src/share/vm/adlc/formssel.cpp

Tue, 12 Jun 2012 14:31:44 -0700

author
twisti
date
Tue, 12 Jun 2012 14:31:44 -0700
changeset 3846
8b0a4867acf0
parent 3392
1dc233a8c7fe
child 3882
8c92982cbbc4
permissions
-rw-r--r--

7174218: remove AtomicLongCSImpl intrinsics
Reviewed-by: kvn, twisti
Contributed-by: Krystal Mok <sajia@taobao.com>

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena),
    34     _is_mach_constant(false),
    35     _has_call(false)
    36 {
    37       _ftype = Form::INS;
    39       _matrule   = NULL;
    40       _insencode = NULL;
    41       _constant  = NULL;
    42       _opcode    = NULL;
    43       _size      = NULL;
    44       _attribs   = NULL;
    45       _predicate = NULL;
    46       _exprule   = NULL;
    47       _rewrule   = NULL;
    48       _format    = NULL;
    49       _peephole  = NULL;
    50       _ins_pipe  = NULL;
    51       _uniq_idx  = NULL;
    52       _num_uniq  = 0;
    53       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    54       _cisc_spill_alternate = NULL;            // possible cisc replacement
    55       _cisc_reg_mask_name = NULL;
    56       _is_cisc_alternate = false;
    57       _is_short_branch = false;
    58       _short_branch_form = NULL;
    59       _alignment = 1;
    60 }
    62 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    63   : _ident(id), _ideal_only(false),
    64     _localNames(instr->_localNames),
    65     _effects(instr->_effects),
    66     _is_mach_constant(false),
    67     _has_call(false)
    68 {
    69       _ftype = Form::INS;
    71       _matrule   = rule;
    72       _insencode = instr->_insencode;
    73       _constant  = instr->_constant;
    74       _opcode    = instr->_opcode;
    75       _size      = instr->_size;
    76       _attribs   = instr->_attribs;
    77       _predicate = instr->_predicate;
    78       _exprule   = instr->_exprule;
    79       _rewrule   = instr->_rewrule;
    80       _format    = instr->_format;
    81       _peephole  = instr->_peephole;
    82       _ins_pipe  = instr->_ins_pipe;
    83       _uniq_idx  = instr->_uniq_idx;
    84       _num_uniq  = instr->_num_uniq;
    85       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    86       _cisc_spill_alternate = NULL;            // possible cisc replacement
    87       _cisc_reg_mask_name = NULL;
    88       _is_cisc_alternate = false;
    89       _is_short_branch = false;
    90       _short_branch_form = NULL;
    91       _alignment = 1;
    92      // Copy parameters
    93      const char *name;
    94      instr->_parameters.reset();
    95      for (; (name = instr->_parameters.iter()) != NULL;)
    96        _parameters.addName(name);
    97 }
    99 InstructForm::~InstructForm() {
   100 }
   102 InstructForm *InstructForm::is_instruction() const {
   103   return (InstructForm*)this;
   104 }
   106 bool InstructForm::ideal_only() const {
   107   return _ideal_only;
   108 }
   110 bool InstructForm::sets_result() const {
   111   return (_matrule != NULL && _matrule->sets_result());
   112 }
   114 bool InstructForm::needs_projections() {
   115   _components.reset();
   116   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   117     if (comp->isa(Component::KILL)) {
   118       return true;
   119     }
   120   }
   121   return false;
   122 }
   125 bool InstructForm::has_temps() {
   126   if (_matrule) {
   127     // Examine each component to see if it is a TEMP
   128     _components.reset();
   129     // Skip the first component, if already handled as (SET dst (...))
   130     Component *comp = NULL;
   131     if (sets_result())  comp = _components.iter();
   132     while ((comp = _components.iter()) != NULL) {
   133       if (comp->isa(Component::TEMP)) {
   134         return true;
   135       }
   136     }
   137   }
   139   return false;
   140 }
   142 uint InstructForm::num_defs_or_kills() {
   143   uint   defs_or_kills = 0;
   145   _components.reset();
   146   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   147     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   148       ++defs_or_kills;
   149     }
   150   }
   152   return  defs_or_kills;
   153 }
   155 // This instruction has an expand rule?
   156 bool InstructForm::expands() const {
   157   return ( _exprule != NULL );
   158 }
   160 // This instruction has a peephole rule?
   161 Peephole *InstructForm::peepholes() const {
   162   return _peephole;
   163 }
   165 // This instruction has a peephole rule?
   166 void InstructForm::append_peephole(Peephole *peephole) {
   167   if( _peephole == NULL ) {
   168     _peephole = peephole;
   169   } else {
   170     _peephole->append_peephole(peephole);
   171   }
   172 }
   175 // ideal opcode enumeration
   176 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   177   if( !_matrule ) return "Node"; // Something weird
   178   // Chain rules do not really have ideal Opcodes; use their source
   179   // operand ideal Opcode instead.
   180   if( is_simple_chain_rule(globalNames) ) {
   181     const char *src = _matrule->_rChild->_opType;
   182     OperandForm *src_op = globalNames[src]->is_operand();
   183     assert( src_op, "Not operand class of chain rule" );
   184     if( !src_op->_matrule ) return "Node";
   185     return src_op->_matrule->_opType;
   186   }
   187   // Operand chain rules do not really have ideal Opcodes
   188   if( _matrule->is_chain_rule(globalNames) )
   189     return "Node";
   190   return strcmp(_matrule->_opType,"Set")
   191     ? _matrule->_opType
   192     : _matrule->_rChild->_opType;
   193 }
   195 // Recursive check on all operands' match rules in my match rule
   196 bool InstructForm::is_pinned(FormDict &globals) {
   197   if ( ! _matrule)  return false;
   199   int  index   = 0;
   200   if (_matrule->find_type("Goto",          index)) return true;
   201   if (_matrule->find_type("If",            index)) return true;
   202   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   203   if (_matrule->find_type("Return",        index)) return true;
   204   if (_matrule->find_type("Rethrow",       index)) return true;
   205   if (_matrule->find_type("TailCall",      index)) return true;
   206   if (_matrule->find_type("TailJump",      index)) return true;
   207   if (_matrule->find_type("Halt",          index)) return true;
   208   if (_matrule->find_type("Jump",          index)) return true;
   210   return is_parm(globals);
   211 }
   213 // Recursive check on all operands' match rules in my match rule
   214 bool InstructForm::is_projection(FormDict &globals) {
   215   if ( ! _matrule)  return false;
   217   int  index   = 0;
   218   if (_matrule->find_type("Goto",    index)) return true;
   219   if (_matrule->find_type("Return",  index)) return true;
   220   if (_matrule->find_type("Rethrow", index)) return true;
   221   if (_matrule->find_type("TailCall",index)) return true;
   222   if (_matrule->find_type("TailJump",index)) return true;
   223   if (_matrule->find_type("Halt",    index)) return true;
   225   return false;
   226 }
   228 // Recursive check on all operands' match rules in my match rule
   229 bool InstructForm::is_parm(FormDict &globals) {
   230   if ( ! _matrule)  return false;
   232   int  index   = 0;
   233   if (_matrule->find_type("Parm",index)) return true;
   235   return false;
   236 }
   239 // Return 'true' if this instruction matches an ideal 'Copy*' node
   240 int InstructForm::is_ideal_copy() const {
   241   return _matrule ? _matrule->is_ideal_copy() : 0;
   242 }
   244 // Return 'true' if this instruction is too complex to rematerialize.
   245 int InstructForm::is_expensive() const {
   246   // We can prove it is cheap if it has an empty encoding.
   247   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   248   if (is_empty_encoding())
   249     return 0;
   251   if (is_tls_instruction())
   252     return 1;
   254   if (_matrule == NULL)  return 0;
   256   return _matrule->is_expensive();
   257 }
   259 // Has an empty encoding if _size is a constant zero or there
   260 // are no ins_encode tokens.
   261 int InstructForm::is_empty_encoding() const {
   262   if (_insencode != NULL) {
   263     _insencode->reset();
   264     if (_insencode->encode_class_iter() == NULL) {
   265       return 1;
   266     }
   267   }
   268   if (_size != NULL && strcmp(_size, "0") == 0) {
   269     return 1;
   270   }
   271   return 0;
   272 }
   274 int InstructForm::is_tls_instruction() const {
   275   if (_ident != NULL &&
   276       ( ! strcmp( _ident,"tlsLoadP") ||
   277         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   278     return 1;
   279   }
   281   if (_matrule != NULL && _insencode != NULL) {
   282     const char* opType = _matrule->_opType;
   283     if (strcmp(opType, "Set")==0)
   284       opType = _matrule->_rChild->_opType;
   285     if (strcmp(opType,"ThreadLocal")==0) {
   286       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   287               (_ident == NULL ? "NULL" : _ident));
   288       return 1;
   289     }
   290   }
   292   return 0;
   293 }
   296 // Return 'true' if this instruction matches an ideal 'If' node
   297 bool InstructForm::is_ideal_if() const {
   298   if( _matrule == NULL ) return false;
   300   return _matrule->is_ideal_if();
   301 }
   303 // Return 'true' if this instruction matches an ideal 'FastLock' node
   304 bool InstructForm::is_ideal_fastlock() const {
   305   if( _matrule == NULL ) return false;
   307   return _matrule->is_ideal_fastlock();
   308 }
   310 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   311 bool InstructForm::is_ideal_membar() const {
   312   if( _matrule == NULL ) return false;
   314   return _matrule->is_ideal_membar();
   315 }
   317 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   318 bool InstructForm::is_ideal_loadPC() const {
   319   if( _matrule == NULL ) return false;
   321   return _matrule->is_ideal_loadPC();
   322 }
   324 // Return 'true' if this instruction matches an ideal 'Box' node
   325 bool InstructForm::is_ideal_box() const {
   326   if( _matrule == NULL ) return false;
   328   return _matrule->is_ideal_box();
   329 }
   331 // Return 'true' if this instruction matches an ideal 'Goto' node
   332 bool InstructForm::is_ideal_goto() const {
   333   if( _matrule == NULL ) return false;
   335   return _matrule->is_ideal_goto();
   336 }
   338 // Return 'true' if this instruction matches an ideal 'Jump' node
   339 bool InstructForm::is_ideal_jump() const {
   340   if( _matrule == NULL ) return false;
   342   return _matrule->is_ideal_jump();
   343 }
   345 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
   346 bool InstructForm::is_ideal_branch() const {
   347   if( _matrule == NULL ) return false;
   349   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
   350 }
   353 // Return 'true' if this instruction matches an ideal 'Return' node
   354 bool InstructForm::is_ideal_return() const {
   355   if( _matrule == NULL ) return false;
   357   // Check MatchRule to see if the first entry is the ideal "Return" node
   358   int  index   = 0;
   359   if (_matrule->find_type("Return",index)) return true;
   360   if (_matrule->find_type("Rethrow",index)) return true;
   361   if (_matrule->find_type("TailCall",index)) return true;
   362   if (_matrule->find_type("TailJump",index)) return true;
   364   return false;
   365 }
   367 // Return 'true' if this instruction matches an ideal 'Halt' node
   368 bool InstructForm::is_ideal_halt() const {
   369   int  index   = 0;
   370   return _matrule && _matrule->find_type("Halt",index);
   371 }
   373 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   374 bool InstructForm::is_ideal_safepoint() const {
   375   int  index   = 0;
   376   return _matrule && _matrule->find_type("SafePoint",index);
   377 }
   379 // Return 'true' if this instruction matches an ideal 'Nop' node
   380 bool InstructForm::is_ideal_nop() const {
   381   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   382 }
   384 bool InstructForm::is_ideal_control() const {
   385   if ( ! _matrule)  return false;
   387   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
   388 }
   390 // Return 'true' if this instruction matches an ideal 'Call' node
   391 Form::CallType InstructForm::is_ideal_call() const {
   392   if( _matrule == NULL ) return Form::invalid_type;
   394   // Check MatchRule to see if the first entry is the ideal "Call" node
   395   int  idx   = 0;
   396   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   397   idx = 0;
   398   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   399   idx = 0;
   400   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   401   idx = 0;
   402   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   403   idx = 0;
   404   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   405   idx = 0;
   406   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   407   idx = 0;
   408   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   409   idx = 0;
   411   return Form::invalid_type;
   412 }
   414 // Return 'true' if this instruction matches an ideal 'Load?' node
   415 Form::DataType InstructForm::is_ideal_load() const {
   416   if( _matrule == NULL ) return Form::none;
   418   return  _matrule->is_ideal_load();
   419 }
   421 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   422 bool InstructForm::skip_antidep_check() const {
   423   if( _matrule == NULL ) return false;
   425   return  _matrule->skip_antidep_check();
   426 }
   428 // Return 'true' if this instruction matches an ideal 'Load?' node
   429 Form::DataType InstructForm::is_ideal_store() const {
   430   if( _matrule == NULL ) return Form::none;
   432   return  _matrule->is_ideal_store();
   433 }
   435 // Return the input register that must match the output register
   436 // If this is not required, return 0
   437 uint InstructForm::two_address(FormDict &globals) {
   438   uint  matching_input = 0;
   439   if(_components.count() == 0) return 0;
   441   _components.reset();
   442   Component *comp = _components.iter();
   443   // Check if there is a DEF
   444   if( comp->isa(Component::DEF) ) {
   445     // Check that this is a register
   446     const char  *def_type = comp->_type;
   447     const Form  *form     = globals[def_type];
   448     OperandForm *op       = form->is_operand();
   449     if( op ) {
   450       if( op->constrained_reg_class() != NULL &&
   451           op->interface_type(globals) == Form::register_interface ) {
   452         // Remember the local name for equality test later
   453         const char *def_name = comp->_name;
   454         // Check if a component has the same name and is a USE
   455         do {
   456           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   457             return operand_position_format(def_name);
   458           }
   459         } while( (comp = _components.iter()) != NULL);
   460       }
   461     }
   462   }
   464   return 0;
   465 }
   468 // when chaining a constant to an instruction, returns 'true' and sets opType
   469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   470   const char *dummy  = NULL;
   471   const char *dummy2 = NULL;
   472   return is_chain_of_constant(globals, dummy, dummy2);
   473 }
   474 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   475                 const char * &opTypeParam) {
   476   const char *result = NULL;
   478   return is_chain_of_constant(globals, opTypeParam, result);
   479 }
   481 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   482                 const char * &opTypeParam, const char * &resultParam) {
   483   Form::DataType  data_type = Form::none;
   484   if ( ! _matrule)  return data_type;
   486   // !!!!!
   487   // The source of the chain rule is 'position = 1'
   488   uint         position = 1;
   489   const char  *result   = NULL;
   490   const char  *name     = NULL;
   491   const char  *opType   = NULL;
   492   // Here base_operand is looking for an ideal type to be returned (opType).
   493   if ( _matrule->is_chain_rule(globals)
   494        && _matrule->base_operand(position, globals, result, name, opType) ) {
   495     data_type = ideal_to_const_type(opType);
   497     // if it isn't an ideal constant type, just return
   498     if ( data_type == Form::none ) return data_type;
   500     // Ideal constant types also adjust the opType parameter.
