src/share/vm/opto/library_call.cpp

Tue, 12 Feb 2013 12:56:11 +0100

author
roland
date
Tue, 12 Feb 2013 12:56:11 +0100
changeset 4589
8b3da8d14c93
parent 4479
b30b3c2a0cf2
child 4617
c59b7900a2bd
permissions
-rw-r--r--

7197327: 40% regression on 8 b41 comp 8 b40 on specjvm2008.mpegaudio on oob
Summary: Add support for expensive nodes.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   bool             _is_predicted;
    48   vmIntrinsics::ID _intrinsic_id;
    50  public:
    51   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
    52     : InlineCallGenerator(m),
    53       _is_virtual(is_virtual),
    54       _is_predicted(is_predicted),
    55       _intrinsic_id(id)
    56   {
    57   }
    58   virtual bool is_intrinsic() const { return true; }
    59   virtual bool is_virtual()   const { return _is_virtual; }
    60   virtual bool is_predicted()   const { return _is_predicted; }
    61   virtual JVMState* generate(JVMState* jvms);
    62   virtual Node* generate_predicate(JVMState* jvms);
    63   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    64 };
    67 // Local helper class for LibraryIntrinsic:
    68 class LibraryCallKit : public GraphKit {
    69  private:
    70   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    71   Node*             _result;        // the result node, if any
    72   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    74   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    76  public:
    77   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    78     : GraphKit(jvms),
    79       _intrinsic(intrinsic),
    80       _result(NULL)
    81   {
    82     // Check if this is a root compile.  In that case we don't have a caller.
    83     if (!jvms->has_method()) {
    84       _reexecute_sp = sp();
    85     } else {
    86       // Find out how many arguments the interpreter needs when deoptimizing
    87       // and save the stack pointer value so it can used by uncommon_trap.
    88       // We find the argument count by looking at the declared signature.
    89       bool ignored_will_link;
    90       ciSignature* declared_signature = NULL;
    91       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    92       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    93       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    94     }
    95   }
    97   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
    99   ciMethod*         caller()    const    { return jvms()->method(); }
   100   int               bci()       const    { return jvms()->bci(); }
   101   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   102   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   103   ciMethod*         callee()    const    { return _intrinsic->method(); }
   105   bool try_to_inline();
   106   Node* try_to_predicate();
   108   void push_result() {
   109     // Push the result onto the stack.
   110     if (!stopped() && result() != NULL) {
   111       BasicType bt = result()->bottom_type()->basic_type();
   112       push_node(bt, result());
   113     }
   114   }
   116  private:
   117   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   118     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   119   }
   121   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   122   void  set_result(RegionNode* region, PhiNode* value);
   123   Node*     result() { return _result; }
   125   virtual int reexecute_sp() { return _reexecute_sp; }
   127   // Helper functions to inline natives
   128   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   129   Node* generate_slow_guard(Node* test, RegionNode* region);
   130   Node* generate_fair_guard(Node* test, RegionNode* region);
   131   Node* generate_negative_guard(Node* index, RegionNode* region,
   132                                 // resulting CastII of index:
   133                                 Node* *pos_index = NULL);
   134   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   135                                    // resulting CastII of index:
   136                                    Node* *pos_index = NULL);
   137   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   138                              Node* array_length,
   139                              RegionNode* region);
   140   Node* generate_current_thread(Node* &tls_output);
   141   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   142                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   143   Node* load_mirror_from_klass(Node* klass);
   144   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   145                                       RegionNode* region, int null_path,
   146                                       int offset);
   147   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   148                                RegionNode* region, int null_path) {
   149     int offset = java_lang_Class::klass_offset_in_bytes();
   150     return load_klass_from_mirror_common(mirror, never_see_null,
   151                                          region, null_path,
   152                                          offset);
   153   }
   154   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   155                                      RegionNode* region, int null_path) {
   156     int offset = java_lang_Class::array_klass_offset_in_bytes();
   157     return load_klass_from_mirror_common(mirror, never_see_null,
   158                                          region, null_path,
   159                                          offset);
   160   }
   161   Node* generate_access_flags_guard(Node* kls,
   162                                     int modifier_mask, int modifier_bits,
   163                                     RegionNode* region);
   164   Node* generate_interface_guard(Node* kls, RegionNode* region);
   165   Node* generate_array_guard(Node* kls, RegionNode* region) {
   166     return generate_array_guard_common(kls, region, false, false);
   167   }
   168   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   169     return generate_array_guard_common(kls, region, false, true);
   170   }
   171   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   172     return generate_array_guard_common(kls, region, true, false);
   173   }
   174   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   175     return generate_array_guard_common(kls, region, true, true);
   176   }
   177   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   178                                     bool obj_array, bool not_array);
   179   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   180   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   181                                      bool is_virtual = false, bool is_static = false);
   182   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   183     return generate_method_call(method_id, false, true);
   184   }
   185   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   186     return generate_method_call(method_id, true, false);
   187   }
   188   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   190   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   191   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   192   bool inline_string_compareTo();
   193   bool inline_string_indexOf();
   194   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   195   bool inline_string_equals();
   196   Node* round_double_node(Node* n);
   197   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   198   bool inline_math_native(vmIntrinsics::ID id);
   199   bool inline_trig(vmIntrinsics::ID id);
   200   bool inline_math(vmIntrinsics::ID id);
   201   bool inline_exp();
   202   bool inline_pow();
   203   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   204   bool inline_min_max(vmIntrinsics::ID id);
   205   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   206   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   207   int classify_unsafe_addr(Node* &base, Node* &offset);
   208   Node* make_unsafe_address(Node* base, Node* offset);
   209   // Helper for inline_unsafe_access.
   210   // Generates the guards that check whether the result of
   211   // Unsafe.getObject should be recorded in an SATB log buffer.
   212   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   213   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   214   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   215   bool inline_unsafe_allocate();
   216   bool inline_unsafe_copyMemory();
   217   bool inline_native_currentThread();
   218 #ifdef TRACE_HAVE_INTRINSICS
   219   bool inline_native_classID();
   220   bool inline_native_threadID();
   221 #endif
   222   bool inline_native_time_funcs(address method, const char* funcName);
   223   bool inline_native_isInterrupted();
   224   bool inline_native_Class_query(vmIntrinsics::ID id);
   225   bool inline_native_subtype_check();
   227   bool inline_native_newArray();
   228   bool inline_native_getLength();
   229   bool inline_array_copyOf(bool is_copyOfRange);
   230   bool inline_array_equals();
   231   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   232   bool inline_native_clone(bool is_virtual);
   233   bool inline_native_Reflection_getCallerClass();
   234   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   235   // Helper function for inlining native object hash method
   236   bool inline_native_hashcode(bool is_virtual, bool is_static);
   237   bool inline_native_getClass();
   239   // Helper functions for inlining arraycopy
   240   bool inline_arraycopy();
   241   void generate_arraycopy(const TypePtr* adr_type,
   242                           BasicType basic_elem_type,
   243                           Node* src,  Node* src_offset,
   244                           Node* dest, Node* dest_offset,
   245                           Node* copy_length,
   246                           bool disjoint_bases = false,
   247                           bool length_never_negative = false,
   248                           RegionNode* slow_region = NULL);
   249   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   250                                                 RegionNode* slow_region);
   251   void generate_clear_array(const TypePtr* adr_type,
   252                             Node* dest,
   253                             BasicType basic_elem_type,
   254                             Node* slice_off,
   255                             Node* slice_len,
   256                             Node* slice_end);
   257   bool generate_block_arraycopy(const TypePtr* adr_type,
   258                                 BasicType basic_elem_type,
   259                                 AllocateNode* alloc,
   260                                 Node* src,  Node* src_offset,
   261                                 Node* dest, Node* dest_offset,
   262                                 Node* dest_size, bool dest_uninitialized);
   263   void generate_slow_arraycopy(const TypePtr* adr_type,
   264                                Node* src,  Node* src_offset,
   265                                Node* dest, Node* dest_offset,
   266                                Node* copy_length, bool dest_uninitialized);
   267   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   268                                      Node* dest_elem_klass,
   269                                      Node* src,  Node* src_offset,
   270                                      Node* dest, Node* dest_offset,
   271                                      Node* copy_length, bool dest_uninitialized);
   272   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   273                                    Node* src,  Node* src_offset,
   274                                    Node* dest, Node* dest_offset,
   275                                    Node* copy_length, bool dest_uninitialized);
   276   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   277                                     BasicType basic_elem_type,
   278                                     bool disjoint_bases,
   279                                     Node* src,  Node* src_offset,
   280                                     Node* dest, Node* dest_offset,
   281                                     Node* copy_length, bool dest_uninitialized);
   282   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   283   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   284   bool inline_unsafe_ordered_store(BasicType type);
   285   bool inline_unsafe_fence(vmIntrinsics::ID id);
   286   bool inline_fp_conversions(vmIntrinsics::ID id);
   287   bool inline_number_methods(vmIntrinsics::ID id);
   288   bool inline_reference_get();
   289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   293   bool inline_encodeISOArray();
   294 };
   297 //---------------------------make_vm_intrinsic----------------------------
   298 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   299   vmIntrinsics::ID id = m->intrinsic_id();
   300   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   302   if (DisableIntrinsic[0] != '\0'
   303       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   304     // disabled by a user request on the command line:
   305     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   306     return NULL;
   307   }
   309   if (!m->is_loaded()) {
   310     // do not attempt to inline unloaded methods
   311     return NULL;
   312   }
   314   // Only a few intrinsics implement a virtual dispatch.
   315   // They are expensive calls which are also frequently overridden.
   316   if (is_virtual) {
   317     switch (id) {
   318     case vmIntrinsics::_hashCode:
   319     case vmIntrinsics::_clone:
   320       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   321       break;
   322     default:
   323       return NULL;
   324     }
   325   }
   327   // -XX:-InlineNatives disables nearly all intrinsics:
   328   if (!InlineNatives) {
   329     switch (id) {
   330     case vmIntrinsics::_indexOf:
   331     case vmIntrinsics::_compareTo:
   332     case vmIntrinsics::_equals:
   333     case vmIntrinsics::_equalsC:
   334     case vmIntrinsics::_getAndAddInt:
   335     case vmIntrinsics::_getAndAddLong:
   336     case vmIntrinsics::_getAndSetInt:
   337     case vmIntrinsics::_getAndSetLong:
   338     case vmIntrinsics::_getAndSetObject:
   339     case vmIntrinsics::_loadFence:
   340     case vmIntrinsics::_storeFence:
   341     case vmIntrinsics::_fullFence:
   342       break;  // InlineNatives does not control String.compareTo
   343     case vmIntrinsics::_Reference_get:
   344       break;  // InlineNatives does not control Reference.get
   345     default:
   346       return NULL;
   347     }
   348   }
   350   bool is_predicted = false;
   352   switch (id) {
   353   case vmIntrinsics::_compareTo:
   354     if (!SpecialStringCompareTo)  return NULL;
   355     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   356     break;
   357   case vmIntrinsics::_indexOf:
   358     if (!SpecialStringIndexOf)  return NULL;
   359     break;
   360   case vmIntrinsics::_equals:
   361     if (!SpecialStringEquals)  return NULL;
   362     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   363     break;
   364   case vmIntrinsics::_equalsC:
   365     if (!SpecialArraysEquals)  return NULL;
   366     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   367     break;
   368   case vmIntrinsics::_arraycopy:
   369     if (!InlineArrayCopy)  return NULL;
   370     break;
   371   case vmIntrinsics::_copyMemory:
   372     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   373     if (!InlineArrayCopy)  return NULL;
   374     break;
   375   case vmIntrinsics::_hashCode:
   376     if (!InlineObjectHash)  return NULL;
   377     break;
   378   case vmIntrinsics::_clone:
   379   case vmIntrinsics::_copyOf:
   380   case vmIntrinsics::_copyOfRange:
   381     if (!InlineObjectCopy)  return NULL;
   382     // These also use the arraycopy intrinsic mechanism:
   383     if (!InlineArrayCopy)  return NULL;
   384     break;
   385   case vmIntrinsics::_encodeISOArray:
   386     if (!SpecialEncodeISOArray)  return NULL;
   387     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   388     break;
   389   case vmIntrinsics::_checkIndex:
   390     // We do not intrinsify this.  The optimizer does fine with it.
   391     return NULL;
   393   case vmIntrinsics::_getCallerClass:
   394     if (!UseNewReflection)  return NULL;
   395     if (!InlineReflectionGetCallerClass)  return NULL;
   396     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   397     break;
   399   case vmIntrinsics::_bitCount_i:
   400     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   401     break;
   403   case vmIntrinsics::_bitCount_l:
   404     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   405     break;
   407   case vmIntrinsics::_numberOfLeadingZeros_i:
   408     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   409     break;
   411   case vmIntrinsics::_numberOfLeadingZeros_l:
   412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   413     break;
   415   case vmIntrinsics::_numberOfTrailingZeros_i:
   416     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   417     break;
   419   case vmIntrinsics::_numberOfTrailingZeros_l:
   420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   421     break;
   423   case vmIntrinsics::_reverseBytes_c:
   424     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   425     break;
   426   case vmIntrinsics::_reverseBytes_s:
   427     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   428     break;
   429   case vmIntrinsics::_reverseBytes_i:
   430     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   431     break;
   432   case vmIntrinsics::_reverseBytes_l:
   433     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   434     break;
   436   case vmIntrinsics::_Reference_get:
   437     // Use the intrinsic version of Reference.get() so that the value in
   438     // the referent field can be registered by the G1 pre-barrier code.
   439     // Also add memory barrier to prevent commoning reads from this field
   440     // across safepoint since GC can change it value.
   441     break;
   443   case vmIntrinsics::_compareAndSwapObject:
   444 #ifdef _LP64
   445     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   446 #endif
   447     break;
   449   case vmIntrinsics::_compareAndSwapLong:
   450     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   451     break;
   453   case vmIntrinsics::_getAndAddInt:
   454     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   455     break;
   457   case vmIntrinsics::_getAndAddLong:
   458     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   459     break;
   461   case vmIntrinsics::_getAndSetInt:
   462     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   463     break;
   465   case vmIntrinsics::_getAndSetLong:
   466     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   467     break;
   469   case vmIntrinsics::_getAndSetObject:
   470 #ifdef _LP64
   471     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   472     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   473     break;
   474 #else
   475     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   476     break;
   477 #endif
   479   case vmIntrinsics::_aescrypt_encryptBlock:
   480   case vmIntrinsics::_aescrypt_decryptBlock:
   481     if (!UseAESIntrinsics) return NULL;
   482     break;
   484   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   485   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   486     if (!UseAESIntrinsics) return NULL;
   487     // these two require the predicated logic
   488     is_predicted = true;
   489     break;
   491  default:
   492     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   493     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   494     break;
   495   }
   497   // -XX:-InlineClassNatives disables natives from the Class class.
   498   // The flag applies to all reflective calls, notably Array.newArray
   499   // (visible to Java programmers as Array.newInstance).
   500   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   501       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   502     if (!InlineClassNatives)  return NULL;
   503   }
   505   // -XX:-InlineThreadNatives disables natives from the Thread class.
   506   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   507     if (!InlineThreadNatives)  return NULL;
   508   }
   510   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   511   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   512       m->holder()->name() == ciSymbol::java_lang_Float() ||
   513       m->holder()->name() == ciSymbol::java_lang_Double()) {
   514     if (!InlineMathNatives)  return NULL;
   515   }
   517   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   518   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   519     if (!InlineUnsafeOps)  return NULL;
   520   }
   522   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
   523 }
   525 //----------------------register_library_intrinsics-----------------------
   526 // Initialize this file's data structures, for each Compile instance.
   527 void Compile::register_library_intrinsics() {
   528   // Nothing to do here.
   529 }
   531 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   532   LibraryCallKit kit(jvms, this);
   533   Compile* C = kit.C;
   534   int nodes = C->unique();
   535 #ifndef PRODUCT
   536   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   537     char buf[1000];
   538     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   539     tty->print_cr("Intrinsic %s", str);
   540   }
   541 #endif
   542   ciMethod* callee = kit.callee();
   543   const int bci    = kit.bci();
   545   // Try to inline the intrinsic.
   546   if (kit.try_to_inline()) {
   547     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   548       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   549     }
   550     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   551     if (C->log()) {
   552       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   553                      vmIntrinsics::name_at(intrinsic_id()),
   554                      (is_virtual() ? " virtual='1'" : ""),
   555                      C->unique() - nodes);
   556     }
   557     // Push the result from the inlined method onto the stack.
   558     kit.push_result();
   559     return kit.transfer_exceptions_into_jvms();
   560   }
   562   // The intrinsic bailed out
   563   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   564     if (jvms->has_method()) {
   565       // Not a root compile.
   566       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   567       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   568     } else {
   569       // Root compile
   570       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   571                vmIntrinsics::name_at(intrinsic_id()),
   572                (is_virtual() ? " (virtual)" : ""), bci);
   573     }
   574   }
   575   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   576   return NULL;
   577 }
   579 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   580   LibraryCallKit kit(jvms, this);
   581   Compile* C = kit.C;
   582   int nodes = C->unique();
   583 #ifndef PRODUCT
   584   assert(is_predicted(), "sanity");
   585   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   586     char buf[1000];
   587     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   588     tty->print_cr("Predicate for intrinsic %s", str);
   589   }
   590 #endif
   591   ciMethod* callee = kit.callee();
   592   const int bci    = kit.bci();
   594   Node* slow_ctl = kit.try_to_predicate();
   595   if (!kit.failing()) {
   596     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   597       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   598     }
   599     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   600     if (C->log()) {
   601       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   602                      vmIntrinsics::name_at(intrinsic_id()),
   603                      (is_virtual() ? " virtual='1'" : ""),
   604                      C->unique() - nodes);
   605     }
   606     return slow_ctl; // Could be NULL if the check folds.
   607   }
   609   // The intrinsic bailed out
   610   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   611     if (jvms->has_method()) {
   612       // Not a root compile.
   613       const char* msg = "failed to generate predicate for intrinsic";
   614       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   615     } else {
   616       // Root compile
   617       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   618                                         vmIntrinsics::name_at(intrinsic_id()),
   619                                         (is_virtual() ? " (virtual)" : ""), bci);
   620     }
   621   }
   622   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   623   return NULL;
   624 }
   626 bool LibraryCallKit::try_to_inline() {
   627   // Handle symbolic names for otherwise undistinguished boolean switches:
   628   const bool is_store       = true;
   629   const bool is_native_ptr  = true;
   630   const bool is_static      = true;
   631   const bool is_volatile    = true;
   633   if (!jvms()->has_method()) {
   634     // Root JVMState has a null method.
   635     assert(map()->memory()->Opcode() == Op_Parm, "");
   636     // Insert the memory aliasing node
   637     set_all_memory(reset_memory());
   638   }
   639   assert(merged_memory(), "");
   642   switch (intrinsic_id()) {
   643   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   644   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   645   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   647   case vmIntrinsics::_dsin:
   648   case vmIntrinsics::_dcos:
   649   case vmIntrinsics::_dtan:
   650   case vmIntrinsics::_dabs:
   651   case vmIntrinsics::_datan2:
   652   case vmIntrinsics::_dsqrt:
   653   case vmIntrinsics::_dexp:
   654   case vmIntrinsics::_dlog:
   655   case vmIntrinsics::_dlog10:
   656   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   658   case vmIntrinsics::_min:
   659   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   661   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   663   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   664   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   665   case vmIntrinsics::_equals:                   return inline_string_equals();
   667   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   668   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   669   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   670   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   671   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   672   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   673   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   674   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   675   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   677   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   678   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   679   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   680   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   681   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   682   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   683   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   684   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   685   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   687   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   688   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   689   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   690   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   691   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   692   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   693   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   694   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   696   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   697   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   698   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   699   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   700   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   701   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   702   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   703   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   705   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   706   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   707   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   708   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   709   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   710   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   711   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   712   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   713   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   715   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   716   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   717   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   718   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   719   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   720   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   721   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   722   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   723   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   725   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   726   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   727   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   728   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   730   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   731   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   732   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   734   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   735   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   736   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   738   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   739   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   740   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   741   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   742   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   744   case vmIntrinsics::_loadFence:
   745   case vmIntrinsics::_storeFence:
   746   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   748   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   749   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   751 #ifdef TRACE_HAVE_INTRINSICS
   752   case vmIntrinsics::_classID:                  return inline_native_classID();
   753   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   754   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   755 #endif
   756   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   757   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   758   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   759   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   760   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   761   case vmIntrinsics::_getLength:                return inline_native_getLength();
   762   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   763   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   764   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   765   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   767   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   769   case vmIntrinsics::_isInstance:
   770   case vmIntrinsics::_getModifiers:
   771   case vmIntrinsics::_isInterface:
   772   case vmIntrinsics::_isArray:
   773   case vmIntrinsics::_isPrimitive:
   774   case vmIntrinsics::_getSuperclass:
   775   case vmIntrinsics::_getComponentType:
   776   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   778   case vmIntrinsics::_floatToRawIntBits:
   779   case vmIntrinsics::_floatToIntBits:
   780   case vmIntrinsics::_intBitsToFloat:
   781   case vmIntrinsics::_doubleToRawLongBits:
   782   case vmIntrinsics::_doubleToLongBits:
   783   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   785   case vmIntrinsics::_numberOfLeadingZeros_i:
   786   case vmIntrinsics::_numberOfLeadingZeros_l:
   787   case vmIntrinsics::_numberOfTrailingZeros_i:
   788   case vmIntrinsics::_numberOfTrailingZeros_l:
   789   case vmIntrinsics::_bitCount_i:
   790   case vmIntrinsics::_bitCount_l:
   791   case vmIntrinsics::_reverseBytes_i:
   792   case vmIntrinsics::_reverseBytes_l:
   793   case vmIntrinsics::_reverseBytes_s:
   794   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   796   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   798   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   800   case vmIntrinsics::_aescrypt_encryptBlock:
   801   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   803   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   804   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   805     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   807   case vmIntrinsics::_encodeISOArray:
   808     return inline_encodeISOArray();
   810   default:
   811     // If you get here, it may be that someone has added a new intrinsic
   812     // to the list in vmSymbols.hpp without implementing it here.
