(i==total_args_passed, "validly parsed signature");
  2486   // Now get the compiled-Java layout as input arguments
  2487   int comp_args_on_stack;
  2488   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2489       in_sig_bt, in_regs, total_args_passed, false);
  2491   // Now figure out where the args must be stored and how much stack space
  2492   // they require (neglecting out_preserve_stack_slots).
  2494   int out_arg_slots;
  2495   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2497   // Calculate the total number of stack slots we will need.
  2499   // First count the abi requirement plus all of the outgoing args
  2500   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2502   // Now space for the string(s) we must convert
  2504   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2505   for (i = 0; i < total_strings ; i++) {
  2506     string_locs[i] = stack_slots;
  2507     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2510   // + 2 for return address (which we own) and saved rbp,
  2512   stack_slots += 2;
  2514   // Ok The space we have allocated will look like:
  2515   //
  2516   //
  2517   // FP-> |                     |
  2518   //      |---------------------|
  2519   //      | string[n]           |
  2520   //      |---------------------| <- string_locs[n]
  2521   //      | string[n-1]         |
  2522   //      |---------------------| <- string_locs[n-1]
  2523   //      | ...                 |
  2524   //      | ...                 |
  2525   //      |---------------------| <- string_locs[1]
  2526   //      | string[0]           |
  2527   //      |---------------------| <- string_locs[0]
  2528   //      | outbound memory     |
  2529   //      | based arguments     |
  2530   //      |                     |
  2531   //      |---------------------|
  2532   //      |                     |
  2533   // SP-> | out_preserved_slots |
  2534   //
  2535   //
  2537   // Now compute actual number of stack words we need rounding to make
  2538   // stack properly aligned.
  2539   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2541   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2543   intptr_t start = (intptr_t)__ pc();
  2545   // First thing make an ic check to see if we should even be here
  2547   // We are free to use all registers as temps without saving them and
  2548   // restoring them except rbp. rbp, is the only callee save register
  2549   // as far as the interpreter and the compiler(s) are concerned.
  2551   const Register ic_reg = rax;
  2552   const Register receiver = rcx;
  2553   Label hit;
  2554   Label exception_pending;
  2557   __ verify_oop(receiver);
  2558   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2559   __ jcc(Assembler::equal, hit);
  2561   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2563   // verified entry must be aligned for code patching.
  2564   // and the first 5 bytes must be in the same cache line
  2565   // if we align at 8 then we will be sure 5 bytes are in the same line
  2566   __ align(8);
  2568   __ bind(hit);
  2570   int vep_offset = ((intptr_t)__ pc()) - start;
  2573   // The instruction at the verified entry point must be 5 bytes or longer
  2574   // because it can be patched on the fly by make_non_entrant. The stack bang
  2575   // instruction fits that requirement.
  2577   // Generate stack overflow check
  2580   if (UseStackBanging) {
  2581     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2582       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2583     } else {
  2584       __ movl(rax, stack_size);
  2585       __ bang_stack_size(rax, rbx);
  2587   } else {
  2588     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2589     __ fat_nop();
  2592   assert(((int)__ pc() - start - vep_offset) >= 5,
  2593          "valid size for make_non_entrant");
  2595   // Generate a new frame for the wrapper.
  2596   __ enter();
  2598   // -2 because return address is already present and so is saved rbp,
  2599   if (stack_size - 2*wordSize != 0) {
  2600     __ subl(rsp, stack_size - 2*wordSize);
  2603   // Frame is now completed as far a size and linkage.
  2605   int frame_complete = ((intptr_t)__ pc()) - start;
  2607   // First thing we do store all the args as if we are doing the call.
  2608   // Since the C calling convention is stack based that ensures that
  2609   // all the Java register args are stored before we need to convert any
  2610   // string we might have.
  2612   int sid = 0;
  2613   int c_arg, j_arg;
  2614   int string_reg = 0;
  2616   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2617        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2619     VMRegPair src = in_regs[j_arg];
  2620     VMRegPair dst = out_regs[c_arg];
  2621     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2622            "stack based abi assumed");
  2624     switch (in_sig_bt[j_arg]) {
  2626       case T_ARRAY:
  2627       case T_OBJECT:
  2628         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2629           // Any register based arg for a java string after the first
  2630           // will be destroyed by the call to get_utf so we store
  2631           // the original value in the location the utf string address
  2632           // will eventually be stored.