   501     resultParam = result;
   502     opTypeParam = opType;
   503     return data_type;
   504   }
   506   return data_type;
   507 }
   509 // Check if a simple chain rule
   510 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   511   if( _matrule && _matrule->sets_result()
   512       && _matrule->_rChild->_lChild == NULL
   513       && globals[_matrule->_rChild->_opType]
   514       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   515     return true;
   516   }
   517   return false;
   518 }
   520 // check for structural rematerialization
   521 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   522   bool   rematerialize = false;
   524   Form::DataType data_type = is_chain_of_constant(globals);
   525   if( data_type != Form::none )
   526     rematerialize = true;
   528   // Constants
   529   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   530     rematerialize = true;
   532   // Pseudo-constants (values easily available to the runtime)
   533   if (is_empty_encoding() && is_tls_instruction())
   534     rematerialize = true;
   536   // 1-input, 1-output, such as copies or increments.
   537   if( _components.count() == 2 &&
   538       _components[0]->is(Component::DEF) &&
   539       _components[1]->isa(Component::USE) )
   540     rematerialize = true;
   542   // Check for an ideal 'Load?' and eliminate rematerialize option
   543   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   544        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   545        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   546     rematerialize = false;
   547   }
   549   // Always rematerialize the flags.  They are more expensive to save &
   550   // restore than to recompute (and possibly spill the compare's inputs).
   551   if( _components.count() >= 1 ) {
   552     Component *c = _components[0];
   553     const Form *form = globals[c->_type];
   554     OperandForm *opform = form->is_operand();
   555     if( opform ) {
   556       // Avoid the special stack_slots register classes
   557       const char *rc_name = opform->constrained_reg_class();
   558       if( rc_name ) {
   559         if( strcmp(rc_name,"stack_slots") ) {
   560           // Check for ideal_type of RegFlags
   561           const char *type = opform->ideal_type( globals, registers );
   562           if( !strcmp(type,"RegFlags") )
   563             rematerialize = true;
   564         } else
   565           rematerialize = false; // Do not rematerialize things target stk
   566       }
   567     }
   568   }
   570   return rematerialize;
   571 }
   573 // loads from memory, so must check for anti-dependence
   574 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   575   if ( skip_antidep_check() ) return false;
   577   // Machine independent loads must be checked for anti-dependences
   578   if( is_ideal_load() != Form::none )  return true;
   580   // !!!!! !!!!! !!!!!
   581   // TEMPORARY
   582   // if( is_simple_chain_rule(globals) )  return false;
   584   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   585   // but writes none
   586   if( _matrule && _matrule->_rChild &&
   587       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   588         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   589         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   590         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   591     return true;
   593   // Check if instruction has a USE of a memory operand class, but no defs
   594   bool USE_of_memory  = false;
   595   bool DEF_of_memory  = false;
   596   Component     *comp = NULL;
   597   ComponentList &components = (ComponentList &)_components;
   599   components.reset();
   600   while( (comp = components.iter()) != NULL ) {
   601     const Form  *form = globals[comp->_type];
   602     if( !form ) continue;
   603     OpClassForm *op   = form->is_opclass();
   604     if( !op ) continue;
   605     if( form->interface_type(globals) == Form::memory_interface ) {
   606       if( comp->isa(Component::USE) ) USE_of_memory = true;
   607       if( comp->isa(Component::DEF) ) {
   608         OperandForm *oper = form->is_operand();
   609         if( oper && oper->is_user_name_for_sReg() ) {
   610           // Stack slots are unaliased memory handled by allocator
   611           oper = oper;  // debug stopping point !!!!!
   612         } else {
   613           DEF_of_memory = true;
   614         }
   615       }
   616     }
   617   }
   618   return (USE_of_memory && !DEF_of_memory);
   619 }
   622 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   623   if( _matrule == NULL ) return false;
   624   if( !_matrule->_opType ) return false;
   626   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   627   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   628   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
   629   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
   630   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
   632   return false;
   633 }
   635 int InstructForm::memory_operand(FormDict &globals) const {
   636   // Machine independent loads must be checked for anti-dependences
   637   // Check if instruction has a USE of a memory operand class, or a def.
   638   int USE_of_memory  = 0;
   639   int DEF_of_memory  = 0;
   640   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   641   Component     *unique          = NULL;
   642   Component     *comp            = NULL;
   643   ComponentList &components      = (ComponentList &)_components;
   645   components.reset();
   646   while( (comp = components.iter()) != NULL ) {
   647     const Form  *form = globals[comp->_type];
   648     if( !form ) continue;
   649     OpClassForm *op   = form->is_opclass();
   650     if( !op ) continue;
   651     if( op->stack_slots_only(globals) )  continue;
   652     if( form->interface_type(globals) == Form::memory_interface ) {
   653       if( comp->isa(Component::DEF) ) {
   654         last_memory_DEF = comp->_name;
   655         DEF_of_memory++;
   656         unique = comp;
   657       } else if( comp->isa(Component::USE) ) {
   658         if( last_memory_DEF != NULL ) {
   659           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   660           last_memory_DEF = NULL;
   661         }
   662         USE_of_memory++;
   663         if (DEF_of_memory == 0)  // defs take precedence
   664           unique = comp;
   665       } else {
   666         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   667       }
   668     }
   669   }
   670   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   671   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   672   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   673   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   674     if( is_simple_chain_rule(globals) ) {
   675       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   676       //((InstructForm*)this)->dump();
   677       // Preceding code prints nothing on sparc and these insns on intel:
   678       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   679       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   680       return NO_MEMORY_OPERAND;
   681     }
   683     if( DEF_of_memory == 1 ) {
   684       assert(unique != NULL, "");
   685       if( USE_of_memory == 0 ) {
   686         // unique def, no uses
   687       } else {
   688         // // unique def, some uses
   689         // // must return bottom unless all uses match def
   690         // unique = NULL;
   691       }
   692     } else if( DEF_of_memory > 0 ) {
   693       // multiple defs, don't care about uses
   694       unique = NULL;
   695     } else if( USE_of_memory == 1) {
   696       // unique use, no defs
   697       assert(unique != NULL, "");
   698     } else if( USE_of_memory > 0 ) {
   699       // multiple uses, no defs
   700       unique = NULL;
   701     } else {
   702       assert(false, "bad case analysis");
   703     }
   704     // process the unique DEF or USE, if there is one
   705     if( unique == NULL ) {
   706       return MANY_MEMORY_OPERANDS;
   707     } else {
   708       int pos = components.operand_position(unique->_name);
   709       if( unique->isa(Component::DEF) ) {
   710         pos += 1;                // get corresponding USE from DEF
   711       }
   712       assert(pos >= 1, "I was just looking at it!");
   713       return pos;
   714     }
   715   }
   717   // missed the memory op??
   718   if( true ) {  // %%% should not be necessary
   719     if( is_ideal_store() != Form::none ) {
   720       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   721       ((InstructForm*)this)->dump();
   722       // pretend it has multiple defs and uses
   723       return MANY_MEMORY_OPERANDS;
   724     }
   725     if( is_ideal_load()  != Form::none ) {
   726       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   727       ((InstructForm*)this)->dump();
   728       // pretend it has multiple uses and no defs
   729       return MANY_MEMORY_OPERANDS;
   730     }
   731   }
   733   return NO_MEMORY_OPERAND;
   734 }
   737 // This instruction captures the machine-independent bottom_type
   738 // Expected use is for pointer vs oop determination for LoadP
   739 bool InstructForm::captures_bottom_type(FormDict &globals) const {
   740   if( _matrule && _matrule->_rChild &&
   741        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
   742         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
   743         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
   744         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
   745         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
   746         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
   747         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
   748         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
   749   else if ( is_ideal_load() == Form::idealP )                return true;
   750   else if ( is_ideal_store() != Form::none  )                return true;
   752   if (needs_base_oop_edge(globals)) return true;
   754   return  false;
   755 }
   758 // Access instr_cost attribute or return NULL.
   759 const char* InstructForm::cost() {
   760   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   761     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   762       return cur->_val;
   763     }
   764   }
   765   return NULL;
   766 }
   768 // Return count of top-level operands.
   769 uint InstructForm::num_opnds() {
   770   int  num_opnds = _components.num_operands();
   772   // Need special handling for matching some ideal nodes
   773   // i.e. Matching a return node
   774   /*
   775   if( _matrule ) {
   776     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   777         strcmp(_matrule->_opType,"Halt"     )==0 )
   778       return 3;
   779   }
   780     */
   781   return num_opnds;
   782 }
   784 // Return count of unmatched operands.
   785 uint InstructForm::num_post_match_opnds() {
   786   uint  num_post_match_opnds = _components.count();
   787   uint  num_match_opnds = _components.match_count();
   788   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   790   return num_post_match_opnds;
   791 }
   793 // Return the number of leaves below this complex operand
   794 uint InstructForm::num_consts(FormDict &globals) const {
   795   if ( ! _matrule) return 0;
   797   // This is a recursive invocation on all operands in the matchrule
   798   return _matrule->num_consts(globals);
   799 }
   801 // Constants in match rule with specified type
   802 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   803   if ( ! _matrule) return 0;
   805   // This is a recursive invocation on all operands in the matchrule
   806   return _matrule->num_consts(globals, type);
   807 }
   810 // Return the register class associated with 'leaf'.
   811 const char *InstructForm::out_reg_class(FormDict &globals) {
   812   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   814   return NULL;
   815 }
   819 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   820 uint InstructForm::oper_input_base(FormDict &globals) {
   821   if( !_matrule ) return 1;     // Skip control for most nodes
   823   // Need special handling for matching some ideal nodes
   824   // i.e. Matching a return node
   825   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   826       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   827       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   828       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   829       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   830       strcmp(_matrule->_opType,"Halt"      )==0 )
   831     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   833   if( _matrule->_rChild &&
   834       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   835         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   836         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   837         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
   838         // String.(compareTo/equals/indexOf) and Arrays.equals
   839         // take 1 control and 1 memory edges.
   840     return 2;
   841   }
   843   // Check for handling of 'Memory' input/edge in the ideal world.
   844   // The AD file writer is shielded from knowledge of these edges.
   845   int base = 1;                 // Skip control
   846   base += _matrule->needs_ideal_memory_edge(globals);
   848   // Also skip the base-oop value for uses of derived oops.
   849   // The AD file writer is shielded from knowledge of these edges.
   850   base += needs_base_oop_edge(globals);
   852   return base;
   853 }
   855 // Implementation does not modify state of internal structures
   856 void InstructForm::build_components() {
   857   // Add top-level operands to the components
   858   if (_matrule)  _matrule->append_components(_localNames, _components);
   860   // Add parameters that "do not appear in match rule".
   861   bool has_temp = false;
   862   const char *name;
   863   const char *kill_name = NULL;
   864   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   865     OperandForm *opForm = (OperandForm*)_localNames[name];
   867     Effect* e = NULL;
   868     {
   869       const Form* form = _effects[name];
   870       e = form ? form->is_effect() : NULL;
   871     }
   873     if (e != NULL) {
   874       has_temp |= e->is(Component::TEMP);
   876       // KILLs must be declared after any TEMPs because TEMPs are real
   877       // uses so their operand numbering must directly follow the real
   878       // inputs from the match rule.  Fixing the numbering seems
   879       // complex so simply enforce the restriction during parse.
   880       if (kill_name != NULL &&
   881           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   882         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   883         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   884                              _ident, kill->_ident, kill_name);
   885       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   886         kill_name = name;
   887       }
   888     }
   890     const Component *component  = _components.search(name);
   891     if ( component  == NULL ) {
   892       if (e) {
   893         _components.insert(name, opForm->_ident, e->_use_def, false);
   894         component = _components.search(name);
   895         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   896           const Form *form = globalAD->globalNames()[component->_type];
   897           assert( form, "component type must be a defined form");
   898           OperandForm *op   = form->is_operand();
   899           if (op->_interface && op->_interface->is_RegInterface()) {
   900             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   901                                  _ident, opForm->_ident, name);
   902           }
   903         }
   904       } else {
   905         // This would be a nice warning but it triggers in a few places in a benign way
   906         // if (_matrule != NULL && !expands()) {
   907         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   908         //                        _ident, opForm->_ident, name);
   909         // }
   910         _components.insert(name, opForm->_ident, Component::INVALID, false);
   911       }
   912     }
   913     else if (e) {
   914       // Component was found in the list
   915       // Check if there is a new effect that requires an extra component.
   916       // This happens when adding 'USE' to a component that is not yet one.
   917       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   918         if (component->isa(Component::USE) && _matrule) {
   919           const Form *form = globalAD->globalNames()[component->_type];
   920           assert( form, "component type must be a defined form");
   921           OperandForm *op   = form->is_operand();
   922           if (op->_interface && op->_interface->is_RegInterface()) {
   923             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   924                                  _ident, opForm->_ident, name);
   925           }
   926         }
   927         _components.insert(name, opForm->_ident, e->_use_def, false);
   928       } else {
   929         Component  *comp = (Component*)component;
   930         comp->promote_use_def_info(e->_use_def);
   931       }
   932       // Component positions are zero based.
   933       int  pos  = _components.operand_position(name);
   934       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   935               "Component::DEF can only occur in the first position");
   936     }
   937   }
   939   // Resolving the interactions between expand rules and TEMPs would
   940   // be complex so simply disallow it.
   941   if (_matrule == NULL && has_temp) {
   942     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   943   }
   945   return;
   946 }
   948 // Return zero-based position in component list;  -1 if not in list.
   949 int   InstructForm::operand_position(const char *name, int usedef) {
   950   return unique_opnds_idx(_components.operand_position(name, usedef));
   951 }
   953 int   InstructForm::operand_position_format(const char *name) {
   954   return unique_opnds_idx(_components.operand_position_format(name));
   955 }
   957 // Return zero-based position in component list; -1 if not in list.
   958 int   InstructForm::label_position() {
   959   return unique_opnds_idx(_components.label_position());
   960 }
   962 int   InstructForm::method_position() {
   963   return unique_opnds_idx(_components.method_position());
   964 }
   966 // Return number of relocation entries needed for this instruction.
   967 uint  InstructForm::reloc(FormDict &globals) {
   968   uint reloc_entries  = 0;
   969   // Check for "Call" nodes
   970   if ( is_ideal_call() )      ++reloc_entries;
   971   if ( is_ideal_return() )    ++reloc_entries;
   972   if ( is_ideal_safepoint() ) ++reloc_entries;
   975   // Check if operands MAYBE oop pointers, by checking for ConP elements
   976   // Proceed through the leaves of the match-tree and check for ConPs
   977   if ( _matrule != NULL ) {
   978     uint         position = 0;
   979     const char  *result   = NULL;
   980     const char  *name     = NULL;
   981     const char  *opType   = NULL;
   982     while (_matrule->base_operand(position, globals, result, name, opType)) {
   983       if ( strcmp(opType,"ConP") == 0 ) {
   984 #ifdef SPARC
   985         reloc_entries += 2; // 1 for sethi + 1 for setlo
   986 #else
   987         ++reloc_entries;
   988 #endif
   989       }
   990       ++position;
   991     }
   992   }
   994   // Above is only a conservative estimate
   995   // because it did not check contents of operand classes.
   996   // !!!!! !!!!!
   997   // Add 1 to reloc info for each operand class in the component list.