   813 #ifndef PRODUCT
   814     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   815       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   816                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   817     }
   818 #endif
   819     return false;
   820   }
   821 }
   823 Node* LibraryCallKit::try_to_predicate() {
   824   if (!jvms()->has_method()) {
   825     // Root JVMState has a null method.
   826     assert(map()->memory()->Opcode() == Op_Parm, "");
   827     // Insert the memory aliasing node
   828     set_all_memory(reset_memory());
   829   }
   830   assert(merged_memory(), "");
   832   switch (intrinsic_id()) {
   833   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   834     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   835   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   836     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   838   default:
   839     // If you get here, it may be that someone has added a new intrinsic
   840     // to the list in vmSymbols.hpp without implementing it here.
   841 #ifndef PRODUCT
   842     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   843       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   844                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   845     }
   846 #endif
   847     Node* slow_ctl = control();
   848     set_control(top()); // No fast path instrinsic
   849     return slow_ctl;
   850   }
   851 }
   853 //------------------------------set_result-------------------------------
   854 // Helper function for finishing intrinsics.
   855 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   856   record_for_igvn(region);
   857   set_control(_gvn.transform(region));
   858   set_result( _gvn.transform(value));
   859   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   860 }
   862 //------------------------------generate_guard---------------------------
   863 // Helper function for generating guarded fast-slow graph structures.
   864 // The given 'test', if true, guards a slow path.  If the test fails
   865 // then a fast path can be taken.  (We generally hope it fails.)
   866 // In all cases, GraphKit::control() is updated to the fast path.
   867 // The returned value represents the control for the slow path.
   868 // The return value is never 'top'; it is either a valid control
   869 // or NULL if it is obvious that the slow path can never be taken.
   870 // Also, if region and the slow control are not NULL, the slow edge
   871 // is appended to the region.
   872 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   873   if (stopped()) {
   874     // Already short circuited.
   875     return NULL;
   876   }
   878   // Build an if node and its projections.
   879   // If test is true we take the slow path, which we assume is uncommon.
   880   if (_gvn.type(test) == TypeInt::ZERO) {
   881     // The slow branch is never taken.  No need to build this guard.
   882     return NULL;
   883   }
   885   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   887   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
   888   if (if_slow == top()) {
   889     // The slow branch is never taken.  No need to build this guard.
   890     return NULL;
   891   }
   893   if (region != NULL)
   894     region->add_req(if_slow);
   896   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
   897   set_control(if_fast);
   899   return if_slow;
   900 }
   902 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   903   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   904 }
   905 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   906   return generate_guard(test, region, PROB_FAIR);
   907 }
   909 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   910                                                      Node* *pos_index) {
   911   if (stopped())
   912     return NULL;                // already stopped
   913   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   914     return NULL;                // index is already adequately typed
   915   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   916   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   917   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   918   if (is_neg != NULL && pos_index != NULL) {
   919     // Emulate effect of Parse::adjust_map_after_if.
   920     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   921     ccast->set_req(0, control());
   922     (*pos_index) = _gvn.transform(ccast);
   923   }
   924   return is_neg;
   925 }
   927 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   928                                                         Node* *pos_index) {
   929   if (stopped())
   930     return NULL;                // already stopped
   931   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   932     return NULL;                // index is already adequately typed
   933   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   934   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   935   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
   936   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   937   if (is_notp != NULL && pos_index != NULL) {
   938     // Emulate effect of Parse::adjust_map_after_if.
   939     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   940     ccast->set_req(0, control());
   941     (*pos_index) = _gvn.transform(ccast);
   942   }
   943   return is_notp;
   944 }
   946 // Make sure that 'position' is a valid limit index, in [0..length].
   947 // There are two equivalent plans for checking this:
   948 //   A. (offset + copyLength)  unsigned<=  arrayLength
   949 //   B. offset  <=  (arrayLength - copyLength)
   950 // We require that all of the values above, except for the sum and
   951 // difference, are already known to be non-negative.
   952 // Plan A is robust in the face of overflow, if offset and copyLength
   953 // are both hugely positive.
   954 //
   955 // Plan B is less direct and intuitive, but it does not overflow at
   956 // all, since the difference of two non-negatives is always
   957 // representable.  Whenever Java methods must perform the equivalent
   958 // check they generally use Plan B instead of Plan A.
   959 // For the moment we use Plan A.
   960 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   961                                                   Node* subseq_length,
   962                                                   Node* array_length,
   963                                                   RegionNode* region) {
   964   if (stopped())
   965     return NULL;                // already stopped
   966   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   967   if (zero_offset && subseq_length->eqv_uncast(array_length))
   968     return NULL;                // common case of whole-array copy
   969   Node* last = subseq_length;
   970   if (!zero_offset)             // last += offset
   971     last = _gvn.transform( new (C) AddINode(last, offset));
   972   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
   973   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   974   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   975   return is_over;
   976 }
   979 //--------------------------generate_current_thread--------------------
   980 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   981   ciKlass*    thread_klass = env()->Thread_klass();
   982   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   983   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
   984   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   985   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   986   tls_output = thread;
   987   return threadObj;
   988 }
   991 //------------------------------make_string_method_node------------------------
   992 // Helper method for String intrinsic functions. This version is called
   993 // with str1 and str2 pointing to String object nodes.
   994 //
   995 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
   996   Node* no_ctrl = NULL;
   998   // Get start addr of string
   999   Node* str1_value   = load_String_value(no_ctrl, str1);
  1000   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1001   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1003   // Get length of string 1
  1004   Node* str1_len  = load_String_length(no_ctrl, str1);
  1006   Node* str2_value   = load_String_value(no_ctrl, str2);
  1007   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1008   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1010   Node* str2_len = NULL;
  1011   Node* result = NULL;
  1013   switch (opcode) {
  1014   case Op_StrIndexOf:
  1015     // Get length of string 2
  1016     str2_len = load_String_length(no_ctrl, str2);
  1018     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1019                                  str1_start, str1_len, str2_start, str2_len);
  1020     break;
  1021   case Op_StrComp:
  1022     // Get length of string 2
  1023     str2_len = load_String_length(no_ctrl, str2);
  1025     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1026                                  str1_start, str1_len, str2_start, str2_len);
  1027     break;
  1028   case Op_StrEquals:
  1029     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1030                                str1_start, str2_start, str1_len);
  1031     break;
  1032   default:
  1033     ShouldNotReachHere();
  1034     return NULL;
  1037   // All these intrinsics have checks.
  1038   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1040   return _gvn.transform(result);
  1043 // Helper method for String intrinsic functions. This version is called
  1044 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1045 // to Int nodes containing the lenghts of str1 and str2.
  1046 //
  1047 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1048   Node* result = NULL;
  1049   switch (opcode) {
  1050   case Op_StrIndexOf:
  1051     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1052                                  str1_start, cnt1, str2_start, cnt2);
  1053     break;
  1054   case Op_StrComp:
  1055     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1056                                  str1_start, cnt1, str2_start, cnt2);
  1057     break;
  1058   case Op_StrEquals:
  1059     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1060                                  str1_start, str2_start, cnt1);
  1061     break;
  1062   default:
  1063     ShouldNotReachHere();
  1064     return NULL;
  1067   // All these intrinsics have checks.
  1068   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1070   return _gvn.transform(result);
  1073 //------------------------------inline_string_compareTo------------------------
  1074 // public int java.lang.String.compareTo(String anotherString);
  1075 bool LibraryCallKit::inline_string_compareTo() {
  1076   Node* receiver = null_check(argument(0));
  1077   Node* arg      = null_check(argument(1));
  1078   if (stopped()) {
  1079     return true;
  1081   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1082   return true;
  1085 //------------------------------inline_string_equals------------------------
  1086 bool LibraryCallKit::inline_string_equals() {
  1087   Node* receiver = null_check_receiver();
  1088   // NOTE: Do not null check argument for String.equals() because spec
  1089   // allows to specify NULL as argument.
  1090   Node* argument = this->argument(1);
  1091   if (stopped()) {
  1092     return true;
  1095   // paths (plus control) merge
  1096   RegionNode* region = new (C) RegionNode(5);
  1097   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1099   // does source == target string?
  1100   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1101   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1103   Node* if_eq = generate_slow_guard(bol, NULL);
  1104   if (if_eq != NULL) {
  1105     // receiver == argument
  1106     phi->init_req(2, intcon(1));
  1107     region->init_req(2, if_eq);
  1110   // get String klass for instanceOf
  1111   ciInstanceKlass* klass = env()->String_klass();
  1113   if (!stopped()) {
  1114     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1115     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1116     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1118     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1119     //instanceOf == true, fallthrough
  1121     if (inst_false != NULL) {
  1122       phi->init_req(3, intcon(0));
  1123       region->init_req(3, inst_false);
  1127   if (!stopped()) {
  1128     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1130     // Properly cast the argument to String
  1131     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1132     // This path is taken only when argument's type is String:NotNull.
  1133     argument = cast_not_null(argument, false);
  1135     Node* no_ctrl = NULL;
  1137     // Get start addr of receiver
  1138     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1139     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1140     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1142     // Get length of receiver
  1143     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1145     // Get start addr of argument
  1146     Node* argument_val    = load_String_value(no_ctrl, argument);
  1147     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1148     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1150     // Get length of argument
  1151     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1153     // Check for receiver count != argument count
  1154     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
  1155     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
  1156     Node* if_ne = generate_slow_guard(bol, NULL);
  1157     if (if_ne != NULL) {
  1158       phi->init_req(4, intcon(0));
  1159       region->init_req(4, if_ne);
  1162     // Check for count == 0 is done by assembler code for StrEquals.
  1164     if (!stopped()) {
  1165       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1166       phi->init_req(1, equals);
  1167       region->init_req(1, control());
  1171   // post merge
  1172   set_control(_gvn.transform(region));
  1173   record_for_igvn(region);
  1175   set_result(_gvn.transform(phi));
  1176   return true;
  1179 //------------------------------inline_array_equals----------------------------
  1180 bool LibraryCallKit::inline_array_equals() {
  1181   Node* arg1 = argument(0);
  1182   Node* arg2 = argument(1);
  1183   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1184   return true;
  1187 // Java version of String.indexOf(constant string)
  1188 // class StringDecl {
  1189 //   StringDecl(char[] ca) {
  1190 //     offset = 0;
  1191 //     count = ca.length;
  1192 //     value = ca;
  1193 //   }
  1194 //   int offset;
  1195 //   int count;
  1196 //   char[] value;
  1197 // }
  1198 //
  1199 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1200 //                             int targetOffset, int cache_i, int md2) {
  1201 //   int cache = cache_i;
  1202 //   int sourceOffset = string_object.offset;
  1203 //   int sourceCount = string_object.count;
  1204 //   int targetCount = target_object.length;
  1205 //
  1206 //   int targetCountLess1 = targetCount - 1;
  1207 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1208 //
  1209 //   char[] source = string_object.value;
  1210 //   char[] target = target_object;
  1211 //   int lastChar = target[targetCountLess1];
  1212 //
  1213 //  outer_loop:
  1214 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1215 //     int src = source[i + targetCountLess1];
  1216 //     if (src == lastChar) {
  1217 //       // With random strings and a 4-character alphabet,
  1218 //       // reverse matching at this point sets up 0.8% fewer
  1219 //       // frames, but (paradoxically) makes 0.3% more probes.
  1220 //       // Since those probes are nearer the lastChar probe,
  1221 //       // there is may be a net D$ win with reverse matching.
  1222 //       // But, reversing loop inhibits unroll of inner loop
  1223 //       // for unknown reason.  So, does running outer loop from
  1224 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1225 //       for (int j = 0; j < targetCountLess1; j++) {
  1226 //         if (target[targetOffset + j] != source[i+j]) {
  1227 //           if ((cache & (1 << source[i+j])) == 0) {
  1228 //             if (md2 < j+1) {
  1229 //               i += j+1;
  1230 //               continue outer_loop;
  1231 //             }
  1232 //           }
  1233 //           i += md2;
  1234 //           continue outer_loop;
  1235 //         }
  1236 //       }
  1237 //       return i - sourceOffset;
  1238 //     }
  1239 //     if ((cache & (1 << src)) == 0) {
  1240 //       i += targetCountLess1;
  1241 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1242 //     i++;
  1243 //   }
  1244 //   return -1;
  1245 // }
  1247 //------------------------------string_indexOf------------------------
  1248 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1249                                      jint cache_i, jint md2_i) {
  1251   Node* no_ctrl  = NULL;
  1252   float likely   = PROB_LIKELY(0.9);
  1253   float unlikely = PROB_UNLIKELY(0.9);
  1255   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1257   Node* source        = load_String_value(no_ctrl, string_object);
  1258   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1259   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1261   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1262   jint target_length = target_array->length();
  1263   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1264   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1266   IdealKit kit(this, false, true);
  1267 #define __ kit.
  1268   Node* zero             = __ ConI(0);
  1269   Node* one              = __ ConI(1);
  1270   Node* cache            = __ ConI(cache_i);
  1271   Node* md2              = __ ConI(md2_i);
  1272   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1273   Node* targetCount      = __ ConI(target_length);
  1274   Node* targetCountLess1 = __ ConI(target_length - 1);
  1275   Node* targetOffset     = __ ConI(targetOffset_i);
  1276   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1278   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1279   Node* outer_loop = __ make_label(2 /* goto */);
  1280   Node* return_    = __ make_label(1);
  1282   __ set(rtn,__ ConI(-1));
  1283   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1284        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1285        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1286        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1287        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1288          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1289               Node* tpj = __ AddI(targetOffset, __ value(j));
  1290               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1291               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1292               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1293               __ if_then(targ, BoolTest::ne, src2); {
  1294                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1295                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1296                     __ increment(i, __ AddI(__ value(j), one));
  1297                     __ goto_(outer_loop);
  1298                   } __ end_if(); __ dead(j);
  1299                 }__ end_if(); __ dead(j);
  1300                 __ increment(i, md2);
  1301                 __ goto_(outer_loop);
  1302               }__ end_if();
  1303               __ increment(j, one);
  1304          }__ end_loop(); __ dead(j);
  1305          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1306          __ goto_(return_);
  1307        }__ end_if();
  1308        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1309          __ increment(i, targetCountLess1);
  1310        }__ end_if();
  1311        __ increment(i, one);
  1312        __ bind(outer_loop);
  1313   }__ end_loop(); __ dead(i);
  1314   __ bind(return_);
  1316   // Final sync IdealKit and GraphKit.
  1317   final_sync(kit);
  1318   Node* result = __ value(rtn);
  1319 #undef __
  1320   C->set_has_loops(true);
  1321   return result;
  1324 //------------------------------inline_string_indexOf------------------------
  1325 bool LibraryCallKit::inline_string_indexOf() {
  1326   Node* receiver = argument(0);
  1327   Node* arg      = argument(1);
  1329   Node* result;
  1330   // Disable the use of pcmpestri until it can be guaranteed that
  1331   // the load doesn't cross into the uncommited space.
  1332   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1333       UseSSE42Intrinsics) {
  1334     // Generate SSE4.2 version of indexOf
  1335     // We currently only have match rules that use SSE4.2
  1337     receiver = null_check(receiver);
  1338     arg      = null_check(arg);
  1339     if (stopped()) {
  1340       return true;
  1343     ciInstanceKlass* str_klass = env()->String_klass();
  1344     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1346     // Make the merge point
  1347     RegionNode* result_rgn = new (C) RegionNode(4);
  1348     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1349     Node* no_ctrl  = NULL;
  1351     // Get start addr of source string
  1352     Node* source = load_String_value(no_ctrl, receiver);
  1353     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1354     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1356     // Get length of source string
  1357     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1359     // Get start addr of substring
  1360     Node* substr = load_String_value(no_ctrl, arg);
  1361     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1362     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1364     // Get length of source string
  1365     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1367     // Check for substr count > string count
  1368     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
  1369     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
  1370     Node* if_gt = generate_slow_guard(bol, NULL);
  1371     if (if_gt != NULL) {
  1372       result_phi->init_req(2, intcon(-1));
  1373       result_rgn->init_req(2, if_gt);
  1376     if (!stopped()) {
  1377       // Check for substr count == 0
  1378       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
  1379       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  1380       Node* if_zero = generate_slow_guard(bol, NULL);
  1381       if (if_zero != NULL) {
  1382         result_phi->init_req(3, intcon(0));
  1383         result_rgn->init_req(3, if_zero);
  1387     if (!stopped()) {
  1388       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1389       result_phi->init_req(1, result);
  1390       result_rgn->init_req(1, control());
  1392     set_control(_gvn.transform(result_rgn));
  1393     record_for_igvn(result_rgn);
  1394     result = _gvn.transform(result_phi);
  1396   } else { // Use LibraryCallKit::string_indexOf
  1397     // don't intrinsify if argument isn't a constant string.
  1398     if (!arg->is_Con()) {
  1399      return false;
  1401     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1402     if (str_type == NULL) {
  1403       return false;
  1405     ciInstanceKlass* klass = env()->String_klass();
  1406     ciObject* str_const = str_type->const_oop();
  1407     if (str_const == NULL || str_const->klass() != klass) {
  1408       return false;
  1410     ciInstance* str = str_const->as_instance();
  1411     assert(str != NULL, "must be instance");
  1413     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1414     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1416     int o;
  1417     int c;
  1418     if (java_lang_String::has_offset_field()) {
  1419       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1420       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1421     } else {
  1422       o = 0;
  1423       c = pat->length();
  1426     // constant strings have no offset and count == length which
  1427     // simplifies the resulting code somewhat so lets optimize for that.
  1428     if (o != 0 || c != pat->length()) {
  1429      return false;
  1432     receiver = null_check(receiver, T_OBJECT);
  1433     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1434     if (stopped()) {
  1435       return true;
  1438     // The null string as a pattern always returns 0 (match at beginning of string)
  1439     if (c == 0) {
  1440       set_result(intcon(0));
  1441       return true;
  1444     // Generate default indexOf
  1445     jchar lastChar = pat->char_at(o + (c - 1));
  1446     int cache = 0;
  1447     int i;
  1448     for (i = 0; i < c - 1; i++) {
  1449       assert(i < pat->length(), "out of range");
  1450       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1453     int md2 = c;
  1454     for (i = 0; i < c - 1; i++) {
  1455       assert(i < pat->length(), "out of range");
  1456       if (pat->char_at(o + i) == lastChar) {
  1457         md2 = (c - 1) - i;
  1461     result = string_indexOf(receiver, pat, o, cache, md2);
  1463   set_result(result);
  1464   return true;
  1467 //--------------------------round_double_node--------------------------------
  1468 // Round a double node if necessary.
  1469 Node* LibraryCallKit::round_double_node(Node* n) {
  1470   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1471     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1472   return n;
  1475 //------------------------------inline_math-----------------------------------
  1476 // public static double Math.abs(double)
  1477 // public static double Math.sqrt(double)
  1478 // public static double Math.log(double)
  1479 // public static double Math.log10(double)
  1480 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1481   Node* arg = round_double_node(argument(0));
  1482   Node* n;
  1483   switch (id) {
  1484   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(    arg);  break;
  1485   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(0, arg);  break;
  1486   case vmIntrinsics::_dlog:   n = new (C) LogDNode(    arg);  break;
  1487   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(  arg);  break;
  1488   default:  fatal_unexpected_iid(id);  break;
  1490   set_result(_gvn.transform(n));
  1491   return true;
  1494 //------------------------------inline_trig----------------------------------
  1495 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1496 // argument reduction which will turn into a fast/slow diamond.
  1497 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1498   Node* arg = round_double_node(argument(0));
  1499   Node* n = NULL;
  1501   switch (id) {
  1502   case vmIntrinsics::_dsin:  n = new (C) SinDNode(arg);  break;
  1503   case vmIntrinsics::_dcos:  n = new (C) CosDNode(arg);  break;
  1504   case vmIntrinsics::_dtan:  n = new (C) TanDNode(arg);  break;
  1505   default:  fatal_unexpected_iid(id);  break;
  1507   n = _gvn.transform(n);
  1509   // Rounding required?  Check for argument reduction!
  1510   if (Matcher::strict_fp_requires_explicit_rounding) {
  1511     static const double     pi_4 =  0.7853981633974483;
  1512     static const double neg_pi_4 = -0.7853981633974483;
  1513     // pi/2 in 80-bit extended precision
  1514     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1515     // -pi/2 in 80-bit extended precision
  1516     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1517     // Cutoff value for using this argument reduction technique
  1518     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1519     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1521     // Pseudocode for sin:
  1522     // if (x <= Math.PI / 4.0) {
  1523     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1524     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1525     // } else {
  1526     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1527     // }
  1528     // return StrictMath.sin(x);
  1530     // Pseudocode for cos:
  1531     // if (x <= Math.PI / 4.0) {
  1532     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1533     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1534     // } else {
  1535     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1536     // }
  1537     // return StrictMath.cos(x);
  1539     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1540     // requires a special machine instruction to load it.  Instead we'll try
  1541     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1542     // probably do the math inside the SIN encoding.
