src/cpu/x86/vm/interp_masm_x86_64.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4299
f34d701e952e
child 4936
aeaca88565e6
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_x86_64.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/method.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #include "runtime/thread.inline.hpp"
    42 // Implementation of InterpreterMacroAssembler
    44 #ifdef CC_INTERP
    45 void InterpreterMacroAssembler::get_method(Register reg) {
    46   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
    47   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    48 }
    49 #endif // CC_INTERP
    51 #ifndef CC_INTERP
    53 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
    54                                                   int number_of_arguments) {
    55   // interpreter specific
    56   //
    57   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
    58   //       since these are callee saved registers and no blocking/
    59   //       GC can happen in leaf calls.
    60   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    61   // already saved them so that it can use esi/edi as temporaries
    62   // then a save/restore here will DESTROY the copy the caller
    63   // saved! There used to be a save_bcp() that only happened in
    64   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    65   // when jvm built with ASSERTs.
    66 #ifdef ASSERT
    67   {
    68     Label L;
    69     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    70     jcc(Assembler::equal, L);
    71     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    72          " last_sp != NULL");
    73     bind(L);
    74   }
    75 #endif
    76   // super call
    77   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    78   // interpreter specific
    79   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
    80   // but since they may not have been saved (and we don't want to
    81   // save thme here (see note above) the assert is invalid.
    82 }
    84 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
    85                                              Register java_thread,
    86                                              Register last_java_sp,
    87                                              address  entry_point,
    88                                              int      number_of_arguments,
    89                                              bool     check_exceptions) {
    90   // interpreter specific
    91   //
    92   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    93   //       really make a difference for these runtime calls, since they are
    94   //       slow anyway. Btw., bcp must be saved/restored since it may change
    95   //       due to GC.
    96   // assert(java_thread == noreg , "not expecting a precomputed java thread");
    97   save_bcp();
    98 #ifdef ASSERT
    99   {
   100     Label L;
   101     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   102     jcc(Assembler::equal, L);
   103     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
   104          " last_sp != NULL");
   105     bind(L);
   106   }
   107 #endif /* ASSERT */
   108   // super call
   109   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
   110                                entry_point, number_of_arguments,
   111                                check_exceptions);
   112   // interpreter specific
   113   restore_bcp();
   114   restore_locals();
   115 }
   118 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   119   if (JvmtiExport::can_pop_frame()) {
   120     Label L;
   121     // Initiate popframe handling only if it is not already being
   122     // processed.  If the flag has the popframe_processing bit set, it
   123     // means that this code is called *during* popframe handling - we
   124     // don't want to reenter.
   125     // This method is only called just after the call into the vm in
   126     // call_VM_base, so the arg registers are available.
   127     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
   128     testl(c_rarg0, JavaThread::popframe_pending_bit);
   129     jcc(Assembler::zero, L);
   130     testl(c_rarg0, JavaThread::popframe_processing_bit);
   131     jcc(Assembler::notZero, L);
   132     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   133     // address of the same-named entrypoint in the generated interpreter code.
   134     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   135     jmp(rax);
   136     bind(L);
   137   }
   138 }
   141 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   142   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   143   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
   144   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
   145   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
   146   switch (state) {
   147     case atos: movptr(rax, oop_addr);
   148                movptr(oop_addr, (int32_t)NULL_WORD);
   149                verify_oop(rax, state);              break;
   150     case ltos: movptr(rax, val_addr);                 break;
   151     case btos:                                   // fall through
   152     case ctos:                                   // fall through
   153     case stos:                                   // fall through
   154     case itos: movl(rax, val_addr);                 break;
   155     case ftos: movflt(xmm0, val_addr);              break;
   156     case dtos: movdbl(xmm0, val_addr);              break;
   157     case vtos: /* nothing to do */                  break;
   158     default  : ShouldNotReachHere();
   159   }
   160   // Clean up tos value in the thread object
   161   movl(tos_addr,  (int) ilgl);
   162   movl(val_addr,  (int32_t) NULL_WORD);
   163 }
   166 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   167   if (JvmtiExport::can_force_early_return()) {
   168     Label L;
   169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   170     testptr(c_rarg0, c_rarg0);
   171     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   173     // Initiate earlyret handling only if it is not already being processed.
   174     // If the flag has the earlyret_processing bit set, it means that this code
   175     // is called *during* earlyret handling - we don't want to reenter.
   176     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
   177     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
   178     jcc(Assembler::notEqual, L);
   180     // Call Interpreter::remove_activation_early_entry() to get the address of the
   181     // same-named entrypoint in the generated interpreter code.
   182     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   183     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
   184     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
   185     jmp(rax);
   186     bind(L);
   187   }
   188 }
   191 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
   192   Register reg,
   193   int bcp_offset) {
   194   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   195   movl(reg, Address(r13, bcp_offset));
   196   bswapl(reg);
   197   shrl(reg, 16);
   198 }
   201 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
   202                                                        int bcp_offset,
   203                                                        size_t index_size) {
   204   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   205   if (index_size == sizeof(u2)) {
   206     load_unsigned_short(index, Address(r13, bcp_offset));
   207   } else if (index_size == sizeof(u4)) {
   208     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   209     movl(index, Address(r13, bcp_offset));
   210     // Check if the secondary index definition is still ~x, otherwise
   211     // we have to change the following assembler code to calculate the
   212     // plain index.
