src/cpu/x86/vm/interp_masm_x86_32.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4299
f34d701e952e
child 4936
aeaca88565e6
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_x86_32.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/method.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #include "runtime/thread.inline.hpp"
    42 // Implementation of InterpreterMacroAssembler
    43 #ifdef CC_INTERP
    44 void InterpreterMacroAssembler::get_method(Register reg) {
    45   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    46   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    47 }
    48 #endif // CC_INTERP
    51 #ifndef CC_INTERP
    52 void InterpreterMacroAssembler::call_VM_leaf_base(
    53   address entry_point,
    54   int     number_of_arguments
    55 ) {
    56   // interpreter specific
    57   //
    58   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    59   //       since these are callee saved registers and no blocking/
    60   //       GC can happen in leaf calls.
    61   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    62   // already saved them so that it can use rsi/rdi as temporaries
    63   // then a save/restore here will DESTROY the copy the caller
    64   // saved! There used to be a save_bcp() that only happened in
    65   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    66   // when jvm built with ASSERTs.
    67 #ifdef ASSERT
    68   { Label L;
    69     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    70     jcc(Assembler::equal, L);
    71     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    72     bind(L);
    73   }
    74 #endif
    75   // super call
    76   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    77   // interpreter specific
    79   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    80   // but since they may not have been saved (and we don't want to
    81   // save them here (see note above) the assert is invalid.
    82 }
    85 void InterpreterMacroAssembler::call_VM_base(
    86   Register oop_result,
    87   Register java_thread,
    88   Register last_java_sp,
    89   address  entry_point,
    90   int      number_of_arguments,
    91   bool     check_exceptions
    92 ) {
    93 #ifdef ASSERT
    94   { Label L;
    95     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    96     jcc(Assembler::equal, L);
    97     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
    98     bind(L);
    99   }
   100 #endif /* ASSERT */
   101   // interpreter specific
   102   //
   103   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
   104   //       really make a difference for these runtime calls, since they are
   105   //       slow anyway. Btw., bcp must be saved/restored since it may change
   106   //       due to GC.
   107   assert(java_thread == noreg , "not expecting a precomputed java thread");
   108   save_bcp();
   109   // super call
   110   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
   111   // interpreter specific
   112   restore_bcp();
   113   restore_locals();
   114 }
   117 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   118   if (JvmtiExport::can_pop_frame()) {
   119     Label L;
   120     // Initiate popframe handling only if it is not already being processed.  If the flag
   121     // has the popframe_processing bit set, it means that this code is called *during* popframe
   122     // handling - we don't want to reenter.
   123     Register pop_cond = java_thread;  // Not clear if any other register is available...
   124     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   125     testl(pop_cond, JavaThread::popframe_pending_bit);
   126     jcc(Assembler::zero, L);
   127     testl(pop_cond, JavaThread::popframe_processing_bit);
   128     jcc(Assembler::notZero, L);
   129     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   130     // address of the same-named entrypoint in the generated interpreter code.
   131     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   132     jmp(rax);
   133     bind(L);
   134     get_thread(java_thread);
   135   }
   136 }
   139 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   140   get_thread(rcx);
   141   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   142   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   143   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   144   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   145   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   146                              + in_ByteSize(wordSize));
   147   switch (state) {
   148     case atos: movptr(rax, oop_addr);
   149                movptr(oop_addr, NULL_WORD);
   150                verify_oop(rax, state);                break;
   151     case ltos:
   152                movl(rdx, val_addr1);               // fall through
   153     case btos:                                     // fall through
   154     case ctos:                                     // fall through
   155     case stos:                                     // fall through
   156     case itos: movl(rax, val_addr);                   break;
   157     case ftos: fld_s(val_addr);                       break;
   158     case dtos: fld_d(val_addr);                       break;
   159     case vtos: /* nothing to do */                    break;
   160     default  : ShouldNotReachHere();
   161   }
   162   // Clean up tos value in the thread object
   163   movl(tos_addr,  (int32_t) ilgl);
   164   movptr(val_addr,  NULL_WORD);
   165   NOT_LP64(movptr(val_addr1, NULL_WORD));
   166 }
   169 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   170   if (JvmtiExport::can_force_early_return()) {
   171     Label L;
   172     Register tmp = java_thread;
   173     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   174     testptr(tmp, tmp);
   175     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   177     // Initiate earlyret handling only if it is not already being processed.
   178     // If the flag has the earlyret_processing bit set, it means that this code
   179     // is called *during* earlyret handling - we don't want to reenter.
   180     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   181     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   182     jcc(Assembler::notEqual, L);
   184     // Call Interpreter::remove_activation_early_entry() to get the address of the
   185     // same-named entrypoint in the generated interpreter code.