  1544     // Make the merge point
  1545     RegionNode* r = new (C) RegionNode(3);
  1546     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1548     // Flatten arg so we need only 1 test
  1549     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1550     // Node for PI/4 constant
  1551     Node *pi4 = makecon(TypeD::make(pi_4));
  1552     // Check PI/4 : abs(arg)
  1553     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1554     // Check: If PI/4 < abs(arg) then go slow
  1555     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
  1556     // Branch either way
  1557     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1558     set_control(opt_iff(r,iff));
  1560     // Set fast path result
  1561     phi->init_req(2, n);
  1563     // Slow path - non-blocking leaf call
  1564     Node* call = NULL;
  1565     switch (id) {
  1566     case vmIntrinsics::_dsin:
  1567       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1568                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1569                                "Sin", NULL, arg, top());
  1570       break;
  1571     case vmIntrinsics::_dcos:
  1572       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1573                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1574                                "Cos", NULL, arg, top());
  1575       break;
  1576     case vmIntrinsics::_dtan:
  1577       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1578                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1579                                "Tan", NULL, arg, top());
  1580       break;
  1582     assert(control()->in(0) == call, "");
  1583     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1584     r->init_req(1, control());
  1585     phi->init_req(1, slow_result);
  1587     // Post-merge
  1588     set_control(_gvn.transform(r));
  1589     record_for_igvn(r);
  1590     n = _gvn.transform(phi);
  1592     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1594   set_result(n);
  1595   return true;
  1598 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1599   //-------------------
  1600   //result=(result.isNaN())? funcAddr():result;
  1601   // Check: If isNaN() by checking result!=result? then either trap
  1602   // or go to runtime
  1603   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1604   // Build the boolean node
  1605   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1607   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1608     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1609       // The pow or exp intrinsic returned a NaN, which requires a call
  1610       // to the runtime.  Recompile with the runtime call.
  1611       uncommon_trap(Deoptimization::Reason_intrinsic,
  1612                     Deoptimization::Action_make_not_entrant);
  1614     set_result(result);
  1615   } else {
  1616     // If this inlining ever returned NaN in the past, we compile a call
  1617     // to the runtime to properly handle corner cases
  1619     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1620     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
  1621     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
  1623     if (!if_slow->is_top()) {
  1624       RegionNode* result_region = new (C) RegionNode(3);
  1625       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1627       result_region->init_req(1, if_fast);
  1628       result_val->init_req(1, result);
  1630       set_control(if_slow);
  1632       const TypePtr* no_memory_effects = NULL;
  1633       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1634                                    no_memory_effects,
  1635                                    x, top(), y, y ? top() : NULL);
  1636       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1637 #ifdef ASSERT
  1638       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1639       assert(value_top == top(), "second value must be top");
  1640 #endif
  1642       result_region->init_req(2, control());
  1643       result_val->init_req(2, value);
  1644       set_result(result_region, result_val);
  1645     } else {
  1646       set_result(result);
  1651 //------------------------------inline_exp-------------------------------------
  1652 // Inline exp instructions, if possible.  The Intel hardware only misses
  1653 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1654 bool LibraryCallKit::inline_exp() {
  1655   Node* arg = round_double_node(argument(0));
  1656   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1658   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1660   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1661   return true;
  1664 //------------------------------inline_pow-------------------------------------
  1665 // Inline power instructions, if possible.
  1666 bool LibraryCallKit::inline_pow() {
  1667   // Pseudocode for pow
  1668   // if (x <= 0.0) {
  1669   //   long longy = (long)y;
  1670   //   if ((double)longy == y) { // if y is long
  1671   //     if (y + 1 == y) longy = 0; // huge number: even
  1672   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1673   //   } else {
  1674   //     result = NaN;
  1675   //   }
  1676   // } else {
  1677   //   result = DPow(x,y);
  1678   // }
  1679   // if (result != result)?  {
  1680   //   result = uncommon_trap() or runtime_call();
  1681   // }
  1682   // return result;
  1684   Node* x = round_double_node(argument(0));
  1685   Node* y = round_double_node(argument(2));
  1687   Node* result = NULL;
  1689   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1690     // Short form: skip the fancy tests and just check for NaN result.
  1691     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1692   } else {
  1693     // If this inlining ever returned NaN in the past, include all
  1694     // checks + call to the runtime.
  1696     // Set the merge point for If node with condition of (x <= 0.0)
  1697     // There are four possible paths to region node and phi node
  1698     RegionNode *r = new (C) RegionNode(4);
  1699     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1701     // Build the first if node: if (x <= 0.0)
  1702     // Node for 0 constant
  1703     Node *zeronode = makecon(TypeD::ZERO);
  1704     // Check x:0
  1705     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1706     // Check: If (x<=0) then go complex path
  1707     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
  1708     // Branch either way
  1709     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1710     // Fast path taken; set region slot 3
  1711     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
  1712     r->init_req(3,fast_taken); // Capture fast-control
  1714     // Fast path not-taken, i.e. slow path
  1715     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
  1717     // Set fast path result
  1718     Node *fast_result = _gvn.transform( new (C) PowDNode(C, control(), x, y) );
  1719     phi->init_req(3, fast_result);
  1721     // Complex path
  1722     // Build the second if node (if y is long)
  1723     // Node for (long)y
  1724     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
  1725     // Node for (double)((long) y)
  1726     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
  1727     // Check (double)((long) y) : y
  1728     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1729     // Check if (y isn't long) then go to slow path
  1731     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
  1732     // Branch either way
  1733     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1734     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
  1736     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
  1738     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1739     // Node for constant 1
  1740     Node *conone = longcon(1);
  1741     // 1& (long)y
  1742     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
  1744     // A huge number is always even. Detect a huge number by checking
  1745     // if y + 1 == y and set integer to be tested for parity to 0.
  1746     // Required for corner case:
  1747     // (long)9.223372036854776E18 = max_jlong
  1748     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1749     // max_jlong is odd but 9.223372036854776E18 is even
  1750     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
  1751     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1752     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
  1753     Node* correctedsign = NULL;
  1754     if (ConditionalMoveLimit != 0) {
  1755       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1756     } else {
  1757       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1758       RegionNode *r = new (C) RegionNode(3);
  1759       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1760       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
  1761       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
  1762       phi->init_req(1, signnode);
  1763       phi->init_req(2, longcon(0));
  1764       correctedsign = _gvn.transform(phi);
  1765       ylong_path = _gvn.transform(r);
  1766       record_for_igvn(r);
  1769     // zero node
  1770     Node *conzero = longcon(0);
  1771     // Check (1&(long)y)==0?
  1772     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1773     // Check if (1&(long)y)!=0?, if so the result is negative
  1774     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
  1775     // abs(x)
  1776     Node *absx=_gvn.transform( new (C) AbsDNode(x));
  1777     // abs(x)^y
  1778     Node *absxpowy = _gvn.transform( new (C) PowDNode(C, control(), absx, y) );
  1779     // -abs(x)^y
  1780     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1781     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1782     Node *signresult = NULL;
  1783     if (ConditionalMoveLimit != 0) {
  1784       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1785     } else {
  1786       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1787       RegionNode *r = new (C) RegionNode(3);
  1788       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1789       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
  1790       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
  1791       phi->init_req(1, absxpowy);
  1792       phi->init_req(2, negabsxpowy);
  1793       signresult = _gvn.transform(phi);
  1794       ylong_path = _gvn.transform(r);
  1795       record_for_igvn(r);
  1797     // Set complex path fast result
  1798     r->init_req(2, ylong_path);
  1799     phi->init_req(2, signresult);
  1801     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1802     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1803     r->init_req(1,slow_path);
  1804     phi->init_req(1,slow_result);
  1806     // Post merge
  1807     set_control(_gvn.transform(r));
  1808     record_for_igvn(r);
  1809     result = _gvn.transform(phi);
  1812   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1814   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1815   return true;
  1818 //------------------------------runtime_math-----------------------------
  1819 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1820   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1821          "must be (DD)D or (D)D type");
  1823   // Inputs
  1824   Node* a = round_double_node(argument(0));
  1825   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1827   const TypePtr* no_memory_effects = NULL;
  1828   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1829                                  no_memory_effects,
  1830                                  a, top(), b, b ? top() : NULL);
  1831   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1832 #ifdef ASSERT
  1833   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1834   assert(value_top == top(), "second value must be top");
  1835 #endif
  1837   set_result(value);
  1838   return true;
  1841 //------------------------------inline_math_native-----------------------------
  1842 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1843 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1844   switch (id) {
  1845     // These intrinsics are not properly supported on all hardware
  1846   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1847     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1848   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1849     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1850   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1851     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1853   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1854     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1855   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1856     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1858     // These intrinsics are supported on all hardware
  1859   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1860   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1862   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1863     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1864   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1865     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1866 #undef FN_PTR
  1868    // These intrinsics are not yet correctly implemented
  1869   case vmIntrinsics::_datan2:
  1870     return false;
  1872   default:
  1873     fatal_unexpected_iid(id);
  1874     return false;
  1878 static bool is_simple_name(Node* n) {
  1879   return (n->req() == 1         // constant
  1880           || (n->is_Type() && n->as_Type()->type()->singleton())
  1881           || n->is_Proj()       // parameter or return value
  1882           || n->is_Phi()        // local of some sort
  1883           );
  1886 //----------------------------inline_min_max-----------------------------------
  1887 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1888   set_result(generate_min_max(id, argument(0), argument(1)));
  1889   return true;
  1892 Node*
  1893 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1894   // These are the candidate return value:
  1895   Node* xvalue = x0;
  1896   Node* yvalue = y0;
  1898   if (xvalue == yvalue) {
  1899     return xvalue;
  1902   bool want_max = (id == vmIntrinsics::_max);
  1904   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1905   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1906   if (txvalue == NULL || tyvalue == NULL)  return top();
  1907   // This is not really necessary, but it is consistent with a
  1908   // hypothetical MaxINode::Value method:
  1909   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1911   // %%% This folding logic should (ideally) be in a different place.
  1912   // Some should be inside IfNode, and there to be a more reliable
  1913   // transformation of ?: style patterns into cmoves.  We also want
  1914   // more powerful optimizations around cmove and min/max.
  1916   // Try to find a dominating comparison of these guys.
  1917   // It can simplify the index computation for Arrays.copyOf
  1918   // and similar uses of System.arraycopy.
  1919   // First, compute the normalized version of CmpI(x, y).
  1920   int   cmp_op = Op_CmpI;
  1921   Node* xkey = xvalue;
  1922   Node* ykey = yvalue;
  1923   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
  1924   if (ideal_cmpxy->is_Cmp()) {
  1925     // E.g., if we have CmpI(length - offset, count),
  1926     // it might idealize to CmpI(length, count + offset)
  1927     cmp_op = ideal_cmpxy->Opcode();
  1928     xkey = ideal_cmpxy->in(1);
  1929     ykey = ideal_cmpxy->in(2);
  1932   // Start by locating any relevant comparisons.
  1933   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1934   Node* cmpxy = NULL;
  1935   Node* cmpyx = NULL;
  1936   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1937     Node* cmp = start_from->fast_out(k);
  1938     if (cmp->outcnt() > 0 &&            // must have prior uses
  1939         cmp->in(0) == NULL &&           // must be context-independent
  1940         cmp->Opcode() == cmp_op) {      // right kind of compare
  1941       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1942       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1946   const int NCMPS = 2;
  1947   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1948   int cmpn;
  1949   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1950     if (cmps[cmpn] != NULL)  break;     // find a result
  1952   if (cmpn < NCMPS) {
  1953     // Look for a dominating test that tells us the min and max.
  1954     int depth = 0;                // Limit search depth for speed
  1955     Node* dom = control();
  1956     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1957       if (++depth >= 100)  break;
  1958       Node* ifproj = dom;
  1959       if (!ifproj->is_Proj())  continue;
  1960       Node* iff = ifproj->in(0);
  1961       if (!iff->is_If())  continue;
  1962       Node* bol = iff->in(1);
  1963       if (!bol->is_Bool())  continue;
  1964       Node* cmp = bol->in(1);
  1965       if (cmp == NULL)  continue;
  1966       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1967         if (cmps[cmpn] == cmp)  break;
  1968       if (cmpn == NCMPS)  continue;
  1969       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1970       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1971       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1972       // At this point, we know that 'x btest y' is true.
  1973       switch (btest) {
  1974       case BoolTest::eq:
  1975         // They are proven equal, so we can collapse the min/max.
  1976         // Either value is the answer.  Choose the simpler.
  1977         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1978           return yvalue;
  1979         return xvalue;
  1980       case BoolTest::lt:          // x < y
  1981       case BoolTest::le:          // x <= y
  1982         return (want_max ? yvalue : xvalue);
  1983       case BoolTest::gt:          // x > y
  1984       case BoolTest::ge:          // x >= y
  1985         return (want_max ? xvalue : yvalue);
  1990   // We failed to find a dominating test.
  1991   // Let's pick a test that might GVN with prior tests.
  1992   Node*          best_bol   = NULL;
  1993   BoolTest::mask best_btest = BoolTest::illegal;
  1994   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1995     Node* cmp = cmps[cmpn];
  1996     if (cmp == NULL)  continue;
  1997     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1998       Node* bol = cmp->fast_out(j);
  1999       if (!bol->is_Bool())  continue;
  2000       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2001       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2002       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2003       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2004         best_bol   = bol->as_Bool();
  2005         best_btest = btest;
  2010   Node* answer_if_true  = NULL;
  2011   Node* answer_if_false = NULL;
  2012   switch (best_btest) {
  2013   default:
  2014     if (cmpxy == NULL)
  2015       cmpxy = ideal_cmpxy;
  2016     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
  2017     // and fall through:
  2018   case BoolTest::lt:          // x < y
  2019   case BoolTest::le:          // x <= y
  2020     answer_if_true  = (want_max ? yvalue : xvalue);
  2021     answer_if_false = (want_max ? xvalue : yvalue);
  2022     break;
  2023   case BoolTest::gt:          // x > y
  2024   case BoolTest::ge:          // x >= y
  2025     answer_if_true  = (want_max ? xvalue : yvalue);
  2026     answer_if_false = (want_max ? yvalue : xvalue);
  2027     break;
  2030   jint hi, lo;
  2031   if (want_max) {
  2032     // We can sharpen the minimum.
  2033     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2034     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2035   } else {
  2036     // We can sharpen the maximum.
  2037     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2038     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2041   // Use a flow-free graph structure, to avoid creating excess control edges
  2042   // which could hinder other optimizations.
  2043   // Since Math.min/max is often used with arraycopy, we want
  2044   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2045   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2046                                answer_if_false, answer_if_true,
  2047                                TypeInt::make(lo, hi, widen));
  2049   return _gvn.transform(cmov);
  2051   /*
  2052   // This is not as desirable as it may seem, since Min and Max
  2053   // nodes do not have a full set of optimizations.
  2054   // And they would interfere, anyway, with 'if' optimizations
  2055   // and with CMoveI canonical forms.
  2056   switch (id) {
  2057   case vmIntrinsics::_min:
  2058     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2059   case vmIntrinsics::_max:
  2060     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2061   default:
  2062     ShouldNotReachHere();
  2064   */
  2067 inline int
  2068 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2069   const TypePtr* base_type = TypePtr::NULL_PTR;
  2070   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2071   if (base_type == NULL) {
  2072     // Unknown type.
  2073     return Type::AnyPtr;
  2074   } else if (base_type == TypePtr::NULL_PTR) {
  2075     // Since this is a NULL+long form, we have to switch to a rawptr.
  2076     base   = _gvn.transform( new (C) CastX2PNode(offset) );
  2077     offset = MakeConX(0);
  2078     return Type::RawPtr;
  2079   } else if (base_type->base() == Type::RawPtr) {
  2080     return Type::RawPtr;
  2081   } else if (base_type->isa_oopptr()) {
  2082     // Base is never null => always a heap address.
  2083     if (base_type->ptr() == TypePtr::NotNull) {
  2084       return Type::OopPtr;
  2086     // Offset is small => always a heap address.
  2087     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2088     if (offset_type != NULL &&
  2089         base_type->offset() == 0 &&     // (should always be?)
  2090         offset_type->_lo >= 0 &&
  2091         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2092       return Type::OopPtr;
  2094     // Otherwise, it might either be oop+off or NULL+addr.
  2095     return Type::AnyPtr;
  2096   } else {
  2097     // No information:
  2098     return Type::AnyPtr;
  2102 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2103   int kind = classify_unsafe_addr(base, offset);
  2104   if (kind == Type::RawPtr) {
  2105     return basic_plus_adr(top(), base, offset);
  2106   } else {
  2107     return basic_plus_adr(base, offset);
  2111 //--------------------------inline_number_methods-----------------------------
  2112 // inline int     Integer.numberOfLeadingZeros(int)
  2113 // inline int        Long.numberOfLeadingZeros(long)
  2114 //
  2115 // inline int     Integer.numberOfTrailingZeros(int)
  2116 // inline int        Long.numberOfTrailingZeros(long)
  2117 //
  2118 // inline int     Integer.bitCount(int)
  2119 // inline int        Long.bitCount(long)
  2120 //
  2121 // inline char  Character.reverseBytes(char)
  2122 // inline short     Short.reverseBytes(short)
  2123 // inline int     Integer.reverseBytes(int)
  2124 // inline long       Long.reverseBytes(long)
  2125 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2126   Node* arg = argument(0);
  2127   Node* n;
  2128   switch (id) {
  2129   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2130   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2131   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2132   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2133   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2134   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2135   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2136   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2137   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2138   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2139   default:  fatal_unexpected_iid(id);  break;
  2141   set_result(_gvn.transform(n));
  2142   return true;
  2145 //----------------------------inline_unsafe_access----------------------------
  2147 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2149 // Helper that guards and inserts a pre-barrier.
  2150 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2151                                         Node* pre_val, bool need_mem_bar) {
  2152   // We could be accessing the referent field of a reference object. If so, when G1
  2153   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2154   // This routine performs some compile time filters and generates suitable
  2155   // runtime filters that guard the pre-barrier code.
  2156   // Also add memory barrier for non volatile load from the referent field
  2157   // to prevent commoning of loads across safepoint.
  2158   if (!UseG1GC && !need_mem_bar)
  2159     return;
  2161   // Some compile time checks.
  2163   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2164   const TypeX* otype = offset->find_intptr_t_type();
  2165   if (otype != NULL && otype->is_con() &&
  2166       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2167     // Constant offset but not the reference_offset so just return
  2168     return;
  2171   // We only need to generate the runtime guards for instances.
  2172   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2173   if (btype != NULL) {
  2174     if (btype->isa_aryptr()) {
  2175       // Array type so nothing to do
  2176       return;
  2179     const TypeInstPtr* itype = btype->isa_instptr();
  2180     if (itype != NULL) {
  2181       // Can the klass of base_oop be statically determined to be
  2182       // _not_ a sub-class of Reference and _not_ Object?
  2183       ciKlass* klass = itype->klass();
  2184       if ( klass->is_loaded() &&
  2185           !klass->is_subtype_of(env()->Reference_klass()) &&
  2186           !env()->Object_klass()->is_subtype_of(klass)) {
  2187         return;
  2192   // The compile time filters did not reject base_oop/offset so
  2193   // we need to generate the following runtime filters
  2194   //
  2195   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2196   //   if (instance_of(base, java.lang.ref.Reference)) {
  2197   //     pre_barrier(_, pre_val, ...);
  2198   //   }
  2199   // }
  2201   float likely   = PROB_LIKELY(  0.999);
  2202   float unlikely = PROB_UNLIKELY(0.999);
  2204   IdealKit ideal(this);
  2205 #define __ ideal.
  2207   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2209   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2210       // Update graphKit memory and control from IdealKit.
  2211       sync_kit(ideal);
  2213       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2214       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2216       // Update IdealKit memory and control from graphKit.
  2217       __ sync_kit(this);
  2219       Node* one = __ ConI(1);
  2220       // is_instof == 0 if base_oop == NULL
  2221       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2223         // Update graphKit from IdeakKit.
  2224         sync_kit(ideal);
  2226         // Use the pre-barrier to record the value in the referent field
  2227         pre_barrier(false /* do_load */,
  2228                     __ ctrl(),
  2229                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2230                     pre_val /* pre_val */,
  2231                     T_OBJECT);
  2232         if (need_mem_bar) {
  2233           // Add memory barrier to prevent commoning reads from this field
  2234           // across safepoint since GC can change its value.
  2235           insert_mem_bar(Op_MemBarCPUOrder);
  2237         // Update IdealKit from graphKit.
  2238         __ sync_kit(this);
  2240       } __ end_if(); // _ref_type != ref_none
  2241   } __ end_if(); // offset == referent_offset
  2243   // Final sync IdealKit and GraphKit.
  2244   final_sync(ideal);
  2245 #undef __
  2249 // Interpret Unsafe.fieldOffset cookies correctly:
  2250 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2252 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2253   // Attempt to infer a sharper value type from the offset and base type.
  2254   ciKlass* sharpened_klass = NULL;
  2256   // See if it is an instance field, with an object type.
  2257   if (alias_type->field() != NULL) {
  2258     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2259     if (alias_type->field()->type()->is_klass()) {
  2260       sharpened_klass = alias_type->field()->type()->as_klass();
  2264   // See if it is a narrow oop array.
  2265   if (adr_type->isa_aryptr()) {
  2266     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2267       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2268       if (elem_type != NULL) {
  2269         sharpened_klass = elem_type->klass();
  2274   // The sharpened class might be unloaded if there is no class loader
  2275   // contraint in place.
  2276   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2277     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2279 #ifndef PRODUCT
  2280     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2281       tty->print("  from base type: ");  adr_type->dump();
  2282       tty->print("  sharpened value: ");  tjp->dump();
  2284 #endif
  2285     // Sharpen the value type.