  2633           if (src.first()->is_reg()) {
  2634             if (string_reg++ != 0) {
  2635               simple_move32(masm, src, dst);
  2638         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2639           // need to unbox a one-word value
  2640           Register in_reg = rax;
  2641           if ( src.first()->is_reg() ) {
  2642             in_reg = src.first()->as_Register();
  2643           } else {
  2644             simple_move32(masm, src, in_reg->as_VMReg());
  2646           Label skipUnbox;
  2647           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2648           if ( out_sig_bt[c_arg] == T_LONG ) {
  2649             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2651           __ testl(in_reg, in_reg);
  2652           __ jcc(Assembler::zero, skipUnbox);
  2653           assert(dst.first()->is_stack() &&
  2654                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2655                  "value(s) must go into stack slots");
  2657           BasicType bt = out_sig_bt[c_arg];
  2658           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2659           if ( bt == T_LONG ) {
  2660             __ movl(rbx, Address(in_reg,
  2661                                  box_offset + VMRegImpl::stack_slot_size));
  2662             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2664           __ movl(in_reg,  Address(in_reg, box_offset));
  2665           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2666           __ bind(skipUnbox);
  2667         } else {
  2668           // Convert the arg to NULL
  2669           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2671         if (out_sig_bt[c_arg] == T_LONG) {
  2672           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2673           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2675         break;
  2677       case T_VOID:
  2678         break;
  2680       case T_FLOAT:
  2681         float_move(masm, src, dst);
  2682         break;
  2684       case T_DOUBLE:
  2685         assert( j_arg + 1 < total_args_passed &&
  2686                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2687         double_move(masm, src, dst);
  2688         break;
  2690       case T_LONG :
  2691         long_move(masm, src, dst);
  2692         break;
  2694       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2696       default:
  2697         simple_move32(masm, src, dst);
  2701   // Now we must convert any string we have to utf8
  2702   //
  2704   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2705        sid < total_strings ; j_arg++, c_arg++ ) {
  2707     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2709       Address utf8_addr = Address(
  2710           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2711       __ leal(rax, utf8_addr);
  2713       // The first string we find might still be in the original java arg
  2714       // register
  2715       VMReg orig_loc = in_regs[j_arg].first();
  2716       Register string_oop;
  2718       // This is where the argument will eventually reside
  2719       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2721       if (sid == 1 && orig_loc->is_reg()) {
  2722         string_oop = orig_loc->as_Register();
  2723         assert(string_oop != rax, "smashed arg");
  2724       } else {
  2726         if (orig_loc->is_reg()) {
  2727           // Get the copy of the jls object
  2728           __ movl(rcx, dest);
  2729         } else {
  2730           // arg is still in the original location
  2731           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2733         string_oop = rcx;
  2736       Label nullString;
  2737       __ movl(dest, NULL_WORD);
  2738       __ testl(string_oop, string_oop);
  2739       __ jcc(Assembler::zero, nullString);
  2741       // Now we can store the address of the utf string as the argument
  2742       __ movl(dest, rax);
  2744       // And do the conversion
  2745       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2746              address, SharedRuntime::get_utf), string_oop, rax);
  2747       __ bind(nullString);
  2750     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2751       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2752       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2757   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2758   // patch in the trap
  2760   int patch_offset = ((intptr_t)__ pc()) - start;
  2762   __ nop();
  2765   // Return
  2767   __ leave();
  2768   __ ret(0);
  2770   __ flush();
  2772   nmethod *nm = nmethod::new_dtrace_nmethod(
  2773       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2774       stack_slots / VMRegImpl::slots_per_word);
  2775   return nm;
  2779 #endif // HAVE_DTRACE_H
  2781 // this function returns the adjust size (in number of words) to a c2i adapter
  2782 // activation for use during deoptimization
  2783 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2784   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2788 uint SharedRuntime::out_preserve_stack_slots() {
  2789   return 0;
  2792 //------------------------------generate_deopt_blob----------------------------
  2793 void SharedRuntime::generate_deopt_blob() {
  2794   // allocate space for the code
  2795   ResourceMark rm;
  2796   // setup code generation tools
  2797   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2798   MacroAssembler* masm = new MacroAssembler(&buffer);
  2799   int frame_size_in_words;
  2800   OopMap* map = NULL;
  2801   // Account for the extra args we place on the stack
  2802   // by the time we call fetch_unroll_info
  2803   const int additional_words = 2; // deopt kind, thread
  2805   OopMapSet *oop_maps = new OopMapSet();
  2807   // -------------
  2808   // This code enters when returning to a de-optimized nmethod.  A return
  2809   // address has been pushed on the the stack, and return values are in
  2810   // registers.
