src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Mon, 20 Sep 2010 14:38:38 -0700

author
jmasa
date
Mon, 20 Sep 2010 14:38:38 -0700
changeset 2188
8b10f48633dc
parent 2061
9d7a8ab3736b
child 2314
f95d63e2154a
permissions
-rw-r--r--

6984287: Regularize how GC parallel workers are specified.
Summary: Associate number of GC workers with the workgang as opposed to the task.
Reviewed-by: johnc, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_cardTableExtension.cpp.incl"
    28 // Checks an individual oop for missing precise marks. Mark
    29 // may be either dirty or newgen.
    30 class CheckForUnmarkedOops : public OopClosure {
    31  private:
    32   PSYoungGen*         _young_gen;
    33   CardTableExtension* _card_table;
    34   HeapWord*           _unmarked_addr;
    35   jbyte*              _unmarked_card;
    37  protected:
    38   template <class T> void do_oop_work(T* p) {
    39     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    40     if (_young_gen->is_in_reserved(obj) &&
    41         !_card_table->addr_is_marked_imprecise(p)) {
    42       // Don't overwrite the first missing card mark
    43       if (_unmarked_addr == NULL) {
    44         _unmarked_addr = (HeapWord*)p;
    45         _unmarked_card = _card_table->byte_for(p);
    46       }
    47     }
    48   }
    50  public:
    51   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
    52     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    54   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
    55   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
    57   bool has_unmarked_oop() {
    58     return _unmarked_addr != NULL;
    59   }
    60 };
    62 // Checks all objects for the existance of some type of mark,
    63 // precise or imprecise, dirty or newgen.
    64 class CheckForUnmarkedObjects : public ObjectClosure {
    65  private:
    66   PSYoungGen*         _young_gen;
    67   CardTableExtension* _card_table;
    69  public:
    70   CheckForUnmarkedObjects() {
    71     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    72     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    74     _young_gen = heap->young_gen();
    75     _card_table = (CardTableExtension*)heap->barrier_set();
    76     // No point in asserting barrier set type here. Need to make CardTableExtension
    77     // a unique barrier set type.
    78   }
    80   // Card marks are not precise. The current system can leave us with
    81   // a mismash of precise marks and beginning of object marks. This means
    82   // we test for missing precise marks first. If any are found, we don't
    83   // fail unless the object head is also unmarked.
    84   virtual void do_object(oop obj) {
    85     CheckForUnmarkedOops object_check(_young_gen, _card_table);
    86     obj->oop_iterate(&object_check);
    87     if (object_check.has_unmarked_oop()) {
    88       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    89     }
    90   }
    91 };
    93 // Checks for precise marking of oops as newgen.
    94 class CheckForPreciseMarks : public OopClosure {
    95  private:
    96   PSYoungGen*         _young_gen;
    97   CardTableExtension* _card_table;
    99  protected:
   100   template <class T> void do_oop_work(T* p) {
   101     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   102     if (_young_gen->is_in_reserved(obj)) {
   103       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
   104       _card_table->set_card_newgen(p);
   105     }
   106   }
   108  public:
   109   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
   110     _young_gen(young_gen), _card_table(card_table) { }
   112   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
   113   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
   114 };
   116 // We get passed the space_top value to prevent us from traversing into
   117 // the old_gen promotion labs, which cannot be safely parsed.