   186     get_thread(java_thread);
   187     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   188     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   189     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   190     jmp(rax);
   191     bind(L);
   192     get_thread(java_thread);
   193   }
   194 }
   197 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   198   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   199   movl(reg, Address(rsi, bcp_offset));
   200   bswapl(reg);
   201   shrl(reg, 16);
   202 }
   205 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
   206   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   207   if (index_size == sizeof(u2)) {
   208     load_unsigned_short(reg, Address(rsi, bcp_offset));
   209   } else if (index_size == sizeof(u4)) {
   210     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   211     movl(reg, Address(rsi, bcp_offset));
   212     // Check if the secondary index definition is still ~x, otherwise
   213     // we have to change the following assembler code to calculate the
   214     // plain index.
   215     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
   216     notl(reg);  // convert to plain index
   217   } else if (index_size == sizeof(u1)) {
   218     load_unsigned_byte(reg, Address(rsi, bcp_offset));
   219   } else {
   220     ShouldNotReachHere();
   221   }
   222 }
   225 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
   226                                                            int bcp_offset, size_t index_size) {
   227   assert_different_registers(cache, index);
   228   get_cache_index_at_bcp(index, bcp_offset, index_size);
   229   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   230   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   231   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
   232   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   233 }
   236 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
   237                                                                         Register index,
   238                                                                         Register bytecode,
   239                                                                         int byte_no,
   240                                                                         int bcp_offset,
   241                                                                         size_t index_size) {
   242   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
   243   movptr(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   244   const int shift_count = (1 + byte_no) * BitsPerByte;
   245   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
   246          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
   247          "correct shift count");
   248   shrptr(bytecode, shift_count);
   249   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
   250   andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
   251 }
   254 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   255                                                                int bcp_offset, size_t index_size) {
   256   assert(cache != tmp, "must use different register");
   257   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   258   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   259                                // convert from field index to ConstantPoolCacheEntry index
   260                                // and from word offset to byte offset
   261   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
   262   shll(tmp, 2 + LogBytesPerWord);
   263   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   264                                // skip past the header
   265   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
   266   addptr(cache, tmp);            // construct pointer to cache entry
   267 }
   269 // Load object from cpool->resolved_references(index)
   270 void InterpreterMacroAssembler::load_resolved_reference_at_index(
   271                                            Register result, Register index) {
   272   assert_different_registers(result, index);
   273   // convert from field index to resolved_references() index and from
   274   // word index to byte offset. Since this is a java object, it can be compressed
   275   Register tmp = index;  // reuse
   276   shll(tmp, LogBytesPerHeapOop);
   278   get_constant_pool(result);
   279   // load pointer for resolved_references[] objArray
   280   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
   281   // JNIHandles::resolve(obj);
   282   movptr(result, Address(result, 0));
   283   // Add in the index
   284   addptr(result, tmp);
   285   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   286 }
   288   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   289   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   290   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   291 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   292   assert( Rsub_klass != rax, "rax, holds superklass" );
   293   assert( Rsub_klass != rcx, "used as a temp" );
   294   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
   296   // Profile the not-null value's klass.
   297   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   299   // Do the check.
   300   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   302   // Profile the failure of the check.
   303   profile_typecheck_failed(rcx); // blows rcx
   304 }
   306 void InterpreterMacroAssembler::f2ieee() {
   307   if (IEEEPrecision) {
   308     fstp_s(Address(rsp, 0));
   309     fld_s(Address(rsp, 0));
   310   }
   311 }
   314 void InterpreterMacroAssembler::d2ieee() {
   315   if (IEEEPrecision) {
   316     fstp_d(Address(rsp, 0));
   317     fld_d(Address(rsp, 0));
   318   }
   319 }
   321 // Java Expression Stack
   323 void InterpreterMacroAssembler::pop_ptr(Register r) {
   324   pop(r);
   325 }
   327 void InterpreterMacroAssembler::pop_i(Register r) {
   328   pop(r);
   329 }
   331 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   332   pop(lo);
   333   pop(hi);
   334 }
   336 void InterpreterMacroAssembler::pop_f() {
   337   fld_s(Address(rsp, 0));
   338   addptr(rsp, 1 * wordSize);
   339 }
   341 void InterpreterMacroAssembler::pop_d() {
   342   fld_d(Address(rsp, 0));
   343   addptr(rsp, 2 * wordSize);
   344 }
   347 void InterpreterMacroAssembler::pop(TosState state) {
   348   switch (state) {
   349     case atos: pop_ptr(rax);                                 break;
   350     case btos:                                               // fall through
   351     case ctos:                                               // fall through
   352     case stos:                                               // fall through
   353     case itos: pop_i(rax);                                   break;
   354     case ltos: pop_l(rax, rdx);                              break;
   355     case ftos: pop_f();                                      break;
   356     case dtos: pop_d();                                      break;
   357     case vtos: /* nothing to do */                           break;
   358     default  : ShouldNotReachHere();
   359   }
   360   verify_oop(rax, state);
   361 }
   363 void InterpreterMacroAssembler::push_ptr(Register r) {
   364   push(r);
   365 }
   367 void InterpreterMacroAssembler::push_i(Register r) {
   368   push(r);
   369 }
   371 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   372   push(hi);
   373   push(lo);
   374 }
   376 void InterpreterMacroAssembler::push_f() {
   377   // Do not schedule for no AGI! Never write beyond rsp!