   213     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
   214     notl(index);  // convert to plain index
   215   } else if (index_size == sizeof(u1)) {
   216     load_unsigned_byte(index, Address(r13, bcp_offset));
   217   } else {
   218     ShouldNotReachHere();
   219   }
   220 }
   223 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
   224                                                            Register index,
   225                                                            int bcp_offset,
   226                                                            size_t index_size) {
   227   assert_different_registers(cache, index);
   228   get_cache_index_at_bcp(index, bcp_offset, index_size);
   229   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   230   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   231   // convert from field index to ConstantPoolCacheEntry index
   232   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
   233   shll(index, 2);
   234 }
   237 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
   238                                                                         Register index,
   239                                                                         Register bytecode,
   240                                                                         int byte_no,
   241                                                                         int bcp_offset,
   242                                                                         size_t index_size) {
   243   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
   244   // We use a 32-bit load here since the layout of 64-bit words on
   245   // little-endian machines allow us that.
   246   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   247   const int shift_count = (1 + byte_no) * BitsPerByte;
   248   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
   249          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
   250          "correct shift count");
   251   shrl(bytecode, shift_count);
   252   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
   253   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
   254 }
   257 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
   258                                                                Register tmp,
   259                                                                int bcp_offset,
   260                                                                size_t index_size) {
   261   assert(cache != tmp, "must use different register");
   262   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   263   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   264   // convert from field index to ConstantPoolCacheEntry index
   265   // and from word offset to byte offset
   266   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
   267   shll(tmp, 2 + LogBytesPerWord);
   268   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   269   // skip past the header
   270   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
   271   addptr(cache, tmp);  // construct pointer to cache entry
   272 }
   274 // Load object from cpool->resolved_references(index)
   275 void InterpreterMacroAssembler::load_resolved_reference_at_index(
   276                                            Register result, Register index) {
   277   assert_different_registers(result, index);
   278   // convert from field index to resolved_references() index and from
   279   // word index to byte offset. Since this is a java object, it can be compressed
   280   Register tmp = index;  // reuse
   281   shll(tmp, LogBytesPerHeapOop);
   283   get_constant_pool(result);
   284   // load pointer for resolved_references[] objArray
   285   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
   286   // JNIHandles::resolve(obj);
   287   movptr(result, Address(result, 0));
   288   // Add in the index
   289   addptr(result, tmp);
   290   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   291 }
   293 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
   294 // subtype of super_klass.
   295 //
   296 // Args:
   297 //      rax: superklass
   298 //      Rsub_klass: subklass
   299 //
   300 // Kills:
   301 //      rcx, rdi
   302 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   303                                                   Label& ok_is_subtype) {
   304   assert(Rsub_klass != rax, "rax holds superklass");
   305   assert(Rsub_klass != r14, "r14 holds locals");
   306   assert(Rsub_klass != r13, "r13 holds bcp");
   307   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
   308   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
   310   // Profile the not-null value's klass.
   311   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   313   // Do the check.
   314   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   316   // Profile the failure of the check.
   317   profile_typecheck_failed(rcx); // blows rcx
   318 }
   322 // Java Expression Stack
   324 void InterpreterMacroAssembler::pop_ptr(Register r) {
   325   pop(r);
   326 }
   328 void InterpreterMacroAssembler::pop_i(Register r) {
   329   // XXX can't use pop currently, upper half non clean
   330   movl(r, Address(rsp, 0));
   331   addptr(rsp, wordSize);
   332 }
   334 void InterpreterMacroAssembler::pop_l(Register r) {
   335   movq(r, Address(rsp, 0));
   336   addptr(rsp, 2 * Interpreter::stackElementSize);
   337 }
   339 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
   340   movflt(r, Address(rsp, 0));
   341   addptr(rsp, wordSize);
   342 }
   344 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
   345   movdbl(r, Address(rsp, 0));
   346   addptr(rsp, 2 * Interpreter::stackElementSize);
   347 }
   349 void InterpreterMacroAssembler::push_ptr(Register r) {
   350   push(r);
   351 }
   353 void InterpreterMacroAssembler::push_i(Register r) {
   354   push(r);
   355 }
   357 void InterpreterMacroAssembler::push_l(Register r) {
   358   subptr(rsp, 2 * wordSize);
   359   movq(Address(rsp, 0), r);
   360 }
   362 void InterpreterMacroAssembler::push_f(XMMRegister r) {
   363   subptr(rsp, wordSize);
   364   movflt(Address(rsp, 0), r);
   365 }
   367 void InterpreterMacroAssembler::push_d(XMMRegister r) {
   368   subptr(rsp, 2 * wordSize);
   369   movdbl(Address(rsp, 0), r);
   370 }
   372 void InterpreterMacroAssembler::pop(TosState state) {
   373   switch (state) {
   374   case atos: pop_ptr();                 break;
   375   case btos:
   376   case ctos:
   377   case stos:
   378   case itos: pop_i();                   break;
   379   case ltos: pop_l();                   break;
   380   case ftos: pop_f();                   break;
   381   case dtos: pop_d();                   break;
   382   case vtos: /* nothing to do */        break;
   383   default:   ShouldNotReachHere();
   384   }
   385   verify_oop(rax, state);
   386 }
   388 void InterpreterMacroAssembler::push(TosState state) {
   389   verify_oop(rax, state);
   390   switch (state) {
   391   case atos: push_ptr();                break;
   392   case btos:
   393   case ctos:
   394   case stos:
   395   case itos: push_i();                  break;
   396   case ltos: push_l();                  break;
   397   case ftos: push_f();                  break;
   398   case dtos: push_d();                  break;
   399   case vtos: /* nothing to do */        break;
   400   default  : ShouldNotReachHere();
   401   }
   402 }
   405 // Helpers for swap and dup
   406 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   407   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   408 }
   410 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   411   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   412 }
   415 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   416   // set sender sp
   417   lea(r13, Address(rsp, wordSize));
   418   // record last_sp
   419   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
   420 }
   423 // Jump to from_interpreted entry of a call unless single stepping is possible
   424 // in this thread in which case we must call the i2i entry
   425 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   426   prepare_to_jump_from_interpreted();
   428   if (JvmtiExport::can_post_interpreter_events()) {
   429     Label run_compiled_code;
   430     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   431     // compiled code in threads for which the event is enabled.  Check here for
   432     // interp_only_mode if these events CAN be enabled.
