src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4159
8e47bac5643a
child 4860
46f6f063b272
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArray.hpp"
    34 #include "ci/ciObjArrayKlass.hpp"
    35 #include "ci/ciTypeArrayKlass.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "vmreg_x86.inline.hpp"
    40 #ifdef ASSERT
    41 #define __ gen()->lir(__FILE__, __LINE__)->
    42 #else
    43 #define __ gen()->lir()->
    44 #endif
    46 // Item will be loaded into a byte register; Intel only
    47 void LIRItem::load_byte_item() {
    48   load_item();
    49   LIR_Opr res = result();
    51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    52     // make sure that it is a byte register
    53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
    54            "can't load floats in byte register");
    55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    56     __ move(res, reg);
    58     _result = reg;
    59   }
    60 }
    63 void LIRItem::load_nonconstant() {
    64   LIR_Opr r = value()->operand();
    65   if (r->is_constant()) {
    66     _result = r;
    67   } else {
    68     load_item();
    69   }
    70 }
    72 //--------------------------------------------------------------
    73 //               LIRGenerator
    74 //--------------------------------------------------------------
    77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
    78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
    79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
    80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
    81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
    82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
    83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
    84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
    87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    88   LIR_Opr opr;
    89   switch (type->tag()) {
    90     case intTag:     opr = FrameMap::rax_opr;          break;
    91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    92     case longTag:    opr = FrameMap::long0_opr;        break;
    93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
    96     case addressTag:
    97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    98   }
   100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
   101   return opr;
   102 }
   105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
   106   LIR_Opr reg = new_register(T_INT);
   107   set_vreg_flag(reg, LIRGenerator::byte_reg);
   108   return reg;
   109 }
   112 //--------- loading items into registers --------------------------------
   115 // i486 instructions can inline constants
   116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   117   if (type == T_SHORT || type == T_CHAR) {
   118     // there is no immediate move of word values in asembler_i486.?pp
   119     return false;
   120   }
   121   Constant* c = v->as_Constant();
   122   if (c && c->state_before() == NULL) {
   123     // constants of any type can be stored directly, except for
   124     // unloaded object constants.
   125     return true;
   126   }
   127   return false;
   128 }
   131 bool LIRGenerator::can_inline_as_constant(Value v) const {
   132   if (v->type()->tag() == longTag) return false;
   133   return v->type()->tag() != objectTag ||
   134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
   135 }
   138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
   139   if (c->type() == T_LONG) return false;
   140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
   141 }
   144 LIR_Opr LIRGenerator::safepoint_poll_register() {
   145   return LIR_OprFact::illegalOpr;
   146 }
   149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   150                                             int shift, int disp, BasicType type) {
   151   assert(base->is_register(), "must be");
   152   if (index->is_constant()) {
   153     return new LIR_Address(base,
   154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
   155                            type);
   156   } else {
   157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
   158   }
   159 }
   162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   163                                               BasicType type, bool needs_card_mark) {
   164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
   166   LIR_Address* addr;
   167   if (index_opr->is_constant()) {
   168     int elem_size = type2aelembytes(type);
   169     addr = new LIR_Address(array_opr,
   170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
   171   } else {
   172 #ifdef _LP64
   173     if (index_opr->type() == T_INT) {
   174       LIR_Opr tmp = new_register(T_LONG);
   175       __ convert(Bytecodes::_i2l, index_opr, tmp);
   176       index_opr = tmp;
   177     }
   178 #endif // _LP64
   179     addr =  new LIR_Address(array_opr,
   180                             index_opr,
   181                             LIR_Address::scale(type),
   182                             offset_in_bytes, type);
   183   }
   184   if (needs_card_mark) {
   185     // This store will need a precise card mark, so go ahead and
   186     // compute the full adddres instead of computing once for the
   187     // store and again for the card mark.