   378   subptr(rsp, 1 * wordSize);
   379   fstp_s(Address(rsp, 0));
   380 }
   382 void InterpreterMacroAssembler::push_d(Register r) {
   383   // Do not schedule for no AGI! Never write beyond rsp!
   384   subptr(rsp, 2 * wordSize);
   385   fstp_d(Address(rsp, 0));
   386 }
   389 void InterpreterMacroAssembler::push(TosState state) {
   390   verify_oop(rax, state);
   391   switch (state) {
   392     case atos: push_ptr(rax); break;
   393     case btos:                                               // fall through
   394     case ctos:                                               // fall through
   395     case stos:                                               // fall through
   396     case itos: push_i(rax);                                    break;
   397     case ltos: push_l(rax, rdx);                               break;
   398     case ftos: push_f();                                       break;
   399     case dtos: push_d(rax);                                    break;
   400     case vtos: /* nothing to do */                             break;
   401     default  : ShouldNotReachHere();
   402   }
   403 }
   406 // Helpers for swap and dup
   407 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   408   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   409 }
   411 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   412   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   413 }
   415 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   416   // set sender sp
   417   lea(rsi, Address(rsp, wordSize));
   418   // record last_sp
   419   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   420 }
   423 // Jump to from_interpreted entry of a call unless single stepping is possible
   424 // in this thread in which case we must call the i2i entry
   425 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   426   prepare_to_jump_from_interpreted();
   428   if (JvmtiExport::can_post_interpreter_events()) {
   429     Label run_compiled_code;
   430     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   431     // compiled code in threads for which the event is enabled.  Check here for
   432     // interp_only_mode if these events CAN be enabled.
   433     get_thread(temp);
   434     // interp_only is an int, on little endian it is sufficient to test the byte only
   435     // Is a cmpl faster?
   436     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   437     jccb(Assembler::zero, run_compiled_code);
   438     jmp(Address(method, Method::interpreter_entry_offset()));
   439     bind(run_compiled_code);
   440   }
   442   jmp(Address(method, Method::from_interpreted_offset()));
   444 }
   447 // The following two routines provide a hook so that an implementation
   448 // can schedule the dispatch in two parts.  Intel does not do this.
   449 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   450   // Nothing Intel-specific to be done here.
   451 }
   453 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   454   dispatch_next(state, step);
   455 }
   457 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   458                                               bool verifyoop) {
   459   verify_FPU(1, state);
   460   if (VerifyActivationFrameSize) {
   461     Label L;
   462     mov(rcx, rbp);
   463     subptr(rcx, rsp);
   464     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   465     cmpptr(rcx, min_frame_size);
   466     jcc(Assembler::greaterEqual, L);
   467     stop("broken stack frame");
   468     bind(L);
   469   }
   470   if (verifyoop) verify_oop(rax, state);
   471   Address index(noreg, rbx, Address::times_ptr);
   472   ExternalAddress tbl((address)table);
   473   ArrayAddress dispatch(tbl, index);
   474   jump(dispatch);
   475 }
   478 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   479   dispatch_base(state, Interpreter::dispatch_table(state));
   480 }
   483 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   484   dispatch_base(state, Interpreter::normal_table(state));
   485 }
   487 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   488   dispatch_base(state, Interpreter::normal_table(state), false);
   489 }
   492 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   493   // load next bytecode (load before advancing rsi to prevent AGI)
   494   load_unsigned_byte(rbx, Address(rsi, step));
   495   // advance rsi
   496   increment(rsi, step);
   497   dispatch_base(state, Interpreter::dispatch_table(state));
   498 }
   501 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   502   // load current bytecode
   503   load_unsigned_byte(rbx, Address(rsi, 0));
   504   dispatch_base(state, table);
   505 }
   507 // remove activation
   508 //
   509 // Unlock the receiver if this is a synchronized method.
   510 // Unlock any Java monitors from syncronized blocks.
   511 // Remove the activation from the stack.
   512 //
   513 // If there are locked Java monitors
   514 //    If throw_monitor_exception
   515 //       throws IllegalMonitorStateException
   516 //    Else if install_monitor_exception
   517 //       installs IllegalMonitorStateException
   518 //    Else
   519 //       no error processing
   520 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   521                                                   bool throw_monitor_exception,
   522                                                   bool install_monitor_exception,
   523                                                   bool notify_jvmdi) {
   524   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   525   // check if synchronized method
   526   Label unlocked, unlock, no_unlock;
   528   get_thread(rcx);
   529   const Address do_not_unlock_if_synchronized(rcx,
   530     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   532   movbool(rbx, do_not_unlock_if_synchronized);
   533   mov(rdi,rbx);
   534   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   536   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   537   movl(rcx, Address(rbx, Method::access_flags_offset()));
   539   testl(rcx, JVM_ACC_SYNCHRONIZED);
   540   jcc(Assembler::zero, unlocked);
   542   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   543   // is set.