   433     // interp_only is an int, on little endian it is sufficient to test the byte only
   434     // Is a cmpl faster?
   435     cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
   436     jccb(Assembler::zero, run_compiled_code);
   437     jmp(Address(method, Method::interpreter_entry_offset()));
   438     bind(run_compiled_code);
   439   }
   441   jmp(Address(method, Method::from_interpreted_offset()));
   443 }
   446 // The following two routines provide a hook so that an implementation
   447 // can schedule the dispatch in two parts.  amd64 does not do this.
   448 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   449   // Nothing amd64 specific to be done here
   450 }
   452 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   453   dispatch_next(state, step);
   454 }
   456 void InterpreterMacroAssembler::dispatch_base(TosState state,
   457                                               address* table,
   458                                               bool verifyoop) {
   459   verify_FPU(1, state);
   460   if (VerifyActivationFrameSize) {
   461     Label L;
   462     mov(rcx, rbp);
   463     subptr(rcx, rsp);
   464     int32_t min_frame_size =
   465       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
   466       wordSize;
   467     cmpptr(rcx, (int32_t)min_frame_size);
   468     jcc(Assembler::greaterEqual, L);
   469     stop("broken stack frame");
   470     bind(L);
   471   }
   472   if (verifyoop) {
   473     verify_oop(rax, state);
   474   }
   475   lea(rscratch1, ExternalAddress((address)table));
   476   jmp(Address(rscratch1, rbx, Address::times_8));
   477 }
   479 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   480   dispatch_base(state, Interpreter::dispatch_table(state));
   481 }
   483 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   484   dispatch_base(state, Interpreter::normal_table(state));
   485 }
   487 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   488   dispatch_base(state, Interpreter::normal_table(state), false);
   489 }
   492 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   493   // load next bytecode (load before advancing r13 to prevent AGI)
   494   load_unsigned_byte(rbx, Address(r13, step));
   495   // advance r13
   496   increment(r13, step);
   497   dispatch_base(state, Interpreter::dispatch_table(state));
   498 }
   500 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   501   // load current bytecode
   502   load_unsigned_byte(rbx, Address(r13, 0));
   503   dispatch_base(state, table);
   504 }
   506 // remove activation
   507 //
   508 // Unlock the receiver if this is a synchronized method.
   509 // Unlock any Java monitors from syncronized blocks.
   510 // Remove the activation from the stack.
   511 //
   512 // If there are locked Java monitors
   513 //    If throw_monitor_exception
   514 //       throws IllegalMonitorStateException
   515 //    Else if install_monitor_exception
   516 //       installs IllegalMonitorStateException
   517 //    Else
   518 //       no error processing
   519 void InterpreterMacroAssembler::remove_activation(
   520         TosState state,
   521         Register ret_addr,
   522         bool throw_monitor_exception,
   523         bool install_monitor_exception,
   524         bool notify_jvmdi) {
   525   // Note: Registers rdx xmm0 may be in use for the
   526   // result check if synchronized method
   527   Label unlocked, unlock, no_unlock;
   529   // get the value of _do_not_unlock_if_synchronized into rdx
   530   const Address do_not_unlock_if_synchronized(r15_thread,
   531     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   532   movbool(rdx, do_not_unlock_if_synchronized);
   533   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   535  // get method access flags
   536   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
   537   movl(rcx, Address(rbx, Method::access_flags_offset()));
   538   testl(rcx, JVM_ACC_SYNCHRONIZED);
   539   jcc(Assembler::zero, unlocked);
   541   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   542   // is set.
   543   testbool(rdx);
   544   jcc(Assembler::notZero, no_unlock);
   546   // unlock monitor
   547   push(state); // save result
   549   // BasicObjectLock will be first in list, since this is a
   550   // synchronized method. However, need to check that the object has
   551   // not been unlocked by an explicit monitorexit bytecode.
   552   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
   553                         wordSize - (int) sizeof(BasicObjectLock));
   554   // We use c_rarg1 so that if we go slow path it will be the correct
   555   // register for unlock_object to pass to VM directly
   556   lea(c_rarg1, monitor); // address of first monitor
   558   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
   559   testptr(rax, rax);
   560   jcc(Assembler::notZero, unlock);
   562   pop(state);
   563   if (throw_monitor_exception) {
   564     // Entry already unlocked, need to throw exception
   565     call_VM(noreg, CAST_FROM_FN_PTR(address,
   566                    InterpreterRuntime::throw_illegal_monitor_state_exception));
   567     should_not_reach_here();
   568   } else {
   569     // Monitor already unlocked during a stack unroll. If requested,
   570     // install an illegal_monitor_state_exception.  Continue with
   571     // stack unrolling.