  2811   // If we are doing a normal deopt then we were called from the patched
  2812   // nmethod from the point we returned to the nmethod. So the return
  2813   // address on the stack is wrong by NativeCall::instruction_size
  2814   // We will adjust the value to it looks like we have the original return
  2815   // address on the stack (like when we eagerly deoptimized).
  2816   // In the case of an exception pending with deoptimized then we enter
  2817   // with a return address on the stack that points after the call we patched
  2818   // into the exception handler. We have the following register state:
  2819   //    rax,: exception
  2820   //    rbx,: exception handler
  2821   //    rdx: throwing pc
  2822   // So in this case we simply jam rdx into the useless return address and
  2823   // the stack looks just like we want.
  2824   //
  2825   // At this point we need to de-opt.  We save the argument return
  2826   // registers.  We call the first C routine, fetch_unroll_info().  This
  2827   // routine captures the return values and returns a structure which
  2828   // describes the current frame size and the sizes of all replacement frames.
  2829   // The current frame is compiled code and may contain many inlined
  2830   // functions, each with their own JVM state.  We pop the current frame, then
  2831   // push all the new frames.  Then we call the C routine unpack_frames() to
  2832   // populate these frames.  Finally unpack_frames() returns us the new target
  2833   // address.  Notice that callee-save registers are BLOWN here; they have
  2834   // already been captured in the vframeArray at the time the return PC was
  2835   // patched.
  2836   address start = __ pc();
  2837   Label cont;
  2839   // Prolog for non exception case!
  2841   // Save everything in sight.
  2843   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2844   // Normal deoptimization
  2845   __ push(Deoptimization::Unpack_deopt);
  2846   __ jmp(cont);
  2848   int reexecute_offset = __ pc() - start;
  2850   // Reexecute case
  2851   // return address is the pc describes what bci to do re-execute at
  2853   // No need to update map as each call to save_live_registers will produce identical oopmap
  2854   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2856   __ push(Deoptimization::Unpack_reexecute);
  2857   __ jmp(cont);
  2859   int exception_offset = __ pc() - start;
  2861   // Prolog for exception case
  2863   // all registers are dead at this entry point, except for rax, and
  2864   // rdx which contain the exception oop and exception pc
  2865   // respectively.  Set them in TLS and fall thru to the
  2866   // unpack_with_exception_in_tls entry point.
  2868   __ get_thread(rdi);
  2869   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2870   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2872   int exception_in_tls_offset = __ pc() - start;
  2874   // new implementation because exception oop is now passed in JavaThread
  2876   // Prolog for exception case
  2877   // All registers must be preserved because they might be used by LinearScan
  2878   // Exceptiop oop and throwing PC are passed in JavaThread
  2879   // tos: stack at point of call to method that threw the exception (i.e. only
  2880   // args are on the stack, no return address)
  2882   // make room on stack for the return address
  2883   // It will be patched later with the throwing pc. The correct value is not
  2884   // available now because loading it from memory would destroy registers.
  2885   __ push(0);
  2887   // Save everything in sight.
  2889   // No need to update map as each call to save_live_registers will produce identical oopmap
  2890   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2892   // Now it is safe to overwrite any register
  2894   // store the correct deoptimization type
  2895   __ push(Deoptimization::Unpack_exception);
  2897   // load throwing pc from JavaThread and patch it as the return address
  2898   // of the current frame. Then clear the field in JavaThread
  2899   __ get_thread(rdi);
  2900   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2901   __ movptr(Address(rbp, wordSize), rdx);
  2902   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2904 #ifdef ASSERT
  2905   // verify that there is really an exception oop in JavaThread
  2906   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2907   __ verify_oop(rax);
  2909   // verify that there is no pending exception
  2910   Label no_pending_exception;
  2911   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2912   __ testptr(rax, rax);
  2913   __ jcc(Assembler::zero, no_pending_exception);
  2914   __ stop("must not have pending exception here");
  2915   __ bind(no_pending_exception);
  2916 #endif
  2918   __ bind(cont);
  2920   // Compiled code leaves the floating point stack dirty, empty it.