   188     LIR_Opr tmp = new_pointer_register();
   189     __ leal(LIR_OprFact::address(addr), tmp);
   190     return new LIR_Address(tmp, type);
   191   } else {
   192     return addr;
   193   }
   194 }
   197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
   198   LIR_Opr r;
   199   if (type == T_LONG) {
   200     r = LIR_OprFact::longConst(x);
   201   } else if (type == T_INT) {
   202     r = LIR_OprFact::intConst(x);
   203   } else {
   204     ShouldNotReachHere();
   205   }
   206   return r;
   207 }
   209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
   210   LIR_Opr pointer = new_pointer_register();
   211   __ move(LIR_OprFact::intptrConst(counter), pointer);
   212   LIR_Address* addr = new LIR_Address(pointer, type);
   213   increment_counter(addr, step);
   214 }
   217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
   219 }
   221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   222   __ cmp_mem_int(condition, base, disp, c, info);
   223 }
   226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   228 }
   231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   233 }
   236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   237   if (tmp->is_valid()) {
   238     if (is_power_of_2(c + 1)) {
   239       __ move(left, tmp);
   240       __ shift_left(left, log2_intptr(c + 1), left);
   241       __ sub(left, tmp, result);
   242       return true;
   243     } else if (is_power_of_2(c - 1)) {
   244       __ move(left, tmp);
   245       __ shift_left(left, log2_intptr(c - 1), left);
   246       __ add(left, tmp, result);
   247       return true;
   248     }
   249   }
   250   return false;
   251 }
   254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   255   BasicType type = item->type();
   256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
   257 }
   259 //----------------------------------------------------------------------
   260 //             visitor functions
   261 //----------------------------------------------------------------------
   264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   265   assert(x->is_pinned(),"");
   266   bool needs_range_check = true;
   267   bool use_length = x->length() != NULL;
   268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   270                                          !get_jobject_constant(x->value())->is_null_object() ||
   271                                          x->should_profile());
   273   LIRItem array(x->array(), this);
   274   LIRItem index(x->index(), this);
   275   LIRItem value(x->value(), this);
   276   LIRItem length(this);
   278   array.load_item();
   279   index.load_nonconstant();
   281   if (use_length) {
   282     needs_range_check = x->compute_needs_range_check();
   283     if (needs_range_check) {
   284       length.set_instruction(x->length());
   285       length.load_item();
   286     }
   287   }
   288   if (needs_store_check) {
   289     value.load_item();
   290   } else {
   291     value.load_for_store(x->elt_type());
   292   }
   294   set_no_result(x);
   296   // the CodeEmitInfo must be duplicated for each different
   297   // LIR-instruction because spilling can occur anywhere between two
   298   // instructions and so the debug information must be different
   299   CodeEmitInfo* range_check_info = state_for(x);
   300   CodeEmitInfo* null_check_info = NULL;
   301   if (x->needs_null_check()) {
   302     null_check_info = new CodeEmitInfo(range_check_info);
   303   }
   305   // emit array address setup early so it schedules better
   306   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   308   if (GenerateRangeChecks && needs_range_check) {
   309     if (use_length) {
   310       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   311       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   312     } else {
   313       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   314       // range_check also does the null check
   315       null_check_info = NULL;
   316     }
   317   }
   319   if (GenerateArrayStoreCheck && needs_store_check) {
   320     LIR_Opr tmp1 = new_register(objectType);
   321     LIR_Opr tmp2 = new_register(objectType);
   322     LIR_Opr tmp3 = new_register(objectType);
   324     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   325     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
   326   }
   328   if (obj_store) {
   329     // Needs GC write barriers.
   330     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
   331                 true /* do_load */, false /* patch */, NULL);
   332     __ move(value.result(), array_addr, null_check_info);
   333     // Seems to be a precise
   334     post_barrier(LIR_OprFact::address(array_addr), value.result());
   335   } else {
   336     __ move(value.result(), array_addr, null_check_info);
   337   }
   338 }
   341 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   342   assert(x->is_pinned(),"");
   343   LIRItem obj(x->obj(), this);
   344   obj.load_item();
   346   set_no_result(x);
   348   // "lock" stores the address of the monitor stack slot, so this is not an oop
   349   LIR_Opr lock = new_register(T_INT);
   350   // Need a scratch register for biased locking on x86
   351   LIR_Opr scratch = LIR_OprFact::illegalOpr;
   352   if (UseBiasedLocking) {
   353     scratch = new_register(T_INT);
   354   }
   356   CodeEmitInfo* info_for_exception = NULL;
   357   if (x->needs_null_check()) {
   358     info_for_exception = state_for(x);
   359   }
   360   // this CodeEmitInfo must not have the xhandlers because here the
   361   // object is already locked (xhandlers expect object to be unlocked)
   362   CodeEmitInfo* info = state_for(x, x->state(), true);
   363   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
   364                         x->monitor_no(), info_for_exception, info);
   365 }
   368 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   369   assert(x->is_pinned(),"");
   371   LIRItem obj(x->obj(), this);
   372   obj.dont_load_item();
   374   LIR_Opr lock = new_register(T_INT);
   375   LIR_Opr obj_temp = new_register(T_INT);
   376   set_no_result(x);
   377   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
   378 }
   381 // _ineg, _lneg, _fneg, _dneg
   382 void LIRGenerator::do_NegateOp(NegateOp* x) {
   383   LIRItem value(x->x(), this);
   384   value.set_destroys_register();
   385   value.load_item();
   386   LIR_Opr reg = rlock(x);
   387   __ negate(value.result(), reg);
   389   set_result(x, round_item(reg));
   390 }
   393 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   394 //      _dadd, _dmul, _dsub, _ddiv, _drem
   395 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   396   LIRItem left(x->x(),  this);
   397   LIRItem right(x->y(), this);
   398   LIRItem* left_arg  = &left;
   399   LIRItem* right_arg = &right;
   400   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
   401   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
   402   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
   403     left.load_item();
   404   } else {
   405     left.dont_load_item();
   406   }
   408   // do not load right operand if it is a constant.  only 0 and 1 are
   409   // loaded because there are special instructions for loading them
   410   // without memory access (not needed for SSE2 instructions)
   411   bool must_load_right = false;
   412   if (right.is_constant()) {
   413     LIR_Const* c = right.result()->as_constant_ptr();
   414     assert(c != NULL, "invalid constant");
   415     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
   417     if (c->type() == T_FLOAT) {
   418       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
   419     } else {
   420       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
   421     }
   422   }
   424   if (must_load_both) {
   425     // frem and drem destroy also right operand, so move it to a new register
   426     right.set_destroys_register();
   427     right.load_item();
   428   } else if (right.is_register() || must_load_right) {
   429     right.load_item();
   430   } else {
   431     right.dont_load_item();
   432   }
   433   LIR_Opr reg = rlock(x);
   434   LIR_Opr tmp = LIR_OprFact::illegalOpr;
   435   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
   436     tmp = new_register(T_DOUBLE);
   437   }
   439   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
   440     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
   441     LIR_Opr fpu0, fpu1;
   442     if (x->op() == Bytecodes::_frem) {
   443       fpu0 = LIR_OprFact::single_fpu(0);
   444       fpu1 = LIR_OprFact::single_fpu(1);
   445     } else {
   446       fpu0 = LIR_OprFact::double_fpu(0);
   447       fpu1 = LIR_OprFact::double_fpu(1);
   448     }
   449     __ move(right.result(), fpu1); // order of left and right operand is important!