   572     if (install_monitor_exception) {
   573       call_VM(noreg, CAST_FROM_FN_PTR(address,
   574                      InterpreterRuntime::new_illegal_monitor_state_exception));
   575     }
   576     jmp(unlocked);
   577   }
   579   bind(unlock);
   580   unlock_object(c_rarg1);
   581   pop(state);
   583   // Check that for block-structured locking (i.e., that all locked
   584   // objects has been unlocked)
   585   bind(unlocked);
   587   // rax: Might contain return value
   589   // Check that all monitors are unlocked
   590   {
   591     Label loop, exception, entry, restart;
   592     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   593     const Address monitor_block_top(
   594         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   595     const Address monitor_block_bot(
   596         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
   598     bind(restart);
   599     // We use c_rarg1 so that if we go slow path it will be the correct
   600     // register for unlock_object to pass to VM directly
   601     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
   602                                   // with top-most entry
   603     lea(rbx, monitor_block_bot);  // points to word before bottom of
   604                                   // monitor block
   605     jmp(entry);
   607     // Entry already locked, need to throw exception
   608     bind(exception);
   610     if (throw_monitor_exception) {
   611       // Throw exception
   612       MacroAssembler::call_VM(noreg,
   613                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
   614                                    throw_illegal_monitor_state_exception));
   615       should_not_reach_here();
   616     } else {
   617       // Stack unrolling. Unlock object and install illegal_monitor_exception.
   618       // Unlock does not block, so don't have to worry about the frame.
   619       // We don't have to preserve c_rarg1 since we are going to throw an exception.
   621       push(state);
   622       unlock_object(c_rarg1);
   623       pop(state);
   625       if (install_monitor_exception) {
   626         call_VM(noreg, CAST_FROM_FN_PTR(address,
   627                                         InterpreterRuntime::
   628                                         new_illegal_monitor_state_exception));
   629       }
   631       jmp(restart);
   632     }
   634     bind(loop);
   635     // check if current entry is used
   636     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
   637     jcc(Assembler::notEqual, exception);
   639     addptr(c_rarg1, entry_size); // otherwise advance to next entry
   640     bind(entry);
   641     cmpptr(c_rarg1, rbx); // check if bottom reached
   642     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
   643   }
   645   bind(no_unlock);
   647   // jvmti support
   648   if (notify_jvmdi) {
   649     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
   650   } else {
   651     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   652   }
   654   // remove activation
   655   // get sender sp
   656   movptr(rbx,
   657          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
   658   leave();                           // remove frame anchor
   659   pop(ret_addr);                     // get return address
   660   mov(rsp, rbx);                     // set sp to sender sp
   661 }
   663 #endif // C_INTERP
   665 // Lock object
   666 //
   667 // Args:
   668 //      c_rarg1: BasicObjectLock to be used for locking
   669 //
   670 // Kills:
   671 //      rax
   672 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
   673 //      rscratch1, rscratch2 (scratch regs)
   674 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   675   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
   677   if (UseHeavyMonitors) {
   678     call_VM(noreg,
   679             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   680             lock_reg);
   681   } else {
   682     Label done;
   684     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
   685     const Register obj_reg = c_rarg3; // Will contain the oop
   687     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   688     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   689     const int mark_offset = lock_offset +
   690                             BasicLock::displaced_header_offset_in_bytes();
   692     Label slow_case;
   694     // Load object pointer into obj_reg %c_rarg3
   695     movptr(obj_reg, Address(lock_reg, obj_offset));
   697     if (UseBiasedLocking) {
   698       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
   699     }
   701     // Load immediate 1 into swap_reg %rax
   702     movl(swap_reg, 1);
   704     // Load (object->mark() | 1) into swap_reg %rax
   705     orptr(swap_reg, Address(obj_reg, 0));
   707     // Save (object->mark() | 1) into BasicLock's displaced header
   708     movptr(Address(lock_reg, mark_offset), swap_reg);
   710     assert(lock_offset == 0,
   711            "displached header must be first word in BasicObjectLock");
   713     if (os::is_MP()) lock();
   714     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   715     if (PrintBiasedLockingStatistics) {
   716       cond_inc32(Assembler::zero,
   717                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   718     }
   719     jcc(Assembler::zero, done);
   721     // Test if the oopMark is an obvious stack pointer, i.e.,
   722     //  1) (mark & 7) == 0, and
   723     //  2) rsp <= mark < mark + os::pagesize()
   724     //
   725     // These 3 tests can be done by evaluating the following
   726     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
   727     // assuming both stack pointer and pagesize have their
   728     // least significant 3 bits clear.
   729     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
   730     subptr(swap_reg, rsp);
   731     andptr(swap_reg, 7 - os::vm_page_size());
   733     // Save the test result, for recursive case, the result is zero
   734     movptr(Address(lock_reg, mark_offset), swap_reg);
   736     if (PrintBiasedLockingStatistics) {
   737       cond_inc32(Assembler::zero,
   738                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   739     }
   740     jcc(Assembler::zero, done);
   742     bind(slow_case);
   744     // Call the runtime routine for slow case
   745     call_VM(noreg,
   746             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   747             lock_reg);
   749     bind(done);
   750   }
   751 }
   754 // Unlocks an object. Used in monitorexit bytecode and
   755 // remove_activation.  Throws an IllegalMonitorException if object is
   756 // not locked by current thread.