   544   mov(rcx,rdi);
   545   testbool(rcx);
   546   jcc(Assembler::notZero, no_unlock);
   548   // unlock monitor
   549   push(state);                                   // save result
   551   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   552   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   553   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   554   lea   (rdx, monitor);                          // address of first monitor
   556   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   557   testptr(rax, rax);
   558   jcc    (Assembler::notZero, unlock);
   560   pop(state);
   561   if (throw_monitor_exception) {
   562     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   564     // Entry already unlocked, need to throw exception
   565     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   566     should_not_reach_here();
   567   } else {
   568     // Monitor already unlocked during a stack unroll.
   569     // If requested, install an illegal_monitor_state_exception.
   570     // Continue with stack unrolling.
   571     if (install_monitor_exception) {
   572       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   573       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   574     }
   575     jmp(unlocked);
   576   }
   578   bind(unlock);
   579   unlock_object(rdx);
   580   pop(state);
   582   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   583   bind(unlocked);
   585   // rax, rdx: Might contain return value
   587   // Check that all monitors are unlocked
   588   {
   589     Label loop, exception, entry, restart;
   590     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   591     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   592     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   594     bind(restart);
   595     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   596     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   597     jmp(entry);
   599     // Entry already locked, need to throw exception
   600     bind(exception);
   602     if (throw_monitor_exception) {
   603       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   605       // Throw exception
   606       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   607       should_not_reach_here();
   608     } else {
   609       // Stack unrolling. Unlock object and install illegal_monitor_exception
   610       // Unlock does not block, so don't have to worry about the frame
   612       push(state);
   613       mov(rdx, rcx);
   614       unlock_object(rdx);
   615       pop(state);
   617       if (install_monitor_exception) {
   618         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   619         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   620       }
   622       jmp(restart);
   623     }
   625     bind(loop);
   626     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   627     jcc(Assembler::notEqual, exception);
   629     addptr(rcx, entry_size);                     // otherwise advance to next entry
   630     bind(entry);
   631     cmpptr(rcx, rbx);                            // check if bottom reached
   632     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   633   }
   635   bind(no_unlock);
   637   // jvmti support
   638   if (notify_jvmdi) {
   639     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   640   } else {
   641     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   642   }
   644   // remove activation
   645   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   646   leave();                                     // remove frame anchor
   647   pop(ret_addr);                               // get return address
   648   mov(rsp, rbx);                               // set sp to sender sp
   649   if (UseSSE) {
   650     // float and double are returned in xmm register in SSE-mode
   651     if (state == ftos && UseSSE >= 1) {
   652       subptr(rsp, wordSize);
   653       fstp_s(Address(rsp, 0));
   654       movflt(xmm0, Address(rsp, 0));
   655       addptr(rsp, wordSize);
   656     } else if (state == dtos && UseSSE >= 2) {
   657       subptr(rsp, 2*wordSize);
   658       fstp_d(Address(rsp, 0));
   659       movdbl(xmm0, Address(rsp, 0));
   660       addptr(rsp, 2*wordSize);
   661     }
   662   }
   663 }
   665 #endif /* !CC_INTERP */
   668 // Lock object
   669 //
   670 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   671 // be initialized with object to lock
   672 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   673   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   675   if (UseHeavyMonitors) {
   676     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   677   } else {
   679     Label done;
   681     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   682     const Register obj_reg  = rcx;  // Will contain the oop
   684     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   685     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   686     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   688     Label slow_case;
   690     // Load object pointer into obj_reg %rcx
   691     movptr(obj_reg, Address(lock_reg, obj_offset));
   693     if (UseBiasedLocking) {
   694       // Note: we use noreg for the temporary register since it's hard
   695       // to come up with a free register on all incoming code paths
   696       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   697     }
   699     // Load immediate 1 into swap_reg %rax,
   700     movptr(swap_reg, (int32_t)1);
   702     // Load (object->mark() | 1) into swap_reg %rax,
   703     orptr(swap_reg, Address(obj_reg, 0));
   705     // Save (object->mark() | 1) into BasicLock's displaced header
   706     movptr(Address(lock_reg, mark_offset), swap_reg);
   708     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   709     if (os::is_MP()) {
   710       lock();
   711     }
   712     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   713     if (PrintBiasedLockingStatistics) {
   714       cond_inc32(Assembler::zero,
   715                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   716     }
   717     jcc(Assembler::zero, done);
   719     // Test if the oopMark is an obvious stack pointer, i.e.,
   720     //  1) (mark & 3) == 0, and
   721     //  2) rsp <= mark < mark + os::pagesize()
   722     //
   723     // These 3 tests can be done by evaluating the following
   724     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   725     // assuming both stack pointer and pagesize have their
   726     // least significant 2 bits clear.