  2921   __ empty_FPU_stack();
  2924   // Call C code.  Need thread and this frame, but NOT official VM entry
  2925   // crud.  We cannot block on this call, no GC can happen.
  2926   __ get_thread(rcx);
  2927   __ push(rcx);
  2928   // fetch_unroll_info needs to call last_java_frame()
  2929   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2931   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2933   // Need to have an oopmap that tells fetch_unroll_info where to
  2934   // find any register it might need.
  2936   oop_maps->add_gc_map( __ pc()-start, map);
  2938   // Discard arg to fetch_unroll_info
  2939   __ pop(rcx);
  2941   __ get_thread(rcx);
  2942   __ reset_last_Java_frame(rcx, false, false);
  2944   // Load UnrollBlock into EDI
  2945   __ mov(rdi, rax);
  2947   // Move the unpack kind to a safe place in the UnrollBlock because
  2948   // we are very short of registers
  2950   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2951   // retrieve the deopt kind from where we left it.
  2952   __ pop(rax);
  2953   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2955    Label noException;
  2956   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2957   __ jcc(Assembler::notEqual, noException);
  2958   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2959   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2960   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2961   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2963   __ verify_oop(rax);
  2965   // Overwrite the result registers with the exception results.
  2966   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2967   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2969   __ bind(noException);
  2971   // Stack is back to only having register save data on the stack.
  2972   // Now restore the result registers. Everything else is either dead or captured
  2973   // in the vframeArray.
  2975   RegisterSaver::restore_result_registers(masm);
  2977   // Non standard control word may be leaked out through a safepoint blob, and we can
  2978   // deopt at a poll point with the non standard control word. However, we should make
  2979   // sure the control word is correct after restore_result_registers.
  2980   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2982   // All of the register save area has been popped of the stack. Only the
  2983   // return address remains.
  2985   // Pop all the frames we must move/replace.
  2986   //
  2987   // Frame picture (youngest to oldest)
  2988   // 1: self-frame (no frame link)
  2989   // 2: deopting frame  (no frame link)
  2990   // 3: caller of deopting frame (could be compiled/interpreted).
  2991   //
  2992   // Note: by leaving the return address of self-frame on the stack
  2993   // and using the size of frame 2 to adjust the stack
  2994   // when we are done the return to frame 3 will still be on the stack.
  2996   // Pop deoptimized frame
  2997   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2999   // sp should be pointing at the return address to the caller (3)
  3001   // Stack bang to make sure there's enough room for these interpreter frames.
  3002   if (UseStackBanging) {
  3003     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3004     __ bang_stack_size(rbx, rcx);
  3007   // Load array of frame pcs into ECX
  3008   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3010   __ pop(rsi); // trash the old pc
  3012   // Load array of frame sizes into ESI
  3013   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3015   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  3017   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3018   __ movl(counter, rbx);
  3020   // Pick up the initial fp we should save
  3021   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3023   // Now adjust the caller's stack to make up for the extra locals
  3024   // but record the original sp so that we can save it in the skeletal interpreter
  3025   // frame and the stack walking of interpreter_sender will get the unextended sp
  3026   // value and not the "real" sp value.
  3028   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  3029   __ movptr(sp_temp, rsp);
  3030   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  3031   __ subptr(rsp, rbx);
  3033   // Push interpreter frames in a loop
  3034   Label loop;
  3035   __ bind(loop);
  3036   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3037 #ifdef CC_INTERP
  3038   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3039 #ifdef ASSERT
  3040   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3041   __ push(0xDEADDEAD);
  3042 #else /* ASSERT */
  3043   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3044 #endif /* ASSERT */
  3045 #else /* CC_INTERP */
  3046   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3047 #endif /* CC_INTERP */
  3048   __ pushptr(Address(rcx, 0));          // save return address
  3049   __ enter();                           // save old & set new rbp,
  3050   __ subptr(rsp, rbx);                  // Prolog!