   757 //
   758 // Args:
   759 //      c_rarg1: BasicObjectLock for lock
   760 //
   761 // Kills:
   762 //      rax
   763 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
   764 //      rscratch1, rscratch2 (scratch regs)
   765 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   766   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
   768   if (UseHeavyMonitors) {
   769     call_VM(noreg,
   770             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   771             lock_reg);
   772   } else {
   773     Label done;
   775     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
   776     const Register header_reg = c_rarg2;  // Will contain the old oopMark
   777     const Register obj_reg    = c_rarg3;  // Will contain the oop
   779     save_bcp(); // Save in case of exception
   781     // Convert from BasicObjectLock structure to object and BasicLock
   782     // structure Store the BasicLock address into %rax
   783     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   785     // Load oop into obj_reg(%c_rarg3)
   786     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
   788     // Free entry
   789     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   791     if (UseBiasedLocking) {
   792       biased_locking_exit(obj_reg, header_reg, done);
   793     }
   795     // Load the old header from BasicLock structure
   796     movptr(header_reg, Address(swap_reg,
   797                                BasicLock::displaced_header_offset_in_bytes()));
   799     // Test for recursion
   800     testptr(header_reg, header_reg);
   802     // zero for recursive case
   803     jcc(Assembler::zero, done);
   805     // Atomic swap back the old header
   806     if (os::is_MP()) lock();
   807     cmpxchgptr(header_reg, Address(obj_reg, 0));
   809     // zero for recursive case
   810     jcc(Assembler::zero, done);
   812     // Call the runtime routine for slow case.
   813     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
   814          obj_reg); // restore obj
   815     call_VM(noreg,
   816             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   817             lock_reg);
   819     bind(done);
   821     restore_bcp();
   822   }
   823 }
   825 #ifndef CC_INTERP
   827 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
   828                                                          Label& zero_continue) {
   829   assert(ProfileInterpreter, "must be profiling interpreter");
   830   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   831   testptr(mdp, mdp);
   832   jcc(Assembler::zero, zero_continue);
   833 }
   836 // Set the method data pointer for the current bcp.
   837 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   838   assert(ProfileInterpreter, "must be profiling interpreter");
   839   Label set_mdp;
   840   push(rax);
   841   push(rbx);
   843   get_method(rbx);
   844   // Test MDO to avoid the call if it is NULL.
   845   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
   846   testptr(rax, rax);
   847   jcc(Assembler::zero, set_mdp);
   848   // rbx: method
   849   // r13: bcp
   850   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
   851   // rax: mdi
   852   // mdo is guaranteed to be non-zero here, we checked for it before the call.
   853   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
   854   addptr(rbx, in_bytes(MethodData::data_offset()));
   855   addptr(rax, rbx);
   856   bind(set_mdp);
   857   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
   858   pop(rbx);
   859   pop(rax);
   860 }
   862 void InterpreterMacroAssembler::verify_method_data_pointer() {
   863   assert(ProfileInterpreter, "must be profiling interpreter");
   864 #ifdef ASSERT
   865   Label verify_continue;
   866   push(rax);
   867   push(rbx);
   868   push(c_rarg3);
   869   push(c_rarg2);
   870   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
   871   get_method(rbx);
   873   // If the mdp is valid, it will point to a DataLayout header which is
   874   // consistent with the bcp.  The converse is highly probable also.
   875   load_unsigned_short(c_rarg2,
   876                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
   877   addptr(c_rarg2, Address(rbx, Method::const_offset()));
   878   lea(c_rarg2, Address(c_rarg2, ConstMethod::codes_offset()));
   879   cmpptr(c_rarg2, r13);
   880   jcc(Assembler::equal, verify_continue);
   881   // rbx: method
   882   // r13: bcp
   883   // c_rarg3: mdp
   884   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
   885                rbx, r13, c_rarg3);
   886   bind(verify_continue);
   887   pop(c_rarg2);
   888   pop(c_rarg3);
   889   pop(rbx);
   890   pop(rax);
   891 #endif // ASSERT
   892 }
   895 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
   896                                                 int constant,
   897                                                 Register value) {
   898   assert(ProfileInterpreter, "must be profiling interpreter");
   899   Address data(mdp_in, constant);
   900   movptr(data, value);
   901 }
   904 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   905                                                       int constant,
   906                                                       bool decrement) {
   907   // Counter address
   908   Address data(mdp_in, constant);
   910   increment_mdp_data_at(data, decrement);
   911 }
   913 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   914                                                       bool decrement) {
   915   assert(ProfileInterpreter, "must be profiling interpreter");
   916   // %%% this does 64bit counters at best it is wasting space
   917   // at worst it is a rare bug when counters overflow
   919   if (decrement) {
   920     // Decrement the register.  Set condition codes.
   921     addptr(data, (int32_t) -DataLayout::counter_increment);
   922     // If the decrement causes the counter to overflow, stay negative
   923     Label L;
   924     jcc(Assembler::negative, L);
   925     addptr(data, (int32_t) DataLayout::counter_increment);
   926     bind(L);
   927   } else {
   928     assert(DataLayout::counter_increment == 1,
   929            "flow-free idiom only works with 1");
   930     // Increment the register.  Set carry flag.
   931     addptr(data, DataLayout::counter_increment);
   932     // If the increment causes the counter to overflow, pull back by 1.