  2286     return tjp;
  2288   return NULL;
  2291 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2292   if (callee()->is_static())  return false;  // caller must have the capability!
  2294 #ifndef PRODUCT
  2296     ResourceMark rm;
  2297     // Check the signatures.
  2298     ciSignature* sig = callee()->signature();
  2299 #ifdef ASSERT
  2300     if (!is_store) {
  2301       // Object getObject(Object base, int/long offset), etc.
  2302       BasicType rtype = sig->return_type()->basic_type();
  2303       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2304           rtype = T_ADDRESS;  // it is really a C void*
  2305       assert(rtype == type, "getter must return the expected value");
  2306       if (!is_native_ptr) {
  2307         assert(sig->count() == 2, "oop getter has 2 arguments");
  2308         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2309         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2310       } else {
  2311         assert(sig->count() == 1, "native getter has 1 argument");
  2312         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2314     } else {
  2315       // void putObject(Object base, int/long offset, Object x), etc.
  2316       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2317       if (!is_native_ptr) {
  2318         assert(sig->count() == 3, "oop putter has 3 arguments");
  2319         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2320         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2321       } else {
  2322         assert(sig->count() == 2, "native putter has 2 arguments");
  2323         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2325       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2326       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2327         vtype = T_ADDRESS;  // it is really a C void*
  2328       assert(vtype == type, "putter must accept the expected value");
  2330 #endif // ASSERT
  2332 #endif //PRODUCT
  2334   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2336   Node* receiver = argument(0);  // type: oop
  2338   // Build address expression.  See the code in inline_unsafe_prefetch.
  2339   Node* adr;
  2340   Node* heap_base_oop = top();
  2341   Node* offset = top();
  2342   Node* val;
  2344   if (!is_native_ptr) {
  2345     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2346     Node* base = argument(1);  // type: oop
  2347     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2348     offset = argument(2);  // type: long
  2349     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2350     // to be plain byte offsets, which are also the same as those accepted
  2351     // by oopDesc::field_base.
  2352     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2353            "fieldOffset must be byte-scaled");
  2354     // 32-bit machines ignore the high half!
  2355     offset = ConvL2X(offset);
  2356     adr = make_unsafe_address(base, offset);
  2357     heap_base_oop = base;
  2358     val = is_store ? argument(4) : NULL;
  2359   } else {
  2360     Node* ptr = argument(1);  // type: long
  2361     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2362     adr = make_unsafe_address(NULL, ptr);
  2363     val = is_store ? argument(3) : NULL;
  2366   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2368   // First guess at the value type.
  2369   const Type *value_type = Type::get_const_basic_type(type);
  2371   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2372   // there was not enough information to nail it down.
  2373   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2374   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2376   // We will need memory barriers unless we can determine a unique
  2377   // alias category for this reference.  (Note:  If for some reason
  2378   // the barriers get omitted and the unsafe reference begins to "pollute"
  2379   // the alias analysis of the rest of the graph, either Compile::can_alias
  2380   // or Compile::must_alias will throw a diagnostic assert.)
  2381   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2383   // If we are reading the value of the referent field of a Reference
  2384   // object (either by using Unsafe directly or through reflection)
  2385   // then, if G1 is enabled, we need to record the referent in an
  2386   // SATB log buffer using the pre-barrier mechanism.
  2387   // Also we need to add memory barrier to prevent commoning reads
  2388   // from this field across safepoint since GC can change its value.
  2389   bool need_read_barrier = !is_native_ptr && !is_store &&
  2390                            offset != top() && heap_base_oop != top();
  2392   if (!is_store && type == T_OBJECT) {
  2393     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2394     if (tjp != NULL) {
  2395       value_type = tjp;
  2399   receiver = null_check(receiver);
  2400   if (stopped()) {
  2401     return true;
  2403   // Heap pointers get a null-check from the interpreter,
  2404   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2405   // and it is not possible to fully distinguish unintended nulls
  2406   // from intended ones in this API.
  2408   if (is_volatile) {
  2409     // We need to emit leading and trailing CPU membars (see below) in
  2410     // addition to memory membars when is_volatile. This is a little
  2411     // too strong, but avoids the need to insert per-alias-type
  2412     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2413     // we cannot do effectively here because we probably only have a
  2414     // rough approximation of type.
  2415     need_mem_bar = true;
  2416     // For Stores, place a memory ordering barrier now.
  2417     if (is_store)
  2418       insert_mem_bar(Op_MemBarRelease);
  2421   // Memory barrier to prevent normal and 'unsafe' accesses from
  2422   // bypassing each other.  Happens after null checks, so the
  2423   // exception paths do not take memory state from the memory barrier,
  2424   // so there's no problems making a strong assert about mixing users
  2425   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2426   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2427   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2429   if (!is_store) {
  2430     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2431     // load value
  2432     switch (type) {
  2433     case T_BOOLEAN:
  2434     case T_CHAR:
  2435     case T_BYTE:
  2436     case T_SHORT:
  2437     case T_INT:
  2438     case T_LONG:
  2439     case T_FLOAT:
  2440     case T_DOUBLE:
  2441       break;
  2442     case T_OBJECT:
  2443       if (need_read_barrier) {
  2444         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2446       break;
  2447     case T_ADDRESS:
  2448       // Cast to an int type.
  2449       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2450       p = ConvX2L(p);
  2451       break;
  2452     default:
  2453       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2454       break;
  2456     // The load node has the control of the preceding MemBarCPUOrder.  All
  2457     // following nodes will have the control of the MemBarCPUOrder inserted at
  2458     // the end of this method.  So, pushing the load onto the stack at a later
  2459     // point is fine.
  2460     set_result(p);
  2461   } else {
  2462     // place effect of store into memory
  2463     switch (type) {
  2464     case T_DOUBLE:
  2465       val = dstore_rounding(val);
  2466       break;
  2467     case T_ADDRESS:
  2468       // Repackage the long as a pointer.
  2469       val = ConvL2X(val);
  2470       val = _gvn.transform( new (C) CastX2PNode(val) );
  2471       break;
  2474     if (type != T_OBJECT ) {
  2475       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2476     } else {
  2477       // Possibly an oop being stored to Java heap or native memory
  2478       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2479         // oop to Java heap.
  2480         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2481       } else {
  2482         // We can't tell at compile time if we are storing in the Java heap or outside
  2483         // of it. So we need to emit code to conditionally do the proper type of
  2484         // store.
  2486         IdealKit ideal(this);
  2487 #define __ ideal.
  2488         // QQQ who knows what probability is here??
  2489         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2490           // Sync IdealKit and graphKit.
  2491           sync_kit(ideal);
  2492           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2493           // Update IdealKit memory.
  2494           __ sync_kit(this);
  2495         } __ else_(); {
  2496           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2497         } __ end_if();
  2498         // Final sync IdealKit and GraphKit.
  2499         final_sync(ideal);
  2500 #undef __
  2505   if (is_volatile) {
  2506     if (!is_store)
  2507       insert_mem_bar(Op_MemBarAcquire);
  2508     else
  2509       insert_mem_bar(Op_MemBarVolatile);
  2512   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2514   return true;
  2517 //----------------------------inline_unsafe_prefetch----------------------------
  2519 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2520 #ifndef PRODUCT
  2522     ResourceMark rm;
  2523     // Check the signatures.
  2524     ciSignature* sig = callee()->signature();
  2525 #ifdef ASSERT
  2526     // Object getObject(Object base, int/long offset), etc.
  2527     BasicType rtype = sig->return_type()->basic_type();
  2528     if (!is_native_ptr) {
  2529       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2530       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2531       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2532     } else {
  2533       assert(sig->count() == 1, "native prefetch has 1 argument");
  2534       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2536 #endif // ASSERT
  2538 #endif // !PRODUCT
  2540   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2542   const int idx = is_static ? 0 : 1;
  2543   if (!is_static) {
  2544     null_check_receiver();
  2545     if (stopped()) {
  2546       return true;
  2550   // Build address expression.  See the code in inline_unsafe_access.
  2551   Node *adr;
  2552   if (!is_native_ptr) {
  2553     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2554     Node* base   = argument(idx + 0);  // type: oop
  2555     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2556     Node* offset = argument(idx + 1);  // type: long
  2557     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2558     // to be plain byte offsets, which are also the same as those accepted
  2559     // by oopDesc::field_base.
  2560     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2561            "fieldOffset must be byte-scaled");
  2562     // 32-bit machines ignore the high half!
  2563     offset = ConvL2X(offset);
  2564     adr = make_unsafe_address(base, offset);
  2565   } else {
  2566     Node* ptr = argument(idx + 0);  // type: long
  2567     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2568     adr = make_unsafe_address(NULL, ptr);
  2571   // Generate the read or write prefetch
  2572   Node *prefetch;
  2573   if (is_store) {
  2574     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2575   } else {
  2576     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2578   prefetch->init_req(0, control());
  2579   set_i_o(_gvn.transform(prefetch));
  2581   return true;
  2584 //----------------------------inline_unsafe_load_store----------------------------
  2585 // This method serves a couple of different customers (depending on LoadStoreKind):
  2586 //
  2587 // LS_cmpxchg:
  2588 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2589 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2590 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2591 //
  2592 // LS_xadd:
  2593 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2594 //   public long getAndAddLong(Object o, long offset, long delta)
  2595 //
  2596 // LS_xchg:
  2597 //   int    getAndSet(Object o, long offset, int    newValue)
  2598 //   long   getAndSet(Object o, long offset, long   newValue)
  2599 //   Object getAndSet(Object o, long offset, Object newValue)
  2600 //
  2601 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2602   // This basic scheme here is the same as inline_unsafe_access, but
  2603   // differs in enough details that combining them would make the code
  2604   // overly confusing.  (This is a true fact! I originally combined
  2605   // them, but even I was confused by it!) As much code/comments as
  2606   // possible are retained from inline_unsafe_access though to make
  2607   // the correspondences clearer. - dl
  2609   if (callee()->is_static())  return false;  // caller must have the capability!
  2611 #ifndef PRODUCT
  2612   BasicType rtype;
  2614     ResourceMark rm;
  2615     // Check the signatures.
  2616     ciSignature* sig = callee()->signature();
  2617     rtype = sig->return_type()->basic_type();
  2618     if (kind == LS_xadd || kind == LS_xchg) {
  2619       // Check the signatures.
  2620 #ifdef ASSERT
  2621       assert(rtype == type, "get and set must return the expected type");
  2622       assert(sig->count() == 3, "get and set has 3 arguments");
  2623       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2624       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2625       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2626 #endif // ASSERT
  2627     } else if (kind == LS_cmpxchg) {
  2628       // Check the signatures.
  2629 #ifdef ASSERT
  2630       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2631       assert(sig->count() == 4, "CAS has 4 arguments");
  2632       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2633       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2634 #endif // ASSERT
  2635     } else {
  2636       ShouldNotReachHere();
  2639 #endif //PRODUCT
  2641   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2643   // Get arguments:
  2644   Node* receiver = NULL;
  2645   Node* base     = NULL;
  2646   Node* offset   = NULL;
  2647   Node* oldval   = NULL;
  2648   Node* newval   = NULL;
  2649   if (kind == LS_cmpxchg) {
  2650     const bool two_slot_type = type2size[type] == 2;
  2651     receiver = argument(0);  // type: oop
  2652     base     = argument(1);  // type: oop
  2653     offset   = argument(2);  // type: long
  2654     oldval   = argument(4);  // type: oop, int, or long
  2655     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2656   } else if (kind == LS_xadd || kind == LS_xchg){
  2657     receiver = argument(0);  // type: oop
  2658     base     = argument(1);  // type: oop
  2659     offset   = argument(2);  // type: long
  2660     oldval   = NULL;
  2661     newval   = argument(4);  // type: oop, int, or long
  2664   // Null check receiver.
  2665   receiver = null_check(receiver);
  2666   if (stopped()) {
  2667     return true;
  2670   // Build field offset expression.
  2671   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2672   // to be plain byte offsets, which are also the same as those accepted
  2673   // by oopDesc::field_base.
  2674   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2675   // 32-bit machines ignore the high half of long offsets
  2676   offset = ConvL2X(offset);
  2677   Node* adr = make_unsafe_address(base, offset);
  2678   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2680   // For CAS, unlike inline_unsafe_access, there seems no point in
  2681   // trying to refine types. Just use the coarse types here.
  2682   const Type *value_type = Type::get_const_basic_type(type);
  2683   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2684   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2686   if (kind == LS_xchg && type == T_OBJECT) {
  2687     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2688     if (tjp != NULL) {
  2689       value_type = tjp;
  2693   int alias_idx = C->get_alias_index(adr_type);
  2695   // Memory-model-wise, a LoadStore acts like a little synchronized
  2696   // block, so needs barriers on each side.  These don't translate
  2697   // into actual barriers on most machines, but we still need rest of
  2698   // compiler to respect ordering.
  2700   insert_mem_bar(Op_MemBarRelease);
  2701   insert_mem_bar(Op_MemBarCPUOrder);
  2703   // 4984716: MemBars must be inserted before this
  2704   //          memory node in order to avoid a false
  2705   //          dependency which will confuse the scheduler.
  2706   Node *mem = memory(alias_idx);
  2708   // For now, we handle only those cases that actually exist: ints,
  2709   // longs, and Object. Adding others should be straightforward.
  2710   Node* load_store;
  2711   switch(type) {
  2712   case T_INT:
  2713     if (kind == LS_xadd) {
  2714       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2715     } else if (kind == LS_xchg) {
  2716       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2717     } else if (kind == LS_cmpxchg) {
  2718       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2719     } else {
  2720       ShouldNotReachHere();
  2722     break;
  2723   case T_LONG:
  2724     if (kind == LS_xadd) {
  2725       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2726     } else if (kind == LS_xchg) {
  2727       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2728     } else if (kind == LS_cmpxchg) {
  2729       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2730     } else {
  2731       ShouldNotReachHere();
  2733     break;
  2734   case T_OBJECT:
  2735     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2736     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2737     // Execute transformation here to avoid barrier generation in such case.
  2738     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2739       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2741     // Reference stores need a store barrier.
  2742     pre_barrier(true /* do_load*/,
  2743                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2744                 NULL /* pre_val*/,
  2745                 T_OBJECT);
  2746 #ifdef _LP64
  2747     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2748       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2749       if (kind == LS_xchg) {
  2750         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2751                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2752       } else {
  2753         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2754         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2755         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2756                                                                    newval_enc, oldval_enc));
  2758     } else
  2759 #endif
  2761       if (kind == LS_xchg) {
  2762         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2763       } else {
  2764         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2765         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2768     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2769     break;
  2770   default:
  2771     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2772     break;
  2775   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2776   // main role is to prevent LoadStore nodes from being optimized away
  2777   // when their results aren't used.
  2778   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
  2779   set_memory(proj, alias_idx);
  2781   // Add the trailing membar surrounding the access
  2782   insert_mem_bar(Op_MemBarCPUOrder);
  2783   insert_mem_bar(Op_MemBarAcquire);
  2785 #ifdef _LP64
  2786   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
  2787     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
  2789 #endif
  2791   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2792   set_result(load_store);
  2793   return true;
  2796 //----------------------------inline_unsafe_ordered_store----------------------
  2797 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  2798 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  2799 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  2800 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2801   // This is another variant of inline_unsafe_access, differing in
  2802   // that it always issues store-store ("release") barrier and ensures
  2803   // store-atomicity (which only matters for "long").
  2805   if (callee()->is_static())  return false;  // caller must have the capability!
  2807 #ifndef PRODUCT
  2809     ResourceMark rm;
  2810     // Check the signatures.
  2811     ciSignature* sig = callee()->signature();
  2812 #ifdef ASSERT
  2813     BasicType rtype = sig->return_type()->basic_type();
  2814     assert(rtype == T_VOID, "must return void");
  2815     assert(sig->count() == 3, "has 3 arguments");
  2816     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2817     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2818 #endif // ASSERT
  2820 #endif //PRODUCT
  2822   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2824   // Get arguments:
  2825   Node* receiver = argument(0);  // type: oop
  2826   Node* base     = argument(1);  // type: oop
  2827   Node* offset   = argument(2);  // type: long
  2828   Node* val      = argument(4);  // type: oop, int, or long
  2830   // Null check receiver.
  2831   receiver = null_check(receiver);
  2832   if (stopped()) {
  2833     return true;
  2836   // Build field offset expression.
  2837   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2838   // 32-bit machines ignore the high half of long offsets
  2839   offset = ConvL2X(offset);
  2840   Node* adr = make_unsafe_address(base, offset);
  2841   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2842   const Type *value_type = Type::get_const_basic_type(type);
  2843   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2845   insert_mem_bar(Op_MemBarRelease);
  2846   insert_mem_bar(Op_MemBarCPUOrder);
  2847   // Ensure that the store is atomic for longs:
  2848   const bool require_atomic_access = true;
  2849   Node* store;
  2850   if (type == T_OBJECT) // reference stores need a store barrier.
  2851     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2852   else {
  2853     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2855   insert_mem_bar(Op_MemBarCPUOrder);
  2856   return true;
  2859 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  2860   // Regardless of form, don't allow previous ld/st to move down,
  2861   // then issue acquire, release, or volatile mem_bar.
  2862   insert_mem_bar(Op_MemBarCPUOrder);
  2863   switch(id) {
  2864     case vmIntrinsics::_loadFence:
  2865       insert_mem_bar(Op_MemBarAcquire);
  2866       return true;
  2867     case vmIntrinsics::_storeFence:
  2868       insert_mem_bar(Op_MemBarRelease);
  2869       return true;
  2870     case vmIntrinsics::_fullFence:
  2871       insert_mem_bar(Op_MemBarVolatile);
  2872       return true;
  2873     default:
  2874       fatal_unexpected_iid(id);
  2875       return false;
  2879 //----------------------------inline_unsafe_allocate---------------------------
  2880 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
  2881 bool LibraryCallKit::inline_unsafe_allocate() {
  2882   if (callee()->is_static())  return false;  // caller must have the capability!
  2884   null_check_receiver();  // null-check, then ignore
  2885   Node* cls = null_check(argument(1));
  2886   if (stopped())  return true;
  2888   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2889   kls = null_check(kls);
  2890   if (stopped())  return true;  // argument was like int.class
  2892   // Note:  The argument might still be an illegal value like
  2893   // Serializable.class or Object[].class.   The runtime will handle it.
  2894   // But we must make an explicit check for initialization.
  2895   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  2896   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  2897   // can generate code to load it as unsigned byte.
  2898   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  2899   Node* bits = intcon(InstanceKlass::fully_initialized);
  2900   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
  2901   // The 'test' is non-zero if we need to take a slow path.
  2903   Node* obj = new_instance(kls, test);
  2904   set_result(obj);
  2905   return true;
  2908 #ifdef TRACE_HAVE_INTRINSICS
  2909 /*
  2910  * oop -> myklass
  2911  * myklass->trace_id |= USED
  2912  * return myklass->trace_id & ~0x3
  2913  */
  2914 bool LibraryCallKit::inline_native_classID() {
  2915   null_check_receiver();  // null-check, then ignore
  2916   Node* cls = null_check(argument(1), T_OBJECT);
  2917   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2918   kls = null_check(kls, T_OBJECT);
  2919   ByteSize offset = TRACE_ID_OFFSET;
  2920   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  2921   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  2922   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  2923   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  2924   Node* clsused = longcon(0x01l); // set the class bit
  2925   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  2927   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  2928   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  2929   set_result(andl);
  2930   return true;
  2933 bool LibraryCallKit::inline_native_threadID() {
  2934   Node* tls_ptr = NULL;
  2935   Node* cur_thr = generate_current_thread(tls_ptr);
  2936   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2937   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2938   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  2940   Node* threadid = NULL;
  2941   size_t thread_id_size = OSThread::thread_id_size();
  2942   if (thread_id_size == (size_t) BytesPerLong) {
  2943     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  2944   } else if (thread_id_size == (size_t) BytesPerInt) {
  2945     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  2946   } else {
  2947     ShouldNotReachHere();
  2949   set_result(threadid);
  2950   return true;
  2952 #endif
  2954 //------------------------inline_native_time_funcs--------------
  2955 // inline code for System.currentTimeMillis() and System.nanoTime()
  2956 // these have the same type and signature
  2957 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  2958   const TypeFunc* tf = OptoRuntime::void_long_Type();
  2959   const TypePtr* no_memory_effects = NULL;
  2960   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2961   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  2962 #ifdef ASSERT
  2963   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  2964   assert(value_top == top(), "second value must be top");
  2965 #endif
  2966   set_result(value);
  2967   return true;
  2970 //------------------------inline_native_currentThread------------------
  2971 bool LibraryCallKit::inline_native_currentThread() {
  2972   Node* junk = NULL;
  2973   set_result(generate_current_thread(junk));
  2974   return true;
  2977 //------------------------inline_native_isInterrupted------------------
  2978 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  2979 bool LibraryCallKit::inline_native_isInterrupted() {
  2980   // Add a fast path to t.isInterrupted(clear_int):
  2981   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2982   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2983   // So, in the common case that the interrupt bit is false,
  2984   // we avoid making a call into the VM.  Even if the interrupt bit
  2985   // is true, if the clear_int argument is false, we avoid the VM call.
  2986   // However, if the receiver is not currentThread, we must call the VM,
  2987   // because there must be some locking done around the operation.
  2989   // We only go to the fast case code if we pass two guards.
  2990   // Paths which do not pass are accumulated in the slow_region.
  2992   enum {
  2993     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  2994     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  2995     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  2996     PATH_LIMIT
  2997   };
  2999   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3000   // out of the function.
  3001   insert_mem_bar(Op_MemBarCPUOrder);
  3003   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3004   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3006   RegionNode* slow_region = new (C) RegionNode(1);
  3007   record_for_igvn(slow_region);
  3009   // (a) Receiving thread must be the current thread.