   450     __ move(left.result(), fpu0);
   451     __ rem (fpu0, fpu1, fpu0);
   452     __ move(fpu0, reg);
   454   } else {
   455     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
   456   }
   458   set_result(x, round_item(reg));
   459 }
   462 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   463 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   464   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
   465     // long division is implemented as a direct call into the runtime
   466     LIRItem left(x->x(), this);
   467     LIRItem right(x->y(), this);
   469     // the check for division by zero destroys the right operand
   470     right.set_destroys_register();
   472     BasicTypeList signature(2);
   473     signature.append(T_LONG);
   474     signature.append(T_LONG);
   475     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   477     // check for division by zero (destroys registers of right operand!)
   478     CodeEmitInfo* info = state_for(x);
   480     const LIR_Opr result_reg = result_register_for(x->type());
   481     left.load_item_force(cc->at(1));
   482     right.load_item();
   484     __ move(right.result(), cc->at(0));
   486     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
   487     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   489     address entry;
   490     switch (x->op()) {
   491     case Bytecodes::_lrem:
   492       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   493       break; // check if dividend is 0 is done elsewhere
   494     case Bytecodes::_ldiv:
   495       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   496       break; // check if dividend is 0 is done elsewhere
   497     case Bytecodes::_lmul:
   498       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   499       break;
   500     default:
   501       ShouldNotReachHere();
   502     }
   504     LIR_Opr result = rlock_result(x);
   505     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
   506     __ move(result_reg, result);
   507   } else if (x->op() == Bytecodes::_lmul) {
   508     // missing test if instr is commutative and if we should swap
   509     LIRItem left(x->x(), this);
   510     LIRItem right(x->y(), this);
   512     // right register is destroyed by the long mul, so it must be
   513     // copied to a new register.
   514     right.set_destroys_register();
   516     left.load_item();
   517     right.load_item();
   519     LIR_Opr reg = FrameMap::long0_opr;
   520     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
   521     LIR_Opr result = rlock_result(x);
   522     __ move(reg, result);
   523   } else {
   524     // missing test if instr is commutative and if we should swap
   525     LIRItem left(x->x(), this);
   526     LIRItem right(x->y(), this);
   528     left.load_item();
   529     // don't load constants to save register
   530     right.load_nonconstant();
   531     rlock_result(x);
   532     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   533   }
   534 }
   538 // for: _iadd, _imul, _isub, _idiv, _irem
   539 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   540   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
   541     // The requirements for division and modulo
   542     // input : rax,: dividend                         min_int
   543     //         reg: divisor   (may not be rax,/rdx)   -1
   544     //
   545     // output: rax,: quotient  (= rax, idiv reg)       min_int
   546     //         rdx: remainder (= rax, irem reg)       0
   548     // rax, and rdx will be destroyed
   550     // Note: does this invalidate the spec ???
   551     LIRItem right(x->y(), this);
   552     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
   554     // call state_for before load_item_force because state_for may
   555     // force the evaluation of other instructions that are needed for
   556     // correct debug info.  Otherwise the live range of the fix
   557     // register might be too long.