   998   Component  *comp;
   999   _components.reset();
  1000   while ( (comp = _components.iter()) != NULL ) {
  1001     const Form        *form = globals[comp->_type];
  1002     assert( form, "Did not find component's type in global names");
  1003     const OpClassForm *opc  = form->is_opclass();
  1004     const OperandForm *oper = form->is_operand();
  1005     if ( opc && (oper == NULL) ) {
  1006       ++reloc_entries;
  1007     } else if ( oper ) {
  1008       // floats and doubles loaded out of method's constant pool require reloc info
  1009       Form::DataType type = oper->is_base_constant(globals);
  1010       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1011         ++reloc_entries;
  1016   // Float and Double constants may come from the CodeBuffer table
  1017   // and require relocatable addresses for access
  1018   // !!!!!
  1019   // Check for any component being an immediate float or double.
  1020   Form::DataType data_type = is_chain_of_constant(globals);
  1021   if( data_type==idealD || data_type==idealF ) {
  1022 #ifdef SPARC
  1023     // sparc required more relocation entries for floating constants
  1024     // (expires 9/98)
  1025     reloc_entries += 6;
  1026 #else
  1027     reloc_entries++;
  1028 #endif
  1031   return reloc_entries;
  1034 // Utility function defined in archDesc.cpp
  1035 extern bool is_def(int usedef);
  1037 // Return the result of reducing an instruction
  1038 const char *InstructForm::reduce_result() {
  1039   const char* result = "Universe";  // default
  1040   _components.reset();
  1041   Component *comp = _components.iter();
  1042   if (comp != NULL && comp->isa(Component::DEF)) {
  1043     result = comp->_type;
  1044     // Override this if the rule is a store operation:
  1045     if (_matrule && _matrule->_rChild &&
  1046         is_store_to_memory(_matrule->_rChild->_opType))
  1047       result = "Universe";
  1049   return result;
  1052 // Return the name of the operand on the right hand side of the binary match
  1053 // Return NULL if there is no right hand side
  1054 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1055   if( _matrule == NULL ) return NULL;
  1056   return  _matrule->reduce_right(globals);
  1059 // Similar for left
  1060 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1061   if( _matrule == NULL ) return NULL;
  1062   return  _matrule->reduce_left(globals);
  1066 // Base class for this instruction, MachNode except for calls
  1067 const char *InstructForm::mach_base_class(FormDict &globals)  const {
  1068   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1069     return "MachCallStaticJavaNode";
  1071   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1072     return "MachCallDynamicJavaNode";
  1074   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1075     return "MachCallRuntimeNode";
  1077   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1078     return "MachCallLeafNode";
  1080   else if (is_ideal_return()) {
  1081     return "MachReturnNode";
  1083   else if (is_ideal_halt()) {
  1084     return "MachHaltNode";
  1086   else if (is_ideal_safepoint()) {
  1087     return "MachSafePointNode";
  1089   else if (is_ideal_if()) {
  1090     return "MachIfNode";
  1092   else if (is_ideal_goto()) {
  1093     return "MachGotoNode";
  1095   else if (is_ideal_fastlock()) {
  1096     return "MachFastLockNode";
  1098   else if (is_ideal_nop()) {
  1099     return "MachNopNode";
  1101   else if (is_mach_constant()) {
  1102     return "MachConstantNode";
  1104   else if (captures_bottom_type(globals)) {
  1105     return "MachTypeNode";
  1106   } else {
  1107     return "MachNode";
  1109   assert( false, "ShouldNotReachHere()");
  1110   return NULL;
  1113 // Compare the instruction predicates for textual equality
  1114 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1115   const Predicate *pred1  = instr1->_predicate;
  1116   const Predicate *pred2  = instr2->_predicate;
  1117   if( pred1 == NULL && pred2 == NULL ) {
  1118     // no predicates means they are identical
  1119     return true;
  1121   if( pred1 != NULL && pred2 != NULL ) {
  1122     // compare the predicates
  1123     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1124       return true;
  1128   return false;
  1131 // Check if this instruction can cisc-spill to 'alternate'
  1132 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1133   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1134   // Do not replace if a cisc-version has been found.
  1135   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1137   int         cisc_spill_operand = Maybe_cisc_spillable;
  1138   char       *result             = NULL;
  1139   char       *result2            = NULL;
  1140   const char *op_name            = NULL;
  1141   const char *reg_type           = NULL;
  1142   FormDict   &globals            = AD.globalNames();
  1143   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1144   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1145     cisc_spill_operand = operand_position(op_name, Component::USE);
  1146     int def_oper  = operand_position(op_name, Component::DEF);
  1147     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1148       // Do not support cisc-spilling for destination operands and
  1149       // make sure they have the same number of operands.
  1150       _cisc_spill_alternate = instr;
  1151       instr->set_cisc_alternate(true);
  1152       if( AD._cisc_spill_debug ) {
  1153         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1154         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1156       // Record that a stack-version of the reg_mask is needed
  1157       // !!!!!
  1158       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1159       assert( oper != NULL, "cisc-spilling non operand");
  1160       const char *reg_class_name = oper->constrained_reg_class();
  1161       AD.set_stack_or_reg(reg_class_name);
  1162       const char *reg_mask_name  = AD.reg_mask(*oper);
  1163       set_cisc_reg_mask_name(reg_mask_name);
  1164       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1165     } else {
  1166       cisc_spill_operand = Not_cisc_spillable;
  1168   } else {
  1169     cisc_spill_operand = Not_cisc_spillable;
  1172   set_cisc_spill_operand(cisc_spill_operand);
  1173   return (cisc_spill_operand != Not_cisc_spillable);
  1176 // Check to see if this instruction can be replaced with the short branch
  1177 // instruction `short-branch'
  1178 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1179   if (_matrule != NULL &&
  1180       this != short_branch &&   // Don't match myself
  1181       !is_short_branch() &&     // Don't match another short branch variant
  1182       reduce_result() != NULL &&
  1183       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1184       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1185     // The instructions are equivalent.
  1187     // Now verify that both instructions have the same parameters and
  1188     // the same effects. Both branch forms should have the same inputs
  1189     // and resulting projections to correctly replace a long branch node
  1190     // with corresponding short branch node during code generation.
  1192     bool different = false;
  1193     if (short_branch->_components.count() != _components.count()) {
  1194        different = true;
  1195     } else if (_components.count() > 0) {
  1196       short_branch->_components.reset();
  1197       _components.reset();
  1198       Component *comp;
  1199       while ((comp = _components.iter()) != NULL) {
  1200         Component *short_comp = short_branch->_components.iter();
  1201         if (short_comp == NULL ||
  1202             short_comp->_type != comp->_type ||
  1203             short_comp->_usedef != comp->_usedef) {
  1204           different = true;
  1205           break;
  1208       if (short_branch->_components.iter() != NULL)
  1209         different = true;
  1211     if (different) {
  1212       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
  1214     if (AD._short_branch_debug) {
  1215       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1217     _short_branch_form = short_branch;
  1218     return true;
  1220   return false;
  1224 // --------------------------- FILE *output_routines
  1225 //
  1226 // Generate the format call for the replacement variable
  1227 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1228   // Handle special constant table variables.
  1229   if (strcmp(rep_var, "constanttablebase") == 0) {
  1230     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
  1231     fprintf(fp, "    st->print(\"%%s\", reg);\n");
  1232     return;
  1234   if (strcmp(rep_var, "constantoffset") == 0) {
  1235     fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
  1236     return;
  1238   if (strcmp(rep_var, "constantaddress") == 0) {
  1239     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
  1240     return;
  1243   // Find replacement variable's type
  1244   const Form *form   = _localNames[rep_var];
  1245   if (form == NULL) {
  1246     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
  1247     assert(false, "ShouldNotReachHere()");
  1249   OpClassForm *opc   = form->is_opclass();
  1250   assert( opc, "replacement variable was not found in local names");
  1251   // Lookup the index position of the replacement variable
  1252   int idx  = operand_position_format(rep_var);
  1253   if ( idx == -1 ) {
  1254     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
  1255     assert( false, "ShouldNotReachHere()");
  1258   if (is_noninput_operand(idx)) {
  1259     // This component isn't in the input array.  Print out the static
  1260     // name of the register.
  1261     OperandForm* oper = form->is_operand();
  1262     if (oper != NULL && oper->is_bound_register()) {
  1263       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1264       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
  1265     } else {
  1266       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1268   } else {
  1269     // Output the format call for this operand
  1270     fprintf(fp,"opnd_array(%d)->",idx);
  1271     if (idx == 0)
  1272       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1273     else
  1274       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1278 // Seach through operands to determine parameters unique positions.
  1279 void InstructForm::set_unique_opnds() {
  1280   uint* uniq_idx = NULL;
  1281   int  nopnds = num_opnds();
  1282   uint  num_uniq = nopnds;
  1283   int i;
  1284   _uniq_idx_length = 0;
  1285   if ( nopnds > 0 ) {
  1286     // Allocate index array.  Worst case we're mapping from each
  1287     // component back to an index and any DEF always goes at 0 so the
  1288     // length of the array has to be the number of components + 1.
  1289     _uniq_idx_length = _components.count() + 1;
  1290     uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
  1291     for( i = 0; i < _uniq_idx_length; i++ ) {
  1292       uniq_idx[i] = i;
  1295   // Do it only if there is a match rule and no expand rule.  With an
  1296   // expand rule it is done by creating new mach node in Expand()
  1297   // method.
  1298   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
  1299     const char *name;
  1300     uint count;
  1301     bool has_dupl_use = false;
  1303     _parameters.reset();
  1304     while( (name = _parameters.iter()) != NULL ) {
  1305       count = 0;
  1306       int position = 0;
  1307       int uniq_position = 0;
  1308       _components.reset();
  1309       Component *comp = NULL;
  1310       if( sets_result() ) {
  1311         comp = _components.iter();
  1312         position++;
  1314       // The next code is copied from the method operand_position().
  1315       for (; (comp = _components.iter()) != NULL; ++position) {
  1316         // When the first component is not a DEF,
  1317         // leave space for the result operand!
  1318         if ( position==0 && (! comp->isa(Component::DEF)) ) {
  1319           ++position;
  1321         if( strcmp(name, comp->_name)==0 ) {
  1322           if( ++count > 1 ) {
  1323             assert(position < _uniq_idx_length, "out of bounds");
  1324             uniq_idx[position] = uniq_position;
  1325             has_dupl_use = true;
  1326           } else {
  1327             uniq_position = position;
  1330         if( comp->isa(Component::DEF)
  1331             && comp->isa(Component::USE) ) {
  1332           ++position;
  1333           if( position != 1 )
  1334             --position;   // only use two slots for the 1st USE_DEF
  1338     if( has_dupl_use ) {
  1339       for( i = 1; i < nopnds; i++ )
  1340         if( i != uniq_idx[i] )
  1341           break;
  1342       int  j = i;
  1343       for( ; i < nopnds; i++ )
  1344         if( i == uniq_idx[i] )
  1345           uniq_idx[i] = j++;
  1346       num_uniq = j;
  1349   _uniq_idx = uniq_idx;
  1350   _num_uniq = num_uniq;
  1353 // Generate index values needed for determining the operand position
  1354 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1355   uint  idx = 0;                  // position of operand in match rule
  1356   int   cur_num_opnds = num_opnds();
  1358   // Compute the index into vector of operand pointers:
  1359   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1360   // idx1 starts at oper_input_base()
  1361   if ( cur_num_opnds >= 1 ) {
  1362     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
  1363     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1364     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
  1366     // Generate starting points for other unique operands if they exist
  1367     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1368       if( *receiver == 0 ) {
  1369         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
  1370                 prefix, idx, prefix, idx-1, idx-1 );
  1371       } else {
  1372         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
  1373                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1377   if( *receiver != 0 ) {
  1378     // This value is used by generate_peepreplace when copying a node.
  1379     // Don't emit it in other cases since it can hide bugs with the
  1380     // use invalid idx's.
  1381     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1386 // ---------------------------
  1387 bool InstructForm::verify() {
  1388   // !!!!! !!!!!
  1389   // Check that a "label" operand occurs last in the operand list, if present
  1390   return true;
  1393 void InstructForm::dump() {
  1394   output(stderr);
  1397 void InstructForm::output(FILE *fp) {
  1398   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1399   if (_matrule)   _matrule->output(fp);
  1400   if (_insencode) _insencode->output(fp);
  1401   if (_constant)  _constant->output(fp);
  1402   if (_opcode)    _opcode->output(fp);
  1403   if (_attribs)   _attribs->output(fp);
  1404   if (_predicate) _predicate->output(fp);
  1405   if (_effects.Size()) {
  1406     fprintf(fp,"Effects\n");
  1407     _effects.dump();
  1409   if (_exprule)   _exprule->output(fp);
  1410   if (_rewrule)   _rewrule->output(fp);
  1411   if (_format)    _format->output(fp);
  1412   if (_peephole)  _peephole->output(fp);
  1415 void MachNodeForm::dump() {
  1416   output(stderr);
  1419 void MachNodeForm::output(FILE *fp) {
  1420   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1423 //------------------------------build_predicate--------------------------------
  1424 // Build instruction predicates.  If the user uses the same operand name
  1425 // twice, we need to check that the operands are pointer-eequivalent in
  1426 // the DFA during the labeling process.
  1427 Predicate *InstructForm::build_predicate() {
  1428   char buf[1024], *s=buf;
  1429   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1431   MatchNode *mnode =
  1432     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1433   mnode->count_instr_names(names);
  1435   uint first = 1;
  1436   // Start with the predicate supplied in the .ad file.
  1437   if( _predicate ) {
  1438     if( first ) first=0;
  1439     strcpy(s,"("); s += strlen(s);
  1440     strcpy(s,_predicate->_pred);
  1441     s += strlen(s);
  1442     strcpy(s,")"); s += strlen(s);
  1444   for( DictI i(&names); i.test(); ++i ) {
  1445     uintptr_t cnt = (uintptr_t)i._value;
  1446     if( cnt > 1 ) {             // Need a predicate at all?