   933     sbbptr(data, (int32_t)0);
   934   }
   935 }
   938 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   939                                                       Register reg,
   940                                                       int constant,
   941                                                       bool decrement) {
   942   Address data(mdp_in, reg, Address::times_1, constant);
   944   increment_mdp_data_at(data, decrement);
   945 }
   947 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
   948                                                 int flag_byte_constant) {
   949   assert(ProfileInterpreter, "must be profiling interpreter");
   950   int header_offset = in_bytes(DataLayout::header_offset());
   951   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   952   // Set the flag
   953   orl(Address(mdp_in, header_offset), header_bits);
   954 }
   958 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   959                                                  int offset,
   960                                                  Register value,
   961                                                  Register test_value_out,
   962                                                  Label& not_equal_continue) {
   963   assert(ProfileInterpreter, "must be profiling interpreter");
   964   if (test_value_out == noreg) {
   965     cmpptr(value, Address(mdp_in, offset));
   966   } else {
   967     // Put the test value into a register, so caller can use it:
   968     movptr(test_value_out, Address(mdp_in, offset));
   969     cmpptr(test_value_out, value);
   970   }
   971   jcc(Assembler::notEqual, not_equal_continue);
   972 }
   975 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
   976                                                      int offset_of_disp) {
   977   assert(ProfileInterpreter, "must be profiling interpreter");
   978   Address disp_address(mdp_in, offset_of_disp);
   979   addptr(mdp_in, disp_address);
   980   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   981 }
   984 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
   985                                                      Register reg,
   986                                                      int offset_of_disp) {
   987   assert(ProfileInterpreter, "must be profiling interpreter");
   988   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
   989   addptr(mdp_in, disp_address);
   990   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   991 }
   994 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
   995                                                        int constant) {
   996   assert(ProfileInterpreter, "must be profiling interpreter");
   997   addptr(mdp_in, constant);
   998   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   999 }
  1002 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1003   assert(ProfileInterpreter, "must be profiling interpreter");
  1004   push(return_bci); // save/restore across call_VM
  1005   call_VM(noreg,
  1006           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
  1007           return_bci);
  1008   pop(return_bci);
  1012 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
  1013                                                      Register bumped_count) {
  1014   if (ProfileInterpreter) {
  1015     Label profile_continue;
  1017     // If no method data exists, go to profile_continue.
  1018     // Otherwise, assign to mdp
  1019     test_method_data_pointer(mdp, profile_continue);
  1021     // We are taking a branch.  Increment the taken count.
  1022     // We inline increment_mdp_data_at to return bumped_count in a register
  1023     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1024     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1025     movptr(bumped_count, data);
  1026     assert(DataLayout::counter_increment == 1,
  1027             "flow-free idiom only works with 1");
  1028     addptr(bumped_count, DataLayout::counter_increment);
  1029     sbbptr(bumped_count, 0);
  1030     movptr(data, bumped_count); // Store back out
  1032     // The method data pointer needs to be updated to reflect the new target.
  1033     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1034     bind(profile_continue);
  1039 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1040   if (ProfileInterpreter) {
  1041     Label profile_continue;
  1043     // If no method data exists, go to profile_continue.
  1044     test_method_data_pointer(mdp, profile_continue);
  1046     // We are taking a branch.  Increment the not taken count.
  1047     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1049     // The method data pointer needs to be updated to correspond to
  1050     // the next bytecode
  1051     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1052     bind(profile_continue);
  1057 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1058   if (ProfileInterpreter) {
  1059     Label profile_continue;
  1061     // If no method data exists, go to profile_continue.
  1062     test_method_data_pointer(mdp, profile_continue);
  1064     // We are making a call.  Increment the count.
  1065     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1067     // The method data pointer needs to be updated to reflect the new target.
  1068     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1069     bind(profile_continue);
  1074 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1075   if (ProfileInterpreter) {
  1076     Label profile_continue;
  1078     // If no method data exists, go to profile_continue.
  1079     test_method_data_pointer(mdp, profile_continue);
  1081     // We are making a call.  Increment the count.
  1082     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1084     // The method data pointer needs to be updated to reflect the new target.
  1085     update_mdp_by_constant(mdp,
  1086                            in_bytes(VirtualCallData::
  1087                                     virtual_call_data_size()));
  1088     bind(profile_continue);
  1093 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1094                                                      Register mdp,
  1095                                                      Register reg2,
  1096                                                      bool receiver_can_be_null) {
  1097   if (ProfileInterpreter) {
  1098     Label profile_continue;
  1100     // If no method data exists, go to profile_continue.
  1101     test_method_data_pointer(mdp, profile_continue);
  1103     Label skip_receiver_profile;
  1104     if (receiver_can_be_null) {
  1105       Label not_null;
  1106       testptr(receiver, receiver);
  1107       jccb(Assembler::notZero, not_null);
  1108       // We are making a call.  Increment the count for null receiver.
  1109       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1110       jmp(skip_receiver_profile);
  1111       bind(not_null);
  1114     // Record the receiver type.
  1115     record_klass_in_profile(receiver, mdp, reg2, true);
  1116     bind(skip_receiver_profile);
  1118     // The method data pointer needs to be updated to reflect the new target.
  1119     update_mdp_by_constant(mdp,
  1120                            in_bytes(VirtualCallData::
  1121                                     virtual_call_data_size()));
  1122     bind(profile_continue);
  1126 // This routine creates a state machine for updating the multi-row
  1127 // type profile at a virtual call site (or other type-sensitive bytecode).
  1128 // The machine visits each row (of receiver/count) until the receiver type
  1129 // is found, or until it runs out of rows.  At the same time, it remembers
  1130 // the location of the first empty row.  (An empty row records null for its
  1131 // receiver, and can be allocated for a newly-observed receiver type.)