   558     CodeEmitInfo* info = state_for(x);
   560     left.load_item_force(divInOpr());
   562     right.load_item();
   564     LIR_Opr result = rlock_result(x);
   565     LIR_Opr result_reg;
   566     if (x->op() == Bytecodes::_idiv) {
   567       result_reg = divOutOpr();
   568     } else {
   569       result_reg = remOutOpr();
   570     }
   572     if (!ImplicitDiv0Checks) {
   573       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
   574       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
   575     }
   576     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
   577     if (x->op() == Bytecodes::_irem) {
   578       __ irem(left.result(), right.result(), result_reg, tmp, info);
   579     } else if (x->op() == Bytecodes::_idiv) {
   580       __ idiv(left.result(), right.result(), result_reg, tmp, info);
   581     } else {
   582       ShouldNotReachHere();
   583     }
   585     __ move(result_reg, result);
   586   } else {
   587     // missing test if instr is commutative and if we should swap
   588     LIRItem left(x->x(),  this);
   589     LIRItem right(x->y(), this);
   590     LIRItem* left_arg = &left;
   591     LIRItem* right_arg = &right;
   592     if (x->is_commutative() && left.is_stack() && right.is_register()) {
   593       // swap them if left is real stack (or cached) and right is real register(not cached)
   594       left_arg = &right;
   595       right_arg = &left;
   596     }
   598     left_arg->load_item();
   600     // do not need to load right, as we can handle stack and constants
   601     if (x->op() == Bytecodes::_imul ) {
   602       // check if we can use shift instead
   603       bool use_constant = false;
   604       bool use_tmp = false;
   605       if (right_arg->is_constant()) {
   606         int iconst = right_arg->get_jint_constant();
   607         if (iconst > 0) {
   608           if (is_power_of_2(iconst)) {
   609             use_constant = true;
   610           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
   611             use_constant = true;
   612             use_tmp = true;
   613           }
   614         }
   615       }
   616       if (use_constant) {
   617         right_arg->dont_load_item();
   618       } else {
   619         right_arg->load_item();
   620       }
   621       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   622       if (use_tmp) {
   623         tmp = new_register(T_INT);
   624       }
   625       rlock_result(x);
   627       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   628     } else {
   629       right_arg->dont_load_item();
   630       rlock_result(x);
   631       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   632       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   633     }
   634   }
   635 }
   638 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   639   // when an operand with use count 1 is the left operand, then it is
   640   // likely that no move for 2-operand-LIR-form is necessary
   641   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   642     x->swap_operands();
   643   }
   645   ValueTag tag = x->type()->tag();
   646   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   647   switch (tag) {
   648     case floatTag:
   649     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   650     case longTag:    do_ArithmeticOp_Long(x); return;
   651     case intTag:     do_ArithmeticOp_Int(x);  return;
   652   }
   653   ShouldNotReachHere();
   654 }
   657 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   658 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   659   // count must always be in rcx
   660   LIRItem value(x->x(), this);
   661   LIRItem count(x->y(), this);
   663   ValueTag elemType = x->type()->tag();
   664   bool must_load_count = !count.is_constant() || elemType == longTag;
   665   if (must_load_count) {
   666     // count for long must be in register
   667     count.load_item_force(shiftCountOpr());
   668   } else {
   669     count.dont_load_item();
   670   }
   671   value.load_item();
   672   LIR_Opr reg = rlock_result(x);
   674   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   675 }
   678 // _iand, _land, _ior, _lor, _ixor, _lxor
   679 void LIRGenerator::do_LogicOp(LogicOp* x) {
   680   // when an operand with use count 1 is the left operand, then it is
   681   // likely that no move for 2-operand-LIR-form is necessary
   682   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   683     x->swap_operands();
   684   }
   686   LIRItem left(x->x(), this);
   687   LIRItem right(x->y(), this);
   689   left.load_item();
   690   right.load_nonconstant();
   691   LIR_Opr reg = rlock_result(x);
   693   logic_op(x->op(), reg, left.result(), right.result());
   694 }
   698 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   699 void LIRGenerator::do_CompareOp(CompareOp* x) {
   700   LIRItem left(x->x(), this);
   701   LIRItem right(x->y(), this);
   702   ValueTag tag = x->x()->type()->tag();
   703   if (tag == longTag) {
   704     left.set_destroys_register();
   705   }
   706   left.load_item();
   707   right.load_item();
   708   LIR_Opr reg = rlock_result(x);
   710   if (x->x()->type()->is_float_kind()) {
   711     Bytecodes::Code code = x->op();
   712     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   713   } else if (x->x()->type()->tag() == longTag) {
   714     __ lcmp2int(left.result(), right.result(), reg);
   715   } else {
   716     Unimplemented();
   717   }
   718 }
   721 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   722   assert(x->number_of_arguments() == 4, "wrong type");
   723   LIRItem obj   (x->argument_at(0), this);  // object
   724   LIRItem offset(x->argument_at(1), this);  // offset of field
   725   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   726   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   728   assert(obj.type()->tag() == objectTag, "invalid type");
   730   // In 64bit the type can be long, sparc doesn't have this assert
   731   // assert(offset.type()->tag() == intTag, "invalid type");
   733   assert(cmp.type()->tag() == type->tag(), "invalid type");
   734   assert(val.type()->tag() == type->tag(), "invalid type");
   736   // get address of field
   737   obj.load_item();
   738   offset.load_nonconstant();
   740   if (type == objectType) {
   741     cmp.load_item_force(FrameMap::rax_oop_opr);
   742     val.load_item();
   743   } else if (type == intType) {
   744     cmp.load_item_force(FrameMap::rax_opr);
   745     val.load_item();
   746   } else if (type == longType) {
   747     cmp.load_item_force(FrameMap::long0_opr);
   748     val.load_item_force(FrameMap::long1_opr);
   749   } else {
   750     ShouldNotReachHere();
   751   }
   753   LIR_Opr addr = new_pointer_register();
   754   LIR_Address* a;
   755   if(offset.result()->is_constant()) {
   756 #ifdef _LP64
   757     jlong c = offset.result()->as_jlong();
   758     if ((jlong)((jint)c) == c) {
   759       a = new LIR_Address(obj.result(),
   760                           (jint)c,
   761                           as_BasicType(type));
   762     } else {
   763       LIR_Opr tmp = new_register(T_LONG);
   764       __ move(offset.result(), tmp);
   765       a = new LIR_Address(obj.result(),
   766                           tmp,
   767                           as_BasicType(type));
   768     }
   769 #else
   770     a = new LIR_Address(obj.result(),
   771                         offset.result()->as_jint(),
   772                         as_BasicType(type));
   773 #endif
   774   } else {
   775     a = new LIR_Address(obj.result(),
   776                         offset.result(),
   777                         LIR_Address::times_1,
   778                         0,
   779                         as_BasicType(type));
   780   }
   781   __ leal(LIR_OprFact::address(a), addr);
   783   if (type == objectType) {  // Write-barrier needed for Object fields.