  1447       assert( cnt == 2, "Unimplemented" );
  1448       // Handle many pairs
  1449       if( first ) first=0;
  1450       else {                    // All tests must pass, so use '&&'
  1451         strcpy(s," && ");
  1452         s += strlen(s);
  1454       // Add predicate to working buffer
  1455       sprintf(s,"/*%s*/(",(char*)i._key);
  1456       s += strlen(s);
  1457       mnode->build_instr_pred(s,(char*)i._key,0);
  1458       s += strlen(s);
  1459       strcpy(s," == "); s += strlen(s);
  1460       mnode->build_instr_pred(s,(char*)i._key,1);
  1461       s += strlen(s);
  1462       strcpy(s,")"); s += strlen(s);
  1465   if( s == buf ) s = NULL;
  1466   else {
  1467     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1468     s = strdup(buf);
  1470   return new Predicate(s);
  1473 //------------------------------EncodeForm-------------------------------------
  1474 // Constructor
  1475 EncodeForm::EncodeForm()
  1476   : _encClass(cmpstr,hashstr, Form::arena) {
  1478 EncodeForm::~EncodeForm() {
  1481 // record a new register class
  1482 EncClass *EncodeForm::add_EncClass(const char *className) {
  1483   EncClass *encClass = new EncClass(className);
  1484   _eclasses.addName(className);
  1485   _encClass.Insert(className,encClass);
  1486   return encClass;
  1489 // Lookup the function body for an encoding class
  1490 EncClass  *EncodeForm::encClass(const char *className) {
  1491   assert( className != NULL, "Must provide a defined encoding name");
  1493   EncClass *encClass = (EncClass*)_encClass[className];
  1494   return encClass;
  1497 // Lookup the function body for an encoding class
  1498 const char *EncodeForm::encClassBody(const char *className) {
  1499   if( className == NULL ) return NULL;
  1501   EncClass *encClass = (EncClass*)_encClass[className];
  1502   assert( encClass != NULL, "Encode Class is missing.");
  1503   encClass->_code.reset();
  1504   const char *code = (const char*)encClass->_code.iter();
  1505   assert( code != NULL, "Found an empty encode class body.");
  1507   return code;
  1510 // Lookup the function body for an encoding class
  1511 const char *EncodeForm::encClassPrototype(const char *className) {
  1512   assert( className != NULL, "Encode class name must be non NULL.");
  1514   return className;
  1517 void EncodeForm::dump() {                  // Debug printer
  1518   output(stderr);
  1521 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1522   const char *name;
  1523   fprintf(fp,"\n");
  1524   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1525   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1526     ((EncClass*)_encClass[name])->output(fp);
  1528   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1530 //------------------------------EncClass---------------------------------------
  1531 EncClass::EncClass(const char *name)
  1532   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1534 EncClass::~EncClass() {
  1537 // Add a parameter <type,name> pair
  1538 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1539   _parameter_type.addName( parameter_type );
  1540   _parameter_name.addName( parameter_name );
  1543 // Verify operand types in parameter list
  1544 bool EncClass::check_parameter_types(FormDict &globals) {
  1545   // !!!!!
  1546   return false;
  1549 // Add the decomposed "code" sections of an encoding's code-block
  1550 void EncClass::add_code(const char *code) {
  1551   _code.addName(code);
  1554 // Add the decomposed "replacement variables" of an encoding's code-block
  1555 void EncClass::add_rep_var(char *replacement_var) {
  1556   _code.addName(NameList::_signal);
  1557   _rep_vars.addName(replacement_var);
  1560 // Lookup the function body for an encoding class
  1561 int EncClass::rep_var_index(const char *rep_var) {
  1562   uint        position = 0;
  1563   const char *name     = NULL;
  1565   _parameter_name.reset();
  1566   while ( (name = _parameter_name.iter()) != NULL ) {
  1567     if ( strcmp(rep_var,name) == 0 ) return position;
  1568     ++position;
  1571   return -1;
  1574 // Check after parsing
  1575 bool EncClass::verify() {
  1576   // 1!!!!
  1577   // Check that each replacement variable, '$name' in architecture description
  1578   // is actually a local variable for this encode class, or a reserved name
  1579   // "primary, secondary, tertiary"
  1580   return true;
  1583 void EncClass::dump() {
  1584   output(stderr);
  1587 // Write info to output files
  1588 void EncClass::output(FILE *fp) {
  1589   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1591   // Output the parameter list
  1592   _parameter_type.reset();
  1593   _parameter_name.reset();
  1594   const char *type = _parameter_type.iter();
  1595   const char *name = _parameter_name.iter();
  1596   fprintf(fp, " ( ");
  1597   for ( ; (type != NULL) && (name != NULL);
  1598         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1599     fprintf(fp, " %s %s,", type, name);
  1601   fprintf(fp, " ) ");
  1603   // Output the code block
  1604   _code.reset();
  1605   _rep_vars.reset();
  1606   const char *code;
  1607   while ( (code = _code.iter()) != NULL ) {
  1608     if ( _code.is_signal(code) ) {
  1609       // A replacement variable
  1610       const char *rep_var = _rep_vars.iter();
  1611       fprintf(fp,"($%s)", rep_var);
  1612     } else {
  1613       // A section of code
  1614       fprintf(fp,"%s", code);
  1620 //------------------------------Opcode-----------------------------------------
  1621 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1622   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1625 Opcode::~Opcode() {
  1628 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1629   if( strcmp(param,"primary") == 0 ) {
  1630     return Opcode::PRIMARY;
  1632   else if( strcmp(param,"secondary") == 0 ) {
  1633     return Opcode::SECONDARY;
  1635   else if( strcmp(param,"tertiary") == 0 ) {
  1636     return Opcode::TERTIARY;
  1638   return Opcode::NOT_AN_OPCODE;
  1641 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1642   // Default values previously provided by MachNode::primary()...
  1643   const char *description = NULL;
  1644   const char *value       = NULL;
  1645   // Check if user provided any opcode definitions
  1646   if( this != NULL ) {
  1647     // Update 'value' if user provided a definition in the instruction
  1648     switch (desired_opcode) {
  1649     case PRIMARY:
  1650       description = "primary()";
  1651       if( _primary   != NULL)  { value = _primary;     }
  1652       break;
  1653     case SECONDARY:
  1654       description = "secondary()";
  1655       if( _secondary != NULL ) { value = _secondary;   }
  1656       break;
  1657     case TERTIARY:
  1658       description = "tertiary()";
  1659       if( _tertiary  != NULL ) { value = _tertiary;    }
  1660       break;
  1661     default:
  1662       assert( false, "ShouldNotReachHere();");
  1663       break;
  1666   if (value != NULL) {
  1667     fprintf(fp, "(%s /*%s*/)", value, description);
  1669   return value != NULL;
  1672 void Opcode::dump() {
  1673   output(stderr);
  1676 // Write info to output files
  1677 void Opcode::output(FILE *fp) {
  1678   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1679   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1680   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1683 //------------------------------InsEncode--------------------------------------
  1684 InsEncode::InsEncode() {
  1686 InsEncode::~InsEncode() {
  1689 // Add "encode class name" and its parameters
  1690 NameAndList *InsEncode::add_encode(char *encoding) {
  1691   assert( encoding != NULL, "Must provide name for encoding");
  1693   // add_parameter(NameList::_signal);
  1694   NameAndList *encode = new NameAndList(encoding);
  1695   _encoding.addName((char*)encode);
  1697   return encode;
  1700 // Access the list of encodings
  1701 void InsEncode::reset() {
  1702   _encoding.reset();
  1703   // _parameter.reset();
  1705 const char* InsEncode::encode_class_iter() {
  1706   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1707   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1709 // Obtain parameter name from zero based index
  1710 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1711   NameAndList *params = (NameAndList*)_encoding.current();
  1712   assert( params != NULL, "Internal Error");
  1713   const char *param = (*params)[param_no];
  1715   // Remove '$' if parser placed it there.
  1716   return ( param != NULL && *param == '$') ? (param+1) : param;
  1719 void InsEncode::dump() {
  1720   output(stderr);
  1723 // Write info to output files
  1724 void InsEncode::output(FILE *fp) {
  1725   NameAndList *encoding  = NULL;
  1726   const char  *parameter = NULL;
  1728   fprintf(fp,"InsEncode: ");
  1729   _encoding.reset();
  1731   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1732     // Output the encoding being used
  1733     fprintf(fp,"%s(", encoding->name() );
  1735     // Output its parameter list, if any
  1736     bool first_param = true;
  1737     encoding->reset();
  1738     while (  (parameter = encoding->iter()) != 0 ) {
  1739       // Output the ',' between parameters
  1740       if ( ! first_param )  fprintf(fp,", ");
  1741       first_param = false;
  1742       // Output the parameter
  1743       fprintf(fp,"%s", parameter);
  1744     } // done with parameters
  1745     fprintf(fp,")  ");
  1746   } // done with encodings
  1748   fprintf(fp,"\n");
  1751 //------------------------------Effect-----------------------------------------
  1752 static int effect_lookup(const char *name) {
  1753   if(!strcmp(name, "USE")) return Component::USE;
  1754   if(!strcmp(name, "DEF")) return Component::DEF;
  1755   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1756   if(!strcmp(name, "KILL")) return Component::KILL;
  1757   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1758   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1759   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1760   if(!strcmp(name, "CALL")) return Component::CALL;
  1761   assert( false,"Invalid effect name specified\n");
  1762   return Component::INVALID;
  1765 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1766   _ftype = Form::EFF;
  1768 Effect::~Effect() {
  1771 // Dynamic type check
  1772 Effect *Effect::is_effect() const {
  1773   return (Effect*)this;
  1777 // True if this component is equal to the parameter.
  1778 bool Effect::is(int use_def_kill_enum) const {
  1779   return (_use_def == use_def_kill_enum ? true : false);
  1781 // True if this component is used/def'd/kill'd as the parameter suggests.
  1782 bool Effect::isa(int use_def_kill_enum) const {
  1783   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1786 void Effect::dump() {
  1787   output(stderr);
  1790 void Effect::output(FILE *fp) {          // Write info to output files
  1791   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1794 //------------------------------ExpandRule-------------------------------------
  1795 ExpandRule::ExpandRule() : _expand_instrs(),
  1796                            _newopconst(cmpstr, hashstr, Form::arena) {
  1797   _ftype = Form::EXP;
  1800 ExpandRule::~ExpandRule() {                  // Destructor
  1803 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1804   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1807 void ExpandRule::reset_instructions() {
  1808   _expand_instrs.reset();
  1811 NameAndList* ExpandRule::iter_instructions() {
  1812   return (NameAndList*)_expand_instrs.iter();
  1816 void ExpandRule::dump() {
  1817   output(stderr);
  1820 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1821   NameAndList *expand_instr = NULL;
  1822   const char *opid = NULL;
  1824   fprintf(fp,"\nExpand Rule:\n");
  1826   // Iterate over the instructions 'node' expands into
  1827   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1828     fprintf(fp,"%s(", expand_instr->name());
  1830     // iterate over the operand list
  1831     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1832       fprintf(fp,"%s ", opid);
  1834     fprintf(fp,");\n");
  1838 //------------------------------RewriteRule------------------------------------
  1839 RewriteRule::RewriteRule(char* params, char* block)
  1840   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1841 RewriteRule::~RewriteRule() {                 // Destructor
  1844 void RewriteRule::dump() {
  1845   output(stderr);
  1848 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1849   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1850           (_tempParams?_tempParams:""),
  1851           (_tempBlock?_tempBlock:""));
  1855 //==============================MachNodes======================================
  1856 //------------------------------MachNodeForm-----------------------------------
  1857 MachNodeForm::MachNodeForm(char *id)
  1858   : _ident(id) {
  1861 MachNodeForm::~MachNodeForm() {
  1864 MachNodeForm *MachNodeForm::is_machnode() const {
  1865   return (MachNodeForm*)this;
  1868 //==============================Operand Classes================================
  1869 //------------------------------OpClassForm------------------------------------
  1870 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1871   _ftype = Form::OPCLASS;
  1874 OpClassForm::~OpClassForm() {
  1877 bool OpClassForm::ideal_only() const { return 0; }
  1879 OpClassForm *OpClassForm::is_opclass() const {
  1880   return (OpClassForm*)this;
  1883 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1884   if( _oplst.count() == 0 ) return Form::no_interface;
  1886   // Check that my operands have the same interface type
  1887   Form::InterfaceType  interface;
  1888   bool  first = true;
  1889   NameList &op_list = (NameList &)_oplst;
  1890   op_list.reset();
  1891   const char *op_name;
  1892   while( (op_name = op_list.iter()) != NULL ) {
  1893     const Form  *form    = globals[op_name];
  1894     OperandForm *operand = form->is_operand();
  1895     assert( operand, "Entry in operand class that is not an operand");
  1896     if( first ) {
  1897       first     = false;
  1898       interface = operand->interface_type(globals);
  1899     } else {
  1900       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1903   return interface;
  1906 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1907   if( _oplst.count() == 0 ) return false;  // how?
  1909   NameList &op_list = (NameList &)_oplst;
  1910   op_list.reset();
  1911   const char *op_name;
  1912   while( (op_name = op_list.iter()) != NULL ) {
  1913     const Form  *form    = globals[op_name];
  1914     OperandForm *operand = form->is_operand();
  1915     assert( operand, "Entry in operand class that is not an operand");
  1916     if( !operand->stack_slots_only(globals) )  return false;
  1918   return true;
  1922 void OpClassForm::dump() {
  1923   output(stderr);
  1926 void OpClassForm::output(FILE *fp) {
  1927   const char *name;
  1928   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1929   fprintf(fp,"\nCount = %d\n", _oplst.count());
  1930   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  1931     fprintf(fp,"%s, ",name);
  1933   fprintf(fp,"\n");
  1937 //==============================Operands=======================================
  1938 //------------------------------OperandForm------------------------------------
  1939 OperandForm::OperandForm(const char* id)
  1940   : OpClassForm(id), _ideal_only(false),
  1941     _localNames(cmpstr, hashstr, Form::arena) {
  1942       _ftype = Form::OPER;
  1944       _matrule   = NULL;
  1945       _interface = NULL;
  1946       _attribs   = NULL;
  1947       _predicate = NULL;
  1948       _constraint= NULL;
  1949       _construct = NULL;
  1950       _format    = NULL;
  1952 OperandForm::OperandForm(const char* id, bool ideal_only)
  1953   : OpClassForm(id), _ideal_only(ideal_only),
  1954     _localNames(cmpstr, hashstr, Form::arena) {
  1955       _ftype = Form::OPER;
  1957       _matrule   = NULL;
  1958       _interface = NULL;
  1959       _attribs   = NULL;
  1960       _predicate = NULL;
  1961       _constraint= NULL;
  1962       _construct = NULL;
  1963       _format    = NULL;
  1965 OperandForm::~OperandForm() {
  1969 OperandForm *OperandForm::is_operand() const {
  1970   return (OperandForm*)this;
  1973 bool OperandForm::ideal_only() const {
  1974   return _ideal_only;
  1977 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  1978   if( _interface == NULL )  return Form::no_interface;
  1980   return _interface->interface_type(globals);
  1984 bool OperandForm::stack_slots_only(FormDict &globals) const {
  1985   if( _constraint == NULL )  return false;
  1986   return _constraint->stack_slots_only();
  1990 // Access op_cost attribute or return NULL.
  1991 const char* OperandForm::cost() {
  1992   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  1993     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  1994       return cur->_val;
  1997   return NULL;
  2000 // Return the number of leaves below this complex operand
  2001 uint OperandForm::num_leaves() const {
  2002   if ( ! _matrule) return 0;
  2004   int num_leaves = _matrule->_numleaves;
  2005   return num_leaves;
  2008 // Return the number of constants contained within this complex operand
  2009 uint OperandForm::num_consts(FormDict &globals) const {
  2010   if ( ! _matrule) return 0;
  2012   // This is a recursive invocation on all operands in the matchrule
  2013   return _matrule->num_consts(globals);
  2016 // Return the number of constants in match rule with specified type
  2017 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  2018   if ( ! _matrule) return 0;
  2020   // This is a recursive invocation on all operands in the matchrule
  2021   return _matrule->num_consts(globals, type);
  2024 // Return the number of pointer constants contained within this complex operand
  2025 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  2026   if ( ! _matrule) return 0;
  2028   // This is a recursive invocation on all operands in the matchrule
  2029   return _matrule->num_const_ptrs(globals);
  2032 uint OperandForm::num_edges(FormDict &globals) const {
  2033   uint edges  = 0;
  2034   uint leaves = num_leaves();
  2035   uint consts = num_consts(globals);
  2037   // If we are matching a constant directly, there are no leaves.