  3051   __ movptr(rbx, sp_temp);              // sender's sp
  3052 #ifdef CC_INTERP
  3053   __ movptr(Address(rbp,
  3054                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3055           rbx); // Make it walkable
  3056 #else /* CC_INTERP */
  3057   // This value is corrected by layout_activation_impl
  3058   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  3059   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3060 #endif /* CC_INTERP */
  3061   __ movptr(sp_temp, rsp);              // pass to next frame
  3062   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3063   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3064   __ decrementl(counter);             // decrement counter
  3065   __ jcc(Assembler::notZero, loop);
  3066   __ pushptr(Address(rcx, 0));          // save final return address
  3068   // Re-push self-frame
  3069   __ enter();                           // save old & set new rbp,
  3071   //  Return address and rbp, are in place
  3072   // We'll push additional args later. Just allocate a full sized
  3073   // register save area
  3074   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  3076   // Restore frame locals after moving the frame
  3077   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  3078   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  3079   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  3080   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3081   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3083   // Set up the args to unpack_frame
  3085   __ pushl(unpack_kind);                     // get the unpack_kind value
  3086   __ get_thread(rcx);
  3087   __ push(rcx);
  3089   // set last_Java_sp, last_Java_fp
  3090   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  3092   // Call C code.  Need thread but NOT official VM entry
  3093   // crud.  We cannot block on this call, no GC can happen.  Call should
  3094   // restore return values to their stack-slots with the new SP.
  3095   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3096   // Set an oopmap for the call site
  3097   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  3099   // rax, contains the return result type
  3100   __ push(rax);
  3102   __ get_thread(rcx);
  3103   __ reset_last_Java_frame(rcx, false, false);
  3105   // Collect return values
  3106   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  3107   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  3109   // Clear floating point stack before returning to interpreter
  3110   __ empty_FPU_stack();
  3112   // Check if we should push the float or double return value.
  3113   Label results_done, yes_double_value;
  3114   __ cmpl(Address(rsp, 0), T_DOUBLE);
  3115   __ jcc (Assembler::zero, yes_double_value);
  3116   __ cmpl(Address(rsp, 0), T_FLOAT);
  3117   __ jcc (Assembler::notZero, results_done);
  3119   // return float value as expected by interpreter
  3120   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3121   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3122   __ jmp(results_done);
  3124   // return double value as expected by interpreter
  3125   __ bind(yes_double_value);
  3126   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3127   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3129   __ bind(results_done);
  3131   // Pop self-frame.
  3132   __ leave();                              // Epilog!
  3134   // Jump to interpreter
  3135   __ ret(0);
  3137   // -------------
  3138   // make sure all code is generated
  3139   masm->flush();
  3141   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3142   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3146 #ifdef COMPILER2
  3147 //------------------------------generate_uncommon_trap_blob--------------------
  3148 void SharedRuntime::generate_uncommon_trap_blob() {
  3149   // allocate space for the code
  3150   ResourceMark rm;
  3151   // setup code generation tools
  3152   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  3153   MacroAssembler* masm = new MacroAssembler(&buffer);
  3155   enum frame_layout {
  3156     arg0_off,      // thread                     sp + 0 // Arg location for
  3157     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  3158     // The frame sender code expects that rbp will be in the "natural" place and
  3159     // will override any oopMap setting for it. We must therefore force the layout
  3160     // so that it agrees with the frame sender code.
  3161     rbp_off,       // callee saved register      sp + 2
  3162     return_off,    // slot for return address    sp + 3
  3163     framesize
  3164   };
  3166   address start = __ pc();
  3167   // Push self-frame.
  3168   __ subptr(rsp, return_off*wordSize);     // Epilog!
  3170   // rbp, is an implicitly saved callee saved register (i.e. the calling
  3171   // convention will save restore it in prolog/epilog) Other than that
  3172   // there are no callee save registers no that adapter frames are gone.
  3173   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  3175   // Clear the floating point exception stack
  3176   __ empty_FPU_stack();
  3178   // set last_Java_sp
  3179   __ get_thread(rdx);
  3180   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  3182   // Call C code.  Need thread but NOT official VM entry
  3183   // crud.  We cannot block on this call, no GC can happen.  Call should
  3184   // capture callee-saved registers as well as return values.
  3185   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  3186   // argument already in ECX
  3187   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  3188   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3190   // Set an oopmap for the call site
  3191   OopMapSet *oop_maps = new OopMapSet();
  3192   OopMap* map =  new OopMap( framesize, 0 );
  3193   // No oopMap for rbp, it is known implicitly
  3195   oop_maps->add_gc_map( __ pc()-start, map);
  3197   __ get_thread(rcx);
  3199   __ reset_last_Java_frame(rcx, false, false);
  3201   // Load UnrollBlock into EDI
  3202   __ movptr(rdi, rax);
  3204   // Pop all the frames we must move/replace.