   118 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
   119                                            MutableSpace* sp,
   120                                            HeapWord* space_top,
   121                                            PSPromotionManager* pm)
   122 {
   123   assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
   124   assert(start_array->covered_region().contains(sp->used_region()),
   125          "ObjectStartArray does not cover space");
   127   if (sp->not_empty()) {
   128     oop* sp_top = (oop*)space_top;
   129     oop* prev_top = NULL;
   130     jbyte* current_card = byte_for(sp->bottom());
   131     jbyte* end_card     = byte_for(sp_top - 1);    // sp_top is exclusive
   132     // scan card marking array
   133     while (current_card <= end_card) {
   134       jbyte value = *current_card;
   135       // skip clean cards
   136       if (card_is_clean(value)) {
   137         current_card++;
   138       } else {
   139         // we found a non-clean card
   140         jbyte* first_nonclean_card = current_card++;
   141         oop* bottom = (oop*)addr_for(first_nonclean_card);
   142         // find object starting on card
   143         oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   144         // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   145         assert(bottom_obj <= bottom, "just checking");
   146         // make sure we don't scan oops we already looked at
   147         if (bottom < prev_top) bottom = prev_top;
   148         // figure out when to stop scanning
   149         jbyte* first_clean_card;
   150         oop* top;
   151         bool restart_scanning;
   152         do {
   153           restart_scanning = false;
   154           // find a clean card
   155           while (current_card <= end_card) {
   156             value = *current_card;
   157             if (card_is_clean(value)) break;
   158             current_card++;
   159           }
   160           // check if we reached the end, if so we are done
   161           if (current_card >= end_card) {
   162             first_clean_card = end_card + 1;
   163             current_card++;
   164             top = sp_top;
   165           } else {
   166             // we have a clean card, find object starting on that card
   167             first_clean_card = current_card++;
   168             top = (oop*)addr_for(first_clean_card);
   169             oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
   170             // top_obj = (oop*)start_array->object_start((HeapWord*)top);
   171             assert(top_obj <= top, "just checking");
   172             if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   173               // an arrayOop is starting on the clean card - since we do exact store
   174               // checks for objArrays we are done
   175             } else {
   176               // otherwise, it is possible that the object starting on the clean card
   177               // spans the entire card, and that the store happened on a later card.
   178               // figure out where the object ends
   179               top = top_obj + oop(top_obj)->size();
   180               jbyte* top_card = CardTableModRefBS::byte_for(top - 1);   // top is exclusive
   181               if (top_card > first_clean_card) {
   182                 // object ends a different card
   183                 current_card = top_card + 1;
   184                 if (card_is_clean(*top_card)) {
   185                   // the ending card is clean, we are done
   186                   first_clean_card = top_card;
   187                 } else {
   188                   // the ending card is not clean, continue scanning at start of do-while
   189                   restart_scanning = true;
   190                 }
   191               } else {
   192                 // object ends on the clean card, we are done.
   193                 assert(first_clean_card == top_card, "just checking");
   194               }
   195             }
   196           }
   197         } while (restart_scanning);
   198         // we know which cards to scan, now clear them
   199         while (first_nonclean_card < first_clean_card) {
   200           *first_nonclean_card++ = clean_card;
   201         }
   202         // scan oops in objects
   203         do {
   204           oop(bottom_obj)->push_contents(pm);
   205           bottom_obj += oop(bottom_obj)->size();
   206           assert(bottom_obj <= sp_top, "just checking");
   207         } while (bottom_obj < top);
   208         pm->drain_stacks_cond_depth();
   209         // remember top oop* scanned
   210         prev_top = top;
   211       }
   212     }
   213   }
   214 }
   216 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   217                                                     MutableSpace* sp,
   218                                                     HeapWord* space_top,
   219                                                     PSPromotionManager* pm,
   220                                                     uint stripe_number) {
   221   int ssize = 128; // Naked constant!  Work unit = 64k.
   222   int dirty_card_count = 0;
   224   oop* sp_top = (oop*)space_top;
   225   jbyte* start_card = byte_for(sp->bottom());
   226   jbyte* end_card   = byte_for(sp_top - 1) + 1;
   227   oop* last_scanned = NULL; // Prevent scanning objects more than once
   228   for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
   229     jbyte* worker_start_card = slice + stripe_number * ssize;
   230     if (worker_start_card >= end_card)
   231       return; // We're done.
   233     jbyte* worker_end_card = worker_start_card + ssize;
   234     if (worker_end_card > end_card)
   235       worker_end_card = end_card;
   237     // We do not want to scan objects more than once. In order to accomplish
   238     // this, we assert that any object with an object head inside our 'slice'
   239     // belongs to us. We may need to extend the range of scanned cards if the
   240     // last object continues into the next 'slice'.
   241     //
   242     // Note! ending cards are exclusive!
   243     HeapWord* slice_start = addr_for(worker_start_card);
   244     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   246     // If there are not objects starting within the chunk, skip it.
   247     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   248       continue;
   249     }
   250     // Update our beginning addr
   251     HeapWord* first_object = start_array->object_start(slice_start);
   252     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   253     if (first_object < slice_start) {
   254       last_scanned = (oop*)(first_object + oop(first_object)->size());
   255       debug_only(first_object_within_slice = last_scanned;)
   256       worker_start_card = byte_for(last_scanned);
   257     }
   259     // Update the ending addr
   260     if (slice_end < (HeapWord*)sp_top) {
   261       // The subtraction is important! An object may start precisely at slice_end.