   784     // Do the pre-write barrier, if any.
   785     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
   786                 true /* do_load */, false /* patch */, NULL);
   787   }
   789   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
   790   if (type == objectType)
   791     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
   792   else if (type == intType)
   793     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
   794   else if (type == longType)
   795     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
   796   else {
   797     ShouldNotReachHere();
   798   }
   800   // generate conditional move of boolean result
   801   LIR_Opr result = rlock_result(x);
   802   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
   803            result, as_BasicType(type));
   804   if (type == objectType) {   // Write-barrier needed for Object fields.
   805     // Seems to be precise
   806     post_barrier(addr, val.result());
   807   }
   808 }
   811 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   812   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
   813   LIRItem value(x->argument_at(0), this);
   815   bool use_fpu = false;
   816   if (UseSSE >= 2) {
   817     switch(x->id()) {
   818       case vmIntrinsics::_dsin:
   819       case vmIntrinsics::_dcos:
   820       case vmIntrinsics::_dtan:
   821       case vmIntrinsics::_dlog:
   822       case vmIntrinsics::_dlog10:
   823       case vmIntrinsics::_dexp:
   824       case vmIntrinsics::_dpow:
   825         use_fpu = true;
   826     }
   827   } else {
   828     value.set_destroys_register();
   829   }
   831   value.load_item();
   833   LIR_Opr calc_input = value.result();
   834   LIR_Opr calc_input2 = NULL;
   835   if (x->id() == vmIntrinsics::_dpow) {
   836     LIRItem extra_arg(x->argument_at(1), this);
   837     if (UseSSE < 2) {
   838       extra_arg.set_destroys_register();
   839     }
   840     extra_arg.load_item();
   841     calc_input2 = extra_arg.result();
   842   }
   843   LIR_Opr calc_result = rlock_result(x);
   845   // sin, cos, pow and exp need two free fpu stack slots, so register
   846   // two temporary operands
   847   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
   848   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
   850   if (use_fpu) {
   851     LIR_Opr tmp = FrameMap::fpu0_double_opr;
   852     int tmp_start = 1;
   853     if (calc_input2 != NULL) {
   854       __ move(calc_input2, tmp);
   855       tmp_start = 2;
   856       calc_input2 = tmp;
   857     }
   858     __ move(calc_input, tmp);
   860     calc_input = tmp;
   861     calc_result = tmp;
   863     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
   864     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
   865   }
   867   switch(x->id()) {
   868     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   869     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   870     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
   871     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
   872     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
   873     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
   874     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
   875     case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   876     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   877     default:                    ShouldNotReachHere();
   878   }
   880   if (use_fpu) {
   881     __ move(calc_result, x->operand());
   882   }
   883 }
   886 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   887   assert(x->number_of_arguments() == 5, "wrong type");
   889   // Make all state_for calls early since they can emit code
   890   CodeEmitInfo* info = state_for(x, x->state());
   892   LIRItem src(x->argument_at(0), this);
   893   LIRItem src_pos(x->argument_at(1), this);
   894   LIRItem dst(x->argument_at(2), this);
   895   LIRItem dst_pos(x->argument_at(3), this);
   896   LIRItem length(x->argument_at(4), this);
   898   // operands for arraycopy must use fixed registers, otherwise
   899   // LinearScan will fail allocation (because arraycopy always needs a
   900   // call)
   902 #ifndef _LP64
   903   src.load_item_force     (FrameMap::rcx_oop_opr);
   904   src_pos.load_item_force (FrameMap::rdx_opr);
   905   dst.load_item_force     (FrameMap::rax_oop_opr);
   906   dst_pos.load_item_force (FrameMap::rbx_opr);
   907   length.load_item_force  (FrameMap::rdi_opr);
   908   LIR_Opr tmp =           (FrameMap::rsi_opr);
   909 #else
   911   // The java calling convention will give us enough registers
   912   // so that on the stub side the args will be perfect already.
   913   // On the other slow/special case side we call C and the arg
   914   // positions are not similar enough to pick one as the best.