  1132 // Because there are two degrees of freedom in the state, a simple linear
  1133 // search will not work; it must be a decision tree.  Hence this helper
  1134 // function is recursive, to generate the required tree structured code.
  1135 // It's the interpreter, so we are trading off code space for speed.
  1136 // See below for example code.
  1137 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1138                                         Register receiver, Register mdp,
  1139                                         Register reg2, int start_row,
  1140                                         Label& done, bool is_virtual_call) {
  1141   if (TypeProfileWidth == 0) {
  1142     if (is_virtual_call) {
  1143       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1145     return;
  1148   int last_row = VirtualCallData::row_limit() - 1;
  1149   assert(start_row <= last_row, "must be work left to do");
  1150   // Test this row for both the receiver and for null.
  1151   // Take any of three different outcomes:
  1152   //   1. found receiver => increment count and goto done
  1153   //   2. found null => keep looking for case 1, maybe allocate this cell
  1154   //   3. found something else => keep looking for cases 1 and 2
  1155   // Case 3 is handled by a recursive call.
  1156   for (int row = start_row; row <= last_row; row++) {
  1157     Label next_test;
  1158     bool test_for_null_also = (row == start_row);
  1160     // See if the receiver is receiver[n].
  1161     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1162     test_mdp_data_at(mdp, recvr_offset, receiver,
  1163                      (test_for_null_also ? reg2 : noreg),
  1164                      next_test);
  1165     // (Reg2 now contains the receiver from the CallData.)
  1167     // The receiver is receiver[n].  Increment count[n].
  1168     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1169     increment_mdp_data_at(mdp, count_offset);
  1170     jmp(done);
  1171     bind(next_test);
  1173     if (test_for_null_also) {
  1174       Label found_null;
  1175       // Failed the equality check on receiver[n]...  Test for null.
  1176       testptr(reg2, reg2);
  1177       if (start_row == last_row) {
  1178         // The only thing left to do is handle the null case.
  1179         if (is_virtual_call) {
  1180           jccb(Assembler::zero, found_null);
  1181           // Receiver did not match any saved receiver and there is no empty row for it.
  1182           // Increment total counter to indicate polymorphic case.
  1183           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1184           jmp(done);
  1185           bind(found_null);
  1186         } else {
  1187           jcc(Assembler::notZero, done);
  1189         break;
  1191       // Since null is rare, make it be the branch-taken case.
  1192       jcc(Assembler::zero, found_null);
  1194       // Put all the "Case 3" tests here.
  1195       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1197       // Found a null.  Keep searching for a matching receiver,
  1198       // but remember that this is an empty (unused) slot.
  1199       bind(found_null);
  1203   // In the fall-through case, we found no matching receiver, but we
  1204   // observed the receiver[start_row] is NULL.
  1206   // Fill in the receiver field and increment the count.
  1207   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1208   set_mdp_data_at(mdp, recvr_offset, receiver);
  1209   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1210   movl(reg2, DataLayout::counter_increment);
  1211   set_mdp_data_at(mdp, count_offset, reg2);
  1212   if (start_row > 0) {
  1213     jmp(done);
  1217 // Example state machine code for three profile rows:
  1218 //   // main copy of decision tree, rooted at row[1]
  1219 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
  1220 //   if (row[0].rec != NULL) {
  1221 //     // inner copy of decision tree, rooted at row[1]
  1222 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1223 //     if (row[1].rec != NULL) {
  1224 //       // degenerate decision tree, rooted at row[2]
  1225 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1226 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
  1227 //       row[2].init(rec); goto done;
  1228 //     } else {
  1229 //       // remember row[1] is empty
  1230 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1231 //       row[1].init(rec); goto done;
  1232 //     }
  1233 //   } else {
  1234 //     // remember row[0] is empty
  1235 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1236 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
  1237 //     row[0].init(rec); goto done;
  1238 //   }
  1239 //   done:
  1241 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1242                                                         Register mdp, Register reg2,
  1243                                                         bool is_virtual_call) {
  1244   assert(ProfileInterpreter, "must be profiling");
  1245   Label done;
  1247   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1249   bind (done);
  1252 void InterpreterMacroAssembler::profile_ret(Register return_bci,
  1253                                             Register mdp) {
  1254   if (ProfileInterpreter) {
  1255     Label profile_continue;
  1256     uint row;
  1258     // If no method data exists, go to profile_continue.
  1259     test_method_data_pointer(mdp, profile_continue);
  1261     // Update the total ret count.
  1262     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1264     for (row = 0; row < RetData::row_limit(); row++) {
  1265       Label next_test;
  1267       // See if return_bci is equal to bci[n]:
  1268       test_mdp_data_at(mdp,
  1269                        in_bytes(RetData::bci_offset(row)),
  1270                        return_bci, noreg,
  1271                        next_test);
  1273       // return_bci is equal to bci[n].  Increment the count.
  1274       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1276       // The method data pointer needs to be updated to reflect the new target.
  1277       update_mdp_by_offset(mdp,
  1278                            in_bytes(RetData::bci_displacement_offset(row)));
  1279       jmp(profile_continue);
  1280       bind(next_test);
  1283     update_mdp_for_ret(return_bci);
  1285     bind(profile_continue);
  1290 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1291   if (ProfileInterpreter) {
  1292     Label profile_continue;
  1294     // If no method data exists, go to profile_continue.
  1295     test_method_data_pointer(mdp, profile_continue);
  1297     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1299     // The method data pointer needs to be updated.