   262       HeapWord* last_object = start_array->object_start(slice_end - 1);
   263       slice_end = last_object + oop(last_object)->size();
   264       // worker_end_card is exclusive, so bump it one past the end of last_object's
   265       // covered span.
   266       worker_end_card = byte_for(slice_end) + 1;
   268       if (worker_end_card > end_card)
   269         worker_end_card = end_card;
   270     }
   272     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   273     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   274     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   275     // Note that worker_start_card >= worker_end_card is legal, and happens when
   276     // an object spans an entire slice.
   277     assert(worker_start_card <= end_card, "worker start card beyond end card");
   278     assert(worker_end_card <= end_card, "worker end card beyond end card");
   280     jbyte* current_card = worker_start_card;
   281     while (current_card < worker_end_card) {
   282       // Find an unclean card.
   283       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   284         current_card++;
   285       }
   286       jbyte* first_unclean_card = current_card;
   288       // Find the end of a run of contiguous unclean cards
   289       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   290         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   291           current_card++;
   292         }
   294         if (current_card < worker_end_card) {
   295           // Some objects may be large enough to span several cards. If such
   296           // an object has more than one dirty card, separated by a clean card,
   297           // we will attempt to scan it twice. The test against "last_scanned"
   298           // prevents the redundant object scan, but it does not prevent newly
   299           // marked cards from being cleaned.
   300           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   301           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   302           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   303           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   304           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   305           if (ending_card_of_last_object > current_card) {
   306             // This means the object spans the next complete card.
   307             // We need to bump the current_card to ending_card_of_last_object
   308             current_card = ending_card_of_last_object;
   309           }
   310         }
   311       }
   312       jbyte* following_clean_card = current_card;
   314       if (first_unclean_card < worker_end_card) {
   315         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   316         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   317         // "p" should always be >= "last_scanned" because newly GC dirtied
   318         // cards are no longer scanned again (see comment at end
   319         // of loop on the increment of "current_card").  Test that
   320         // hypothesis before removing this code.
   321         // If this code is removed, deal with the first time through
   322         // the loop when the last_scanned is the object starting in
   323         // the previous slice.
   324         assert((p >= last_scanned) ||
   325                (last_scanned == first_object_within_slice),
   326                "Should no longer be possible");
   327         if (p < last_scanned) {
   328           // Avoid scanning more than once; this can happen because
   329           // newgen cards set by GC may a different set than the
   330           // originally dirty set
   331           p = last_scanned;
   332         }
   333         oop* to = (oop*)addr_for(following_clean_card);
   335         // Test slice_end first!
   336         if ((HeapWord*)to > slice_end) {
   337           to = (oop*)slice_end;
   338         } else if (to > sp_top) {
   339           to = sp_top;
   340         }
   342         // we know which cards to scan, now clear them
   343         if (first_unclean_card <= worker_start_card+1)
   344           first_unclean_card = worker_start_card+1;
   345         if (following_clean_card >= worker_end_card-1)
   346           following_clean_card = worker_end_card-1;
   348         while (first_unclean_card < following_clean_card) {
   349           *first_unclean_card++ = clean_card;
   350         }
   352         const int interval = PrefetchScanIntervalInBytes;
   353         // scan all objects in the range
   354         if (interval != 0) {
   355           while (p < to) {
   356             Prefetch::write(p, interval);
   357             oop m = oop(p);
   358             assert(m->is_oop_or_null(), "check for header");
   359             m->push_contents(pm);
   360             p += m->size();
   361           }
   362           pm->drain_stacks_cond_depth();
   363         } else {
   364           while (p < to) {
   365             oop m = oop(p);
   366             assert(m->is_oop_or_null(), "check for header");
   367             m->push_contents(pm);
   368             p += m->size();
   369           }
   370           pm->drain_stacks_cond_depth();
   371         }
   372         last_scanned = p;
   373       }
   374       // "current_card" is still the "following_clean_card" or
   375       // the current_card is >= the worker_end_card so the
   376       // loop will not execute again.
   377       assert((current_card == following_clean_card) ||
   378              (current_card >= worker_end_card),
   379         "current_card should only be incremented if it still equals "
   380         "following_clean_card");
   381       // Increment current_card so that it is not processed again.
   382       // It may now be dirty because a old-to-young pointer was
   383       // found on it an updated.  If it is now dirty, it cannot be
   384       // be safely cleaned in the next iteration.