  3010   Node* rec_thr = argument(0);
  3011   Node* tls_ptr = NULL;
  3012   Node* cur_thr = generate_current_thread(tls_ptr);
  3013   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
  3014   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
  3016   generate_slow_guard(bol_thr, slow_region);
  3018   // (b) Interrupt bit on TLS must be false.
  3019   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3020   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3021   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3023   // Set the control input on the field _interrupted read to prevent it floating up.
  3024   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3025   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
  3026   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
  3028   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3030   // First fast path:  if (!TLS._interrupted) return false;
  3031   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
  3032   result_rgn->init_req(no_int_result_path, false_bit);
  3033   result_val->init_req(no_int_result_path, intcon(0));
  3035   // drop through to next case
  3036   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
  3038   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3039   Node* clr_arg = argument(1);
  3040   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
  3041   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
  3042   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3044   // Second fast path:  ... else if (!clear_int) return true;
  3045   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
  3046   result_rgn->init_req(no_clear_result_path, false_arg);
  3047   result_val->init_req(no_clear_result_path, intcon(1));
  3049   // drop through to next case
  3050   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
  3052   // (d) Otherwise, go to the slow path.
  3053   slow_region->add_req(control());
  3054   set_control( _gvn.transform(slow_region) );
  3056   if (stopped()) {
  3057     // There is no slow path.
  3058     result_rgn->init_req(slow_result_path, top());
  3059     result_val->init_req(slow_result_path, top());
  3060   } else {
  3061     // non-virtual because it is a private non-static
  3062     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3064     Node* slow_val = set_results_for_java_call(slow_call);
  3065     // this->control() comes from set_results_for_java_call
  3067     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3068     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3070     // These two phis are pre-filled with copies of of the fast IO and Memory
  3071     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3072     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3074     result_rgn->init_req(slow_result_path, control());
  3075     result_io ->init_req(slow_result_path, i_o());
  3076     result_mem->init_req(slow_result_path, reset_memory());
  3077     result_val->init_req(slow_result_path, slow_val);
  3079     set_all_memory(_gvn.transform(result_mem));
  3080     set_i_o(       _gvn.transform(result_io));
  3083   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3084   set_result(result_rgn, result_val);
  3085   return true;
  3088 //---------------------------load_mirror_from_klass----------------------------
  3089 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3090 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3091   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3092   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3095 //-----------------------load_klass_from_mirror_common-------------------------
  3096 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3097 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3098 // and branch to the given path on the region.
  3099 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3100 // compile for the non-null case.
  3101 // If the region is NULL, force never_see_null = true.
  3102 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3103                                                     bool never_see_null,
  3104                                                     RegionNode* region,
  3105                                                     int null_path,
  3106                                                     int offset) {
  3107   if (region == NULL)  never_see_null = true;
  3108   Node* p = basic_plus_adr(mirror, offset);
  3109   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3110   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3111   Node* null_ctl = top();
  3112   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3113   if (region != NULL) {
  3114     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3115     region->init_req(null_path, null_ctl);
  3116   } else {
  3117     assert(null_ctl == top(), "no loose ends");
  3119   return kls;
  3122 //--------------------(inline_native_Class_query helpers)---------------------
  3123 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3124 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3125 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3126   // Branch around if the given klass has the given modifier bit set.
  3127   // Like generate_guard, adds a new path onto the region.
  3128   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3129   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3130   Node* mask = intcon(modifier_mask);
  3131   Node* bits = intcon(modifier_bits);
  3132   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
  3133   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
  3134   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
  3135   return generate_fair_guard(bol, region);
  3137 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3138   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3141 //-------------------------inline_native_Class_query-------------------
  3142 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3143   const Type* return_type = TypeInt::BOOL;
  3144   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3145   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3146   bool expect_prim = false;     // most of these guys expect to work on refs
  3148   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3150   Node* mirror = argument(0);
  3151   Node* obj    = top();
  3153   switch (id) {
  3154   case vmIntrinsics::_isInstance:
  3155     // nothing is an instance of a primitive type
  3156     prim_return_value = intcon(0);
  3157     obj = argument(1);
  3158     break;
  3159   case vmIntrinsics::_getModifiers:
  3160     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3161     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3162     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3163     break;
  3164   case vmIntrinsics::_isInterface:
  3165     prim_return_value = intcon(0);
  3166     break;
  3167   case vmIntrinsics::_isArray:
  3168     prim_return_value = intcon(0);
  3169     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3170     break;
  3171   case vmIntrinsics::_isPrimitive:
  3172     prim_return_value = intcon(1);
  3173     expect_prim = true;  // obviously
  3174     break;
  3175   case vmIntrinsics::_getSuperclass:
  3176     prim_return_value = null();
  3177     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3178     break;
  3179   case vmIntrinsics::_getComponentType:
  3180     prim_return_value = null();
  3181     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3182     break;
  3183   case vmIntrinsics::_getClassAccessFlags:
  3184     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3185     return_type = TypeInt::INT;  // not bool!  6297094
  3186     break;
  3187   default:
  3188     fatal_unexpected_iid(id);
  3189     break;
  3192   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3193   if (mirror_con == NULL)  return false;  // cannot happen?
  3195 #ifndef PRODUCT
  3196   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3197     ciType* k = mirror_con->java_mirror_type();
  3198     if (k) {
  3199       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3200       k->print_name();
  3201       tty->cr();
  3204 #endif
  3206   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3207   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3208   record_for_igvn(region);
  3209   PhiNode* phi = new (C) PhiNode(region, return_type);
  3211   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3212   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3213   // if it is. See bug 4774291.
  3215   // For Reflection.getClassAccessFlags(), the null check occurs in
  3216   // the wrong place; see inline_unsafe_access(), above, for a similar
  3217   // situation.
  3218   mirror = null_check(mirror);
  3219   // If mirror or obj is dead, only null-path is taken.
  3220   if (stopped())  return true;
  3222   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3224   // Now load the mirror's klass metaobject, and null-check it.
  3225   // Side-effects region with the control path if the klass is null.
  3226   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3227   // If kls is null, we have a primitive mirror.
  3228   phi->init_req(_prim_path, prim_return_value);
  3229   if (stopped()) { set_result(region, phi); return true; }
  3231   Node* p;  // handy temp
  3232   Node* null_ctl;
  3234   // Now that we have the non-null klass, we can perform the real query.
  3235   // For constant classes, the query will constant-fold in LoadNode::Value.
  3236   Node* query_value = top();
  3237   switch (id) {
  3238   case vmIntrinsics::_isInstance:
  3239     // nothing is an instance of a primitive type
  3240     query_value = gen_instanceof(obj, kls);
  3241     break;
  3243   case vmIntrinsics::_getModifiers:
  3244     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3245     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3246     break;
  3248   case vmIntrinsics::_isInterface:
  3249     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3250     if (generate_interface_guard(kls, region) != NULL)
  3251       // A guard was added.  If the guard is taken, it was an interface.
  3252       phi->add_req(intcon(1));
  3253     // If we fall through, it's a plain class.
  3254     query_value = intcon(0);
  3255     break;
  3257   case vmIntrinsics::_isArray:
  3258     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3259     if (generate_array_guard(kls, region) != NULL)
  3260       // A guard was added.  If the guard is taken, it was an array.
  3261       phi->add_req(intcon(1));
  3262     // If we fall through, it's a plain class.
  3263     query_value = intcon(0);
  3264     break;
  3266   case vmIntrinsics::_isPrimitive:
  3267     query_value = intcon(0); // "normal" path produces false
  3268     break;
  3270   case vmIntrinsics::_getSuperclass:
  3271     // The rules here are somewhat unfortunate, but we can still do better
  3272     // with random logic than with a JNI call.
  3273     // Interfaces store null or Object as _super, but must report null.
  3274     // Arrays store an intermediate super as _super, but must report Object.
  3275     // Other types can report the actual _super.
  3276     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3277     if (generate_interface_guard(kls, region) != NULL)
  3278       // A guard was added.  If the guard is taken, it was an interface.
  3279       phi->add_req(null());
  3280     if (generate_array_guard(kls, region) != NULL)
  3281       // A guard was added.  If the guard is taken, it was an array.
  3282       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3283     // If we fall through, it's a plain class.  Get its _super.
  3284     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3285     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3286     null_ctl = top();
  3287     kls = null_check_oop(kls, &null_ctl);
  3288     if (null_ctl != top()) {
  3289       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3290       region->add_req(null_ctl);
  3291       phi   ->add_req(null());
  3293     if (!stopped()) {
  3294       query_value = load_mirror_from_klass(kls);
  3296     break;
  3298   case vmIntrinsics::_getComponentType:
  3299     if (generate_array_guard(kls, region) != NULL) {
  3300       // Be sure to pin the oop load to the guard edge just created:
  3301       Node* is_array_ctrl = region->in(region->req()-1);
  3302       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3303       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3304       phi->add_req(cmo);
  3306     query_value = null();  // non-array case is null
  3307     break;
  3309   case vmIntrinsics::_getClassAccessFlags:
  3310     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3311     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3312     break;
  3314   default:
  3315     fatal_unexpected_iid(id);
  3316     break;
  3319   // Fall-through is the normal case of a query to a real class.
  3320   phi->init_req(1, query_value);
  3321   region->init_req(1, control());
  3323   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3324   set_result(region, phi);
  3325   return true;
  3328 //--------------------------inline_native_subtype_check------------------------
  3329 // This intrinsic takes the JNI calls out of the heart of
  3330 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3331 bool LibraryCallKit::inline_native_subtype_check() {
  3332   // Pull both arguments off the stack.
  3333   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3334   args[0] = argument(0);
  3335   args[1] = argument(1);
  3336   Node* klasses[2];             // corresponding Klasses: superk, subk
  3337   klasses[0] = klasses[1] = top();
  3339   enum {
  3340     // A full decision tree on {superc is prim, subc is prim}:
  3341     _prim_0_path = 1,           // {P,N} => false
  3342                                 // {P,P} & superc!=subc => false
  3343     _prim_same_path,            // {P,P} & superc==subc => true
  3344     _prim_1_path,               // {N,P} => false
  3345     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3346     _both_ref_path,             // {N,N} & subtype check loses => false
  3347     PATH_LIMIT
  3348   };
  3350   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3351   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3352   record_for_igvn(region);
  3354   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3355   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3356   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3358   // First null-check both mirrors and load each mirror's klass metaobject.
  3359   int which_arg;
  3360   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3361     Node* arg = args[which_arg];
  3362     arg = null_check(arg);
  3363     if (stopped())  break;
  3364     args[which_arg] = arg;
  3366     Node* p = basic_plus_adr(arg, class_klass_offset);
  3367     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3368     klasses[which_arg] = _gvn.transform(kls);
  3371   // Having loaded both klasses, test each for null.
  3372   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3373   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3374     Node* kls = klasses[which_arg];
  3375     Node* null_ctl = top();
  3376     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3377     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3378     region->init_req(prim_path, null_ctl);
  3379     if (stopped())  break;
  3380     klasses[which_arg] = kls;
  3383   if (!stopped()) {
  3384     // now we have two reference types, in klasses[0..1]
  3385     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3386     Node* superk = klasses[0];  // the receiver
  3387     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3388     // now we have a successful reference subtype check
  3389     region->set_req(_ref_subtype_path, control());
  3392   // If both operands are primitive (both klasses null), then
  3393   // we must return true when they are identical primitives.
  3394   // It is convenient to test this after the first null klass check.
  3395   set_control(region->in(_prim_0_path)); // go back to first null check
  3396   if (!stopped()) {
  3397     // Since superc is primitive, make a guard for the superc==subc case.
  3398     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
  3399     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
  3400     generate_guard(bol_eq, region, PROB_FAIR);
  3401     if (region->req() == PATH_LIMIT+1) {
  3402       // A guard was added.  If the added guard is taken, superc==subc.
  3403       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3404       region->del_req(PATH_LIMIT);
  3406     region->set_req(_prim_0_path, control()); // Not equal after all.
  3409   // these are the only paths that produce 'true':
  3410   phi->set_req(_prim_same_path,   intcon(1));
  3411   phi->set_req(_ref_subtype_path, intcon(1));
  3413   // pull together the cases:
  3414   assert(region->req() == PATH_LIMIT, "sane region");
  3415   for (uint i = 1; i < region->req(); i++) {
  3416     Node* ctl = region->in(i);
  3417     if (ctl == NULL || ctl == top()) {
  3418       region->set_req(i, top());
  3419       phi   ->set_req(i, top());
  3420     } else if (phi->in(i) == NULL) {
  3421       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3425   set_control(_gvn.transform(region));
  3426   set_result(_gvn.transform(phi));
  3427   return true;
  3430 //---------------------generate_array_guard_common------------------------
  3431 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3432                                                   bool obj_array, bool not_array) {
  3433   // If obj_array/non_array==false/false:
  3434   // Branch around if the given klass is in fact an array (either obj or prim).
  3435   // If obj_array/non_array==false/true:
  3436   // Branch around if the given klass is not an array klass of any kind.
  3437   // If obj_array/non_array==true/true:
  3438   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3439   // If obj_array/non_array==true/false:
  3440   // Branch around if the kls is an oop array (Object[] or subtype)
  3441   //
  3442   // Like generate_guard, adds a new path onto the region.
  3443   jint  layout_con = 0;
  3444   Node* layout_val = get_layout_helper(kls, layout_con);
  3445   if (layout_val == NULL) {
  3446     bool query = (obj_array
  3447                   ? Klass::layout_helper_is_objArray(layout_con)
  3448                   : Klass::layout_helper_is_array(layout_con));
  3449     if (query == not_array) {
  3450       return NULL;                       // never a branch
  3451     } else {                             // always a branch
  3452       Node* always_branch = control();
  3453       if (region != NULL)
  3454         region->add_req(always_branch);
  3455       set_control(top());
  3456       return always_branch;
  3459   // Now test the correct condition.
  3460   jint  nval = (obj_array
  3461                 ? ((jint)Klass::_lh_array_tag_type_value
  3462                    <<    Klass::_lh_array_tag_shift)
  3463                 : Klass::_lh_neutral_value);
  3464   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
  3465   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3466   // invert the test if we are looking for a non-array
  3467   if (not_array)  btest = BoolTest(btest).negate();
  3468   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
  3469   return generate_fair_guard(bol, region);
  3473 //-----------------------inline_native_newArray--------------------------
  3474 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3475 bool LibraryCallKit::inline_native_newArray() {
  3476   Node* mirror    = argument(0);
  3477   Node* count_val = argument(1);
  3479   mirror = null_check(mirror);
  3480   // If mirror or obj is dead, only null-path is taken.
  3481   if (stopped())  return true;
  3483   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3484   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3485   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3486                                           TypeInstPtr::NOTNULL);
  3487   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3488   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3489                                           TypePtr::BOTTOM);
  3491   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3492   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3493                                                   result_reg, _slow_path);
  3494   Node* normal_ctl   = control();
  3495   Node* no_array_ctl = result_reg->in(_slow_path);
  3497   // Generate code for the slow case.  We make a call to newArray().
  3498   set_control(no_array_ctl);
  3499   if (!stopped()) {
  3500     // Either the input type is void.class, or else the
  3501     // array klass has not yet been cached.  Either the
  3502     // ensuing call will throw an exception, or else it
  3503     // will cache the array klass for next time.
  3504     PreserveJVMState pjvms(this);
  3505     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3506     Node* slow_result = set_results_for_java_call(slow_call);
  3507     // this->control() comes from set_results_for_java_call
  3508     result_reg->set_req(_slow_path, control());
  3509     result_val->set_req(_slow_path, slow_result);
  3510     result_io ->set_req(_slow_path, i_o());
  3511     result_mem->set_req(_slow_path, reset_memory());
  3514   set_control(normal_ctl);
  3515   if (!stopped()) {
  3516     // Normal case:  The array type has been cached in the java.lang.Class.
  3517     // The following call works fine even if the array type is polymorphic.
  3518     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3519     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3520     result_reg->init_req(_normal_path, control());
  3521     result_val->init_req(_normal_path, obj);
  3522     result_io ->init_req(_normal_path, i_o());
  3523     result_mem->init_req(_normal_path, reset_memory());
  3526   // Return the combined state.
  3527   set_i_o(        _gvn.transform(result_io)  );
  3528   set_all_memory( _gvn.transform(result_mem) );
  3530   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3531   set_result(result_reg, result_val);
  3532   return true;
  3535 //----------------------inline_native_getLength--------------------------
  3536 // public static native int java.lang.reflect.Array.getLength(Object array);
  3537 bool LibraryCallKit::inline_native_getLength() {
  3538   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3540   Node* array = null_check(argument(0));
  3541   // If array is dead, only null-path is taken.
  3542   if (stopped())  return true;
  3544   // Deoptimize if it is a non-array.
  3545   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3547   if (non_array != NULL) {
  3548     PreserveJVMState pjvms(this);
  3549     set_control(non_array);
  3550     uncommon_trap(Deoptimization::Reason_intrinsic,
  3551                   Deoptimization::Action_maybe_recompile);
  3554   // If control is dead, only non-array-path is taken.
  3555   if (stopped())  return true;
  3557   // The works fine even if the array type is polymorphic.
  3558   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3559   Node* result = load_array_length(array);
  3561   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3562   set_result(result);
  3563   return true;
  3566 //------------------------inline_array_copyOf----------------------------
  3567 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3568 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3569 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3570   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3572   // Get the arguments.
  3573   Node* original          = argument(0);
  3574   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3575   Node* end               = is_copyOfRange? argument(2): argument(1);
  3576   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3578   Node* newcopy;
  3580   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3581   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3582   { PreserveReexecuteState preexecs(this);
  3583     jvms()->set_should_reexecute(true);
  3585     array_type_mirror = null_check(array_type_mirror);
  3586     original          = null_check(original);
  3588     // Check if a null path was taken unconditionally.
  3589     if (stopped())  return true;
  3591     Node* orig_length = load_array_length(original);
  3593     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3594     klass_node = null_check(klass_node);
  3596     RegionNode* bailout = new (C) RegionNode(1);
  3597     record_for_igvn(bailout);
  3599     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3600     // Bail out if that is so.
  3601     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3602     if (not_objArray != NULL) {
  3603       // Improve the klass node's type from the new optimistic assumption:
  3604       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3605       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3606       Node* cast = new (C) CastPPNode(klass_node, akls);
  3607       cast->init_req(0, control());
  3608       klass_node = _gvn.transform(cast);
  3611     // Bail out if either start or end is negative.
  3612     generate_negative_guard(start, bailout, &start);
  3613     generate_negative_guard(end,   bailout, &end);
  3615     Node* length = end;
  3616     if (_gvn.type(start) != TypeInt::ZERO) {
  3617       length = _gvn.transform(new (C) SubINode(end, start));
  3620     // Bail out if length is negative.
  3621     // Without this the new_array would throw
  3622     // NegativeArraySizeException but IllegalArgumentException is what
  3623     // should be thrown
  3624     generate_negative_guard(length, bailout, &length);
  3626     if (bailout->req() > 1) {
  3627       PreserveJVMState pjvms(this);
  3628       set_control(_gvn.transform(bailout));
  3629       uncommon_trap(Deoptimization::Reason_intrinsic,
  3630                     Deoptimization::Action_maybe_recompile);
  3633     if (!stopped()) {
  3634       // How many elements will we copy from the original?
  3635       // The answer is MinI(orig_length - start, length).
  3636       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3637       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3639       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3641       // Generate a direct call to the right arraycopy function(s).
  3642       // We know the copy is disjoint but we might not know if the
  3643       // oop stores need checking.
  3644       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3645       // This will fail a store-check if x contains any non-nulls.
  3646       bool disjoint_bases = true;
  3647       // if start > orig_length then the length of the copy may be
  3648       // negative.
  3649       bool length_never_negative = !is_copyOfRange;
  3650       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3651                          original, start, newcopy, intcon(0), moved,
  3652                          disjoint_bases, length_never_negative);
  3654   } // original reexecute is set back here
  3656   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3657   if (!stopped()) {
  3658     set_result(newcopy);
  3660   return true;
  3664 //----------------------generate_virtual_guard---------------------------
  3665 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3666 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3667                                              RegionNode* slow_region) {
  3668   ciMethod* method = callee();
  3669   int vtable_index = method->vtable_index();
  3670   // Get the Method* out of the appropriate vtable entry.
  3671   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3672                      vtable_index*vtableEntry::size()) * wordSize +
  3673                      vtableEntry::method_offset_in_bytes();
  3674   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3675   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3677   // Compare the target method with the expected method (e.g., Object.hashCode).
  3678   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3680   Node* native_call = makecon(native_call_addr);
  3681   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
  3682   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
  3684   return generate_slow_guard(test_native, slow_region);
  3687 //-----------------------generate_method_call----------------------------
  3688 // Use generate_method_call to make a slow-call to the real
  3689 // method if the fast path fails.  An alternative would be to
  3690 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3691 // This only works for expanding the current library call,
  3692 // not another intrinsic.  (E.g., don't use this for making an
  3693 // arraycopy call inside of the copyOf intrinsic.)
  3694 CallJavaNode*
  3695 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3696   // When compiling the intrinsic method itself, do not use this technique.