   915   // Also because the java calling convention is a "shifted" version
   916   // of the C convention we can process the java args trivially into C
   917   // args without worry of overwriting during the xfer
   919   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
   920   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
   921   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
   922   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
   923   length.load_item_force  (FrameMap::as_opr(j_rarg4));
   925   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
   926 #endif // LP64
   928   set_no_result(x);
   930   int flags;
   931   ciArrayKlass* expected_type;
   932   arraycopy_helper(x, &flags, &expected_type);
   934   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
   935 }
   938 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
   939 // _i2b, _i2c, _i2s
   940 LIR_Opr fixed_register_for(BasicType type) {
   941   switch (type) {
   942     case T_FLOAT:  return FrameMap::fpu0_float_opr;
   943     case T_DOUBLE: return FrameMap::fpu0_double_opr;
   944     case T_INT:    return FrameMap::rax_opr;
   945     case T_LONG:   return FrameMap::long0_opr;
   946     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
   947   }
   948 }
   950 void LIRGenerator::do_Convert(Convert* x) {
   951   // flags that vary for the different operations and different SSE-settings
   952   bool fixed_input, fixed_result, round_result, needs_stub;
   954   switch (x->op()) {
   955     case Bytecodes::_i2l: // fall through
   956     case Bytecodes::_l2i: // fall through
   957     case Bytecodes::_i2b: // fall through
   958     case Bytecodes::_i2c: // fall through
   959     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   961     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
   962     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
   963     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
   964     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   965     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   966     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   967     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
   968     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
   969     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   970     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   971     default: ShouldNotReachHere();
   972   }
   974   LIRItem value(x->value(), this);
   975   value.load_item();
   976   LIR_Opr input = value.result();
   977   LIR_Opr result = rlock(x);
   979   // arguments of lir_convert
   980   LIR_Opr conv_input = input;
   981   LIR_Opr conv_result = result;
   982   ConversionStub* stub = NULL;
   984   if (fixed_input) {
   985     conv_input = fixed_register_for(input->type());
   986     __ move(input, conv_input);
   987   }
   989   assert(fixed_result == false || round_result == false, "cannot set both");
   990   if (fixed_result) {
   991     conv_result = fixed_register_for(result->type());
   992   } else if (round_result) {
   993     result = new_register(result->type());
   994     set_vreg_flag(result, must_start_in_memory);
   995   }
   997   if (needs_stub) {
   998     stub = new ConversionStub(x->op(), conv_input, conv_result);
   999   }
  1001   __ convert(x->op(), conv_input, conv_result, stub);
  1003   if (result != conv_result) {
  1004     __ move(conv_result, result);
  1007   assert(result->is_virtual(), "result must be virtual register");
  1008   set_result(x, result);
  1012 void LIRGenerator::do_NewInstance(NewInstance* x) {
  1013 #ifndef PRODUCT
  1014   if (PrintNotLoaded && !x->klass()->is_loaded()) {
  1015     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
  1017 #endif
  1018   CodeEmitInfo* info = state_for(x, x->state());
  1019   LIR_Opr reg = result_register_for(x->type());
  1020   new_instance(reg, x->klass(),
  1021                        FrameMap::rcx_oop_opr,
  1022                        FrameMap::rdi_oop_opr,
  1023                        FrameMap::rsi_oop_opr,
  1024                        LIR_OprFact::illegalOpr,
  1025                        FrameMap::rdx_metadata_opr, info);
  1026   LIR_Opr result = rlock_result(x);
  1027   __ move(reg, result);
  1031 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
  1032   CodeEmitInfo* info = state_for(x, x->state());
  1034   LIRItem length(x->length(), this);
  1035   length.load_item_force(FrameMap::rbx_opr);
  1037   LIR_Opr reg = result_register_for(x->type());
  1038   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1039   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1040   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1041   LIR_Opr tmp4 = reg;
  1042   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1043   LIR_Opr len = length.result();
  1044   BasicType elem_type = x->elt_type();
  1046   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
  1048   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
  1049   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
  1051   LIR_Opr result = rlock_result(x);
  1052   __ move(reg, result);
  1056 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
  1057   LIRItem length(x->length(), this);
  1058   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
  1059   // and therefore provide the state before the parameters have been consumed
  1060   CodeEmitInfo* patching_info = NULL;
  1061   if (!x->klass()->is_loaded() || PatchALot) {
  1062     patching_info =  state_for(x, x->state_before());
  1065   CodeEmitInfo* info = state_for(x, x->state());
  1067   const LIR_Opr reg = result_register_for(x->type());
  1068   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1069   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1070   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1071   LIR_Opr tmp4 = reg;
  1072   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1074   length.load_item_force(FrameMap::rbx_opr);
  1075   LIR_Opr len = length.result();
  1077   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
  1078   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
  1079   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
  1080     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
  1082   klass2reg_with_patching(klass_reg, obj, patching_info);
  1083   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
  1085   LIR_Opr result = rlock_result(x);
  1086   __ move(reg, result);
  1090 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  1091   Values* dims = x->dims();
  1092   int i = dims->length();
  1093   LIRItemList* items = new LIRItemList(dims->length(), NULL);
  1094   while (i-- > 0) {
  1095     LIRItem* size = new LIRItem(dims->at(i), this);
  1096     items->at_put(i, size);
  1099   // Evaluate state_for early since it may emit code.