   385       current_card++;
   386     }
   387   }
   388 }
   390 // This should be called before a scavenge.
   391 void CardTableExtension::verify_all_young_refs_imprecise() {
   392   CheckForUnmarkedObjects check;
   394   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   395   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   397   PSOldGen* old_gen = heap->old_gen();
   398   PSPermGen* perm_gen = heap->perm_gen();
   400   old_gen->object_iterate(&check);
   401   perm_gen->object_iterate(&check);
   402 }
   404 // This should be called immediately after a scavenge, before mutators resume.
   405 void CardTableExtension::verify_all_young_refs_precise() {
   406   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   407   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   409   PSOldGen* old_gen = heap->old_gen();
   410   PSPermGen* perm_gen = heap->perm_gen();
   412   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   414   old_gen->oop_iterate(&check);
   415   perm_gen->oop_iterate(&check);
   417   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   418   verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
   419 }
   421 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   422   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   423   // FIX ME ASSERT HERE
   425   jbyte* bot = card_table->byte_for(mr.start());
   426   jbyte* top = card_table->byte_for(mr.end());
   427   while(bot <= top) {
   428     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   429     if (*bot == verify_card)
   430       *bot = youngergen_card;
   431     bot++;
   432   }
   433 }
   435 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   436   jbyte* p = byte_for(addr);
   437   jbyte val = *p;
   439   if (card_is_dirty(val))
   440     return true;
   442   if (card_is_newgen(val))
   443     return true;
   445   if (card_is_clean(val))
   446     return false;
   448   assert(false, "Found unhandled card mark type");
   450   return false;
   451 }
   453 // Also includes verify_card
   454 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   455   jbyte* p = byte_for(addr);
   456   jbyte val = *p;
   458   if (card_is_newgen(val))
   459     return true;
   461   if (card_is_verify(val))
   462     return true;
   464   if (card_is_clean(val))
   465     return false;
   467   if (card_is_dirty(val))
   468     return false;
   470   assert(false, "Found unhandled card mark type");
   472   return false;
   473 }
   475 // Assumes that only the base or the end changes.  This allows indentification
   476 // of the region that is being resized.  The
   477 // CardTableModRefBS::resize_covered_region() is used for the normal case
   478 // where the covered regions are growing or shrinking at the high end.
   479 // The method resize_covered_region_by_end() is analogous to
   480 // CardTableModRefBS::resize_covered_region() but
   481 // for regions that grow or shrink at the low end.
   482 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   484   for (int i = 0; i < _cur_covered_regions; i++) {
   485     if (_covered[i].start() == new_region.start()) {
   486       // Found a covered region with the same start as the
   487       // new region.  The region is growing or shrinking
   488       // from the start of the region.
   489       resize_covered_region_by_start(new_region);
   490       return;
   491     }
   492     if (_covered[i].start() > new_region.start()) {
   493       break;
   494     }
   495   }
   497   int changed_region = -1;
   498   for (int j = 0; j < _cur_covered_regions; j++) {
   499     if (_covered[j].end() == new_region.end()) {
   500       changed_region = j;
   501       // This is a case where the covered region is growing or shrinking
   502       // at the start of the region.
   503       assert(changed_region != -1, "Don't expect to add a covered region");
   504       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   505         "The sizes should be different here");
   506       resize_covered_region_by_end(changed_region, new_region);
   507       return;
   508     }
   509   }
   510   // This should only be a new covered region (where no existing
   511   // covered region matches at the start or the end).
   512   assert(_cur_covered_regions < _max_covered_regions,
   513     "An existing region should have been found");
   514   resize_covered_region_by_start(new_region);
   515 }
   517 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   518   CardTableModRefBS::resize_covered_region(new_region);
   519   debug_only(verify_guard();)
   520 }
   522 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   523                                                       MemRegion new_region) {
   524   assert(SafepointSynchronize::is_at_safepoint(),
   525     "Only expect an expansion at the low end at a GC");
   526   debug_only(verify_guard();)
   527 #ifdef ASSERT
   528   for (int k = 0; k < _cur_covered_regions; k++) {
   529     if (_covered[k].end() == new_region.end()) {
   530       assert(changed_region == k, "Changed region is incorrect");
   531       break;
   532     }
   533   }
   534 #endif
   536   // Commit new or uncommit old pages, if necessary.