   727     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   728     subptr(swap_reg, rsp);
   729     andptr(swap_reg, 3 - os::vm_page_size());
   731     // Save the test result, for recursive case, the result is zero
   732     movptr(Address(lock_reg, mark_offset), swap_reg);
   734     if (PrintBiasedLockingStatistics) {
   735       cond_inc32(Assembler::zero,
   736                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   737     }
   738     jcc(Assembler::zero, done);
   740     bind(slow_case);
   742     // Call the runtime routine for slow case
   743     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   745     bind(done);
   746   }
   747 }
   750 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   751 //
   752 // Argument: rdx : Points to BasicObjectLock structure for lock
   753 // Throw an IllegalMonitorException if object is not locked by current thread
   754 //
   755 // Uses: rax, rbx, rcx, rdx
   756 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   757   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   759   if (UseHeavyMonitors) {
   760     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   761   } else {
   762     Label done;
   764     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   765     const Register header_reg = rbx;  // Will contain the old oopMark
   766     const Register obj_reg    = rcx;  // Will contain the oop
   768     save_bcp(); // Save in case of exception
   770     // Convert from BasicObjectLock structure to object and BasicLock structure
   771     // Store the BasicLock address into %rax,
   772     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   774     // Load oop into obj_reg(%rcx)
   775     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   777     // Free entry
   778     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   780     if (UseBiasedLocking) {
   781       biased_locking_exit(obj_reg, header_reg, done);
   782     }
   784     // Load the old header from BasicLock structure
   785     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   787     // Test for recursion
   788     testptr(header_reg, header_reg);
   790     // zero for recursive case
   791     jcc(Assembler::zero, done);
   793     // Atomic swap back the old header
   794     if (os::is_MP()) lock();
   795     cmpxchgptr(header_reg, Address(obj_reg, 0));
   797     // zero for recursive case
   798     jcc(Assembler::zero, done);
   800     // Call the runtime routine for slow case.
   801     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   802     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   804     bind(done);
   806     restore_bcp();
   807   }
   808 }
   811 #ifndef CC_INTERP
   813 // Test ImethodDataPtr.  If it is null, continue at the specified label
   814 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   815   assert(ProfileInterpreter, "must be profiling interpreter");
   816   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   817   testptr(mdp, mdp);
   818   jcc(Assembler::zero, zero_continue);
   819 }
   822 // Set the method data pointer for the current bcp.
   823 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   824   assert(ProfileInterpreter, "must be profiling interpreter");
   825   Label set_mdp;
   826   push(rax);
   827   push(rbx);
   829   get_method(rbx);
   830   // Test MDO to avoid the call if it is NULL.
   831   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
   832   testptr(rax, rax);
   833   jcc(Assembler::zero, set_mdp);
   834   // rbx,: method
   835   // rsi: bcp
   836   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
   837   // rax,: mdi
   838   // mdo is guaranteed to be non-zero here, we checked for it before the call.
   839   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
   840   addptr(rbx, in_bytes(MethodData::data_offset()));
   841   addptr(rax, rbx);
   842   bind(set_mdp);
   843   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
   844   pop(rbx);
   845   pop(rax);
   846 }
   848 void InterpreterMacroAssembler::verify_method_data_pointer() {
   849   assert(ProfileInterpreter, "must be profiling interpreter");
   850 #ifdef ASSERT
   851   Label verify_continue;
   852   push(rax);
   853   push(rbx);
   854   push(rcx);
   855   push(rdx);
   856   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
   857   get_method(rbx);
   859   // If the mdp is valid, it will point to a DataLayout header which is
   860   // consistent with the bcp.  The converse is highly probable also.
   861   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
   862   addptr(rdx, Address(rbx, Method::const_offset()));
   863   lea(rdx, Address(rdx, ConstMethod::codes_offset()));
   864   cmpptr(rdx, rsi);
   865   jcc(Assembler::equal, verify_continue);
   866   // rbx,: method
   867   // rsi: bcp
   868   // rcx: mdp
   869   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
   870   bind(verify_continue);
   871   pop(rdx);
   872   pop(rcx);
   873   pop(rbx);
   874   pop(rax);
   875 #endif // ASSERT
   876 }
   879 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
   880   // %%% this seems to be used to store counter data which is surely 32bits
   881   // however 64bit side stores 64 bits which seems wrong
   882   assert(ProfileInterpreter, "must be profiling interpreter");
   883   Address data(mdp_in, constant);
   884   movptr(data, value);
   885 }
   888 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   889                                                       int constant,
   890                                                       bool decrement) {
   891   // Counter address
   892   Address data(mdp_in, constant);
   894   increment_mdp_data_at(data, decrement);
   895 }
   898 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   899                                                       bool decrement) {
   901   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
   902   assert(ProfileInterpreter, "must be profiling interpreter");
   904   // %%% 64bit treats this as 64 bit which seems unlikely
   905   if (decrement) {
   906     // Decrement the register.  Set condition codes.