  3697   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3699   ciMethod* method = callee();
  3700   // ensure the JVMS we have will be correct for this call
  3701   guarantee(method_id == method->intrinsic_id(), "must match");
  3703   const TypeFunc* tf = TypeFunc::make(method);
  3704   CallJavaNode* slow_call;
  3705   if (is_static) {
  3706     assert(!is_virtual, "");
  3707     slow_call = new(C) CallStaticJavaNode(tf,
  3708                            SharedRuntime::get_resolve_static_call_stub(),
  3709                            method, bci());
  3710   } else if (is_virtual) {
  3711     null_check_receiver();
  3712     int vtable_index = Method::invalid_vtable_index;
  3713     if (UseInlineCaches) {
  3714       // Suppress the vtable call
  3715     } else {
  3716       // hashCode and clone are not a miranda methods,
  3717       // so the vtable index is fixed.
  3718       // No need to use the linkResolver to get it.
  3719        vtable_index = method->vtable_index();
  3721     slow_call = new(C) CallDynamicJavaNode(tf,
  3722                           SharedRuntime::get_resolve_virtual_call_stub(),
  3723                           method, vtable_index, bci());
  3724   } else {  // neither virtual nor static:  opt_virtual
  3725     null_check_receiver();
  3726     slow_call = new(C) CallStaticJavaNode(tf,
  3727                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3728                                 method, bci());
  3729     slow_call->set_optimized_virtual(true);
  3731   set_arguments_for_java_call(slow_call);
  3732   set_edges_for_java_call(slow_call);
  3733   return slow_call;
  3737 //------------------------------inline_native_hashcode--------------------
  3738 // Build special case code for calls to hashCode on an object.
  3739 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3740   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3741   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3743   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3745   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3746   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3747                                           TypeInt::INT);
  3748   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3749   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3750                                           TypePtr::BOTTOM);
  3751   Node* obj = NULL;
  3752   if (!is_static) {
  3753     // Check for hashing null object
  3754     obj = null_check_receiver();
  3755     if (stopped())  return true;        // unconditionally null
  3756     result_reg->init_req(_null_path, top());
  3757     result_val->init_req(_null_path, top());
  3758   } else {
  3759     // Do a null check, and return zero if null.
  3760     // System.identityHashCode(null) == 0
  3761     obj = argument(0);
  3762     Node* null_ctl = top();
  3763     obj = null_check_oop(obj, &null_ctl);
  3764     result_reg->init_req(_null_path, null_ctl);
  3765     result_val->init_req(_null_path, _gvn.intcon(0));
  3768   // Unconditionally null?  Then return right away.
  3769   if (stopped()) {
  3770     set_control( result_reg->in(_null_path));
  3771     if (!stopped())
  3772       set_result(result_val->in(_null_path));
  3773     return true;
  3776   // After null check, get the object's klass.
  3777   Node* obj_klass = load_object_klass(obj);
  3779   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3780   // For each case we generate slightly different code.
  3782   // We only go to the fast case code if we pass a number of guards.  The
  3783   // paths which do not pass are accumulated in the slow_region.
  3784   RegionNode* slow_region = new (C) RegionNode(1);
  3785   record_for_igvn(slow_region);
  3787   // If this is a virtual call, we generate a funny guard.  We pull out
  3788   // the vtable entry corresponding to hashCode() from the target object.
  3789   // If the target method which we are calling happens to be the native
  3790   // Object hashCode() method, we pass the guard.  We do not need this
  3791   // guard for non-virtual calls -- the caller is known to be the native
  3792   // Object hashCode().
  3793   if (is_virtual) {
  3794     generate_virtual_guard(obj_klass, slow_region);
  3797   // Get the header out of the object, use LoadMarkNode when available
  3798   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3799   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3801   // Test the header to see if it is unlocked.
  3802   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3803   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
  3804   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3805   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
  3806   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
  3808   generate_slow_guard(test_unlocked, slow_region);
  3810   // Get the hash value and check to see that it has been properly assigned.
  3811   // We depend on hash_mask being at most 32 bits and avoid the use of
  3812   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3813   // vm: see markOop.hpp.
  3814   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3815   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3816   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
  3817   // This hack lets the hash bits live anywhere in the mark object now, as long
  3818   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3819   // Java spec says that HashCode is an int so there's no point in capturing
  3820   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3821   hshifted_header      = ConvX2I(hshifted_header);
  3822   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
  3824   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3825   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
  3826   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
  3828   generate_slow_guard(test_assigned, slow_region);
  3830   Node* init_mem = reset_memory();
  3831   // fill in the rest of the null path:
  3832   result_io ->init_req(_null_path, i_o());
  3833   result_mem->init_req(_null_path, init_mem);
  3835   result_val->init_req(_fast_path, hash_val);
  3836   result_reg->init_req(_fast_path, control());
  3837   result_io ->init_req(_fast_path, i_o());
  3838   result_mem->init_req(_fast_path, init_mem);
  3840   // Generate code for the slow case.  We make a call to hashCode().
  3841   set_control(_gvn.transform(slow_region));
  3842   if (!stopped()) {
  3843     // No need for PreserveJVMState, because we're using up the present state.
  3844     set_all_memory(init_mem);
  3845     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  3846     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3847     Node* slow_result = set_results_for_java_call(slow_call);
  3848     // this->control() comes from set_results_for_java_call
  3849     result_reg->init_req(_slow_path, control());
  3850     result_val->init_req(_slow_path, slow_result);
  3851     result_io  ->set_req(_slow_path, i_o());
  3852     result_mem ->set_req(_slow_path, reset_memory());
  3855   // Return the combined state.
  3856   set_i_o(        _gvn.transform(result_io)  );
  3857   set_all_memory( _gvn.transform(result_mem) );
  3859   set_result(result_reg, result_val);
  3860   return true;
  3863 //---------------------------inline_native_getClass----------------------------
  3864 // public final native Class<?> java.lang.Object.getClass();
  3865 //
  3866 // Build special case code for calls to getClass on an object.
  3867 bool LibraryCallKit::inline_native_getClass() {
  3868   Node* obj = null_check_receiver();
  3869   if (stopped())  return true;
  3870   set_result(load_mirror_from_klass(load_object_klass(obj)));
  3871   return true;
  3874 //-----------------inline_native_Reflection_getCallerClass---------------------
  3875 // public static native Class<?> sun.reflect.Reflection.getCallerClass(int realFramesToSkip);
  3876 //
  3877 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3878 //
  3879 // NOTE that this code must perform the same logic as
  3880 // vframeStream::security_get_caller_frame in that it must skip
  3881 // Method.invoke() and auxiliary frames.
  3882 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3883 #ifndef PRODUCT
  3884   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3885     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3887 #endif
  3889   Node* caller_depth_node = argument(0);
  3891   // The depth value must be a constant in order for the runtime call
  3892   // to be eliminated.
  3893   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3894   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3895 #ifndef PRODUCT
  3896     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3897       tty->print_cr("  Bailing out because caller depth was not a constant");
  3899 #endif
  3900     return false;
  3902   // Note that the JVM state at this point does not include the
  3903   // getCallerClass() frame which we are trying to inline. The
  3904   // semantics of getCallerClass(), however, are that the "first"
  3905   // frame is the getCallerClass() frame, so we subtract one from the
  3906   // requested depth before continuing. We don't inline requests of
  3907   // getCallerClass(0).
  3908   int caller_depth = caller_depth_type->get_con() - 1;
  3909   if (caller_depth < 0) {
  3910 #ifndef PRODUCT
  3911     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3912       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3914 #endif
  3915     return false;
  3918   if (!jvms()->has_method()) {
  3919 #ifndef PRODUCT
  3920     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3921       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3923 #endif
  3924     return false;
  3926   int _depth = jvms()->depth();  // cache call chain depth
  3928   // Walk back up the JVM state to find the caller at the required
  3929   // depth. NOTE that this code must perform the same logic as
  3930   // vframeStream::security_get_caller_frame in that it must skip
  3931   // Method.invoke() and auxiliary frames. Note also that depth is
  3932   // 1-based (1 is the bottom of the inlining).
  3933   int inlining_depth = _depth;
  3934   JVMState* caller_jvms = NULL;
  3936   if (inlining_depth > 0) {
  3937     caller_jvms = jvms();
  3938     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3939     do {
  3940       // The following if-tests should be performed in this order
  3941       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3942         // Skip a Method.invoke() or auxiliary frame
  3943       } else if (caller_depth > 0) {
  3944         // Skip real frame
  3945         --caller_depth;
  3946       } else {
  3947         // We're done: reached desired caller after skipping.
  3948         break;
  3950       caller_jvms = caller_jvms->caller();
  3951       --inlining_depth;
  3952     } while (inlining_depth > 0);
  3955   if (inlining_depth == 0) {
  3956 #ifndef PRODUCT
  3957     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3958       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3959       tty->print_cr("  JVM state at this point:");
  3960       for (int i = _depth; i >= 1; i--) {
  3961         ciMethod* m = jvms()->of_depth(i)->method();
  3962         tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3965 #endif
  3966     return false; // Reached end of inlining
  3969   // Acquire method holder as java.lang.Class
  3970   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3971   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3973   // Push this as a constant
  3974   set_result(makecon(TypeInstPtr::make(caller_mirror)));
  3976 #ifndef PRODUCT
  3977   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3978     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3979     tty->print_cr("  JVM state at this point:");
  3980     for (int i = _depth; i >= 1; i--) {
  3981       ciMethod* m = jvms()->of_depth(i)->method();
  3982       tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3985 #endif
  3986   return true;
  3989 // Helper routine for above
  3990 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3991   ciMethod* method = jvms->method();
  3993   // Is this the Method.invoke method itself?
  3994   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3995     return true;
  3997   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3998   ciKlass* k = method->holder();
  3999   if (k->is_instance_klass()) {
  4000     ciInstanceKlass* ik = k->as_instance_klass();
  4001     for (; ik != NULL; ik = ik->super()) {
  4002       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  4003           ik == env()->find_system_klass(ik->name())) {
  4004         return true;
  4008   else if (method->is_method_handle_intrinsic() ||
  4009            method->is_compiled_lambda_form()) {
  4010     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  4011     return true;
  4014   return false;
  4017 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4018   Node* arg = argument(0);
  4019   Node* result;
  4021   switch (id) {
  4022   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4023   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4024   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4025   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4027   case vmIntrinsics::_doubleToLongBits: {
  4028     // two paths (plus control) merge in a wood
  4029     RegionNode *r = new (C) RegionNode(3);
  4030     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4032     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4033     // Build the boolean node
  4034     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4036     // Branch either way.
  4037     // NaN case is less traveled, which makes all the difference.
  4038     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4039     Node *opt_isnan = _gvn.transform(ifisnan);
  4040     assert( opt_isnan->is_If(), "Expect an IfNode");
  4041     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4042     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4044     set_control(iftrue);
  4046     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4047     Node *slow_result = longcon(nan_bits); // return NaN
  4048     phi->init_req(1, _gvn.transform( slow_result ));
  4049     r->init_req(1, iftrue);
  4051     // Else fall through
  4052     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4053     set_control(iffalse);
  4055     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4056     r->init_req(2, iffalse);
  4058     // Post merge
  4059     set_control(_gvn.transform(r));
  4060     record_for_igvn(r);
  4062     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4063     result = phi;
  4064     assert(result->bottom_type()->isa_long(), "must be");
  4065     break;
  4068   case vmIntrinsics::_floatToIntBits: {
  4069     // two paths (plus control) merge in a wood
  4070     RegionNode *r = new (C) RegionNode(3);
  4071     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4073     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4074     // Build the boolean node
  4075     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4077     // Branch either way.
  4078     // NaN case is less traveled, which makes all the difference.
  4079     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4080     Node *opt_isnan = _gvn.transform(ifisnan);
  4081     assert( opt_isnan->is_If(), "Expect an IfNode");
  4082     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4083     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4085     set_control(iftrue);
  4087     static const jint nan_bits = 0x7fc00000;
  4088     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4089     phi->init_req(1, _gvn.transform( slow_result ));
  4090     r->init_req(1, iftrue);
  4092     // Else fall through
  4093     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4094     set_control(iffalse);
  4096     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4097     r->init_req(2, iffalse);
  4099     // Post merge
  4100     set_control(_gvn.transform(r));
  4101     record_for_igvn(r);
  4103     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4104     result = phi;
  4105     assert(result->bottom_type()->isa_int(), "must be");
  4106     break;
  4109   default:
  4110     fatal_unexpected_iid(id);
  4111     break;
  4113   set_result(_gvn.transform(result));
  4114   return true;
  4117 #ifdef _LP64
  4118 #define XTOP ,top() /*additional argument*/
  4119 #else  //_LP64
  4120 #define XTOP        /*no additional argument*/
  4121 #endif //_LP64
  4123 //----------------------inline_unsafe_copyMemory-------------------------
  4124 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4125 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4126   if (callee()->is_static())  return false;  // caller must have the capability!
  4127   null_check_receiver();  // null-check receiver
  4128   if (stopped())  return true;
  4130   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4132   Node* src_ptr =         argument(1);   // type: oop
  4133   Node* src_off = ConvL2X(argument(2));  // type: long
  4134   Node* dst_ptr =         argument(4);   // type: oop
  4135   Node* dst_off = ConvL2X(argument(5));  // type: long
  4136   Node* size    = ConvL2X(argument(7));  // type: long
  4138   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4139          "fieldOffset must be byte-scaled");
  4141   Node* src = make_unsafe_address(src_ptr, src_off);
  4142   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4144   // Conservatively insert a memory barrier on all memory slices.
  4145   // Do not let writes of the copy source or destination float below the copy.
  4146   insert_mem_bar(Op_MemBarCPUOrder);
  4148   // Call it.  Note that the length argument is not scaled.
  4149   make_runtime_call(RC_LEAF|RC_NO_FP,
  4150                     OptoRuntime::fast_arraycopy_Type(),
  4151                     StubRoutines::unsafe_arraycopy(),
  4152                     "unsafe_arraycopy",
  4153                     TypeRawPtr::BOTTOM,
  4154                     src, dst, size XTOP);
  4156   // Do not let reads of the copy destination float above the copy.
  4157   insert_mem_bar(Op_MemBarCPUOrder);
  4159   return true;
  4162 //------------------------clone_coping-----------------------------------
  4163 // Helper function for inline_native_clone.
  4164 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4165   assert(obj_size != NULL, "");
  4166   Node* raw_obj = alloc_obj->in(1);
  4167   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4169   AllocateNode* alloc = NULL;
  4170   if (ReduceBulkZeroing) {
  4171     // We will be completely responsible for initializing this object -
  4172     // mark Initialize node as complete.
  4173     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4174     // The object was just allocated - there should be no any stores!
  4175     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4176     // Mark as complete_with_arraycopy so that on AllocateNode
  4177     // expansion, we know this AllocateNode is initialized by an array
  4178     // copy and a StoreStore barrier exists after the array copy.
  4179     alloc->initialization()->set_complete_with_arraycopy();
  4182   // Copy the fastest available way.
  4183   // TODO: generate fields copies for small objects instead.
  4184   Node* src  = obj;
  4185   Node* dest = alloc_obj;
  4186   Node* size = _gvn.transform(obj_size);
  4188   // Exclude the header but include array length to copy by 8 bytes words.
  4189   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4190   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4191                             instanceOopDesc::base_offset_in_bytes();
  4192   // base_off:
  4193   // 8  - 32-bit VM
  4194   // 12 - 64-bit VM, compressed klass
  4195   // 16 - 64-bit VM, normal klass
  4196   if (base_off % BytesPerLong != 0) {
  4197     assert(UseCompressedKlassPointers, "");
  4198     if (is_array) {
  4199       // Exclude length to copy by 8 bytes words.
  4200       base_off += sizeof(int);
  4201     } else {
  4202       // Include klass to copy by 8 bytes words.
  4203       base_off = instanceOopDesc::klass_offset_in_bytes();
  4205     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4207   src  = basic_plus_adr(src,  base_off);
  4208   dest = basic_plus_adr(dest, base_off);
  4210   // Compute the length also, if needed:
  4211   Node* countx = size;
  4212   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
  4213   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4215   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4216   bool disjoint_bases = true;
  4217   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4218                                src, NULL, dest, NULL, countx,
  4219                                /*dest_uninitialized*/true);
  4221   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4222   if (card_mark) {
  4223     assert(!is_array, "");
  4224     // Put in store barrier for any and all oops we are sticking
  4225     // into this object.  (We could avoid this if we could prove
  4226     // that the object type contains no oop fields at all.)
  4227     Node* no_particular_value = NULL;
  4228     Node* no_particular_field = NULL;
  4229     int raw_adr_idx = Compile::AliasIdxRaw;
  4230     post_barrier(control(),
  4231                  memory(raw_adr_type),
  4232                  alloc_obj,
  4233                  no_particular_field,
  4234                  raw_adr_idx,
  4235                  no_particular_value,
  4236                  T_OBJECT,
  4237                  false);
  4240   // Do not let reads from the cloned object float above the arraycopy.
  4241   if (alloc != NULL) {
  4242     // Do not let stores that initialize this object be reordered with
  4243     // a subsequent store that would make this object accessible by
  4244     // other threads.
  4245     // Record what AllocateNode this StoreStore protects so that
  4246     // escape analysis can go from the MemBarStoreStoreNode to the
  4247     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4248     // based on the escape status of the AllocateNode.
  4249     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4250   } else {
  4251     insert_mem_bar(Op_MemBarCPUOrder);
  4255 //------------------------inline_native_clone----------------------------
  4256 // protected native Object java.lang.Object.clone();
  4257 //
  4258 // Here are the simple edge cases:
  4259 //  null receiver => normal trap
  4260 //  virtual and clone was overridden => slow path to out-of-line clone
  4261 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4262 //
  4263 // The general case has two steps, allocation and copying.
  4264 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4265 //
  4266 // Copying also has two cases, oop arrays and everything else.
  4267 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4268 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4269 //
  4270 // These steps fold up nicely if and when the cloned object's klass
  4271 // can be sharply typed as an object array, a type array, or an instance.
  4272 //
  4273 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4274   PhiNode* result_val;
  4276   // Set the reexecute bit for the interpreter to reexecute
  4277   // the bytecode that invokes Object.clone if deoptimization happens.
  4278   { PreserveReexecuteState preexecs(this);
  4279     jvms()->set_should_reexecute(true);
  4281     Node* obj = null_check_receiver();
  4282     if (stopped())  return true;
  4284     Node* obj_klass = load_object_klass(obj);
  4285     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4286     const TypeOopPtr*   toop   = ((tklass != NULL)
  4287                                 ? tklass->as_instance_type()
  4288                                 : TypeInstPtr::NOTNULL);
  4290     // Conservatively insert a memory barrier on all memory slices.
  4291     // Do not let writes into the original float below the clone.
  4292     insert_mem_bar(Op_MemBarCPUOrder);
  4294     // paths into result_reg:
  4295     enum {
  4296       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4297       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4298       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4299       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4300       PATH_LIMIT
  4301     };
  4302     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4303     result_val             = new(C) PhiNode(result_reg,
  4304                                             TypeInstPtr::NOTNULL);
  4305     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4306     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4307                                             TypePtr::BOTTOM);
  4308     record_for_igvn(result_reg);
  4310     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4311     int raw_adr_idx = Compile::AliasIdxRaw;
  4313     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4314     if (array_ctl != NULL) {
  4315       // It's an array.
  4316       PreserveJVMState pjvms(this);
  4317       set_control(array_ctl);
  4318       Node* obj_length = load_array_length(obj);
  4319       Node* obj_size  = NULL;
  4320       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4322       if (!use_ReduceInitialCardMarks()) {
  4323         // If it is an oop array, it requires very special treatment,
  4324         // because card marking is required on each card of the array.
  4325         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4326         if (is_obja != NULL) {
  4327           PreserveJVMState pjvms2(this);
  4328           set_control(is_obja);
  4329           // Generate a direct call to the right arraycopy function(s).
  4330           bool disjoint_bases = true;
  4331           bool length_never_negative = true;
  4332           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4333                              obj, intcon(0), alloc_obj, intcon(0),
  4334                              obj_length,
  4335                              disjoint_bases, length_never_negative);
  4336           result_reg->init_req(_objArray_path, control());
  4337           result_val->init_req(_objArray_path, alloc_obj);
  4338           result_i_o ->set_req(_objArray_path, i_o());
  4339           result_mem ->set_req(_objArray_path, reset_memory());
  4342       // Otherwise, there are no card marks to worry about.
  4343       // (We can dispense with card marks if we know the allocation
  4344       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4345       //  causes the non-eden paths to take compensating steps to
  4346       //  simulate a fresh allocation, so that no further
  4347       //  card marks are required in compiled code to initialize
  4348       //  the object.)
  4350       if (!stopped()) {
  4351         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4353         // Present the results of the copy.
  4354         result_reg->init_req(_array_path, control());
  4355         result_val->init_req(_array_path, alloc_obj);
  4356         result_i_o ->set_req(_array_path, i_o());
  4357         result_mem ->set_req(_array_path, reset_memory());
  4361     // We only go to the instance fast case code if we pass a number of guards.
  4362     // The paths which do not pass are accumulated in the slow_region.
  4363     RegionNode* slow_region = new (C) RegionNode(1);
  4364     record_for_igvn(slow_region);
  4365     if (!stopped()) {
  4366       // It's an instance (we did array above).  Make the slow-path tests.
  4367       // If this is a virtual call, we generate a funny guard.  We grab
  4368       // the vtable entry corresponding to clone() from the target object.
  4369       // If the target method which we are calling happens to be the
  4370       // Object clone() method, we pass the guard.  We do not need this
  4371       // guard for non-virtual calls; the caller is known to be the native
  4372       // Object clone().
  4373       if (is_virtual) {
  4374         generate_virtual_guard(obj_klass, slow_region);
  4377       // The object must be cloneable and must not have a finalizer.
  4378       // Both of these conditions may be checked in a single test.
  4379       // We could optimize the cloneable test further, but we don't care.