  2038   edges = ( leaves > consts ) ? leaves - consts : 0;
  2040   // !!!!!
  2041   // Special case operands that do not have a corresponding ideal node.
  2042   if( (edges == 0) && (consts == 0) ) {
  2043     if( constrained_reg_class() != NULL ) {
  2044       edges = 1;
  2045     } else {
  2046       if( _matrule
  2047           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  2048         const Form *form = globals[_matrule->_opType];
  2049         OperandForm *oper = form ? form->is_operand() : NULL;
  2050         if( oper ) {
  2051           return oper->num_edges(globals);
  2057   return edges;
  2061 // Check if this operand is usable for cisc-spilling
  2062 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2063   const char *ideal = ideal_type(globals);
  2064   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2065   return is_cisc_reg;
  2068 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2069   Form::InterfaceType my_interface = interface_type(globals);
  2070   return (my_interface == memory_interface);
  2074 // node matches ideal 'Bool'
  2075 bool OperandForm::is_ideal_bool() const {
  2076   if( _matrule == NULL ) return false;
  2078   return _matrule->is_ideal_bool();
  2081 // Require user's name for an sRegX to be stackSlotX
  2082 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2083   DataType data_type = none;
  2084   if( _ident != NULL ) {
  2085     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2086     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2087     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2088     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2089     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2091   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2093   return data_type;
  2097 // Return ideal type, if there is a single ideal type for this operand
  2098 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2099   const char *type = NULL;
  2100   if (ideal_only()) type = _ident;
  2101   else if( _matrule == NULL ) {
  2102     // Check for condition code register
  2103     const char *rc_name = constrained_reg_class();
  2104     // !!!!!
  2105     if (rc_name == NULL) return NULL;
  2106     // !!!!! !!!!!
  2107     // Check constraints on result's register class
  2108     if( registers ) {
  2109       RegClass *reg_class  = registers->getRegClass(rc_name);
  2110       assert( reg_class != NULL, "Register class is not defined");
  2112       // Check for ideal type of entries in register class, all are the same type
  2113       reg_class->reset();
  2114       RegDef *reg_def = reg_class->RegDef_iter();
  2115       assert( reg_def != NULL, "No entries in register class");
  2116       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2117       // Return substring that names the register's ideal type
  2118       type = reg_def->_idealtype + 3;
  2119       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2120       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2121       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2124   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2125     // This operand matches a single type, at the top level.
  2126     // Check for ideal type
  2127     type = _matrule->_opType;
  2128     if( strcmp(type,"Bool") == 0 )
  2129       return "Bool";
  2130     // transitive lookup
  2131     const Form *frm = globals[type];
  2132     OperandForm *op = frm->is_operand();
  2133     type = op->ideal_type(globals, registers);
  2135   return type;
  2139 // If there is a single ideal type for this interface field, return it.
  2140 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2141                                               const char *field) const {
  2142   const char  *ideal_type = NULL;
  2143   const char  *value      = NULL;
  2145   // Check if "field" is valid for this operand's interface
  2146   if ( ! is_interface_field(field, value) )   return ideal_type;
  2148   // !!!!! !!!!! !!!!!
  2149   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2151   // Else, lookup type of field's replacement variable
  2153   return ideal_type;
  2157 RegClass* OperandForm::get_RegClass() const {
  2158   if (_interface && !_interface->is_RegInterface()) return NULL;
  2159   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2163 bool OperandForm::is_bound_register() const {
  2164   RegClass *reg_class  = get_RegClass();
  2165   if (reg_class == NULL) return false;
  2167   const char * name = ideal_type(globalAD->globalNames());
  2168   if (name == NULL) return false;
  2170   int size = 0;
  2171   if (strcmp(name,"RegFlags")==0) size =  1;
  2172   if (strcmp(name,"RegI")==0) size =  1;
  2173   if (strcmp(name,"RegF")==0) size =  1;
  2174   if (strcmp(name,"RegD")==0) size =  2;
  2175   if (strcmp(name,"RegL")==0) size =  2;
  2176   if (strcmp(name,"RegN")==0) size =  1;
  2177   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2178   if (size == 0) return false;
  2179   return size == reg_class->size();
  2183 // Check if this is a valid field for this operand,
  2184 // Return 'true' if valid, and set the value to the string the user provided.
  2185 bool  OperandForm::is_interface_field(const char *field,
  2186                                       const char * &value) const {
  2187   return false;
  2191 // Return register class name if a constraint specifies the register class.
  2192 const char *OperandForm::constrained_reg_class() const {
  2193   const char *reg_class  = NULL;
  2194   if ( _constraint ) {
  2195     // !!!!!
  2196     Constraint *constraint = _constraint;
  2197     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2198       reg_class = _constraint->_arg;
  2202   return reg_class;
  2206 // Return the register class associated with 'leaf'.
  2207 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2208   const char *reg_class = NULL; // "RegMask::Empty";
  2210   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2211     reg_class = constrained_reg_class();
  2212     return reg_class;
  2214   const char *result   = NULL;
  2215   const char *name     = NULL;
  2216   const char *type     = NULL;
  2217   // iterate through all base operands
  2218   // until we reach the register that corresponds to "leaf"
  2219   // This function is not looking for an ideal type.  It needs the first
  2220   // level user type associated with the leaf.
  2221   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2222     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2223     OperandForm *oper = form ? form->is_operand() : NULL;
  2224     if( oper ) {
  2225       reg_class = oper->constrained_reg_class();
  2226       if( reg_class ) {
  2227         reg_class = reg_class;
  2228       } else {
  2229         // ShouldNotReachHere();
  2231     } else {
  2232       // ShouldNotReachHere();
  2235     // Increment our target leaf position if current leaf is not a candidate.
  2236     if( reg_class == NULL)    ++leaf;
  2237     // Exit the loop with the value of reg_class when at the correct index
  2238     if( idx == leaf )         break;
  2239     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2241   return reg_class;
  2245 // Recursive call to construct list of top-level operands.
  2246 // Implementation does not modify state of internal structures
  2247 void OperandForm::build_components() {
  2248   if (_matrule)  _matrule->append_components(_localNames, _components);
  2250   // Add parameters that "do not appear in match rule".
  2251   const char *name;
  2252   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2253     OperandForm *opForm = (OperandForm*)_localNames[name];
  2255     if ( _components.operand_position(name) == -1 ) {
  2256       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2260   return;
  2263 int OperandForm::operand_position(const char *name, int usedef) {
  2264   return _components.operand_position(name, usedef);
  2268 // Return zero-based position in component list, only counting constants;
  2269 // Return -1 if not in list.
  2270 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2271   // Iterate through components and count constants preceding 'constant'
  2272   int position = 0;
  2273   Component *comp;
  2274   _components.reset();
  2275   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2276     // Special case for operands that take a single user-defined operand
  2277     // Skip the initial definition in the component list.
  2278     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2280     const char *type = comp->_type;
  2281     // Lookup operand form for replacement variable's type
  2282     const Form *form = globals[type];
  2283     assert( form != NULL, "Component's type not found");
  2284     OperandForm *oper = form ? form->is_operand() : NULL;
  2285     if( oper ) {
  2286       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2287         ++position;
  2292   // Check for being passed a component that was not in the list
  2293   if( comp != last )  position = -1;
  2295   return position;
  2297 // Provide position of constant by "name"
  2298 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2299   const Component *comp = _components.search(name);
  2300   int idx = constant_position( globals, comp );
  2302   return idx;
  2306 // Return zero-based position in component list, only counting constants;
  2307 // Return -1 if not in list.
  2308 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2309   // Iterate through components and count registers preceding 'last'
  2310   uint  position = 0;
  2311   Component *comp;
  2312   _components.reset();
  2313   while( (comp = _components.iter()) != NULL
  2314          && (strcmp(comp->_name,reg_name) != 0) ) {
  2315     // Special case for operands that take a single user-defined operand
  2316     // Skip the initial definition in the component list.
  2317     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2319     const char *type = comp->_type;
  2320     // Lookup operand form for component's type
  2321     const Form *form = globals[type];
  2322     assert( form != NULL, "Component's type not found");
  2323     OperandForm *oper = form ? form->is_operand() : NULL;
  2324     if( oper ) {
  2325       if( oper->_matrule->is_base_register(globals) ) {
  2326         ++position;
  2331   return position;
  2335 const char *OperandForm::reduce_result()  const {
  2336   return _ident;
  2338 // Return the name of the operand on the right hand side of the binary match
  2339 // Return NULL if there is no right hand side
  2340 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2341   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2344 // Similar for left
  2345 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2346   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2350 // --------------------------- FILE *output_routines
  2351 //
  2352 // Output code for disp_is_oop, if true.
  2353 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2354   //  Check it is a memory interface with a non-user-constant disp field
  2355   if ( this->_interface == NULL ) return;
  2356   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2357   if ( mem_interface == NULL )    return;
  2358   const char   *disp  = mem_interface->_disp;
  2359   if ( *disp != '$' )             return;
  2361   // Lookup replacement variable in operand's component list
  2362   const char   *rep_var = disp + 1;
  2363   const Component *comp = this->_components.search(rep_var);
  2364   assert( comp != NULL, "Replacement variable not found in components");
  2365   // Lookup operand form for replacement variable's type
  2366   const char      *type = comp->_type;
  2367   Form            *form = (Form*)globals[type];
  2368   assert( form != NULL, "Replacement variable's type not found");
  2369   OperandForm     *op   = form->is_operand();
  2370   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2371   // Check if this is a ConP, which may require relocation
  2372   if ( op->is_base_constant(globals) == Form::idealP ) {
  2373     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2374     uint idx  = op->constant_position( globals, rep_var);
  2375     fprintf(fp,"  virtual bool disp_is_oop() const {");
  2376     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
  2377     fprintf(fp, " }\n");
  2381 // Generate code for internal and external format methods
  2382 //
  2383 // internal access to reg# node->_idx
  2384 // access to subsumed constant _c0, _c1,
  2385 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2386   Form::DataType dtype;
  2387   if (_matrule && (_matrule->is_base_register(globals) ||
  2388                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2389     // !!!!! !!!!!
  2390     fprintf(fp,    "{ char reg_str[128];\n");
  2391     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2392     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2393     fprintf(fp,"    }\n");
  2394   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2395     format_constant( fp, index, dtype );
  2396   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2397     // Special format for Stack Slot Register
  2398     fprintf(fp,    "{ char reg_str[128];\n");
  2399     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2400     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2401     fprintf(fp,"    }\n");
  2402   } else {
  2403     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2404     fflush(fp);
  2405     fprintf(stderr,"No format defined for %s\n", _ident);
  2406     dump();
  2407     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2411 // Similar to "int_format" but for cases where data is external to operand
  2412 // external access to reg# node->in(idx)->_idx,
  2413 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2414   Form::DataType dtype;
  2415   if (_matrule && (_matrule->is_base_register(globals) ||
  2416                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2417     fprintf(fp,    "{ char reg_str[128];\n");
  2418     fprintf(fp,"      ra->dump_register(node->in(idx");
  2419     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2420     fprintf(fp,                                       "),reg_str);\n");
  2421     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2422     fprintf(fp,"    }\n");
  2423   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2424     format_constant( fp, index, dtype );
  2425   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2426     // Special format for Stack Slot Register
  2427     fprintf(fp,    "{ char reg_str[128];\n");
  2428     fprintf(fp,"      ra->dump_register(node->in(idx");
  2429     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2430     fprintf(fp,                                       "),reg_str);\n");
  2431     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2432     fprintf(fp,"    }\n");
  2433   } else {
  2434     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2435     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2439 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2440   switch(const_type) {
  2441   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
  2442   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2443   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2444   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2445   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2446   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2447   default:
  2448     assert( false, "ShouldNotReachHere()");
  2452 // Return the operand form corresponding to the given index, else NULL.
  2453 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2454                                            uint      index) {
  2455   // !!!!!
  2456   // Check behavior on complex operands
  2457   uint n_consts = num_consts(globals);
  2458   if( n_consts > 0 ) {
  2459     uint i = 0;
  2460     const char *type;
  2461     Component  *comp;
  2462     _components.reset();
  2463     if ((comp = _components.iter()) == NULL) {
  2464       assert(n_consts == 1, "Bad component list detected.\n");
  2465       // Current operand is THE operand
  2466       if ( index == 0 ) {
  2467         return this;
  2469     } // end if NULL
  2470     else {
  2471       // Skip the first component, it can not be a DEF of a constant
  2472       do {
  2473         type = comp->base_type(globals);
  2474         // Check that "type" is a 'ConI', 'ConP', ...
  2475         if ( ideal_to_const_type(type) != Form::none ) {
  2476           // When at correct component, get corresponding Operand
  2477           if ( index == 0 ) {
  2478             return globals[comp->_type]->is_operand();
  2480           // Decrement number of constants to go
  2481           --index;
  2483       } while((comp = _components.iter()) != NULL);
  2487   // Did not find a constant for this index.