   907     addl(data, -DataLayout::counter_increment);
   908     // If the decrement causes the counter to overflow, stay negative
   909     Label L;
   910     jcc(Assembler::negative, L);
   911     addl(data, DataLayout::counter_increment);
   912     bind(L);
   913   } else {
   914     assert(DataLayout::counter_increment == 1,
   915            "flow-free idiom only works with 1");
   916     // Increment the register.  Set carry flag.
   917     addl(data, DataLayout::counter_increment);
   918     // If the increment causes the counter to overflow, pull back by 1.
   919     sbbl(data, 0);
   920   }
   921 }
   924 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   925                                                       Register reg,
   926                                                       int constant,
   927                                                       bool decrement) {
   928   Address data(mdp_in, reg, Address::times_1, constant);
   930   increment_mdp_data_at(data, decrement);
   931 }
   934 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
   935   assert(ProfileInterpreter, "must be profiling interpreter");
   936   int header_offset = in_bytes(DataLayout::header_offset());
   937   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   938   // Set the flag
   939   orl(Address(mdp_in, header_offset), header_bits);
   940 }
   944 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   945                                                  int offset,
   946                                                  Register value,
   947                                                  Register test_value_out,
   948                                                  Label& not_equal_continue) {
   949   assert(ProfileInterpreter, "must be profiling interpreter");
   950   if (test_value_out == noreg) {
   951     cmpptr(value, Address(mdp_in, offset));
   952   } else {
   953     // Put the test value into a register, so caller can use it:
   954     movptr(test_value_out, Address(mdp_in, offset));
   955     cmpptr(test_value_out, value);
   956   }
   957   jcc(Assembler::notEqual, not_equal_continue);
   958 }
   961 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
   962   assert(ProfileInterpreter, "must be profiling interpreter");
   963   Address disp_address(mdp_in, offset_of_disp);
   964   addptr(mdp_in,disp_address);
   965   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   966 }
   969 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
   970   assert(ProfileInterpreter, "must be profiling interpreter");
   971   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
   972   addptr(mdp_in, disp_address);
   973   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   974 }
   977 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
   978   assert(ProfileInterpreter, "must be profiling interpreter");
   979   addptr(mdp_in, constant);
   980   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   981 }
   984 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
   985   assert(ProfileInterpreter, "must be profiling interpreter");
   986   push(return_bci);             // save/restore across call_VM
   987   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
   988   pop(return_bci);
   989 }
   992 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
   993   if (ProfileInterpreter) {
   994     Label profile_continue;
   996     // If no method data exists, go to profile_continue.
   997     // Otherwise, assign to mdp
   998     test_method_data_pointer(mdp, profile_continue);
  1000     // We are taking a branch.  Increment the taken count.
  1001     // We inline increment_mdp_data_at to return bumped_count in a register
  1002     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1003     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1005     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
  1006     movl(bumped_count,data);
  1007     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1008     addl(bumped_count, DataLayout::counter_increment);
  1009     sbbl(bumped_count, 0);
  1010     movl(data,bumped_count);    // Store back out
  1012     // The method data pointer needs to be updated to reflect the new target.
  1013     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1014     bind (profile_continue);
  1019 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1020   if (ProfileInterpreter) {
  1021     Label profile_continue;
  1023     // If no method data exists, go to profile_continue.
  1024     test_method_data_pointer(mdp, profile_continue);
  1026     // We are taking a branch.  Increment the not taken count.
  1027     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1029     // The method data pointer needs to be updated to correspond to the next bytecode
  1030     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1031     bind (profile_continue);
  1036 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1037   if (ProfileInterpreter) {
  1038     Label profile_continue;
  1040     // If no method data exists, go to profile_continue.
  1041     test_method_data_pointer(mdp, profile_continue);
  1043     // We are making a call.  Increment the count.
  1044     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1046     // The method data pointer needs to be updated to reflect the new target.
  1047     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1048     bind (profile_continue);
  1053 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1054   if (ProfileInterpreter) {
  1055     Label profile_continue;
  1057     // If no method data exists, go to profile_continue.
  1058     test_method_data_pointer(mdp, profile_continue);
  1060     // We are making a call.  Increment the count.
  1061     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1063     // The method data pointer needs to be updated to reflect the new target.
  1064     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1065     bind (profile_continue);
  1070 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
  1071                                                      Register reg2,
  1072                                                      bool receiver_can_be_null) {
  1073   if (ProfileInterpreter) {
  1074     Label profile_continue;
  1076     // If no method data exists, go to profile_continue.