  4380       generate_access_flags_guard(obj_klass,
  4381                                   // Test both conditions:
  4382                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4383                                   // Must be cloneable but not finalizer:
  4384                                   JVM_ACC_IS_CLONEABLE,
  4385                                   slow_region);
  4388     if (!stopped()) {
  4389       // It's an instance, and it passed the slow-path tests.
  4390       PreserveJVMState pjvms(this);
  4391       Node* obj_size  = NULL;
  4392       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4394       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4396       // Present the results of the slow call.
  4397       result_reg->init_req(_instance_path, control());
  4398       result_val->init_req(_instance_path, alloc_obj);
  4399       result_i_o ->set_req(_instance_path, i_o());
  4400       result_mem ->set_req(_instance_path, reset_memory());
  4403     // Generate code for the slow case.  We make a call to clone().
  4404     set_control(_gvn.transform(slow_region));
  4405     if (!stopped()) {
  4406       PreserveJVMState pjvms(this);
  4407       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4408       Node* slow_result = set_results_for_java_call(slow_call);
  4409       // this->control() comes from set_results_for_java_call
  4410       result_reg->init_req(_slow_path, control());
  4411       result_val->init_req(_slow_path, slow_result);
  4412       result_i_o ->set_req(_slow_path, i_o());
  4413       result_mem ->set_req(_slow_path, reset_memory());
  4416     // Return the combined state.
  4417     set_control(    _gvn.transform(result_reg) );
  4418     set_i_o(        _gvn.transform(result_i_o) );
  4419     set_all_memory( _gvn.transform(result_mem) );
  4420   } // original reexecute is set back here
  4422   set_result(_gvn.transform(result_val));
  4423   return true;
  4426 //------------------------------basictype2arraycopy----------------------------
  4427 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4428                                             Node* src_offset,
  4429                                             Node* dest_offset,
  4430                                             bool disjoint_bases,
  4431                                             const char* &name,
  4432                                             bool dest_uninitialized) {
  4433   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4434   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4436   bool aligned = false;
  4437   bool disjoint = disjoint_bases;
  4439   // if the offsets are the same, we can treat the memory regions as
  4440   // disjoint, because either the memory regions are in different arrays,
  4441   // or they are identical (which we can treat as disjoint.)  We can also
  4442   // treat a copy with a destination index  less that the source index
  4443   // as disjoint since a low->high copy will work correctly in this case.
  4444   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4445       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4446     // both indices are constants
  4447     int s_offs = src_offset_inttype->get_con();
  4448     int d_offs = dest_offset_inttype->get_con();
  4449     int element_size = type2aelembytes(t);
  4450     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4451               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4452     if (s_offs >= d_offs)  disjoint = true;
  4453   } else if (src_offset == dest_offset && src_offset != NULL) {
  4454     // This can occur if the offsets are identical non-constants.
  4455     disjoint = true;
  4458   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4462 //------------------------------inline_arraycopy-----------------------
  4463 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4464 //                                                      Object dest, int destPos,
  4465 //                                                      int length);
  4466 bool LibraryCallKit::inline_arraycopy() {
  4467   // Get the arguments.
  4468   Node* src         = argument(0);  // type: oop
  4469   Node* src_offset  = argument(1);  // type: int
  4470   Node* dest        = argument(2);  // type: oop
  4471   Node* dest_offset = argument(3);  // type: int
  4472   Node* length      = argument(4);  // type: int
  4474   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4475   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4476   // is.  The checks we choose to mandate at compile time are:
  4477   //
  4478   // (1) src and dest are arrays.
  4479   const Type* src_type  = src->Value(&_gvn);
  4480   const Type* dest_type = dest->Value(&_gvn);
  4481   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4482   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4483   if (top_src  == NULL || top_src->klass()  == NULL ||
  4484       top_dest == NULL || top_dest->klass() == NULL) {
  4485     // Conservatively insert a memory barrier on all memory slices.
  4486     // Do not let writes into the source float below the arraycopy.
  4487     insert_mem_bar(Op_MemBarCPUOrder);
  4489     // Call StubRoutines::generic_arraycopy stub.
  4490     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4491                        src, src_offset, dest, dest_offset, length);
  4493     // Do not let reads from the destination float above the arraycopy.
  4494     // Since we cannot type the arrays, we don't know which slices
  4495     // might be affected.  We could restrict this barrier only to those
  4496     // memory slices which pertain to array elements--but don't bother.
  4497     if (!InsertMemBarAfterArraycopy)
  4498       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4499       insert_mem_bar(Op_MemBarCPUOrder);
  4500     return true;
  4503   // (2) src and dest arrays must have elements of the same BasicType
  4504   // Figure out the size and type of the elements we will be copying.
  4505   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4506   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4507   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4508   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4510   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4511     // The component types are not the same or are not recognized.  Punt.
  4512     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4513     generate_slow_arraycopy(TypePtr::BOTTOM,
  4514                             src, src_offset, dest, dest_offset, length,
  4515                             /*dest_uninitialized*/false);
  4516     return true;
  4519   //---------------------------------------------------------------------------
  4520   // We will make a fast path for this call to arraycopy.
  4522   // We have the following tests left to perform:
  4523   //
  4524   // (3) src and dest must not be null.
  4525   // (4) src_offset must not be negative.
  4526   // (5) dest_offset must not be negative.
  4527   // (6) length must not be negative.
  4528   // (7) src_offset + length must not exceed length of src.
  4529   // (8) dest_offset + length must not exceed length of dest.
  4530   // (9) each element of an oop array must be assignable
  4532   RegionNode* slow_region = new (C) RegionNode(1);
  4533   record_for_igvn(slow_region);
  4535   // (3) operands must not be null
  4536   // We currently perform our null checks with the null_check routine.
  4537   // This means that the null exceptions will be reported in the caller
  4538   // rather than (correctly) reported inside of the native arraycopy call.
  4539   // This should be corrected, given time.  We do our null check with the
  4540   // stack pointer restored.
  4541   src  = null_check(src,  T_ARRAY);
  4542   dest = null_check(dest, T_ARRAY);
  4544   // (4) src_offset must not be negative.
  4545   generate_negative_guard(src_offset, slow_region);
  4547   // (5) dest_offset must not be negative.
  4548   generate_negative_guard(dest_offset, slow_region);
  4550   // (6) length must not be negative (moved to generate_arraycopy()).
  4551   // generate_negative_guard(length, slow_region);
  4553   // (7) src_offset + length must not exceed length of src.
  4554   generate_limit_guard(src_offset, length,
  4555                        load_array_length(src),
  4556                        slow_region);
  4558   // (8) dest_offset + length must not exceed length of dest.
  4559   generate_limit_guard(dest_offset, length,
  4560                        load_array_length(dest),
  4561                        slow_region);
  4563   // (9) each element of an oop array must be assignable
  4564   // The generate_arraycopy subroutine checks this.
  4566   // This is where the memory effects are placed:
  4567   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4568   generate_arraycopy(adr_type, dest_elem,
  4569                      src, src_offset, dest, dest_offset, length,
  4570                      false, false, slow_region);
  4572   return true;
  4575 //-----------------------------generate_arraycopy----------------------
  4576 // Generate an optimized call to arraycopy.
  4577 // Caller must guard against non-arrays.
  4578 // Caller must determine a common array basic-type for both arrays.
  4579 // Caller must validate offsets against array bounds.
  4580 // The slow_region has already collected guard failure paths
  4581 // (such as out of bounds length or non-conformable array types).
  4582 // The generated code has this shape, in general:
  4583 //
  4584 //     if (length == 0)  return   // via zero_path
  4585 //     slowval = -1
  4586 //     if (types unknown) {
  4587 //       slowval = call generic copy loop
  4588 //       if (slowval == 0)  return  // via checked_path
  4589 //     } else if (indexes in bounds) {
  4590 //       if ((is object array) && !(array type check)) {
  4591 //         slowval = call checked copy loop
  4592 //         if (slowval == 0)  return  // via checked_path
  4593 //       } else {
  4594 //         call bulk copy loop
  4595 //         return  // via fast_path
  4596 //       }
  4597 //     }
  4598 //     // adjust params for remaining work:
  4599 //     if (slowval != -1) {
  4600 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4601 //     }
  4602 //   slow_region:
  4603 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4604 //     return  // via slow_call_path
  4605 //
  4606 // This routine is used from several intrinsics:  System.arraycopy,
  4607 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4608 //
  4609 void
  4610 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4611                                    BasicType basic_elem_type,
  4612                                    Node* src,  Node* src_offset,
  4613                                    Node* dest, Node* dest_offset,
  4614                                    Node* copy_length,
  4615                                    bool disjoint_bases,
  4616                                    bool length_never_negative,
  4617                                    RegionNode* slow_region) {
  4619   if (slow_region == NULL) {
  4620     slow_region = new(C) RegionNode(1);
  4621     record_for_igvn(slow_region);
  4624   Node* original_dest      = dest;
  4625   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4626   bool  dest_uninitialized = false;
  4628   // See if this is the initialization of a newly-allocated array.
  4629   // If so, we will take responsibility here for initializing it to zero.
  4630   // (Note:  Because tightly_coupled_allocation performs checks on the
  4631   // out-edges of the dest, we need to avoid making derived pointers
  4632   // from it until we have checked its uses.)
  4633   if (ReduceBulkZeroing
  4634       && !ZeroTLAB              // pointless if already zeroed
  4635       && basic_elem_type != T_CONFLICT // avoid corner case
  4636       && !src->eqv_uncast(dest)
  4637       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4638           != NULL)
  4639       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4640       && alloc->maybe_set_complete(&_gvn)) {
  4641     // "You break it, you buy it."
  4642     InitializeNode* init = alloc->initialization();
  4643     assert(init->is_complete(), "we just did this");
  4644     init->set_complete_with_arraycopy();
  4645     assert(dest->is_CheckCastPP(), "sanity");
  4646     assert(dest->in(0)->in(0) == init, "dest pinned");
  4647     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4648     // From this point on, every exit path is responsible for
  4649     // initializing any non-copied parts of the object to zero.
  4650     // Also, if this flag is set we make sure that arraycopy interacts properly
  4651     // with G1, eliding pre-barriers. See CR 6627983.
  4652     dest_uninitialized = true;
  4653   } else {
  4654     // No zeroing elimination here.
  4655     alloc             = NULL;
  4656     //original_dest   = dest;
  4657     //dest_uninitialized = false;
  4660   // Results are placed here:
  4661   enum { fast_path        = 1,  // normal void-returning assembly stub
  4662          checked_path     = 2,  // special assembly stub with cleanup
  4663          slow_call_path   = 3,  // something went wrong; call the VM
  4664          zero_path        = 4,  // bypass when length of copy is zero
  4665          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4666          PATH_LIMIT       = 6
  4667   };
  4668   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4669   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4670   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4671   record_for_igvn(result_region);
  4672   _gvn.set_type_bottom(result_i_o);
  4673   _gvn.set_type_bottom(result_memory);
  4674   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4676   // The slow_control path:
  4677   Node* slow_control;
  4678   Node* slow_i_o = i_o();
  4679   Node* slow_mem = memory(adr_type);
  4680   debug_only(slow_control = (Node*) badAddress);
  4682   // Checked control path:
  4683   Node* checked_control = top();
  4684   Node* checked_mem     = NULL;
  4685   Node* checked_i_o     = NULL;
  4686   Node* checked_value   = NULL;
  4688   if (basic_elem_type == T_CONFLICT) {
  4689     assert(!dest_uninitialized, "");
  4690     Node* cv = generate_generic_arraycopy(adr_type,
  4691                                           src, src_offset, dest, dest_offset,
  4692                                           copy_length, dest_uninitialized);
  4693     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4694     checked_control = control();
  4695     checked_i_o     = i_o();
  4696     checked_mem     = memory(adr_type);
  4697     checked_value   = cv;
  4698     set_control(top());         // no fast path
  4701   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4702   if (not_pos != NULL) {
  4703     PreserveJVMState pjvms(this);
  4704     set_control(not_pos);
  4706     // (6) length must not be negative.
  4707     if (!length_never_negative) {
  4708       generate_negative_guard(copy_length, slow_region);
  4711     // copy_length is 0.
  4712     if (!stopped() && dest_uninitialized) {
  4713       Node* dest_length = alloc->in(AllocateNode::ALength);
  4714       if (copy_length->eqv_uncast(dest_length)
  4715           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4716         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4717       } else {
  4718         // Clear the whole thing since there are no source elements to copy.
  4719         generate_clear_array(adr_type, dest, basic_elem_type,
  4720                              intcon(0), NULL,
  4721                              alloc->in(AllocateNode::AllocSize));
  4722         // Use a secondary InitializeNode as raw memory barrier.
  4723         // Currently it is needed only on this path since other
  4724         // paths have stub or runtime calls as raw memory barriers.
  4725         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4726                                                        Compile::AliasIdxRaw,
  4727                                                        top())->as_Initialize();
  4728         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4732     // Present the results of the fast call.
  4733     result_region->init_req(zero_path, control());
  4734     result_i_o   ->init_req(zero_path, i_o());
  4735     result_memory->init_req(zero_path, memory(adr_type));
  4738   if (!stopped() && dest_uninitialized) {
  4739     // We have to initialize the *uncopied* part of the array to zero.
  4740     // The copy destination is the slice dest[off..off+len].  The other slices
  4741     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4742     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4743     Node* dest_length = alloc->in(AllocateNode::ALength);
  4744     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
  4745                                                           copy_length) );
  4747     // If there is a head section that needs zeroing, do it now.
  4748     if (find_int_con(dest_offset, -1) != 0) {
  4749       generate_clear_array(adr_type, dest, basic_elem_type,
  4750                            intcon(0), dest_offset,
  4751                            NULL);
  4754     // Next, perform a dynamic check on the tail length.
  4755     // It is often zero, and we can win big if we prove this.
  4756     // There are two wins:  Avoid generating the ClearArray
  4757     // with its attendant messy index arithmetic, and upgrade
  4758     // the copy to a more hardware-friendly word size of 64 bits.
  4759     Node* tail_ctl = NULL;
  4760     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4761       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
  4762       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
  4763       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4764       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4767     // At this point, let's assume there is no tail.
  4768     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4769       // There is no tail.  Try an upgrade to a 64-bit copy.
  4770       bool didit = false;
  4771       { PreserveJVMState pjvms(this);
  4772         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4773                                          src, src_offset, dest, dest_offset,
  4774                                          dest_size, dest_uninitialized);
  4775         if (didit) {
  4776           // Present the results of the block-copying fast call.
  4777           result_region->init_req(bcopy_path, control());
  4778           result_i_o   ->init_req(bcopy_path, i_o());
  4779           result_memory->init_req(bcopy_path, memory(adr_type));
  4782       if (didit)
  4783         set_control(top());     // no regular fast path
  4786     // Clear the tail, if any.
  4787     if (tail_ctl != NULL) {
  4788       Node* notail_ctl = stopped() ? NULL : control();
  4789       set_control(tail_ctl);
  4790       if (notail_ctl == NULL) {
  4791         generate_clear_array(adr_type, dest, basic_elem_type,
  4792                              dest_tail, NULL,
  4793                              dest_size);
  4794       } else {
  4795         // Make a local merge.
  4796         Node* done_ctl = new(C) RegionNode(3);
  4797         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4798         done_ctl->init_req(1, notail_ctl);
  4799         done_mem->init_req(1, memory(adr_type));
  4800         generate_clear_array(adr_type, dest, basic_elem_type,
  4801                              dest_tail, NULL,
  4802                              dest_size);
  4803         done_ctl->init_req(2, control());
  4804         done_mem->init_req(2, memory(adr_type));
  4805         set_control( _gvn.transform(done_ctl) );
  4806         set_memory(  _gvn.transform(done_mem), adr_type );
  4811   BasicType copy_type = basic_elem_type;
  4812   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4813   if (!stopped() && copy_type == T_OBJECT) {
  4814     // If src and dest have compatible element types, we can copy bits.
  4815     // Types S[] and D[] are compatible if D is a supertype of S.
  4816     //
  4817     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4818     // which performs a fast optimistic per-oop check, and backs off
  4819     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4820     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4822     // Get the Klass* for both src and dest
  4823     Node* src_klass  = load_object_klass(src);
  4824     Node* dest_klass = load_object_klass(dest);
  4826     // Generate the subtype check.
  4827     // This might fold up statically, or then again it might not.
  4828     //
  4829     // Non-static example:  Copying List<String>.elements to a new String[].
  4830     // The backing store for a List<String> is always an Object[],
  4831     // but its elements are always type String, if the generic types
  4832     // are correct at the source level.
  4833     //
  4834     // Test S[] against D[], not S against D, because (probably)
  4835     // the secondary supertype cache is less busy for S[] than S.
  4836     // This usually only matters when D is an interface.
  4837     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4838     // Plug failing path into checked_oop_disjoint_arraycopy
  4839     if (not_subtype_ctrl != top()) {
  4840       PreserveJVMState pjvms(this);
  4841       set_control(not_subtype_ctrl);
  4842       // (At this point we can assume disjoint_bases, since types differ.)
  4843       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  4844       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4845       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4846       Node* dest_elem_klass = _gvn.transform(n1);
  4847       Node* cv = generate_checkcast_arraycopy(adr_type,
  4848                                               dest_elem_klass,
  4849                                               src, src_offset, dest, dest_offset,
  4850                                               ConvI2X(copy_length), dest_uninitialized);
  4851       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4852       checked_control = control();
  4853       checked_i_o     = i_o();
  4854       checked_mem     = memory(adr_type);
  4855       checked_value   = cv;
  4857     // At this point we know we do not need type checks on oop stores.
  4859     // Let's see if we need card marks:
  4860     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4861       // If we do not need card marks, copy using the jint or jlong stub.
  4862       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4863       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4864              "sizes agree");
  4868   if (!stopped()) {
  4869     // Generate the fast path, if possible.
  4870     PreserveJVMState pjvms(this);
  4871     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4872                                  src, src_offset, dest, dest_offset,
  4873                                  ConvI2X(copy_length), dest_uninitialized);
  4875     // Present the results of the fast call.
  4876     result_region->init_req(fast_path, control());
  4877     result_i_o   ->init_req(fast_path, i_o());
  4878     result_memory->init_req(fast_path, memory(adr_type));
  4881   // Here are all the slow paths up to this point, in one bundle:
  4882   slow_control = top();
  4883   if (slow_region != NULL)
  4884     slow_control = _gvn.transform(slow_region);
  4885   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  4887   set_control(checked_control);
  4888   if (!stopped()) {
  4889     // Clean up after the checked call.
  4890     // The returned value is either 0 or -1^K,
  4891     // where K = number of partially transferred array elements.
  4892     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
  4893     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  4894     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4896     // If it is 0, we are done, so transfer to the end.
  4897     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
  4898     result_region->init_req(checked_path, checks_done);
  4899     result_i_o   ->init_req(checked_path, checked_i_o);
  4900     result_memory->init_req(checked_path, checked_mem);
  4902     // If it is not zero, merge into the slow call.
  4903     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
  4904     RegionNode* slow_reg2 = new(C) RegionNode(3);
  4905     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  4906     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4907     record_for_igvn(slow_reg2);
  4908     slow_reg2  ->init_req(1, slow_control);
  4909     slow_i_o2  ->init_req(1, slow_i_o);
  4910     slow_mem2  ->init_req(1, slow_mem);
  4911     slow_reg2  ->init_req(2, control());
  4912     slow_i_o2  ->init_req(2, checked_i_o);
  4913     slow_mem2  ->init_req(2, checked_mem);
  4915     slow_control = _gvn.transform(slow_reg2);
  4916     slow_i_o     = _gvn.transform(slow_i_o2);
  4917     slow_mem     = _gvn.transform(slow_mem2);
  4919     if (alloc != NULL) {
  4920       // We'll restart from the very beginning, after zeroing the whole thing.
  4921       // This can cause double writes, but that's OK since dest is brand new.
  4922       // So we ignore the low 31 bits of the value returned from the stub.
  4923     } else {
  4924       // We must continue the copy exactly where it failed, or else
  4925       // another thread might see the wrong number of writes to dest.
  4926       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
  4927       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  4928       slow_offset->init_req(1, intcon(0));
  4929       slow_offset->init_req(2, checked_offset);
  4930       slow_offset  = _gvn.transform(slow_offset);
  4932       // Adjust the arguments by the conditionally incoming offset.
  4933       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
  4934       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
  4935       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
  4937       // Tweak the node variables to adjust the code produced below:
  4938       src_offset  = src_off_plus;
  4939       dest_offset = dest_off_plus;
  4940       copy_length = length_minus;
  4944   set_control(slow_control);
  4945   if (!stopped()) {
  4946     // Generate the slow path, if needed.
  4947     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4949     set_memory(slow_mem, adr_type);
  4950     set_i_o(slow_i_o);
  4952     if (dest_uninitialized) {
  4953       generate_clear_array(adr_type, dest, basic_elem_type,
  4954                            intcon(0), NULL,
  4955                            alloc->in(AllocateNode::AllocSize));
  4958     generate_slow_arraycopy(adr_type,
  4959                             src, src_offset, dest, dest_offset,
  4960                             copy_length, /*dest_uninitialized*/false);
  4962     result_region->init_req(slow_call_path, control());
  4963     result_i_o   ->init_req(slow_call_path, i_o());
  4964     result_memory->init_req(slow_call_path, memory(adr_type));
  4967   // Remove unused edges.
  4968   for (uint i = 1; i < result_region->req(); i++) {
  4969     if (result_region->in(i) == NULL)
  4970       result_region->init_req(i, top());
  4973   // Finished; return the combined state.