  2488   return NULL;
  2491 // If this operand has a single ideal type, return its type
  2492 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2493   const char *type_name = ideal_type(globals);
  2494   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2495                                     : Form::none;
  2496   return type;
  2499 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2500   if ( _matrule == NULL )    return Form::none;
  2502   return _matrule->is_base_constant(globals);
  2505 // "true" if this operand is a simple type that is swallowed
  2506 bool  OperandForm::swallowed(FormDict &globals) const {
  2507   Form::DataType type   = simple_type(globals);
  2508   if( type != Form::none ) {
  2509     return true;
  2512   return false;
  2515 // Output code to access the value of the index'th constant
  2516 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2517                                   uint const_index) {
  2518   OperandForm *oper = constant_operand(globals, const_index);
  2519   assert( oper, "Index exceeds number of constants in operand");
  2520   Form::DataType dtype = oper->is_base_constant(globals);
  2522   switch(dtype) {
  2523   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2524   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2525   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2526   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2527   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2528   default:
  2529     assert( false, "ShouldNotReachHere()");
  2534 void OperandForm::dump() {
  2535   output(stderr);
  2538 void OperandForm::output(FILE *fp) {
  2539   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2540   if (_matrule)    _matrule->dump();
  2541   if (_interface)  _interface->dump();
  2542   if (_attribs)    _attribs->dump();
  2543   if (_predicate)  _predicate->dump();
  2544   if (_constraint) _constraint->dump();
  2545   if (_construct)  _construct->dump();
  2546   if (_format)     _format->dump();
  2549 //------------------------------Constraint-------------------------------------
  2550 Constraint::Constraint(const char *func, const char *arg)
  2551   : _func(func), _arg(arg) {
  2553 Constraint::~Constraint() { /* not owner of char* */
  2556 bool Constraint::stack_slots_only() const {
  2557   return strcmp(_func, "ALLOC_IN_RC") == 0
  2558       && strcmp(_arg,  "stack_slots") == 0;
  2561 void Constraint::dump() {
  2562   output(stderr);
  2565 void Constraint::output(FILE *fp) {           // Write info to output files
  2566   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2567   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2570 //------------------------------Predicate--------------------------------------
  2571 Predicate::Predicate(char *pr)
  2572   : _pred(pr) {
  2574 Predicate::~Predicate() {
  2577 void Predicate::dump() {
  2578   output(stderr);
  2581 void Predicate::output(FILE *fp) {
  2582   fprintf(fp,"Predicate");  // Write to output files
  2584 //------------------------------Interface--------------------------------------
  2585 Interface::Interface(const char *name) : _name(name) {
  2587 Interface::~Interface() {
  2590 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2591   Interface *thsi = (Interface*)this;
  2592   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2593   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2594   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2595   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2597   return Form::no_interface;
  2600 RegInterface   *Interface::is_RegInterface() {
  2601   if ( strcmp(_name,"REG_INTER") != 0 )
  2602     return NULL;
  2603   return (RegInterface*)this;
  2605 MemInterface   *Interface::is_MemInterface() {
  2606   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2607   return (MemInterface*)this;
  2609 ConstInterface *Interface::is_ConstInterface() {
  2610   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2611   return (ConstInterface*)this;
  2613 CondInterface  *Interface::is_CondInterface() {
  2614   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2615   return (CondInterface*)this;
  2619 void Interface::dump() {
  2620   output(stderr);
  2623 // Write info to output files
  2624 void Interface::output(FILE *fp) {
  2625   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2628 //------------------------------RegInterface-----------------------------------
  2629 RegInterface::RegInterface() : Interface("REG_INTER") {
  2631 RegInterface::~RegInterface() {
  2634 void RegInterface::dump() {
  2635   output(stderr);
  2638 // Write info to output files
  2639 void RegInterface::output(FILE *fp) {
  2640   Interface::output(fp);
  2643 //------------------------------ConstInterface---------------------------------
  2644 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2646 ConstInterface::~ConstInterface() {
  2649 void ConstInterface::dump() {
  2650   output(stderr);
  2653 // Write info to output files
  2654 void ConstInterface::output(FILE *fp) {
  2655   Interface::output(fp);
  2658 //------------------------------MemInterface-----------------------------------
  2659 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2660   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2662 MemInterface::~MemInterface() {
  2663   // not owner of any character arrays
  2666 void MemInterface::dump() {
  2667   output(stderr);
  2670 // Write info to output files
  2671 void MemInterface::output(FILE *fp) {
  2672   Interface::output(fp);
  2673   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2674   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2675   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2676   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2677   // fprintf(fp,"\n");
  2680 //------------------------------CondInterface----------------------------------
  2681 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2682                              const char* not_equal,     const char* not_equal_format,
  2683                              const char* less,          const char* less_format,
  2684                              const char* greater_equal, const char* greater_equal_format,
  2685                              const char* less_equal,    const char* less_equal_format,
  2686                              const char* greater,       const char* greater_format)
  2687   : Interface("COND_INTER"),
  2688     _equal(equal),                 _equal_format(equal_format),
  2689     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2690     _less(less),                   _less_format(less_format),
  2691     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2692     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2693     _greater(greater),             _greater_format(greater_format) {
  2695 CondInterface::~CondInterface() {
  2696   // not owner of any character arrays
  2699 void CondInterface::dump() {
  2700   output(stderr);
  2703 // Write info to output files
  2704 void CondInterface::output(FILE *fp) {
  2705   Interface::output(fp);
  2706   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
  2707   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
  2708   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
  2709   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
  2710   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
  2711   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
  2712   // fprintf(fp,"\n");
  2715 //------------------------------ConstructRule----------------------------------
  2716 ConstructRule::ConstructRule(char *cnstr)
  2717   : _construct(cnstr) {
  2719 ConstructRule::~ConstructRule() {
  2722 void ConstructRule::dump() {
  2723   output(stderr);
  2726 void ConstructRule::output(FILE *fp) {
  2727   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2731 //==============================Shared Forms===================================
  2732 //------------------------------AttributeForm----------------------------------
  2733 int         AttributeForm::_insId   = 0;           // start counter at 0
  2734 int         AttributeForm::_opId    = 0;           // start counter at 0
  2735 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2736 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2738 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2739   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2740     if (type==OP_ATTR) {
  2741       id = ++_opId;
  2743     else if (type==INS_ATTR) {
  2744       id = ++_insId;
  2746     else assert( false,"");
  2748 AttributeForm::~AttributeForm() {
  2751 // Dynamic type check
  2752 AttributeForm *AttributeForm::is_attribute() const {
  2753   return (AttributeForm*)this;
  2757 // inlined  // int  AttributeForm::type() { return id;}
  2759 void AttributeForm::dump() {
  2760   output(stderr);
  2763 void AttributeForm::output(FILE *fp) {
  2764   if( _attrname && _attrdef ) {
  2765     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2766             _attrname, _attrdef);
  2768   else {
  2769     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2770             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2774 //------------------------------Component--------------------------------------
  2775 Component::Component(const char *name, const char *type, int usedef)
  2776   : _name(name), _type(type), _usedef(usedef) {
  2777     _ftype = Form::COMP;
  2779 Component::~Component() {
  2782 // True if this component is equal to the parameter.
  2783 bool Component::is(int use_def_kill_enum) const {
  2784   return (_usedef == use_def_kill_enum ? true : false);
  2786 // True if this component is used/def'd/kill'd as the parameter suggests.
  2787 bool Component::isa(int use_def_kill_enum) const {
  2788   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2791 // Extend this component with additional use/def/kill behavior
  2792 int Component::promote_use_def_info(int new_use_def) {
  2793   _usedef |= new_use_def;
  2795   return _usedef;
  2798 // Check the base type of this component, if it has one
  2799 const char *Component::base_type(FormDict &globals) {
  2800   const Form *frm = globals[_type];
  2801   if (frm == NULL) return NULL;
  2802   OperandForm *op = frm->is_operand();
  2803   if (op == NULL) return NULL;
  2804   if (op->ideal_only()) return op->_ident;
  2805   return (char *)op->ideal_type(globals);
  2808 void Component::dump() {
  2809   output(stderr);
  2812 void Component::output(FILE *fp) {
  2813   fprintf(fp,"Component:");  // Write to output files
  2814   fprintf(fp, "  name = %s", _name);
  2815   fprintf(fp, ", type = %s", _type);
  2816   const char * usedef = "Undefined Use/Def info";
  2817   switch (_usedef) {
  2818     case USE:      usedef = "USE";      break;
  2819     case USE_DEF:  usedef = "USE_DEF";  break;
  2820     case USE_KILL: usedef = "USE_KILL"; break;
  2821     case KILL:     usedef = "KILL";     break;
  2822     case TEMP:     usedef = "TEMP";     break;
  2823     case DEF:      usedef = "DEF";      break;
  2824     default: assert(false, "unknown effect");
  2826   fprintf(fp, ", use/def = %s\n", usedef);
  2830 //------------------------------ComponentList---------------------------------
  2831 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2833 ComponentList::~ComponentList() {
  2834   // // This list may not own its elements if copied via assignment
  2835   // Component *component;
  2836   // for (reset(); (component = iter()) != NULL;) {
  2837   //   delete component;
  2838   // }
  2841 void   ComponentList::insert(Component *component, bool mflag) {
  2842   NameList::addName((char *)component);
  2843   if(mflag) _matchcnt++;
  2845 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2846                              bool mflag) {
  2847   Component * component = new Component(name, opType, usedef);
  2848   insert(component, mflag);
  2850 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2851 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2852 Component *ComponentList::match_iter() {
  2853   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2854   return NULL;
  2856 Component *ComponentList::post_match_iter() {
  2857   Component *comp = iter();
  2858   // At end of list?
  2859   if ( comp == NULL ) {
  2860     return comp;
  2862   // In post-match components?
  2863   if (_iter > match_count()-1) {
  2864     return comp;
  2867   return post_match_iter();
  2870 void       ComponentList::reset()   { NameList::reset(); }
  2871 int        ComponentList::count()   { return NameList::count(); }
  2873 Component *ComponentList::operator[](int position) {
  2874   // Shortcut complete iteration if there are not enough entries
  2875   if (position >= count()) return NULL;
  2877   int        index     = 0;
  2878   Component *component = NULL;
  2879   for (reset(); (component = iter()) != NULL;) {
  2880     if (index == position) {
  2881       return component;
  2883     ++index;
  2886   return NULL;
  2889 const Component *ComponentList::search(const char *name) {
  2890   PreserveIter pi(this);
  2891   reset();
  2892   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2893     if( strcmp(comp->_name,name) == 0 ) return comp;
  2896   return NULL;
  2899 // Return number of USEs + number of DEFs
  2900 // When there are no components, or the first component is a USE,
  2901 // then we add '1' to hold a space for the 'result' operand.
  2902 int ComponentList::num_operands() {
  2903   PreserveIter pi(this);
  2904   uint       count = 1;           // result operand
  2905   uint       position = 0;
  2907   Component *component  = NULL;
  2908   for( reset(); (component = iter()) != NULL; ++position ) {
  2909     if( component->isa(Component::USE) ||
  2910         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2911       ++count;
  2915   return count;
  2918 // Return zero-based position in list;  -1 if not in list.
  2919 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2920 int ComponentList::operand_position(const char *name, int usedef) {
  2921   PreserveIter pi(this);
  2922   int position = 0;
  2923   int num_opnds = num_operands();
  2924   Component *component;
  2925   Component* preceding_non_use = NULL;
  2926   Component* first_def = NULL;
  2927   for (reset(); (component = iter()) != NULL; ++position) {
  2928     // When the first component is not a DEF,
  2929     // leave space for the result operand!
  2930     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2931       ++position;
  2932       ++num_opnds;
  2934     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  2935       // When the first entry in the component list is a DEF and a USE
  2936       // Treat them as being separate, a DEF first, then a USE
  2937       if( position==0
  2938           && usedef==Component::USE && component->isa(Component::DEF) ) {
  2939         assert(position+1 < num_opnds, "advertised index in bounds");
  2940         return position+1;
  2941       } else {
  2942         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  2943           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
  2945         if( position >= num_opnds ) {
  2946           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
  2948         assert(position < num_opnds, "advertised index in bounds");
  2949         return position;
  2952     if( component->isa(Component::DEF)
  2953         && component->isa(Component::USE) ) {
  2954       ++position;
  2955       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2957     if( component->isa(Component::DEF) && !first_def ) {
  2958       first_def = component;
  2960     if( !component->isa(Component::USE) && component != first_def ) {
  2961       preceding_non_use = component;
  2962     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  2963       preceding_non_use = NULL;
  2966   return Not_in_list;
  2969 // Find position for this name, regardless of use/def information
  2970 int ComponentList::operand_position(const char *name) {
  2971   PreserveIter pi(this);
  2972   int position = 0;
  2973   Component *component;
  2974   for (reset(); (component = iter()) != NULL; ++position) {
  2975     // When the first component is not a DEF,
  2976     // leave space for the result operand!
  2977     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2978       ++position;
  2980     if (strcmp(name, component->_name)==0) {
  2981       return position;
  2983     if( component->isa(Component::DEF)
  2984         && component->isa(Component::USE) ) {
  2985       ++position;
  2986       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2989   return Not_in_list;
  2992 int ComponentList::operand_position_format(const char *name) {
  2993   PreserveIter pi(this);
  2994   int  first_position = operand_position(name);
  2995   int  use_position   = operand_position(name, Component::USE);
  2997   return ((first_position < use_position) ? use_position : first_position);
  3000 int ComponentList::label_position() {
  3001   PreserveIter pi(this);
  3002   int position = 0;
  3003   reset();
  3004   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3005     // When the first component is not a DEF,
  3006     // leave space for the result operand!
  3007     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3008       ++position;
  3010     if (strcmp(comp->_type, "label")==0) {
  3011       return position;
  3013     if( comp->isa(Component::DEF)
  3014         && comp->isa(Component::USE) ) {
  3015       ++position;
  3016       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3020   return -1;
  3023 int ComponentList::method_position() {
  3024   PreserveIter pi(this);
  3025   int position = 0;
  3026   reset();
  3027   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3028     // When the first component is not a DEF,
  3029     // leave space for the result operand!
  3030     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3031       ++position;
  3033     if (strcmp(comp->_type, "method")==0) {
  3034       return position;
  3036     if( comp->isa(Component::DEF)
  3037         && comp->isa(Component::USE) ) {
  3038       ++position;
  3039       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3043   return -1;
  3046 void ComponentList::dump() { output(stderr); }
  3048 void ComponentList::output(FILE *fp) {
  3049   PreserveIter pi(this);
  3050   fprintf(fp, "\n");
  3051   Component *component;
  3052   for (reset(); (component = iter()) != NULL;) {
  3053     component->output(fp);
  3055   fprintf(fp, "\n");
  3058 //------------------------------MatchNode--------------------------------------
  3059 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3060                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3061   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3062     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3063     _commutative_id(0) {
  3064   _numleaves = (lChild ? lChild->_numleaves : 0)
  3065                + (rChild ? rChild->_numleaves : 0);
  3068 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3069   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3070     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3071     _internalop(0), _numleaves(mnode._numleaves),
  3072     _commutative_id(mnode._commutative_id) {
  3075 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3076   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3077     _opType(mnode._opType),
  3078     _internalop(0), _numleaves(mnode._numleaves),
  3079     _commutative_id(mnode._commutative_id) {
  3080   if (mnode._lChild) {
  3081     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3082   } else {
  3083     _lChild = NULL;
  3085   if (mnode._rChild) {
  3086     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3087   } else {
  3088     _rChild = NULL;
  3092 MatchNode::~MatchNode() {
  3093   // // This node may not own its children if copied via assignment
  3094   // if( _lChild ) delete _lChild;
  3095   // if( _rChild ) delete _rChild;
  3098 bool  MatchNode::find_type(const char *type, int &position) const {
  3099   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3100   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3102   if (strcmp(type,_opType)==0)  {
  3103     return true;
  3104   } else {
  3105     ++position;
  3107   return false;
  3110 // Recursive call collecting info on top-level operands, not transitive.
  3111 // Implementation does not modify state of internal structures.
  3112 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3113                                   bool def_flag) const {
  3114   int usedef = def_flag ? Component::DEF : Component::USE;
  3115   FormDict &globals = _AD.globalNames();
  3117   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3118   // Base case
  3119   if (_lChild==NULL && _rChild==NULL) {
  3120     // If _opType is not an operation, do not build a component for it #####
  3121     const Form *f = globals[_opType];
  3122     if( f != NULL ) {
  3123       // Add non-ideals that are operands, operand-classes,
  3124       if( ! f->ideal_only()
  3125           && (f->is_opclass() || f->is_operand()) ) {
  3126         components.insert(_name, _opType, usedef, true);
  3129     return;
  3131   // Promote results of "Set" to DEF
  3132   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3133   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3134   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3135   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3138 // Find the n'th base-operand in the match node,
  3139 // recursively investigates match rules of user-defined operands.
  3140 //
  3141 // Implementation does not modify state of internal structures since they
  3142 // can be shared.
  3143 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3144                              const char * &result, const char * &name,
  3145                              const char * &opType) const {
  3146   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3147   // Base case
  3148   if (_lChild==NULL && _rChild==NULL) {
  3149     // Check for special case: "Universe", "label"
  3150     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3151       if (position == 0) {
  3152         result = _result;
  3153         name   = _name;
  3154         opType = _opType;
  3155         return 1;
  3156       } else {
  3157         -- position;
  3158         return 0;
  3162     const Form *form = globals[_opType];
  3163     MatchNode *matchNode = NULL;
  3164     // Check for user-defined type
  3165     if (form) {
  3166       // User operand or instruction?
  3167       OperandForm  *opForm = form->is_operand();
  3168       InstructForm *inForm = form->is_instruction();
  3169       if ( opForm ) {
  3170         matchNode = (MatchNode*)opForm->_matrule;
  3171       } else if ( inForm ) {
  3172         matchNode = (MatchNode*)inForm->_matrule;
  3175     // if this is user-defined, recurse on match rule
  3176     // User-defined operand and instruction forms have a match-rule.
  3177     if (matchNode) {
  3178       return (matchNode->base_operand(position,globals,result,name,opType));
  3179     } else {
  3180       // Either not a form, or a system-defined form (no match rule).
  3181       if (position==0) {
  3182         result = _result;
  3183         name   = _name;
  3184         opType = _opType;
  3185         return 1;
  3186       } else {
  3187         --position;
  3188         return 0;
  3192   } else {
  3193     // Examine the left child and right child as well
  3194     if (_lChild) {
  3195       if (_lChild->base_operand(position, globals, result, name, opType))
  3196         return 1;
  3199     if (_rChild) {
  3200       if (_rChild->base_operand(position, globals, result, name, opType))
  3201         return 1;
  3205   return 0;
  3208 // Recursive call on all operands' match rules in my match rule.
  3209 uint  MatchNode::num_consts(FormDict &globals) const {
  3210   uint        index      = 0;
  3211   uint        num_consts = 0;
  3212   const char *result;
  3213   const char *name;
  3214   const char *opType;
  3216   for (uint position = index;
  3217        base_operand(position,globals,result,name,opType); position = index) {
  3218     ++index;
  3219     if( ideal_to_const_type(opType) )        num_consts++;
  3222   return num_consts;
  3225 // Recursive call on all operands' match rules in my match rule.
  3226 // Constants in match rule subtree with specified type
  3227 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3228   uint        index      = 0;
  3229   uint        num_consts = 0;
  3230   const char *result;
  3231   const char *name;
  3232   const char *opType;
  3234   for (uint position = index;
  3235        base_operand(position,globals,result,name,opType); position = index) {
  3236     ++index;
  3237     if( ideal_to_const_type(opType) == type ) num_consts++;
  3240   return num_consts;
  3243 // Recursive call on all operands' match rules in my match rule.
  3244 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3245   return  num_consts( globals, Form::idealP );
  3248 bool  MatchNode::sets_result() const {
  3249   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3252 const char *MatchNode::reduce_right(FormDict &globals) const {
  3253   // If there is no right reduction, return NULL.
  3254   const char      *rightStr    = NULL;
  3256   // If we are a "Set", start from the right child.
  3257   const MatchNode *const mnode = sets_result() ?
  3258     (const MatchNode *const)this->_rChild :
  3259     (const MatchNode *const)this;
  3261   // If our right child exists, it is the right reduction
  3262   if ( mnode->_rChild ) {
  3263     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3264       : mnode->_rChild->_opType;
  3266   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3267   return rightStr;
  3270 const char *MatchNode::reduce_left(FormDict &globals) const {
  3271   // If there is no left reduction, return NULL.
  3272   const char  *leftStr  = NULL;
  3274   // If we are a "Set", start from the right child.
  3275   const MatchNode *const mnode = sets_result() ?
  3276     (const MatchNode *const)this->_rChild :
  3277     (const MatchNode *const)this;
  3279   // If our left child exists, it is the left reduction
  3280   if ( mnode->_lChild ) {
  3281     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3282       : mnode->_lChild->_opType;
  3283   } else {
  3284     // May be simple chain rule: (Set dst operand_form_source)
  3285     if ( sets_result() ) {
  3286       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3287       if( oper ) {
  3288         leftStr = mnode->_opType;
  3292   return leftStr;
  3295 //------------------------------count_instr_names------------------------------
  3296 // Count occurrences of operands names in the leaves of the instruction
  3297 // match rule.
  3298 void MatchNode::count_instr_names( Dict &names ) {
  3299   if( !this ) return;
  3300   if( _lChild ) _lChild->count_instr_names(names);
  3301   if( _rChild ) _rChild->count_instr_names(names);
  3302   if( !_lChild && !_rChild ) {
  3303     uintptr_t cnt = (uintptr_t)names[_name];
  3304     cnt++;                      // One more name found
  3305     names.Insert(_name,(void*)cnt);
  3309 //------------------------------build_instr_pred-------------------------------
  3310 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3311 // can skip some leading instances of 'name'.
  3312 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3313   if( _lChild ) {
  3314     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3315     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3316     if( cnt < 0 ) return cnt;   // Found it, all done
  3318   if( _rChild ) {
  3319     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3320     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3321     if( cnt < 0 ) return cnt;   // Found it, all done
  3323   if( !_lChild && !_rChild ) {  // Found a leaf
  3324     // Wrong name?  Give up...
  3325     if( strcmp(name,_name) ) return cnt;
  3326     if( !cnt ) strcpy(buf,"_leaf");
  3327     return cnt-1;
  3329   return cnt;
  3333 //------------------------------build_internalop-------------------------------
  3334 // Build string representation of subtree
  3335 void MatchNode::build_internalop( ) {
  3336   char *iop, *subtree;
  3337   const char *lstr, *rstr;
  3338   // Build string representation of subtree
  3339   // Operation lchildType rchildType
  3340   int len = (int)strlen(_opType) + 4;
  3341   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3342                        _lChild->_internalop : _lChild->_opType) : "";
  3343   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3344                        _rChild->_internalop : _rChild->_opType) : "";
  3345   len += (int)strlen(lstr) + (int)strlen(rstr);
  3346   subtree = (char *)malloc(len);
  3347   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3348   // Hash the subtree string in _internalOps; if a name exists, use it
  3349   iop = (char *)_AD._internalOps[subtree];
  3350   // Else create a unique name, and add it to the hash table
  3351   if (iop == NULL) {
  3352     iop = subtree;
  3353     _AD._internalOps.Insert(subtree, iop);
  3354     _AD._internalOpNames.addName(iop);
  3355     _AD._internalMatch.Insert(iop, this);
  3357   // Add the internal operand name to the MatchNode
  3358   _internalop = iop;
  3359   _result = iop;
  3363 void MatchNode::dump() {
  3364   output(stderr);
  3367 void MatchNode::output(FILE *fp) {
  3368   if (_lChild==0 && _rChild==0) {
  3369     fprintf(fp," %s",_name);    // operand
  3371   else {
  3372     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3373     if(_lChild) _lChild->output(fp); //               left operand
  3374     if(_rChild) _rChild->output(fp); //                    right operand
  3375     fprintf(fp,")");                 //                                 ")"
  3379 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3380   static const char *needs_ideal_memory_list[] = {
  3381     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
  3382     "StoreB","StoreC","Store" ,"StoreFP",
  3383     "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3384     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load"   ,
  3385     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
  3386     "Store8B","Store4B","Store8C","Store4C","Store2C",
  3387     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
  3388     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
  3389     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3390     "LoadPLocked",
  3391     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3392     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3393     "StoreCM",
  3394     "ClearArray"
  3395   };
  3396   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3397   if( strcmp(_opType,"PrefetchRead")==0 ||
  3398       strcmp(_opType,"PrefetchWrite")==0 ||
  3399       strcmp(_opType,"PrefetchAllocation")==0 )
  3400     return 1;
  3401   if( _lChild ) {
  3402     const char *opType = _lChild->_opType;
  3403     for( int i=0; i<cnt; i++ )
  3404       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3405         return 1;
  3406     if( _lChild->needs_ideal_memory_edge(globals) )
  3407       return 1;
  3409   if( _rChild ) {
  3410     const char *opType = _rChild->_opType;
  3411     for( int i=0; i<cnt; i++ )
  3412       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3413         return 1;
  3414     if( _rChild->needs_ideal_memory_edge(globals) )
  3415       return 1;
  3418   return 0;
  3421 // TRUE if defines a derived oop, and so needs a base oop edge present
  3422 // post-matching.
  3423 int MatchNode::needs_base_oop_edge() const {
  3424   if( !strcmp(_opType,"AddP") ) return 1;
  3425   if( strcmp(_opType,"Set") ) return 0;
  3426   return !strcmp(_rChild->_opType,"AddP");
  3429 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3430   if( is_simple_chain_rule(globals) ) {
  3431     const char *src = _matrule->_rChild->_opType;
  3432     OperandForm *src_op = globals[src]->is_operand();
  3433     assert( src_op, "Not operand class of chain rule" );
  3434     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3435   }                             // Else check instruction
  3437   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3441 //-------------------------cisc spilling methods-------------------------------
  3442 // helper routines and methods for detecting cisc-spilling instructions
  3443 //-------------------------cisc_spill_merge------------------------------------
  3444 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3445   int cisc_spillable  = Maybe_cisc_spillable;
  3447   // Combine results of left and right checks
  3448   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3449     // neither side is spillable, nor prevents cisc spilling
  3450     cisc_spillable = Maybe_cisc_spillable;
  3452   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3453     // right side is spillable
  3454     cisc_spillable = right_spillable;
  3456   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3457     // left side is spillable
  3458     cisc_spillable = left_spillable;
  3460   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3461     // left or right prevents cisc spilling this instruction
  3462     cisc_spillable = Not_cisc_spillable;
  3464   else {
  3465     // Only allow one to spill
  3466     cisc_spillable = Not_cisc_spillable;
  3469   return cisc_spillable;
  3472 //-------------------------root_ops_match--------------------------------------
  3473 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3474   // Base Case: check that the current operands/operations match
  3475   assert( op1, "Must have op's name");
  3476   assert( op2, "Must have op's name");
  3477   const Form *form1 = globals[op1];
  3478   const Form *form2 = globals[op2];
  3480   return (form1 == form2);
  3483 //-------------------------cisc_spill_match_node-------------------------------
  3484 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3485 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3486   int cisc_spillable  = Maybe_cisc_spillable;
  3487   int left_spillable  = Maybe_cisc_spillable;
  3488   int right_spillable = Maybe_cisc_spillable;
  3490   // Check that each has same number of operands at this level
  3491   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3492     return Not_cisc_spillable;
  3494   // Base Case: check that the current operands/operations match
  3495   // or are CISC spillable
  3496   assert( _opType, "Must have _opType");
  3497   assert( mRule2->_opType, "Must have _opType");
  3498   const Form *form  = globals[_opType];
  3499   const Form *form2 = globals[mRule2->_opType];
  3500   if( form == form2 ) {
  3501     cisc_spillable = Maybe_cisc_spillable;
  3502   } else {
  3503     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3504     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3505     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3506     DataType data_type = Form::none;
  3507     if (form->is_operand()) {
  3508       // Make sure the loadX matches the type of the reg
  3509       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3511     // Detect reg vs (loadX memory)
  3512     if( form->is_cisc_reg(globals)
  3513         && form2_inst
  3514         && data_type != Form::none
  3515         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3516         && (name_left != NULL)       // NOT (load)
  3517         && (name_right == NULL) ) {  // NOT (load memory foo)
  3518       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3519       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3520         cisc_spillable = Is_cisc_spillable;
  3521         operand        = _name;
  3522         reg_type       = _result;
  3523         return Is_cisc_spillable;
  3524       } else {
  3525         cisc_spillable = Not_cisc_spillable;
  3528     // Detect reg vs memory
  3529     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3530       cisc_spillable = Is_cisc_spillable;
  3531       operand        = _name;
  3532       reg_type       = _result;
  3533       return Is_cisc_spillable;
  3534     } else {
  3535       cisc_spillable = Not_cisc_spillable;
  3539   // If cisc is still possible, check rest of tree
  3540   if( cisc_spillable == Maybe_cisc_spillable ) {
  3541     // Check that each has same number of operands at this level
  3542     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3544     // Check left operands
  3545     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3546       left_spillable = Maybe_cisc_spillable;
  3547     } else {
  3548       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3551     // Check right operands
  3552     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3553       right_spillable =  Maybe_cisc_spillable;
  3554     } else {
  3555       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3558     // Combine results of left and right checks
  3559     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3562   return cisc_spillable;
  3565 //---------------------------cisc_spill_match_rule------------------------------
  3566 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3567 // This method handles the root of Match tree,
  3568 // general recursive checks done in MatchNode
  3569 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3570                                            MatchRule* mRule2, const char* &operand,
  3571                                            const char* &reg_type) {
  3572   int cisc_spillable  = Maybe_cisc_spillable;
  3573   int left_spillable  = Maybe_cisc_spillable;
  3574   int right_spillable = Maybe_cisc_spillable;
  3576   // Check that each sets a result
  3577   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3578   // Check that each has same number of operands at this level
  3579   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3581   // Check left operands: at root, must be target of 'Set'
  3582   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3583     left_spillable = Not_cisc_spillable;
  3584   } else {
  3585     // Do not support cisc-spilling instruction's target location
  3586     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3587       left_spillable = Maybe_cisc_spillable;
  3588     } else {
  3589       left_spillable = Not_cisc_spillable;
  3593   // Check right operands: recursive walk to identify reg->mem operand
  3594   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3595     right_spillable =  Maybe_cisc_spillable;
  3596   } else {
  3597     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3600   // Combine results of left and right checks
  3601   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3603   return cisc_spillable;
  3606 //----------------------------- equivalent ------------------------------------
  3607 // Recursively check to see if two match rules are equivalent.
  3608 // This rule handles the root.
  3609 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3610   // Check that each sets a result
  3611   if (sets_result() != mRule2->sets_result()) {
  3612     return false;
  3615   // Check that the current operands/operations match
  3616   assert( _opType, "Must have _opType");
  3617   assert( mRule2->_opType, "Must have _opType");
  3618   const Form *form  = globals[_opType];
  3619   const Form *form2 = globals[mRule2->_opType];
  3620   if( form != form2 ) {
  3621     return false;
  3624   if (_lChild ) {
  3625     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3626       return false;
  3627   } else if (mRule2->_lChild) {
  3628     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3631   if (_rChild ) {
  3632     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3633       return false;
  3634   } else if (mRule2->_rChild) {
  3635     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3638   // We've made it through the gauntlet.
  3639   return true;
  3642 //----------------------------- equivalent ------------------------------------
  3643 // Recursively check to see if two match rules are equivalent.
  3644 // This rule handles the operands.
  3645 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3646   if( !mNode2 )
  3647     return false;
  3649   // Check that the current operands/operations match
  3650   assert( _opType, "Must have _opType");
  3651   assert( mNode2->_opType, "Must have _opType");
  3652   const Form *form  = globals[_opType];
  3653   const Form *form2 = globals[mNode2->_opType];
  3654   if( form != form2 ) {
  3655     return false;
  3658   // Check that their children also match
  3659   if (_lChild ) {
  3660     if( !_lChild->equivalent(globals, mNode2->_lChild) )
  3661       return false;
  3662   } else if (mNode2->_lChild) {
  3663     return false; // I have NULL left child, mNode2 has non-NULL left child.
  3666   if (_rChild ) {
  3667     if( !_rChild->equivalent(globals, mNode2->_rChild) )
  3668       return false;
  3669   } else if (mNode2->_rChild) {
  3670     return false; // I have NULL right child, mNode2 has non-NULL right child.
  3673   // We've made it through the gauntlet.
  3674   return true;
  3677 //-------------------------- has_commutative_op -------------------------------
  3678 // Recursively check for commutative operations with subtree operands
  3679 // which could be swapped.
  3680 void MatchNode::count_commutative_op(int& count) {
  3681   static const char *commut_op_list[] = {
  3682     "AddI","AddL","AddF","AddD",
  3683     "AndI","AndL",
  3684     "MaxI","MinI",
  3685     "MulI","MulL","MulF","MulD",
  3686     "OrI" ,"OrL" ,
  3687     "XorI","XorL"
  3688   };
  3689   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3691   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3692     // Don't swap if right operand is an immediate constant.
  3693     bool is_const = false;
  3694     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3695       FormDict &globals = _AD.globalNames();
  3696       const Form *form = globals[_rChild->_opType];
  3697       if ( form ) {
  3698         OperandForm  *oper = form->is_operand();
  3699         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3700           is_const = true;
  3703     if( !is_const ) {
  3704       for( int i=0; i<cnt; i++ ) {
  3705         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3706           count++;
  3707           _commutative_id = count; // id should be > 0
  3708           break;
  3713   if( _lChild )
  3714     _lChild->count_commutative_op(count);
  3715   if( _rChild )
  3716     _rChild->count_commutative_op(count);
  3719 //-------------------------- swap_commutative_op ------------------------------
  3720 // Recursively swap specified commutative operation with subtree operands.
  3721 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3722   if( _commutative_id == id ) { // id should be > 0
  3723     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3724             "not swappable operation");
  3725     MatchNode* tmp = _lChild;
  3726     _lChild = _rChild;
  3727     _rChild = tmp;
  3728     // Don't exit here since we need to build internalop.
  3731   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3732   if( _lChild )
  3733     _lChild->swap_commutative_op(is_set, id);
  3734   if( _rChild )
  3735     _rChild->swap_commutative_op(is_set, id);
  3737   // If not the root, reduce this subtree to an internal operand
  3738   if( !atroot && (_lChild || _rChild) ) {
  3739     build_internalop();
  3743 //-------------------------- swap_commutative_op ------------------------------
  3744 // Recursively swap specified commutative operation with subtree operands.
  3745 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3746   assert(match_rules_cnt < 100," too many match rule clones");
  3747   // Clone
  3748   MatchRule* clone = new MatchRule(_AD, this);
  3749   // Swap operands of commutative operation
  3750   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3751   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3752   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3753   clone->_result = buf;
  3755   clone->_next = this->_next;
  3756   this-> _next = clone;
  3757   if( (--count) > 0 ) {
  3758     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3759     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3763 //------------------------------MatchRule--------------------------------------
  3764 MatchRule::MatchRule(ArchDesc &ad)
  3765   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3766     _next = NULL;
  3769 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3770   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3771     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3772     _next = NULL;
  3775 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3776                      int numleaves)
  3777   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3778     _numchilds(0) {
  3779       _next = NULL;
  3780       mroot->_lChild = NULL;
  3781       mroot->_rChild = NULL;
  3782       delete mroot;
  3783       _numleaves = numleaves;
  3784       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3786 MatchRule::~MatchRule() {
  3789 // Recursive call collecting info on top-level operands, not transitive.
  3790 // Implementation does not modify state of internal structures.
  3791 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3792   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3794   MatchNode::append_components(locals, components,
  3795                                false /* not necessarily a def */);
  3798 // Recursive call on all operands' match rules in my match rule.
  3799 // Implementation does not modify state of internal structures  since they
  3800 // can be shared.
  3801 // The MatchNode that is called first treats its
  3802 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3803                              const char *&result, const char * &name,
  3804                              const char * &opType)const{
  3805   uint position = position0;
  3807   return (MatchNode::base_operand( position, globals, result, name, opType));
  3811 bool MatchRule::is_base_register(FormDict &globals) const {
  3812   uint   position = 1;
  3813   const char  *result   = NULL;
  3814   const char  *name     = NULL;
  3815   const char  *opType   = NULL;
  3816   if (!base_operand(position, globals, result, name, opType)) {
  3817     position = 0;
  3818     if( base_operand(position, globals, result, name, opType) &&
  3819         (strcmp(opType,"RegI")==0 ||
  3820          strcmp(opType,"RegP")==0 ||
  3821          strcmp(opType,"RegN")==0 ||
  3822          strcmp(opType,"RegL")==0 ||
  3823          strcmp(opType,"RegF")==0 ||
  3824          strcmp(opType,"RegD")==0 ||
  3825          strcmp(opType,"Reg" )==0) ) {
  3826       return 1;
  3829   return 0;
  3832 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3833   uint         position = 1;
  3834   const char  *result   = NULL;
  3835   const char  *name     = NULL;
  3836   const char  *opType   = NULL;
  3837   if (!base_operand(position, globals, result, name, opType)) {
  3838     position = 0;
  3839     if (base_operand(position, globals, result, name, opType)) {
  3840       return ideal_to_const_type(opType);
  3843   return Form::none;
  3846 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3848   // Check for chain rule, and do not generate a match list for it
  3849   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3850     const Form *form = globals[_opType];
  3851     // If this is ideal, then it is a base match, not a chain rule.
  3852     if ( form && form->is_operand() && (!form->ideal_only())) {
  3853       return true;
  3856   // Check for "Set" form of chain rule, and do not generate a match list
  3857   if (_rChild) {
  3858     const char *rch = _rChild->_opType;
  3859     const Form *form = globals[rch];
  3860     if ((!strcmp(_opType,"Set") &&
  3861          ((form) && form->is_operand()))) {
  3862       return true;
  3865   return false;
  3868 int MatchRule::is_ideal_copy() const {
  3869   if( _rChild ) {
  3870     const char  *opType = _rChild->_opType;
  3871 #if 1
  3872     if( strcmp(opType,"CastIP")==0 )
  3873       return 1;
  3874 #else
  3875     if( strcmp(opType,"CastII")==0 )
  3876       return 1;
  3877     // Do not treat *CastPP this way, because it
  3878     // may transfer a raw pointer to an oop.
  3879     // If the register allocator were to coalesce this
  3880     // into a single LRG, the GC maps would be incorrect.
  3881     //if( strcmp(opType,"CastPP")==0 )
  3882     //  return 1;
  3883     //if( strcmp(opType,"CheckCastPP")==0 )
  3884     //  return 1;
  3885     //
  3886     // Do not treat CastX2P or CastP2X this way, because
  3887     // raw pointers and int types are treated differently
  3888     // when saving local & stack info for safepoints in
  3889     // Output().
  3890     //if( strcmp(opType,"CastX2P")==0 )
  3891     //  return 1;
  3892     //if( strcmp(opType,"CastP2X")==0 )
  3893     //  return 1;
  3894 #endif
  3896   if( is_chain_rule(_AD.globalNames()) &&
  3897       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3898     return 1;
  3899   return 0;
  3903 int MatchRule::is_expensive() const {
  3904   if( _rChild ) {
  3905     const char  *opType = _rChild->_opType;
  3906     if( strcmp(opType,"AtanD")==0 ||
  3907         strcmp(opType,"CosD")==0 ||
  3908         strcmp(opType,"DivD")==0 ||
  3909         strcmp(opType,"DivF")==0 ||
  3910         strcmp(opType,"DivI")==0 ||
  3911         strcmp(opType,"ExpD")==0 ||
  3912         strcmp(opType,"LogD")==0 ||
  3913         strcmp(opType,"Log10D")==0 ||
  3914         strcmp(opType,"ModD")==0 ||
  3915         strcmp(opType,"ModF")==0 ||
  3916         strcmp(opType,"ModI")==0 ||
  3917         strcmp(opType,"PowD")==0 ||
  3918         strcmp(opType,"SinD")==0 ||
  3919         strcmp(opType,"SqrtD")==0 ||
  3920         strcmp(opType,"TanD")==0 ||
  3921         strcmp(opType,"ConvD2F")==0 ||
  3922         strcmp(opType,"ConvD2I")==0 ||
  3923         strcmp(opType,"ConvD2L")==0 ||
  3924         strcmp(opType,"ConvF2D")==0 ||
  3925         strcmp(opType,"ConvF2I")==0 ||
  3926         strcmp(opType,"ConvF2L")==0 ||
  3927         strcmp(opType,"ConvI2D")==0 ||
  3928         strcmp(opType,"ConvI2F")==0 ||
  3929         strcmp(opType,"ConvI2L")==0 ||
  3930         strcmp(opType,"ConvL2D")==0 ||
  3931         strcmp(opType,"ConvL2F")==0 ||
  3932         strcmp(opType,"ConvL2I")==0 ||
  3933         strcmp(opType,"DecodeN")==0 ||
  3934         strcmp(opType,"EncodeP")==0 ||
  3935         strcmp(opType,"RoundDouble")==0 ||
  3936         strcmp(opType,"RoundFloat")==0 ||
  3937         strcmp(opType,"ReverseBytesI")==0 ||
  3938         strcmp(opType,"ReverseBytesL")==0 ||
  3939         strcmp(opType,"ReverseBytesUS")==0 ||
  3940         strcmp(opType,"ReverseBytesS")==0 ||
  3941         strcmp(opType,"Replicate16B")==0 ||
  3942         strcmp(opType,"Replicate8B")==0 ||
  3943         strcmp(opType,"Replicate4B")==0 ||
  3944         strcmp(opType,"Replicate8C")==0 ||
  3945         strcmp(opType,"Replicate4C")==0 ||
  3946         strcmp(opType,"Replicate8S")==0 ||
  3947         strcmp(opType,"Replicate4S")==0 ||
  3948         strcmp(opType,"Replicate4I")==0 ||
  3949         strcmp(opType,"Replicate2I")==0 ||
  3950         strcmp(opType,"Replicate2L")==0 ||
  3951         strcmp(opType,"Replicate4F")==0 ||
  3952         strcmp(opType,"Replicate2F")==0 ||
  3953         strcmp(opType,"Replicate2D")==0 ||
  3954         0 /* 0 to line up columns nicely */ )
  3955       return 1;
  3957   return 0;
  3960 bool MatchRule::is_ideal_if() const {
  3961   if( !_opType ) return false;
  3962   return
  3963     !strcmp(_opType,"If"            ) ||
  3964     !strcmp(_opType,"CountedLoopEnd");
  3967 bool MatchRule::is_ideal_fastlock() const {
  3968   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3969     return (strcmp(_rChild->_opType,"FastLock") == 0);
  3971   return false;
  3974 bool MatchRule::is_ideal_membar() const {
  3975   if( !_opType ) return false;
  3976   return
  3977     !strcmp(_opType,"MemBarAcquire"  ) ||
  3978     !strcmp(_opType,"MemBarRelease"  ) ||
  3979     !strcmp(_opType,"MemBarAcquireLock") ||
  3980     !strcmp(_opType,"MemBarReleaseLock") ||
  3981     !strcmp(_opType,"MemBarVolatile" ) ||
  3982     !strcmp(_opType,"MemBarCPUOrder" ) ||
  3983     !strcmp(_opType,"MemBarStoreStore" );
  3986 bool MatchRule::is_ideal_loadPC() const {
  3987   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3988     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  3990   return false;
  3993 bool MatchRule::is_ideal_box() const {
  3994   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3995     return (strcmp(_rChild->_opType,"Box") == 0);
  3997   return false;
  4000 bool MatchRule::is_ideal_goto() const {
  4001   bool   ideal_goto = false;
  4003   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  4004     ideal_goto = true;
  4006   return ideal_goto;
  4009 bool MatchRule::is_ideal_jump() const {
  4010   if( _opType ) {
  4011     if( !strcmp(_opType,"Jump") )
  4012       return true;
  4014   return false;
  4017 bool MatchRule::is_ideal_bool() const {
  4018   if( _opType ) {
  4019     if( !strcmp(_opType,"Bool") )
  4020       return true;
  4022   return false;
  4026 Form::DataType MatchRule::is_ideal_load() const {
  4027   Form::DataType ideal_load = Form::none;
  4029   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4030     const char *opType = _rChild->_opType;
  4031     ideal_load = is_load_from_memory(opType);
  4034   return ideal_load;
  4038 bool MatchRule::skip_antidep_check() const {
  4039   // Some loads operate on what is effectively immutable memory so we
  4040   // should skip the anti dep computations.  For some of these nodes
  4041   // the rewritable field keeps the anti dep logic from triggering but
  4042   // for certain kinds of LoadKlass it does not since they are
  4043   // actually reading memory which could be rewritten by the runtime,
  4044   // though never by generated code.  This disables it uniformly for
  4045   // the nodes that behave like this: LoadKlass, LoadNKlass and
  4046   // LoadRange.
  4047   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4048     const char *opType = _rChild->_opType;
  4049     if (strcmp("LoadKlass", opType) == 0 ||
  4050         strcmp("LoadNKlass", opType) == 0 ||
  4051         strcmp("LoadRange", opType) == 0) {
  4052       return true;
  4056   return false;
  4060 Form::DataType MatchRule::is_ideal_store() const {
  4061   Form::DataType ideal_store = Form::none;
  4063   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4064     const char *opType = _rChild->_opType;
  4065     ideal_store = is_store_to_memory(opType);
  4068   return ideal_store;
  4072 void MatchRule::dump() {
  4073   output(stderr);
  4076 void MatchRule::output(FILE *fp) {
  4077   fprintf(fp,"MatchRule: ( %s",_name);
  4078   if (_lChild) _lChild->output(fp);
  4079   if (_rChild) _rChild->output(fp);
  4080   fprintf(fp," )\n");
  4081   fprintf(fp,"   nesting depth = %d\n", _depth);
  4082   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4083   fprintf(fp,"\n");
  4086 //------------------------------Attribute--------------------------------------
  4087 Attribute::Attribute(char *id, char* val, int type)
  4088   : _ident(id), _val(val), _atype(type) {
  4090 Attribute::~Attribute() {
  4093 int Attribute::int_val(ArchDesc &ad) {
  4094   // Make sure it is an integer constant:
  4095   int result = 0;
  4096   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4097     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4098                   _ident, _val ? _val : "");
  4100   return result;
  4103 void Attribute::dump() {
  4104   output(stderr);
  4105 } // Debug printer
  4107 // Write to output files
  4108 void Attribute::output(FILE *fp) {
  4109   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4112 //------------------------------FormatRule----------------------------------
  4113 FormatRule::FormatRule(char *temp)
  4114   : _temp(temp) {
  4116 FormatRule::~FormatRule() {
  4119 void FormatRule::dump() {
  4120   output(stderr);
  4123 // Write to output files
  4124 void FormatRule::output(FILE *fp) {
  4125   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4126   fprintf(fp,"\n");

mercurial