  1077     test_method_data_pointer(mdp, profile_continue);
  1079     Label skip_receiver_profile;
  1080     if (receiver_can_be_null) {
  1081       Label not_null;
  1082       testptr(receiver, receiver);
  1083       jccb(Assembler::notZero, not_null);
  1084       // We are making a call.  Increment the count for null receiver.
  1085       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1086       jmp(skip_receiver_profile);
  1087       bind(not_null);
  1090     // Record the receiver type.
  1091     record_klass_in_profile(receiver, mdp, reg2, true);
  1092     bind(skip_receiver_profile);
  1094     // The method data pointer needs to be updated to reflect the new target.
  1095     update_mdp_by_constant(mdp,
  1096                            in_bytes(VirtualCallData::
  1097                                     virtual_call_data_size()));
  1098     bind(profile_continue);
  1103 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1104                                         Register receiver, Register mdp,
  1105                                         Register reg2, int start_row,
  1106                                         Label& done, bool is_virtual_call) {
  1107   if (TypeProfileWidth == 0) {
  1108     if (is_virtual_call) {
  1109       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1111     return;
  1114   int last_row = VirtualCallData::row_limit() - 1;
  1115   assert(start_row <= last_row, "must be work left to do");
  1116   // Test this row for both the receiver and for null.
  1117   // Take any of three different outcomes:
  1118   //   1. found receiver => increment count and goto done
  1119   //   2. found null => keep looking for case 1, maybe allocate this cell
  1120   //   3. found something else => keep looking for cases 1 and 2
  1121   // Case 3 is handled by a recursive call.
  1122   for (int row = start_row; row <= last_row; row++) {
  1123     Label next_test;
  1124     bool test_for_null_also = (row == start_row);
  1126     // See if the receiver is receiver[n].
  1127     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1128     test_mdp_data_at(mdp, recvr_offset, receiver,
  1129                      (test_for_null_also ? reg2 : noreg),
  1130                      next_test);
  1131     // (Reg2 now contains the receiver from the CallData.)
  1133     // The receiver is receiver[n].  Increment count[n].
  1134     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1135     increment_mdp_data_at(mdp, count_offset);
  1136     jmp(done);
  1137     bind(next_test);
  1139     if (row == start_row) {
  1140       Label found_null;
  1141       // Failed the equality check on receiver[n]...  Test for null.
  1142       testptr(reg2, reg2);
  1143       if (start_row == last_row) {
  1144         // The only thing left to do is handle the null case.
  1145         if (is_virtual_call) {
  1146           jccb(Assembler::zero, found_null);
  1147           // Receiver did not match any saved receiver and there is no empty row for it.
  1148           // Increment total counter to indicate polymorphic case.
  1149           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1150           jmp(done);
  1151           bind(found_null);
  1152         } else {
  1153           jcc(Assembler::notZero, done);
  1155         break;
  1157       // Since null is rare, make it be the branch-taken case.
  1158       jcc(Assembler::zero, found_null);
  1160       // Put all the "Case 3" tests here.
  1161       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1163       // Found a null.  Keep searching for a matching receiver,
  1164       // but remember that this is an empty (unused) slot.
  1165       bind(found_null);
  1169   // In the fall-through case, we found no matching receiver, but we
  1170   // observed the receiver[start_row] is NULL.
  1172   // Fill in the receiver field and increment the count.
  1173   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1174   set_mdp_data_at(mdp, recvr_offset, receiver);
  1175   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1176   movptr(reg2, (intptr_t)DataLayout::counter_increment);
  1177   set_mdp_data_at(mdp, count_offset, reg2);
  1178   if (start_row > 0) {
  1179     jmp(done);
  1183 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1184                                                         Register mdp, Register reg2,
  1185                                                         bool is_virtual_call) {
  1186   assert(ProfileInterpreter, "must be profiling");
  1187   Label done;
  1189   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1191   bind (done);
  1194 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1195   if (ProfileInterpreter) {
  1196     Label profile_continue;
  1197     uint row;
  1199     // If no method data exists, go to profile_continue.
  1200     test_method_data_pointer(mdp, profile_continue);
  1202     // Update the total ret count.
  1203     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1205     for (row = 0; row < RetData::row_limit(); row++) {
  1206       Label next_test;
  1208       // See if return_bci is equal to bci[n]:
  1209       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1210                        noreg, next_test);
  1212       // return_bci is equal to bci[n].  Increment the count.
  1213       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1215       // The method data pointer needs to be updated to reflect the new target.
  1216       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1217       jmp(profile_continue);
  1218       bind(next_test);
  1221     update_mdp_for_ret(return_bci);
  1223     bind (profile_continue);
  1228 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1229   if (ProfileInterpreter) {
  1230     Label profile_continue;
  1232     // If no method data exists, go to profile_continue.
  1233     test_method_data_pointer(mdp, profile_continue);
  1235     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1237     // The method data pointer needs to be updated.