   537   if (resize_commit_uncommit(changed_region, new_region)) {
   538     // Set the new start of the committed region
   539     resize_update_committed_table(changed_region, new_region);
   540   }
   542   // Update card table entries
   543   resize_update_card_table_entries(changed_region, new_region);
   545   // Update the covered region
   546   resize_update_covered_table(changed_region, new_region);
   548   if (TraceCardTableModRefBS) {
   549     int ind = changed_region;
   550     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   551     gclog_or_tty->print_cr("  "
   552                   "  _covered[%d].start(): " INTPTR_FORMAT
   553                   "  _covered[%d].last(): " INTPTR_FORMAT,
   554                   ind, _covered[ind].start(),
   555                   ind, _covered[ind].last());
   556     gclog_or_tty->print_cr("  "
   557                   "  _committed[%d].start(): " INTPTR_FORMAT
   558                   "  _committed[%d].last(): " INTPTR_FORMAT,
   559                   ind, _committed[ind].start(),
   560                   ind, _committed[ind].last());
   561     gclog_or_tty->print_cr("  "
   562                   "  byte_for(start): " INTPTR_FORMAT
   563                   "  byte_for(last): " INTPTR_FORMAT,
   564                   byte_for(_covered[ind].start()),
   565                   byte_for(_covered[ind].last()));
   566     gclog_or_tty->print_cr("  "
   567                   "  addr_for(start): " INTPTR_FORMAT
   568                   "  addr_for(last): " INTPTR_FORMAT,
   569                   addr_for((jbyte*) _committed[ind].start()),
   570                   addr_for((jbyte*) _committed[ind].last()));
   571   }
   572   debug_only(verify_guard();)
   573 }
   575 bool CardTableExtension::resize_commit_uncommit(int changed_region,
   576                                                 MemRegion new_region) {
   577   bool result = false;
   578   // Commit new or uncommit old pages, if necessary.
   579   MemRegion cur_committed = _committed[changed_region];
   580   assert(_covered[changed_region].end() == new_region.end(),
   581     "The ends of the regions are expected to match");
   582   // Extend the start of this _committed region to
   583   // to cover the start of any previous _committed region.
   584   // This forms overlapping regions, but never interior regions.
   585   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   586   if (min_prev_start < cur_committed.start()) {
   587     // Only really need to set start of "cur_committed" to
   588     // the new start (min_prev_start) but assertion checking code
   589     // below use cur_committed.end() so make it correct.
   590     MemRegion new_committed =
   591         MemRegion(min_prev_start, cur_committed.end());
   592     cur_committed = new_committed;
   593   }
   594 #ifdef ASSERT
   595   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   596   assert(cur_committed.start() ==
   597     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   598                               os::vm_page_size()),
   599     "Starts should have proper alignment");
   600 #endif
   602   jbyte* new_start = byte_for(new_region.start());
   603   // Round down because this is for the start address
   604   HeapWord* new_start_aligned =
   605     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   606   // The guard page is always committed and should not be committed over.
   607   // This method is used in cases where the generation is growing toward
   608   // lower addresses but the guard region is still at the end of the
   609   // card table.  That still makes sense when looking for writes
   610   // off the end of the card table.
   611   if (new_start_aligned < cur_committed.start()) {
   612     // Expand the committed region
   613     //
   614     // Case A
   615     //                                          |+ guard +|
   616     //                          |+ cur committed +++++++++|
   617     //                  |+ new committed +++++++++++++++++|
   618     //
   619     // Case B
   620     //                                          |+ guard +|
   621     //                        |+ cur committed +|
   622     //                  |+ new committed +++++++|
   623     //
   624     // These are not expected because the calculation of the
   625     // cur committed region and the new committed region
   626     // share the same end for the covered region.
   627     // Case C
   628     //                                          |+ guard +|
   629     //                        |+ cur committed +|
   630     //                  |+ new committed +++++++++++++++++|
   631     // Case D
   632     //                                          |+ guard +|
   633     //                        |+ cur committed +++++++++++|
   634     //                  |+ new committed +++++++|
   636     HeapWord* new_end_for_commit =
   637       MIN2(cur_committed.end(), _guard_region.start());
   638     if(new_start_aligned < new_end_for_commit) {
   639       MemRegion new_committed =
   640         MemRegion(new_start_aligned, new_end_for_commit);
   641       if (!os::commit_memory((char*)new_committed.start(),
   642                              new_committed.byte_size())) {
   643         vm_exit_out_of_memory(new_committed.byte_size(),
   644                               "card table expansion");
   645       }
   646     }
   647     result = true;
   648   } else if (new_start_aligned > cur_committed.start()) {
   649     // Shrink the committed region
   650 #if 0 // uncommitting space is currently unsafe because of the interactions
   651       // of growing and shrinking regions.  One region A can uncommit space
   652       // that it owns but which is being used by another region B (maybe).