  1100   CodeEmitInfo* patching_info = NULL;
  1101   if (!x->klass()->is_loaded() || PatchALot) {
  1102     patching_info = state_for(x, x->state_before());
  1104     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  1105     // clone all handlers (NOTE: Usually this is handled transparently
  1106     // by the CodeEmitInfo cloning logic in CodeStub constructors but
  1107     // is done explicitly here because a stub isn't being used).
  1108     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  1110   CodeEmitInfo* info = state_for(x, x->state());
  1112   i = dims->length();
  1113   while (i-- > 0) {
  1114     LIRItem* size = items->at(i);
  1115     size->load_nonconstant();
  1117     store_stack_parameter(size->result(), in_ByteSize(i*4));
  1120   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
  1121   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
  1123   LIR_Opr rank = FrameMap::rbx_opr;
  1124   __ move(LIR_OprFact::intConst(x->rank()), rank);
  1125   LIR_Opr varargs = FrameMap::rcx_opr;
  1126   __ move(FrameMap::rsp_opr, varargs);
  1127   LIR_OprList* args = new LIR_OprList(3);
  1128   args->append(klass_reg);
  1129   args->append(rank);
  1130   args->append(varargs);
  1131   LIR_Opr reg = result_register_for(x->type());
  1132   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1133                   LIR_OprFact::illegalOpr,
  1134                   reg, args, info);
  1136   LIR_Opr result = rlock_result(x);
  1137   __ move(reg, result);
  1141 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1142   // nothing to do for now
  1146 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1147   LIRItem obj(x->obj(), this);
  1149   CodeEmitInfo* patching_info = NULL;
  1150   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1151     // must do this before locking the destination register as an oop register,
  1152     // and before the obj is loaded (the latter is for deoptimization)
  1153     patching_info = state_for(x, x->state_before());
  1155   obj.load_item();
  1157   // info for exceptions
  1158   CodeEmitInfo* info_for_exception = state_for(x);
  1160   CodeStub* stub;
  1161   if (x->is_incompatible_class_change_check()) {
  1162     assert(patching_info == NULL, "can't patch this");
  1163     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1164   } else {
  1165     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1167   LIR_Opr reg = rlock_result(x);
  1168   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1169   if (!x->klass()->is_loaded() || UseCompressedKlassPointers) {
  1170     tmp3 = new_register(objectType);
  1172   __ checkcast(reg, obj.result(), x->klass(),
  1173                new_register(objectType), new_register(objectType), tmp3,
  1174                x->direct_compare(), info_for_exception, patching_info, stub,
  1175                x->profiled_method(), x->profiled_bci());
  1179 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1180   LIRItem obj(x->obj(), this);
  1182   // result and test object may not be in same register
  1183   LIR_Opr reg = rlock_result(x);
  1184   CodeEmitInfo* patching_info = NULL;
  1185   if ((!x->klass()->is_loaded() || PatchALot)) {
  1186     // must do this before locking the destination register as an oop register
  1187     patching_info = state_for(x, x->state_before());
  1189   obj.load_item();
  1190   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1191   if (!x->klass()->is_loaded() || UseCompressedKlassPointers) {
  1192     tmp3 = new_register(objectType);
  1194   __ instanceof(reg, obj.result(), x->klass(),
  1195                 new_register(objectType), new_register(objectType), tmp3,
  1196                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
  1200 void LIRGenerator::do_If(If* x) {
  1201   assert(x->number_of_sux() == 2, "inconsistency");
  1202   ValueTag tag = x->x()->type()->tag();
  1203   bool is_safepoint = x->is_safepoint();
  1205   If::Condition cond = x->cond();
  1207   LIRItem xitem(x->x(), this);
  1208   LIRItem yitem(x->y(), this);
  1209   LIRItem* xin = &xitem;
  1210   LIRItem* yin = &yitem;
  1212   if (tag == longTag) {
  1213     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1214     // mirror for other conditions
  1215     if (cond == If::gtr || cond == If::leq) {
  1216       cond = Instruction::mirror(cond);
  1217       xin = &yitem;
  1218       yin = &xitem;
  1220     xin->set_destroys_register();
  1222   xin->load_item();
  1223   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
  1224     // inline long zero
  1225     yin->dont_load_item();
  1226   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
  1227     // longs cannot handle constants at right side
  1228     yin->load_item();
  1229   } else {
  1230     yin->dont_load_item();
  1233   // add safepoint before generating condition code so it can be recomputed
  1234   if (x->is_safepoint()) {
  1235     // increment backedge counter if needed
  1236     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
  1237     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  1239   set_no_result(x);
  1241   LIR_Opr left = xin->result();
  1242   LIR_Opr right = yin->result();
  1243   __ cmp(lir_cond(cond), left, right);
  1244   // Generate branch profiling. Profiling code doesn't kill flags.