  1300     int mdp_delta = in_bytes(BitData::bit_data_size());
  1301     if (TypeProfileCasts) {
  1302       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1304     update_mdp_by_constant(mdp, mdp_delta);
  1306     bind(profile_continue);
  1311 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1312   if (ProfileInterpreter && TypeProfileCasts) {
  1313     Label profile_continue;
  1315     // If no method data exists, go to profile_continue.
  1316     test_method_data_pointer(mdp, profile_continue);
  1318     int count_offset = in_bytes(CounterData::count_offset());
  1319     // Back up the address, since we have already bumped the mdp.
  1320     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1322     // *Decrement* the counter.  We expect to see zero or small negatives.
  1323     increment_mdp_data_at(mdp, count_offset, true);
  1325     bind (profile_continue);
  1330 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
  1331   if (ProfileInterpreter) {
  1332     Label profile_continue;
  1334     // If no method data exists, go to profile_continue.
  1335     test_method_data_pointer(mdp, profile_continue);
  1337     // The method data pointer needs to be updated.
  1338     int mdp_delta = in_bytes(BitData::bit_data_size());
  1339     if (TypeProfileCasts) {
  1340       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1342       // Record the object type.
  1343       record_klass_in_profile(klass, mdp, reg2, false);
  1345     update_mdp_by_constant(mdp, mdp_delta);
  1347     bind(profile_continue);
  1352 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1353   if (ProfileInterpreter) {
  1354     Label profile_continue;
  1356     // If no method data exists, go to profile_continue.
  1357     test_method_data_pointer(mdp, profile_continue);
  1359     // Update the default case count
  1360     increment_mdp_data_at(mdp,
  1361                           in_bytes(MultiBranchData::default_count_offset()));
  1363     // The method data pointer needs to be updated.
  1364     update_mdp_by_offset(mdp,
  1365                          in_bytes(MultiBranchData::
  1366                                   default_displacement_offset()));
  1368     bind(profile_continue);
  1373 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1374                                                     Register mdp,
  1375                                                     Register reg2) {
  1376   if (ProfileInterpreter) {
  1377     Label profile_continue;
  1379     // If no method data exists, go to profile_continue.
  1380     test_method_data_pointer(mdp, profile_continue);
  1382     // Build the base (index * per_case_size_in_bytes()) +
  1383     // case_array_offset_in_bytes()
  1384     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
  1385     imulptr(index, reg2); // XXX l ?
  1386     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
  1388     // Update the case count
  1389     increment_mdp_data_at(mdp,
  1390                           index,
  1391                           in_bytes(MultiBranchData::relative_count_offset()));
  1393     // The method data pointer needs to be updated.
  1394     update_mdp_by_offset(mdp,
  1395                          index,
  1396                          in_bytes(MultiBranchData::
  1397                                   relative_displacement_offset()));
  1399     bind(profile_continue);
  1405 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1406   if (state == atos) {
  1407     MacroAssembler::verify_oop(reg);
  1411 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1413 #endif // !CC_INTERP
  1416 void InterpreterMacroAssembler::notify_method_entry() {
  1417   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1418   // track stack depth.  If it is possible to enter interp_only_mode we add
  1419   // the code to check if the event should be sent.
  1420   if (JvmtiExport::can_post_interpreter_events()) {
  1421     Label L;
  1422     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1423     testl(rdx, rdx);
  1424     jcc(Assembler::zero, L);
  1425     call_VM(noreg, CAST_FROM_FN_PTR(address,
  1426                                     InterpreterRuntime::post_method_entry));
  1427     bind(L);
  1431     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1432     get_method(c_rarg1);
  1433     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1434                  r15_thread, c_rarg1);
  1437   // RedefineClasses() tracing support for obsolete method entry
  1438   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1439     get_method(c_rarg1);
  1440     call_VM_leaf(
  1441       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1442       r15_thread, c_rarg1);
  1447 void InterpreterMacroAssembler::notify_method_exit(
  1448     TosState state, NotifyMethodExitMode mode) {
  1449   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1450   // track stack depth.  If it is possible to enter interp_only_mode we add
  1451   // the code to check if the event should be sent.
  1452   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1453     Label L;
  1454     // Note: frame::interpreter_frame_result has a dependency on how the
  1455     // method result is saved across the call to post_method_exit. If this
  1456     // is changed then the interpreter_frame_result implementation will
  1457     // need to be updated too.
  1459     // For c++ interpreter the result is always stored at a known location in the frame
  1460     // template interpreter will leave it on the top of the stack.
  1461     NOT_CC_INTERP(push(state);)
  1462     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1463     testl(rdx, rdx);
  1464     jcc(Assembler::zero, L);
  1465     call_VM(noreg,
  1466             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1467     bind(L);
  1468     NOT_CC_INTERP(pop(state));
  1472     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1473     NOT_CC_INTERP(push(state));
  1474     get_method(c_rarg1);
  1475     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1476                  r15_thread, c_rarg1);
  1477     NOT_CC_INTERP(pop(state));
  1481 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1482 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1483                                                         int increment, int mask,
  1484                                                         Register scratch, bool preloaded,
  1485                                                         Condition cond, Label* where) {
  1486   if (!preloaded) {
  1487     movl(scratch, counter_addr);
  1489   incrementl(scratch, increment);
  1490   movl(counter_addr, scratch);
  1491   andl(scratch, mask);
  1492   jcc(cond, *where);

mercurial