   653       // Region B has not committed the space because it was already
   654       // committed by region A.
   655     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   656       MemRegion(cur_committed.start(), new_start_aligned));
   657     if (!uncommit_region.is_empty()) {
   658       if (!os::uncommit_memory((char*)uncommit_region.start(),
   659                                uncommit_region.byte_size())) {
   660         // If the uncommit fails, ignore it.  Let the
   661         // committed table resizing go even though the committed
   662         // table will over state the committed space.
   663       }
   664     }
   665 #else
   666     assert(!result, "Should be false with current workaround");
   667 #endif
   668   }
   669   assert(_committed[changed_region].end() == cur_committed.end(),
   670     "end should not change");
   671   return result;
   672 }
   674 void CardTableExtension::resize_update_committed_table(int changed_region,
   675                                                        MemRegion new_region) {
   677   jbyte* new_start = byte_for(new_region.start());
   678   // Set the new start of the committed region
   679   HeapWord* new_start_aligned =
   680     (HeapWord*)align_size_down((uintptr_t)new_start,
   681                              os::vm_page_size());
   682   MemRegion new_committed = MemRegion(new_start_aligned,
   683     _committed[changed_region].end());
   684   _committed[changed_region] = new_committed;
   685   _committed[changed_region].set_start(new_start_aligned);
   686 }
   688 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   689                                                           MemRegion new_region) {
   690   debug_only(verify_guard();)
   691   MemRegion original_covered = _covered[changed_region];
   692   // Initialize the card entries.  Only consider the
   693   // region covered by the card table (_whole_heap)
   694   jbyte* entry;
   695   if (new_region.start() < _whole_heap.start()) {
   696     entry = byte_for(_whole_heap.start());
   697   } else {
   698     entry = byte_for(new_region.start());
   699   }
   700   jbyte* end = byte_for(original_covered.start());
   701   // If _whole_heap starts at the original covered regions start,
   702   // this loop will not execute.
   703   while (entry < end) { *entry++ = clean_card; }
   704 }
   706 void CardTableExtension::resize_update_covered_table(int changed_region,
   707                                                      MemRegion new_region) {
   708   // Update the covered region
   709   _covered[changed_region].set_start(new_region.start());
   710   _covered[changed_region].set_word_size(new_region.word_size());
   712   // reorder regions.  There should only be at most 1 out
   713   // of order.
   714   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   715     if (_covered[i].start() < _covered[i-1].start()) {
   716         MemRegion covered_mr = _covered[i-1];
   717         _covered[i-1] = _covered[i];
   718         _covered[i] = covered_mr;
   719         MemRegion committed_mr = _committed[i-1];
   720       _committed[i-1] = _committed[i];
   721       _committed[i] = committed_mr;
   722       break;
   723     }
   724   }
   725 #ifdef ASSERT
   726   for (int m = 0; m < _cur_covered_regions-1; m++) {
   727     assert(_covered[m].start() <= _covered[m+1].start(),
   728       "Covered regions out of order");
   729     assert(_committed[m].start() <= _committed[m+1].start(),
   730       "Committed regions out of order");
   731   }
   732 #endif
   733 }
   735 // Returns the start of any committed region that is lower than
   736 // the target committed region (index ind) and that intersects the
   737 // target region.  If none, return start of target region.
   738 //
   739 //      -------------
   740 //      |           |
   741 //      -------------
   742 //              ------------
   743 //              | target   |
   744 //              ------------
   745 //                               -------------
   746 //                               |           |
   747 //                               -------------
   748 //      ^ returns this
   749 //
   750 //      -------------
   751 //      |           |
   752 //      -------------
   753 //                      ------------
   754 //                      | target   |
   755 //                      ------------
   756 //                               -------------
   757 //                               |           |
   758 //                               -------------
   759 //                      ^ returns this
   761 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   762   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   763   HeapWord* min_start = _committed[ind].start();
   764   for (int j = 0; j < ind; j++) {
   765     HeapWord* this_start = _committed[j].start();
   766     if ((this_start < min_start) &&
   767         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   768        min_start = this_start;
   769     }
   770   }
   771   return min_start;
   772 }

mercurial