  4974   set_control( _gvn.transform(result_region) );
  4975   set_i_o(     _gvn.transform(result_i_o)    );
  4976   set_memory(  _gvn.transform(result_memory), adr_type );
  4978   // The memory edges above are precise in order to model effects around
  4979   // array copies accurately to allow value numbering of field loads around
  4980   // arraycopy.  Such field loads, both before and after, are common in Java
  4981   // collections and similar classes involving header/array data structures.
  4982   //
  4983   // But with low number of register or when some registers are used or killed
  4984   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4985   // The next memory barrier is added to avoid it. If the arraycopy can be
  4986   // optimized away (which it can, sometimes) then we can manually remove
  4987   // the membar also.
  4988   //
  4989   // Do not let reads from the cloned object float above the arraycopy.
  4990   if (alloc != NULL) {
  4991     // Do not let stores that initialize this object be reordered with
  4992     // a subsequent store that would make this object accessible by
  4993     // other threads.
  4994     // Record what AllocateNode this StoreStore protects so that
  4995     // escape analysis can go from the MemBarStoreStoreNode to the
  4996     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4997     // based on the escape status of the AllocateNode.
  4998     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4999   } else if (InsertMemBarAfterArraycopy)
  5000     insert_mem_bar(Op_MemBarCPUOrder);
  5004 // Helper function which determines if an arraycopy immediately follows
  5005 // an allocation, with no intervening tests or other escapes for the object.
  5006 AllocateArrayNode*
  5007 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5008                                            RegionNode* slow_region) {
  5009   if (stopped())             return NULL;  // no fast path
  5010   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5012   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5013   if (alloc == NULL)  return NULL;
  5015   Node* rawmem = memory(Compile::AliasIdxRaw);
  5016   // Is the allocation's memory state untouched?
  5017   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5018     // Bail out if there have been raw-memory effects since the allocation.
  5019     // (Example:  There might have been a call or safepoint.)
  5020     return NULL;
  5022   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5023   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5024     return NULL;
  5027   // There must be no unexpected observers of this allocation.
  5028   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5029     Node* obs = ptr->fast_out(i);
  5030     if (obs != this->map()) {
  5031       return NULL;
  5035   // This arraycopy must unconditionally follow the allocation of the ptr.
  5036   Node* alloc_ctl = ptr->in(0);
  5037   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5039   Node* ctl = control();
  5040   while (ctl != alloc_ctl) {
  5041     // There may be guards which feed into the slow_region.
  5042     // Any other control flow means that we might not get a chance
  5043     // to finish initializing the allocated object.
  5044     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5045       IfNode* iff = ctl->in(0)->as_If();
  5046       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5047       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5048       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5049         ctl = iff->in(0);       // This test feeds the known slow_region.
  5050         continue;
  5052       // One more try:  Various low-level checks bottom out in
  5053       // uncommon traps.  If the debug-info of the trap omits
  5054       // any reference to the allocation, as we've already
  5055       // observed, then there can be no objection to the trap.
  5056       bool found_trap = false;
  5057       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5058         Node* obs = not_ctl->fast_out(j);
  5059         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5060             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5061           found_trap = true; break;
  5064       if (found_trap) {
  5065         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5066         continue;
  5069     return NULL;
  5072   // If we get this far, we have an allocation which immediately
  5073   // precedes the arraycopy, and we can take over zeroing the new object.
  5074   // The arraycopy will finish the initialization, and provide
  5075   // a new control state to which we will anchor the destination pointer.
  5077   return alloc;
  5080 // Helper for initialization of arrays, creating a ClearArray.
  5081 // It writes zero bits in [start..end), within the body of an array object.
  5082 // The memory effects are all chained onto the 'adr_type' alias category.
  5083 //
  5084 // Since the object is otherwise uninitialized, we are free
  5085 // to put a little "slop" around the edges of the cleared area,
  5086 // as long as it does not go back into the array's header,
  5087 // or beyond the array end within the heap.
  5088 //
  5089 // The lower edge can be rounded down to the nearest jint and the
  5090 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5091 //
  5092 // Arguments:
  5093 //   adr_type           memory slice where writes are generated
  5094 //   dest               oop of the destination array
  5095 //   basic_elem_type    element type of the destination
  5096 //   slice_idx          array index of first element to store
  5097 //   slice_len          number of elements to store (or NULL)
  5098 //   dest_size          total size in bytes of the array object
  5099 //
  5100 // Exactly one of slice_len or dest_size must be non-NULL.
  5101 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5102 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5103 void
  5104 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5105                                      Node* dest,
  5106                                      BasicType basic_elem_type,
  5107                                      Node* slice_idx,
  5108                                      Node* slice_len,
  5109                                      Node* dest_size) {
  5110   // one or the other but not both of slice_len and dest_size:
  5111   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5112   if (slice_len == NULL)  slice_len = top();
  5113   if (dest_size == NULL)  dest_size = top();
  5115   // operate on this memory slice:
  5116   Node* mem = memory(adr_type); // memory slice to operate on
  5118   // scaling and rounding of indexes:
  5119   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5120   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5121   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5122   int bump_bit  = (-1 << scale) & BytesPerInt;
  5124   // determine constant starts and ends
  5125   const intptr_t BIG_NEG = -128;
  5126   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5127   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5128   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5129   if (slice_len_con == 0) {
  5130     return;                     // nothing to do here
  5132   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5133   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5134   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5135     assert(end_con < 0, "not two cons");
  5136     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5137                        BytesPerLong);
  5140   if (start_con >= 0 && end_con >= 0) {
  5141     // Constant start and end.  Simple.
  5142     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5143                                        start_con, end_con, &_gvn);
  5144   } else if (start_con >= 0 && dest_size != top()) {
  5145     // Constant start, pre-rounded end after the tail of the array.
  5146     Node* end = dest_size;
  5147     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5148                                        start_con, end, &_gvn);
  5149   } else if (start_con >= 0 && slice_len != top()) {
  5150     // Constant start, non-constant end.  End needs rounding up.
  5151     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5152     intptr_t end_base  = abase + (slice_idx_con << scale);
  5153     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5154     Node*    end       = ConvI2X(slice_len);
  5155     if (scale != 0)
  5156       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
  5157     end_base += end_round;
  5158     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
  5159     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
  5160     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5161                                        start_con, end, &_gvn);
  5162   } else if (start_con < 0 && dest_size != top()) {
  5163     // Non-constant start, pre-rounded end after the tail of the array.
  5164     // This is almost certainly a "round-to-end" operation.
  5165     Node* start = slice_idx;
  5166     start = ConvI2X(start);
  5167     if (scale != 0)
  5168       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
  5169     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
  5170     if ((bump_bit | clear_low) != 0) {
  5171       int to_clear = (bump_bit | clear_low);
  5172       // Align up mod 8, then store a jint zero unconditionally
  5173       // just before the mod-8 boundary.
  5174       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5175           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5176         bump_bit = 0;
  5177         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5178       } else {
  5179         // Bump 'start' up to (or past) the next jint boundary:
  5180         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
  5181         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5183       // Round bumped 'start' down to jlong boundary in body of array.
  5184       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
  5185       if (bump_bit != 0) {
  5186         // Store a zero to the immediately preceding jint:
  5187         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
  5188         Node* p1 = basic_plus_adr(dest, x1);
  5189         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5190         mem = _gvn.transform(mem);
  5193     Node* end = dest_size; // pre-rounded
  5194     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5195                                        start, end, &_gvn);
  5196   } else {
  5197     // Non-constant start, unrounded non-constant end.
  5198     // (Nobody zeroes a random midsection of an array using this routine.)
  5199     ShouldNotReachHere();       // fix caller
  5202   // Done.
  5203   set_memory(mem, adr_type);
  5207 bool
  5208 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5209                                          BasicType basic_elem_type,
  5210                                          AllocateNode* alloc,
  5211                                          Node* src,  Node* src_offset,
  5212                                          Node* dest, Node* dest_offset,
  5213                                          Node* dest_size, bool dest_uninitialized) {
  5214   // See if there is an advantage from block transfer.
  5215   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5216   if (scale >= LogBytesPerLong)
  5217     return false;               // it is already a block transfer
  5219   // Look at the alignment of the starting offsets.
  5220   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5222   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5223   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5224   if (src_off_con < 0 || dest_off_con < 0)
  5225     // At present, we can only understand constants.
  5226     return false;
  5228   intptr_t src_off  = abase + (src_off_con  << scale);
  5229   intptr_t dest_off = abase + (dest_off_con << scale);
  5231   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5232     // Non-aligned; too bad.
  5233     // One more chance:  Pick off an initial 32-bit word.
  5234     // This is a common case, since abase can be odd mod 8.
  5235     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5236         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5237       Node* sptr = basic_plus_adr(src,  src_off);
  5238       Node* dptr = basic_plus_adr(dest, dest_off);
  5239       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5240       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5241       src_off += BytesPerInt;
  5242       dest_off += BytesPerInt;
  5243     } else {
  5244       return false;
  5247   assert(src_off % BytesPerLong == 0, "");
  5248   assert(dest_off % BytesPerLong == 0, "");
  5250   // Do this copy by giant steps.
  5251   Node* sptr  = basic_plus_adr(src,  src_off);
  5252   Node* dptr  = basic_plus_adr(dest, dest_off);
  5253   Node* countx = dest_size;
  5254   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
  5255   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5257   bool disjoint_bases = true;   // since alloc != NULL
  5258   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5259                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5261   return true;
  5265 // Helper function; generates code for the slow case.
  5266 // We make a call to a runtime method which emulates the native method,
  5267 // but without the native wrapper overhead.
  5268 void
  5269 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5270                                         Node* src,  Node* src_offset,
  5271                                         Node* dest, Node* dest_offset,
  5272                                         Node* copy_length, bool dest_uninitialized) {
  5273   assert(!dest_uninitialized, "Invariant");
  5274   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5275                                  OptoRuntime::slow_arraycopy_Type(),
  5276                                  OptoRuntime::slow_arraycopy_Java(),
  5277                                  "slow_arraycopy", adr_type,
  5278                                  src, src_offset, dest, dest_offset,
  5279                                  copy_length);
  5281   // Handle exceptions thrown by this fellow:
  5282   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5285 // Helper function; generates code for cases requiring runtime checks.
  5286 Node*
  5287 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5288                                              Node* dest_elem_klass,
  5289                                              Node* src,  Node* src_offset,
  5290                                              Node* dest, Node* dest_offset,
  5291                                              Node* copy_length, bool dest_uninitialized) {
  5292   if (stopped())  return NULL;
  5294   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5295   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5296     return NULL;
  5299   // Pick out the parameters required to perform a store-check
  5300   // for the target array.  This is an optimistic check.  It will
  5301   // look in each non-null element's class, at the desired klass's
  5302   // super_check_offset, for the desired klass.
  5303   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5304   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5305   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5306   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5307   Node* check_value  = dest_elem_klass;
  5309   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5310   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5312   // (We know the arrays are never conjoint, because their types differ.)
  5313   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5314                                  OptoRuntime::checkcast_arraycopy_Type(),
  5315                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5316                                  // five arguments, of which two are
  5317                                  // intptr_t (jlong in LP64)
  5318                                  src_start, dest_start,
  5319                                  copy_length XTOP,
  5320                                  check_offset XTOP,
  5321                                  check_value);
  5323   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5327 // Helper function; generates code for cases requiring runtime checks.
  5328 Node*
  5329 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5330                                            Node* src,  Node* src_offset,
  5331                                            Node* dest, Node* dest_offset,
  5332                                            Node* copy_length, bool dest_uninitialized) {
  5333   assert(!dest_uninitialized, "Invariant");
  5334   if (stopped())  return NULL;
  5335   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5336   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5337     return NULL;
  5340   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5341                     OptoRuntime::generic_arraycopy_Type(),
  5342                     copyfunc_addr, "generic_arraycopy", adr_type,
  5343                     src, src_offset, dest, dest_offset, copy_length);
  5345   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5348 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5349 void
  5350 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5351                                              BasicType basic_elem_type,
  5352                                              bool disjoint_bases,
  5353                                              Node* src,  Node* src_offset,
  5354                                              Node* dest, Node* dest_offset,
  5355                                              Node* copy_length, bool dest_uninitialized) {
  5356   if (stopped())  return;               // nothing to do
  5358   Node* src_start  = src;
  5359   Node* dest_start = dest;
  5360   if (src_offset != NULL || dest_offset != NULL) {
  5361     assert(src_offset != NULL && dest_offset != NULL, "");
  5362     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5363     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5366   // Figure out which arraycopy runtime method to call.
  5367   const char* copyfunc_name = "arraycopy";
  5368   address     copyfunc_addr =
  5369       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5370                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5372   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5373   make_runtime_call(RC_LEAF|RC_NO_FP,
  5374                     OptoRuntime::fast_arraycopy_Type(),
  5375                     copyfunc_addr, copyfunc_name, adr_type,
  5376                     src_start, dest_start, copy_length XTOP);
  5379 //-------------inline_encodeISOArray-----------------------------------
  5380 // encode char[] to byte[] in ISO_8859_1
  5381 bool LibraryCallKit::inline_encodeISOArray() {
  5382   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5383   // no receiver since it is static method
  5384   Node *src         = argument(0);
  5385   Node *src_offset  = argument(1);
  5386   Node *dst         = argument(2);
  5387   Node *dst_offset  = argument(3);
  5388   Node *length      = argument(4);
  5390   const Type* src_type = src->Value(&_gvn);
  5391   const Type* dst_type = dst->Value(&_gvn);
  5392   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5393   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5394   if (top_src  == NULL || top_src->klass()  == NULL ||
  5395       top_dest == NULL || top_dest->klass() == NULL) {
  5396     // failed array check
  5397     return false;
  5400   // Figure out the size and type of the elements we will be copying.
  5401   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5402   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5403   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5404     return false;
  5406   Node* src_start = array_element_address(src, src_offset, src_elem);
  5407   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5408   // 'src_start' points to src array + scaled offset
  5409   // 'dst_start' points to dst array + scaled offset
  5411   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5412   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5413   enc = _gvn.transform(enc);
  5414   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5415   set_memory(res_mem, mtype);
  5416   set_result(enc);
  5417   return true;
  5420 //----------------------------inline_reference_get----------------------------
  5421 // public T java.lang.ref.Reference.get();
  5422 bool LibraryCallKit::inline_reference_get() {
  5423   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5424   guarantee(referent_offset > 0, "should have already been set");
  5426   // Get the argument:
  5427   Node* reference_obj = null_check_receiver();
  5428   if (stopped()) return true;
  5430   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5432   ciInstanceKlass* klass = env()->Object_klass();
  5433   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5435   Node* no_ctrl = NULL;
  5436   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5438   // Use the pre-barrier to record the value in the referent field
  5439   pre_barrier(false /* do_load */,
  5440               control(),
  5441               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5442               result /* pre_val */,
  5443               T_OBJECT);
  5445   // Add memory barrier to prevent commoning reads from this field
  5446   // across safepoint since GC can change its value.
  5447   insert_mem_bar(Op_MemBarCPUOrder);
  5449   set_result(result);
  5450   return true;
  5454 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5455                                               bool is_exact=true, bool is_static=false) {
  5457   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5458   assert(tinst != NULL, "obj is null");
  5459   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5460   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5462   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5463                                                                           ciSymbol::make(fieldTypeString),
  5464                                                                           is_static);
  5465   if (field == NULL) return (Node *) NULL;
  5466   assert (field != NULL, "undefined field");
  5468   // Next code  copied from Parse::do_get_xxx():
  5470   // Compute address and memory type.
  5471   int offset  = field->offset_in_bytes();
  5472   bool is_vol = field->is_volatile();
  5473   ciType* field_klass = field->type();
  5474   assert(field_klass->is_loaded(), "should be loaded");
  5475   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5476   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5477   BasicType bt = field->layout_type();
  5479   // Build the resultant type of the load
  5480   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5482   // Build the load.
  5483   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5484   return loadedField;
  5488 //------------------------------inline_aescrypt_Block-----------------------
  5489 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5490   address stubAddr;
  5491   const char *stubName;
  5492   assert(UseAES, "need AES instruction support");
  5494   switch(id) {
  5495   case vmIntrinsics::_aescrypt_encryptBlock:
  5496     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5497     stubName = "aescrypt_encryptBlock";
  5498     break;
  5499   case vmIntrinsics::_aescrypt_decryptBlock:
  5500     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5501     stubName = "aescrypt_decryptBlock";
  5502     break;
  5504   if (stubAddr == NULL) return false;
  5506   Node* aescrypt_object = argument(0);
  5507   Node* src             = argument(1);
  5508   Node* src_offset      = argument(2);
  5509   Node* dest            = argument(3);
  5510   Node* dest_offset     = argument(4);
  5512   // (1) src and dest are arrays.
  5513   const Type* src_type = src->Value(&_gvn);
  5514   const Type* dest_type = dest->Value(&_gvn);
  5515   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5516   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5517   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5519   // for the quick and dirty code we will skip all the checks.
  5520   // we are just trying to get the call to be generated.
  5521   Node* src_start  = src;
  5522   Node* dest_start = dest;
  5523   if (src_offset != NULL || dest_offset != NULL) {
  5524     assert(src_offset != NULL && dest_offset != NULL, "");
  5525     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5526     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5529   // now need to get the start of its expanded key array
  5530   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5531   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5532   if (k_start == NULL) return false;
  5534   // Call the stub.
  5535   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5536                     stubAddr, stubName, TypePtr::BOTTOM,
  5537                     src_start, dest_start, k_start);
  5539   return true;
  5542 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5543 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5544   address stubAddr;
  5545   const char *stubName;
  5547   assert(UseAES, "need AES instruction support");
  5549   switch(id) {
  5550   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5551     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5552     stubName = "cipherBlockChaining_encryptAESCrypt";
  5553     break;
  5554   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5555     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5556     stubName = "cipherBlockChaining_decryptAESCrypt";
  5557     break;
  5559   if (stubAddr == NULL) return false;
  5561   Node* cipherBlockChaining_object = argument(0);
  5562   Node* src                        = argument(1);
  5563   Node* src_offset                 = argument(2);
  5564   Node* len                        = argument(3);
  5565   Node* dest                       = argument(4);
  5566   Node* dest_offset                = argument(5);
  5568   // (1) src and dest are arrays.
  5569   const Type* src_type = src->Value(&_gvn);
  5570   const Type* dest_type = dest->Value(&_gvn);
  5571   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5572   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5573   assert (top_src  != NULL && top_src->klass()  != NULL
  5574           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5576   // checks are the responsibility of the caller
  5577   Node* src_start  = src;
  5578   Node* dest_start = dest;
  5579   if (src_offset != NULL || dest_offset != NULL) {
  5580     assert(src_offset != NULL && dest_offset != NULL, "");
  5581     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5582     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5585   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5586   // (because of the predicated logic executed earlier).
  5587   // so we cast it here safely.
  5588   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5590   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5591   if (embeddedCipherObj == NULL) return false;
  5593   // cast it to what we know it will be at runtime
  5594   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5595   assert(tinst != NULL, "CBC obj is null");
  5596   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5597   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5598   if (!klass_AESCrypt->is_loaded()) return false;
  5600   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5601   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5602   const TypeOopPtr* xtype = aklass->as_instance_type();
  5603   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5604   aescrypt_object = _gvn.transform(aescrypt_object);
  5606   // we need to get the start of the aescrypt_object's expanded key array
  5607   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5608   if (k_start == NULL) return false;
  5610   // similarly, get the start address of the r vector
  5611   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5612   if (objRvec == NULL) return false;
  5613   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5615   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5616   make_runtime_call(RC_LEAF|RC_NO_FP,
  5617                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5618                     stubAddr, stubName, TypePtr::BOTTOM,
  5619                     src_start, dest_start, k_start, r_start, len);
  5621   // return is void so no result needs to be pushed
  5623   return true;
  5626 //------------------------------get_key_start_from_aescrypt_object-----------------------
  5627 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  5628   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  5629   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  5630   if (objAESCryptKey == NULL) return (Node *) NULL;
  5632   // now have the array, need to get the start address of the K array
  5633   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  5634   return k_start;
  5637 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  5638 // Return node representing slow path of predicate check.
  5639 // the pseudo code we want to emulate with this predicate is:
  5640 // for encryption:
  5641 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  5642 // for decryption:
  5643 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  5644 //    note cipher==plain is more conservative than the original java code but that's OK
  5645 //
  5646 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  5647   // First, check receiver for NULL since it is virtual method.
  5648   Node* objCBC = argument(0);
  5649   objCBC = null_check(objCBC);
  5651   if (stopped()) return NULL; // Always NULL
  5653   // Load embeddedCipher field of CipherBlockChaining object.
  5654   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5656   // get AESCrypt klass for instanceOf check
  5657   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  5658   // will have same classloader as CipherBlockChaining object
  5659   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  5660   assert(tinst != NULL, "CBCobj is null");
  5661   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  5663   // we want to do an instanceof comparison against the AESCrypt class
  5664   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5665   if (!klass_AESCrypt->is_loaded()) {
  5666     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  5667     Node* ctrl = control();
  5668     set_control(top()); // no regular fast path
  5669     return ctrl;
  5671   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5673   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  5674   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  5675   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  5677   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  5679   // for encryption, we are done
  5680   if (!decrypting)
  5681     return instof_false;  // even if it is NULL
  5683   // for decryption, we need to add a further check to avoid
  5684   // taking the intrinsic path when cipher and plain are the same
  5685   // see the original java code for why.
  5686   RegionNode* region = new(C) RegionNode(3);
  5687   region->init_req(1, instof_false);
  5688   Node* src = argument(1);
  5689   Node* dest = argument(4);
  5690   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  5691   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  5692   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  5693   region->init_req(2, src_dest_conjoint);
  5695   record_for_igvn(region);
  5696   return _gvn.transform(region);

mercurial