  1238     int mdp_delta = in_bytes(BitData::bit_data_size());
  1239     if (TypeProfileCasts) {
  1240       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1242     update_mdp_by_constant(mdp, mdp_delta);
  1244     bind (profile_continue);
  1249 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1250   if (ProfileInterpreter && TypeProfileCasts) {
  1251     Label profile_continue;
  1253     // If no method data exists, go to profile_continue.
  1254     test_method_data_pointer(mdp, profile_continue);
  1256     int count_offset = in_bytes(CounterData::count_offset());
  1257     // Back up the address, since we have already bumped the mdp.
  1258     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1260     // *Decrement* the counter.  We expect to see zero or small negatives.
  1261     increment_mdp_data_at(mdp, count_offset, true);
  1263     bind (profile_continue);
  1268 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1270   if (ProfileInterpreter) {
  1271     Label profile_continue;
  1273     // If no method data exists, go to profile_continue.
  1274     test_method_data_pointer(mdp, profile_continue);
  1276     // The method data pointer needs to be updated.
  1277     int mdp_delta = in_bytes(BitData::bit_data_size());
  1278     if (TypeProfileCasts) {
  1279       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1281       // Record the object type.
  1282       record_klass_in_profile(klass, mdp, reg2, false);
  1283       assert(reg2 == rdi, "we know how to fix this blown reg");
  1284       restore_locals();         // Restore EDI
  1286     update_mdp_by_constant(mdp, mdp_delta);
  1288     bind(profile_continue);
  1293 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1294   if (ProfileInterpreter) {
  1295     Label profile_continue;
  1297     // If no method data exists, go to profile_continue.
  1298     test_method_data_pointer(mdp, profile_continue);
  1300     // Update the default case count
  1301     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1303     // The method data pointer needs to be updated.
  1304     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1306     bind (profile_continue);
  1311 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1312   if (ProfileInterpreter) {
  1313     Label profile_continue;
  1315     // If no method data exists, go to profile_continue.
  1316     test_method_data_pointer(mdp, profile_continue);
  1318     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1319     movptr(reg2, (intptr_t)in_bytes(MultiBranchData::per_case_size()));
  1320     // index is positive and so should have correct value if this code were
  1321     // used on 64bits
  1322     imulptr(index, reg2);
  1323     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1325     // Update the case count
  1326     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1328     // The method data pointer needs to be updated.
  1329     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1331     bind (profile_continue);
  1335 #endif // !CC_INTERP
  1339 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1340   if (state == atos) MacroAssembler::verify_oop(reg);
  1344 #ifndef CC_INTERP
  1345 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1346   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1349 #endif /* CC_INTERP */
  1352 void InterpreterMacroAssembler::notify_method_entry() {
  1353   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1354   // track stack depth.  If it is possible to enter interp_only_mode we add
  1355   // the code to check if the event should be sent.
  1356   if (JvmtiExport::can_post_interpreter_events()) {
  1357     Label L;
  1358     get_thread(rcx);
  1359     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1360     testl(rcx,rcx);
  1361     jcc(Assembler::zero, L);
  1362     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1363     bind(L);
  1367     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1368     get_thread(rcx);
  1369     get_method(rbx);
  1370     call_VM_leaf(
  1371       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1374   // RedefineClasses() tracing support for obsolete method entry
  1375   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1376     get_thread(rcx);
  1377     get_method(rbx);
  1378     call_VM_leaf(
  1379       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1380       rcx, rbx);
  1385 void InterpreterMacroAssembler::notify_method_exit(
  1386     TosState state, NotifyMethodExitMode mode) {
  1387   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1388   // track stack depth.  If it is possible to enter interp_only_mode we add
  1389   // the code to check if the event should be sent.
  1390   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1391     Label L;
  1392     // Note: frame::interpreter_frame_result has a dependency on how the
  1393     // method result is saved across the call to post_method_exit. If this
  1394     // is changed then the interpreter_frame_result implementation will
  1395     // need to be updated too.
  1397     // For c++ interpreter the result is always stored at a known location in the frame
  1398     // template interpreter will leave it on the top of the stack.
  1399     NOT_CC_INTERP(push(state);)
  1400     get_thread(rcx);
  1401     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1402     testl(rcx,rcx);
  1403     jcc(Assembler::zero, L);
  1404     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1405     bind(L);
  1406     NOT_CC_INTERP(pop(state);)
  1410     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1411     NOT_CC_INTERP(push(state));
  1412     get_thread(rbx);
  1413     get_method(rcx);
  1414     call_VM_leaf(
  1415       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1416       rbx, rcx);
  1417     NOT_CC_INTERP(pop(state));
  1421 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1422 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1423                                                         int increment, int mask,
  1424                                                         Register scratch, bool preloaded,
  1425                                                         Condition cond, Label* where) {
  1426   if (!preloaded) {
  1427     movl(scratch, counter_addr);
  1429   incrementl(scratch, increment);
  1430   movl(counter_addr, scratch);
  1431   andl(scratch, mask);
  1432   jcc(cond, *where);

mercurial