  3205   //
  3206   // Frame picture (youngest to oldest)
  3207   // 1: self-frame (no frame link)
  3208   // 2: deopting frame  (no frame link)
  3209   // 3: caller of deopting frame (could be compiled/interpreted).
  3211   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  3212   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  3214   // Pop deoptimized frame
  3215   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3216   __ addptr(rsp, rcx);
  3218   // sp should be pointing at the return address to the caller (3)
  3220   // Stack bang to make sure there's enough room for these interpreter frames.
  3221   if (UseStackBanging) {
  3222     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3223     __ bang_stack_size(rbx, rcx);
  3227   // Load array of frame pcs into ECX
  3228   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3230   __ pop(rsi); // trash the pc
  3232   // Load array of frame sizes into ESI
  3233   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3235   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  3237   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3238   __ movl(counter, rbx);
  3240   // Pick up the initial fp we should save
  3241   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3243   // Now adjust the caller's stack to make up for the extra locals
  3244   // but record the original sp so that we can save it in the skeletal interpreter
  3245   // frame and the stack walking of interpreter_sender will get the unextended sp
  3246   // value and not the "real" sp value.
  3248   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  3249   __ movptr(sp_temp, rsp);
  3250   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  3251   __ subptr(rsp, rbx);
  3253   // Push interpreter frames in a loop
  3254   Label loop;
  3255   __ bind(loop);
  3256   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3257 #ifdef CC_INTERP
  3258   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3259 #ifdef ASSERT
  3260   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3261   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  3262 #else /* ASSERT */
  3263   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3264 #endif /* ASSERT */
  3265 #else /* CC_INTERP */
  3266   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3267 #endif /* CC_INTERP */
  3268   __ pushptr(Address(rcx, 0));          // save return address
  3269   __ enter();                           // save old & set new rbp,
  3270   __ subptr(rsp, rbx);                  // Prolog!
  3271   __ movptr(rbx, sp_temp);              // sender's sp
  3272 #ifdef CC_INTERP
  3273   __ movptr(Address(rbp,
  3274                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3275           rbx); // Make it walkable
  3276 #else /* CC_INTERP */
  3277   // This value is corrected by layout_activation_impl
  3278   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  3279   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3280 #endif /* CC_INTERP */
  3281   __ movptr(sp_temp, rsp);              // pass to next frame
  3282   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3283   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3284   __ decrementl(counter);             // decrement counter
  3285   __ jcc(Assembler::notZero, loop);
  3286   __ pushptr(Address(rcx, 0));            // save final return address
  3288   // Re-push self-frame
  3289   __ enter();                           // save old & set new rbp,
  3290   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  3293   // set last_Java_sp, last_Java_fp
  3294   __ get_thread(rdi);
  3295   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  3297   // Call C code.  Need thread but NOT official VM entry
  3298   // crud.  We cannot block on this call, no GC can happen.  Call should
  3299   // restore return values to their stack-slots with the new SP.
  3300   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  3301   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  3302   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3303   // Set an oopmap for the call site
  3304   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  3306   __ get_thread(rdi);
  3307   __ reset_last_Java_frame(rdi, true, false);
  3309   // Pop self-frame.
  3310   __ leave();     // Epilog!
  3312   // Jump to interpreter
  3313   __ ret(0);
  3315   // -------------
  3316   // make sure all code is generated
  3317   masm->flush();
  3319    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  3321 #endif // COMPILER2
  3323 //------------------------------generate_handler_blob------
  3324 //
  3325 // Generate a special Compile2Runtime blob that saves all registers,
  3326 // setup oopmap, and calls safepoint code to stop the compiled code for
  3327 // a safepoint.
  3328 //
  3329 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3331   // Account for thread arg in our frame
  3332   const int additional_words = 1;
  3333   int frame_size_in_words;
  3335   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3337   ResourceMark rm;
  3338   OopMapSet *oop_maps = new OopMapSet();
  3339   OopMap* map;
  3341   // allocate space for the code
  3342   // setup code generation tools
  3343   CodeBuffer   buffer("handler_blob", 1024, 512);
  3344   MacroAssembler* masm = new MacroAssembler(&buffer);
  3346   const Register java_thread = rdi; // callee-saved for VC++
  3347   address start   = __ pc();
  3348   address call_pc = NULL;
  3349   bool cause_return = (poll_type == POLL_AT_RETURN);
  3350   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
  3351   // If cause_return is true we are at a poll_return and there is
  3352   // the return address on the stack to the caller on the nmethod
  3353   // that is safepoint. We can leave this return on the stack and
  3354   // effectively complete the return and safepoint in the caller.