  1245   profile_branch(x, cond);
  1246   move_to_phi(x->state());
  1247   if (x->x()->type()->is_float_kind()) {
  1248     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1249   } else {
  1250     __ branch(lir_cond(cond), right->type(), x->tsux());
  1252   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1253   __ jump(x->default_sux());
  1257 LIR_Opr LIRGenerator::getThreadPointer() {
  1258 #ifdef _LP64
  1259   return FrameMap::as_pointer_opr(r15_thread);
  1260 #else
  1261   LIR_Opr result = new_register(T_INT);
  1262   __ get_thread(result);
  1263   return result;
  1264 #endif //
  1267 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1268   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
  1269   LIR_OprList* args = new LIR_OprList();
  1270   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1271   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
  1275 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1276                                         CodeEmitInfo* info) {
  1277   if (address->type() == T_LONG) {
  1278     address = new LIR_Address(address->base(),
  1279                               address->index(), address->scale(),
  1280                               address->disp(), T_DOUBLE);
  1281     // Transfer the value atomically by using FP moves.  This means
  1282     // the value has to be moved between CPU and FPU registers.  It
  1283     // always has to be moved through spill slot since there's no
  1284     // quick way to pack the value into an SSE register.
  1285     LIR_Opr temp_double = new_register(T_DOUBLE);
  1286     LIR_Opr spill = new_register(T_LONG);
  1287     set_vreg_flag(spill, must_start_in_memory);
  1288     __ move(value, spill);
  1289     __ volatile_move(spill, temp_double, T_LONG);
  1290     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
  1291   } else {
  1292     __ store(value, address, info);
  1298 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1299                                        CodeEmitInfo* info) {
  1300   if (address->type() == T_LONG) {
  1301     address = new LIR_Address(address->base(),
  1302                               address->index(), address->scale(),
  1303                               address->disp(), T_DOUBLE);
  1304     // Transfer the value atomically by using FP moves.  This means
  1305     // the value has to be moved between CPU and FPU registers.  In
  1306     // SSE0 and SSE1 mode it has to be moved through spill slot but in
  1307     // SSE2+ mode it can be moved directly.
  1308     LIR_Opr temp_double = new_register(T_DOUBLE);
  1309     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
  1310     __ volatile_move(temp_double, result, T_LONG);
  1311     if (UseSSE < 2) {
  1312       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
  1313       set_vreg_flag(result, must_start_in_memory);
  1315   } else {
  1316     __ load(address, result, info);
  1320 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1321                                      BasicType type, bool is_volatile) {
  1322   if (is_volatile && type == T_LONG) {
  1323     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1324     LIR_Opr tmp = new_register(T_DOUBLE);
  1325     __ load(addr, tmp);
  1326     LIR_Opr spill = new_register(T_LONG);
  1327     set_vreg_flag(spill, must_start_in_memory);
  1328     __ move(tmp, spill);
  1329     __ move(spill, dst);
  1330   } else {
  1331     LIR_Address* addr = new LIR_Address(src, offset, type);
  1332     __ load(addr, dst);
  1337 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1338                                      BasicType type, bool is_volatile) {
  1339   if (is_volatile && type == T_LONG) {
  1340     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1341     LIR_Opr tmp = new_register(T_DOUBLE);
  1342     LIR_Opr spill = new_register(T_DOUBLE);
  1343     set_vreg_flag(spill, must_start_in_memory);
  1344     __ move(data, spill);
  1345     __ move(spill, tmp);
  1346     __ move(tmp, addr);
  1347   } else {
  1348     LIR_Address* addr = new LIR_Address(src, offset, type);
  1349     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1350     if (is_obj) {
  1351       // Do the pre-write barrier, if any.
  1352       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1353                   true /* do_load */, false /* patch */, NULL);
  1354       __ move(data, addr);
  1355       assert(src->is_register(), "must be register");
  1356       // Seems to be a precise address
  1357       post_barrier(LIR_OprFact::address(addr), data);
  1358     } else {
  1359       __ move(data, addr);
  1364 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
  1365   BasicType type = x->basic_type();
  1366   LIRItem src(x->object(), this);
  1367   LIRItem off(x->offset(), this);
  1368   LIRItem value(x->value(), this);
  1370   src.load_item();
  1371   value.load_item();
  1372   off.load_nonconstant();
  1374   LIR_Opr dst = rlock_result(x, type);
  1375   LIR_Opr data = value.result();
  1376   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1377   LIR_Opr offset = off.result();
  1379   assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
  1380   LIR_Address* addr;
  1381   if (offset->is_constant()) {
  1382 #ifdef _LP64
  1383     jlong c = offset->as_jlong();
  1384     if ((jlong)((jint)c) == c) {
  1385       addr = new LIR_Address(src.result(), (jint)c, type);
  1386     } else {
  1387       LIR_Opr tmp = new_register(T_LONG);
  1388       __ move(offset, tmp);
  1389       addr = new LIR_Address(src.result(), tmp, type);
  1391 #else
  1392     addr = new LIR_Address(src.result(), offset->as_jint(), type);
  1393 #endif
  1394   } else {
  1395     addr = new LIR_Address(src.result(), offset, type);
  1398   if (data != dst) {
  1399     __ move(data, dst);
  1400     data = dst;
  1402   if (x->is_add()) {
  1403     __ xadd(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
  1404   } else {
  1405     if (is_obj) {
  1406       // Do the pre-write barrier, if any.
  1407       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1408                   true /* do_load */, false /* patch */, NULL);
  1410     __ xchg(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
  1411     if (is_obj) {
  1412       // Seems to be a precise address
  1413       post_barrier(LIR_OprFact::address(addr), data);

mercurial