src/cpu/x86/vm/nativeInst_x86.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4318
cd3d6a6b95d9
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "nativeInst_x86.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/handles.hpp"
    31 #include "runtime/sharedRuntime.hpp"
    32 #include "runtime/stubRoutines.hpp"
    33 #include "utilities/ostream.hpp"
    34 #ifdef COMPILER1
    35 #include "c1/c1_Runtime1.hpp"
    36 #endif
    38 void NativeInstruction::wrote(int offset) {
    39   ICache::invalidate_word(addr_at(offset));
    40 }
    43 void NativeCall::verify() {
    44   // Make sure code pattern is actually a call imm32 instruction.
    45   int inst = ubyte_at(0);
    46   if (inst != instruction_code) {
    47     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
    48                                                         inst);
    49     fatal("not a call disp32");
    50   }
    51 }
    53 address NativeCall::destination() const {
    54   // Getting the destination of a call isn't safe because that call can
    55   // be getting patched while you're calling this.  There's only special
    56   // places where this can be called but not automatically verifiable by
    57   // checking which locks are held.  The solution is true atomic patching
    58   // on x86, nyi.
    59   return return_address() + displacement();
    60 }
    62 void NativeCall::print() {
    63   tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
    64                 instruction_address(), destination());
    65 }
    67 // Inserts a native call instruction at a given pc
    68 void NativeCall::insert(address code_pos, address entry) {
    69   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
    70 #ifdef AMD64
    71   guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
    72 #endif // AMD64
    73   *code_pos = instruction_code;
    74   *((int32_t *)(code_pos+1)) = (int32_t) disp;
    75   ICache::invalidate_range(code_pos, instruction_size);
    76 }
    78 // MT-safe patching of a call instruction.
    79 // First patches first word of instruction to two jmp's that jmps to them
    80 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
    81 // the jmp's with the first 4 byte of the new instruction.
    82 void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
    83   assert(Patching_lock->is_locked() ||
    84          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
    85   assert (instr_addr != NULL, "illegal address for code patching");
    87   NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
    88   if (os::is_MP()) {
    89     guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
    90   }
    92   // First patch dummy jmp in place
    93   unsigned char patch[4];
    94   assert(sizeof(patch)==sizeof(jint), "sanity check");
    95   patch[0] = 0xEB;       // jmp rel8
    96   patch[1] = 0xFE;       // jmp to self
    97   patch[2] = 0xEB;
    98   patch[3] = 0xFE;
   100   // First patch dummy jmp in place
   101   *(jint*)instr_addr = *(jint *)patch;
   103   // Invalidate.  Opteron requires a flush after every write.
   104   n_call->wrote(0);
   106   // Patch 4th byte
   107   instr_addr[4] = code_buffer[4];
   109   n_call->wrote(4);
   111   // Patch bytes 0-3
   112   *(jint*)instr_addr = *(jint *)code_buffer;
   114   n_call->wrote(0);
   116 #ifdef ASSERT
   117    // verify patching
   118    for ( int i = 0; i < instruction_size; i++) {
   119      address ptr = (address)((intptr_t)code_buffer + i);
   120      int a_byte = (*ptr) & 0xFF;
   121      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
   122    }
   123 #endif
   125 }
   128 // Similar to replace_mt_safe, but just changes the destination.  The
   129 // important thing is that free-running threads are able to execute this
   130 // call instruction at all times.  If the displacement field is aligned
   131 // we can simply rely on atomicity of 32-bit writes to make sure other threads
   132 // will see no intermediate states.  Otherwise, the first two bytes of the
   133 // call are guaranteed to be aligned, and can be atomically patched to a
   134 // self-loop to guard the instruction while we change the other bytes.
   136 // We cannot rely on locks here, since the free-running threads must run at
   137 // full speed.
   138 //
   139 // Used in the runtime linkage of calls; see class CompiledIC.
   140 // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
   141 void NativeCall::set_destination_mt_safe(address dest) {
   142   debug_only(verify());
   143   // Make sure patching code is locked.  No two threads can patch at the same
   144   // time but one may be executing this code.
   145   assert(Patching_lock->is_locked() ||
   146          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
   147   // Both C1 and C2 should now be generating code which aligns the patched address
   148   // to be within a single cache line except that C1 does not do the alignment on
   149   // uniprocessor systems.
   150   bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
   151                     ((uintptr_t)displacement_address() + 3) / cache_line_size;
   153   guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
   155   if (is_aligned) {
   156     // Simple case:  The destination lies within a single cache line.
   157     set_destination(dest);
   158   } else if ((uintptr_t)instruction_address() / cache_line_size ==
   159              ((uintptr_t)instruction_address()+1) / cache_line_size) {
   160     // Tricky case:  The instruction prefix lies within a single cache line.
   161     intptr_t disp = dest - return_address();
   162 #ifdef AMD64
   163     guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
   164 #endif // AMD64
   166     int call_opcode = instruction_address()[0];
   168     // First patch dummy jump in place:
   169     {
   170       u_char patch_jump[2];
   171       patch_jump[0] = 0xEB;       // jmp rel8
   172       patch_jump[1] = 0xFE;       // jmp to self
   174       assert(sizeof(patch_jump)==sizeof(short), "sanity check");
   175       *(short*)instruction_address() = *(short*)patch_jump;
   176     }
   177     // Invalidate.  Opteron requires a flush after every write.
   178     wrote(0);
   180     // (Note: We assume any reader which has already started to read
   181     // the unpatched call will completely read the whole unpatched call
   182     // without seeing the next writes we are about to make.)
   184     // Next, patch the last three bytes:
   185     u_char patch_disp[5];
   186     patch_disp[0] = call_opcode;
   187     *(int32_t*)&patch_disp[1] = (int32_t)disp;
   188     assert(sizeof(patch_disp)==instruction_size, "sanity check");
   189     for (int i = sizeof(short); i < instruction_size; i++)
   190       instruction_address()[i] = patch_disp[i];
   192     // Invalidate.  Opteron requires a flush after every write.
   193     wrote(sizeof(short));
   195     // (Note: We assume that any reader which reads the opcode we are
   196     // about to repatch will also read the writes we just made.)
   198     // Finally, overwrite the jump:
   199     *(short*)instruction_address() = *(short*)patch_disp;
   200     // Invalidate.  Opteron requires a flush after every write.
   201     wrote(0);
   203     debug_only(verify());
   204     guarantee(destination() == dest, "patch succeeded");
   205   } else {
   206     // Impossible:  One or the other must be atomically writable.
   207     ShouldNotReachHere();
   208   }
   209 }
   212 void NativeMovConstReg::verify() {
   213 #ifdef AMD64
   214   // make sure code pattern is actually a mov reg64, imm64 instruction
   215   if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
   216       (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
   217     print();
   218     fatal("not a REX.W[B] mov reg64, imm64");
   219   }
   220 #else
   221   // make sure code pattern is actually a mov reg, imm32 instruction
   222   u_char test_byte = *(u_char*)instruction_address();
   223   u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
   224   if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
   225 #endif // AMD64
   226 }
   229 void NativeMovConstReg::print() {
   230   tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
   231                 instruction_address(), data());
   232 }
   234 //-------------------------------------------------------------------
   236 int NativeMovRegMem::instruction_start() const {
   237   int off = 0;
   238   u_char instr_0 = ubyte_at(off);
   240   // See comment in Assembler::locate_operand() about VEX prefixes.
   241   if (instr_0 == instruction_VEX_prefix_2bytes) {
   242     assert((UseAVX > 0), "shouldn't have VEX prefix");
   243     NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
   244     return 2;
   245   }
   246   if (instr_0 == instruction_VEX_prefix_3bytes) {
   247     assert((UseAVX > 0), "shouldn't have VEX prefix");
   248     NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
   249     return 3;
   250   }
   252   // First check to see if we have a (prefixed or not) xor
   253   if (instr_0 >= instruction_prefix_wide_lo && // 0x40
   254       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
   255     off++;
   256     instr_0 = ubyte_at(off);
   257   }
   259   if (instr_0 == instruction_code_xor) {
   260     off += 2;
   261     instr_0 = ubyte_at(off);
   262   }
   264   // Now look for the real instruction and the many prefix/size specifiers.
   266   if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
   267     off++; // Not SSE instructions
   268     instr_0 = ubyte_at(off);
   269   }
   271   if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
   272        instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
   273     off++;
   274     instr_0 = ubyte_at(off);
   275   }
   277   if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
   278        instr_0 <= instruction_prefix_wide_hi) { // 0x4f
   279     off++;
   280     instr_0 = ubyte_at(off);
   281   }
   284   if (instr_0 == instruction_extended_prefix ) {  // 0x0f
   285     off++;
   286   }
   288   return off;
   289 }
   291 address NativeMovRegMem::instruction_address() const {
   292   return addr_at(instruction_start());
   293 }
   295 address NativeMovRegMem::next_instruction_address() const {
   296   address ret = instruction_address() + instruction_size;
   297   u_char instr_0 =  *(u_char*) instruction_address();
   298   switch (instr_0) {
   299   case instruction_operandsize_prefix:
   301     fatal("should have skipped instruction_operandsize_prefix");
   302     break;
   304   case instruction_extended_prefix:
   305     fatal("should have skipped instruction_extended_prefix");
   306     break;
   308   case instruction_code_mem2reg_movslq: // 0x63
   309   case instruction_code_mem2reg_movzxb: // 0xB6
   310   case instruction_code_mem2reg_movsxb: // 0xBE
   311   case instruction_code_mem2reg_movzxw: // 0xB7
   312   case instruction_code_mem2reg_movsxw: // 0xBF
   313   case instruction_code_reg2mem:        // 0x89 (q/l)
   314   case instruction_code_mem2reg:        // 0x8B (q/l)
   315   case instruction_code_reg2memb:       // 0x88
   316   case instruction_code_mem2regb:       // 0x8a
   318   case instruction_code_float_s:        // 0xd9 fld_s a
   319   case instruction_code_float_d:        // 0xdd fld_d a
   321   case instruction_code_xmm_load:       // 0x10
   322   case instruction_code_xmm_store:      // 0x11
   323   case instruction_code_xmm_lpd:        // 0x12
   324     {
   325       // If there is an SIB then instruction is longer than expected
   326       u_char mod_rm = *(u_char*)(instruction_address() + 1);
   327       if ((mod_rm & 7) == 0x4) {
   328         ret++;
   329       }
   330     }
   331   case instruction_code_xor:
   332     fatal("should have skipped xor lead in");
   333     break;
   335   default:
   336     fatal("not a NativeMovRegMem");
   337   }
   338   return ret;
   340 }
   342 int NativeMovRegMem::offset() const{
   343   int off = data_offset + instruction_start();
   344   u_char mod_rm = *(u_char*)(instruction_address() + 1);
   345   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
   346   // the encoding to use an SIB byte. Which will have the nnnn
   347   // field off by one byte
   348   if ((mod_rm & 7) == 0x4) {
   349     off++;
   350   }
   351   return int_at(off);
   352 }
   354 void NativeMovRegMem::set_offset(int x) {
   355   int off = data_offset + instruction_start();
   356   u_char mod_rm = *(u_char*)(instruction_address() + 1);
   357   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
   358   // the encoding to use an SIB byte. Which will have the nnnn
   359   // field off by one byte
   360   if ((mod_rm & 7) == 0x4) {
   361     off++;
   362   }
   363   set_int_at(off, x);
   364 }
   366 void NativeMovRegMem::verify() {
   367   // make sure code pattern is actually a mov [reg+offset], reg instruction
   368   u_char test_byte = *(u_char*)instruction_address();
   369   switch (test_byte) {
   370     case instruction_code_reg2memb:  // 0x88 movb a, r
   371     case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
   372     case instruction_code_mem2regb:  // 0x8a movb r, a
   373     case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
   374       break;
   376     case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
   377     case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
   378     case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
   379     case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
   380     case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
   381       break;
   383     case instruction_code_float_s:   // 0xd9 fld_s a
   384     case instruction_code_float_d:   // 0xdd fld_d a
   385     case instruction_code_xmm_load:  // 0x10 movsd xmm, a
   386     case instruction_code_xmm_store: // 0x11 movsd a, xmm
   387     case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
   388       break;
   390     default:
   391           fatal ("not a mov [reg+offs], reg instruction");
   392   }
   393 }
   396 void NativeMovRegMem::print() {
   397   tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
   398 }
   400 //-------------------------------------------------------------------
   402 void NativeLoadAddress::verify() {
   403   // make sure code pattern is actually a mov [reg+offset], reg instruction
   404   u_char test_byte = *(u_char*)instruction_address();
   405 #ifdef _LP64
   406   if ( (test_byte == instruction_prefix_wide ||
   407         test_byte == instruction_prefix_wide_extended) ) {
   408     test_byte = *(u_char*)(instruction_address() + 1);
   409   }
   410 #endif // _LP64
   411   if ( ! ((test_byte == lea_instruction_code)
   412           LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
   413     fatal ("not a lea reg, [reg+offs] instruction");
   414   }
   415 }
   418 void NativeLoadAddress::print() {
   419   tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
   420 }
   422 //--------------------------------------------------------------------------------
   424 void NativeJump::verify() {
   425   if (*(u_char*)instruction_address() != instruction_code) {
   426     fatal("not a jump instruction");
   427   }
   428 }
   431 void NativeJump::insert(address code_pos, address entry) {
   432   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
   433 #ifdef AMD64
   434   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
   435 #endif // AMD64
   437   *code_pos = instruction_code;
   438   *((int32_t*)(code_pos + 1)) = (int32_t)disp;
   440   ICache::invalidate_range(code_pos, instruction_size);
   441 }
   443 void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
   444   // Patching to not_entrant can happen while activations of the method are
   445   // in use. The patching in that instance must happen only when certain
   446   // alignment restrictions are true. These guarantees check those
   447   // conditions.
   448 #ifdef AMD64
   449   const int linesize = 64;
   450 #else
   451   const int linesize = 32;
   452 #endif // AMD64
   454   // Must be wordSize aligned
   455   guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
   456             "illegal address for code patching 2");
   457   // First 5 bytes must be within the same cache line - 4827828
   458   guarantee((uintptr_t) verified_entry / linesize ==
   459             ((uintptr_t) verified_entry + 4) / linesize,
   460             "illegal address for code patching 3");
   461 }
   464 // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
   465 // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
   466 // First patches the first word atomically to be a jump to itself.
   467 // Then patches the last byte  and then atomically patches the first word (4-bytes),
   468 // thus inserting the desired jump
   469 // This code is mt-safe with the following conditions: entry point is 4 byte aligned,
   470 // entry point is in same cache line as unverified entry point, and the instruction being
   471 // patched is >= 5 byte (size of patch).
   472 //
   473 // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
   474 // In C1 the restriction is enforced by CodeEmitter::method_entry
   475 //
   476 void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
   477   // complete jump instruction (to be inserted) is in code_buffer;
   478   unsigned char code_buffer[5];
   479   code_buffer[0] = instruction_code;
   480   intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
   481 #ifdef AMD64
   482   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
   483 #endif // AMD64
   484   *(int32_t*)(code_buffer + 1) = (int32_t)disp;
   486   check_verified_entry_alignment(entry, verified_entry);
   488   // Can't call nativeJump_at() because it's asserts jump exists
   489   NativeJump* n_jump = (NativeJump*) verified_entry;
   491   //First patch dummy jmp in place
   493   unsigned char patch[4];
   494   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
   495   patch[0] = 0xEB;       // jmp rel8
   496   patch[1] = 0xFE;       // jmp to self
   497   patch[2] = 0xEB;
   498   patch[3] = 0xFE;
   500   // First patch dummy jmp in place
   501   *(int32_t*)verified_entry = *(int32_t *)patch;
   503   n_jump->wrote(0);
   505   // Patch 5th byte (from jump instruction)
   506   verified_entry[4] = code_buffer[4];
   508   n_jump->wrote(4);
   510   // Patch bytes 0-3 (from jump instruction)
   511   *(int32_t*)verified_entry = *(int32_t *)code_buffer;
   512   // Invalidate.  Opteron requires a flush after every write.
   513   n_jump->wrote(0);
   515 }
   517 void NativePopReg::insert(address code_pos, Register reg) {
   518   assert(reg->encoding() < 8, "no space for REX");
   519   assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
   520   *code_pos = (u_char)(instruction_code | reg->encoding());
   521   ICache::invalidate_range(code_pos, instruction_size);
   522 }
   525 void NativeIllegalInstruction::insert(address code_pos) {
   526   assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
   527   *(short *)code_pos = instruction_code;
   528   ICache::invalidate_range(code_pos, instruction_size);
   529 }
   531 void NativeGeneralJump::verify() {
   532   assert(((NativeInstruction *)this)->is_jump() ||
   533          ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
   534 }
   537 void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
   538   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
   539 #ifdef AMD64
   540   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
   541 #endif // AMD64
   543   *code_pos = unconditional_long_jump;
   544   *((int32_t *)(code_pos+1)) = (int32_t) disp;
   545   ICache::invalidate_range(code_pos, instruction_size);
   546 }
   549 // MT-safe patching of a long jump instruction.
   550 // First patches first word of instruction to two jmp's that jmps to them
   551 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
   552 // the jmp's with the first 4 byte of the new instruction.
   553 void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
   554    assert (instr_addr != NULL, "illegal address for code patching (4)");
   555    NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
   557    // Temporary code
   558    unsigned char patch[4];
   559    assert(sizeof(patch)==sizeof(int32_t), "sanity check");
   560    patch[0] = 0xEB;       // jmp rel8
   561    patch[1] = 0xFE;       // jmp to self
   562    patch[2] = 0xEB;
   563    patch[3] = 0xFE;
   565    // First patch dummy jmp in place
   566    *(int32_t*)instr_addr = *(int32_t *)patch;
   567     n_jump->wrote(0);
   569    // Patch 4th byte
   570    instr_addr[4] = code_buffer[4];
   572     n_jump->wrote(4);
   574    // Patch bytes 0-3
   575    *(jint*)instr_addr = *(jint *)code_buffer;
   577     n_jump->wrote(0);
   579 #ifdef ASSERT
   580    // verify patching
   581    for ( int i = 0; i < instruction_size; i++) {
   582      address ptr = (address)((intptr_t)code_buffer + i);
   583      int a_byte = (*ptr) & 0xFF;
   584      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
   585    }
   586 #endif
   588 }
   592 address NativeGeneralJump::jump_destination() const {
   593   int op_code = ubyte_at(0);
   594   bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
   595   int  offset  = (op_code == 0x0F)  ? 2 : 1;
   596   int  length  = offset + ((is_rel32off) ? 4 : 1);
   598   if (is_rel32off)
   599     return addr_at(0) + length + int_at(offset);
   600   else
   601     return addr_at(0) + length + sbyte_at(offset);
   602 }
   604 bool NativeInstruction::is_dtrace_trap() {
   605   return (*(int32_t*)this & 0xff) == 0xcc;
   606 }

mercurial