  3355   // Otherwise we push space for a return address that the safepoint
  3356   // handler will install later to make the stack walking sensible.
  3357   if (!cause_return)
  3358     __ push(rbx);  // Make room for return address (or push it again)
  3360   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
  3362   // The following is basically a call_VM. However, we need the precise
  3363   // address of the call in order to generate an oopmap. Hence, we do all the
  3364   // work ourselves.
  3366   // Push thread argument and setup last_Java_sp
  3367   __ get_thread(java_thread);
  3368   __ push(java_thread);
  3369   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  3371   // if this was not a poll_return then we need to correct the return address now.
  3372   if (!cause_return) {
  3373     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  3374     __ movptr(Address(rbp, wordSize), rax);
  3377   // do the call
  3378   __ call(RuntimeAddress(call_ptr));
  3380   // Set an oopmap for the call site.  This oopmap will map all
  3381   // oop-registers and debug-info registers as callee-saved.  This
  3382   // will allow deoptimization at this safepoint to find all possible
  3383   // debug-info recordings, as well as let GC find all oops.
  3385   oop_maps->add_gc_map( __ pc() - start, map);
  3387   // Discard arg
  3388   __ pop(rcx);
  3390   Label noException;
  3392   // Clear last_Java_sp again
  3393   __ get_thread(java_thread);
  3394   __ reset_last_Java_frame(java_thread, false, false);
  3396   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3397   __ jcc(Assembler::equal, noException);
  3399   // Exception pending
  3400   RegisterSaver::restore_live_registers(masm, save_vectors);
  3402   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3404   __ bind(noException);
  3406   // Normal exit, register restoring and exit
  3407   RegisterSaver::restore_live_registers(masm, save_vectors);
  3409   __ ret(0);
  3411   // make sure all code is generated
  3412   masm->flush();
  3414   // Fill-out other meta info
  3415   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3418 //
  3419 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3420 //
  3421 // Generate a stub that calls into vm to find out the proper destination
  3422 // of a java call. All the argument registers are live at this point
  3423 // but since this is generic code we don't know what they are and the caller
  3424 // must do any gc of the args.
  3425 //
  3426 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3427   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3429   // allocate space for the code
  3430   ResourceMark rm;
  3432   CodeBuffer buffer(name, 1000, 512);
  3433   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3435   int frame_size_words;
  3436   enum frame_layout {
  3437                 thread_off,
  3438                 extra_words };
  3440   OopMapSet *oop_maps = new OopMapSet();
  3441   OopMap* map = NULL;
  3443   int start = __ offset();
  3445   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  3447   int frame_complete = __ offset();
  3449   const Register thread = rdi;
  3450   __ get_thread(rdi);
  3452   __ push(thread);
  3453   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  3455   __ call(RuntimeAddress(destination));
  3458   // Set an oopmap for the call site.
  3459   // We need this not only for callee-saved registers, but also for volatile
  3460   // registers that the compiler might be keeping live across a safepoint.
  3462   oop_maps->add_gc_map( __ offset() - start, map);
  3464   // rax, contains the address we are going to jump to assuming no exception got installed
  3466   __ addptr(rsp, wordSize);
  3468   // clear last_Java_sp
  3469   __ reset_last_Java_frame(thread, true, false);
  3470   // check for pending exceptions
  3471   Label pending;
  3472   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3473   __ jcc(Assembler::notEqual, pending);
  3475   // get the returned Method*
  3476   __ get_vm_result_2(rbx, thread);
  3477   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  3479   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  3481   RegisterSaver::restore_live_registers(masm);
  3483   // We are back the the original state on entry and ready to go.
  3485   __ jmp(rax);
  3487   // Pending exception after the safepoint
  3489   __ bind(pending);
  3491   RegisterSaver::restore_live_registers(masm);
  3493   // exception pending => remove activation and forward to exception handler
  3495   __ get_thread(thread);
  3496   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  3497   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  3498   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3500   // -------------
  3501   // make sure all code is generated
  3502   masm->flush();
  3504   // return the  blob
  3505   // frame_size_words or bytes??
  3506   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial