src/cpu/x86/vm/vm_version_x86.cpp

Wed, 12 Mar 2014 11:24:26 -0700

author
iveresov
date
Wed, 12 Mar 2014 11:24:26 -0700
changeset 6378
8a8ff6b577ed
parent 5353
b800986664f4
child 6388
98af1e198e73
permissions
-rw-r--r--

8031321: Support Intel bit manipulation instructions
Summary: Add support for BMI1 instructions
Reviewed-by: kvn, roland

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/java.hpp"
    30 #include "runtime/stubCodeGenerator.hpp"
    31 #include "vm_version_x86.hpp"
    32 #ifdef TARGET_OS_FAMILY_linux
    33 # include "os_linux.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_FAMILY_solaris
    36 # include "os_solaris.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_FAMILY_windows
    39 # include "os_windows.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_FAMILY_bsd
    42 # include "os_bsd.inline.hpp"
    43 #endif
    46 int VM_Version::_cpu;
    47 int VM_Version::_model;
    48 int VM_Version::_stepping;
    49 int VM_Version::_cpuFeatures;
    50 const char*           VM_Version::_features_str = "";
    51 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    53 static BufferBlob* stub_blob;
    54 static const int stub_size = 550;
    56 extern "C" {
    57   typedef void (*getPsrInfo_stub_t)(void*);
    58 }
    59 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    62 class VM_Version_StubGenerator: public StubCodeGenerator {
    63  public:
    65   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    67   address generate_getPsrInfo() {
    68     // Flags to test CPU type.
    69     const uint32_t HS_EFL_AC           = 0x40000;
    70     const uint32_t HS_EFL_ID           = 0x200000;
    71     // Values for when we don't have a CPUID instruction.
    72     const int      CPU_FAMILY_SHIFT = 8;
    73     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    74     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    76     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    77     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
    79     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    80 #   define __ _masm->
    82     address start = __ pc();
    84     //
    85     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    86     //
    87     // LP64: rcx and rdx are first and second argument registers on windows
    89     __ push(rbp);
    90 #ifdef _LP64
    91     __ mov(rbp, c_rarg0); // cpuid_info address
    92 #else
    93     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    94 #endif
    95     __ push(rbx);
    96     __ push(rsi);
    97     __ pushf();          // preserve rbx, and flags
    98     __ pop(rax);
    99     __ push(rax);
   100     __ mov(rcx, rax);
   101     //
   102     // if we are unable to change the AC flag, we have a 386
   103     //
   104     __ xorl(rax, HS_EFL_AC);
   105     __ push(rax);
   106     __ popf();
   107     __ pushf();
   108     __ pop(rax);
   109     __ cmpptr(rax, rcx);
   110     __ jccb(Assembler::notEqual, detect_486);
   112     __ movl(rax, CPU_FAMILY_386);
   113     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   114     __ jmp(done);
   116     //
   117     // If we are unable to change the ID flag, we have a 486 which does
   118     // not support the "cpuid" instruction.
   119     //
   120     __ bind(detect_486);
   121     __ mov(rax, rcx);
   122     __ xorl(rax, HS_EFL_ID);
   123     __ push(rax);
   124     __ popf();
   125     __ pushf();
   126     __ pop(rax);
   127     __ cmpptr(rcx, rax);
   128     __ jccb(Assembler::notEqual, detect_586);
   130     __ bind(cpu486);
   131     __ movl(rax, CPU_FAMILY_486);
   132     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   133     __ jmp(done);
   135     //
   136     // At this point, we have a chip which supports the "cpuid" instruction
   137     //
   138     __ bind(detect_586);
   139     __ xorl(rax, rax);
   140     __ cpuid();
   141     __ orl(rax, rax);
   142     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   143                                         // value of at least 1, we give up and
   144                                         // assume a 486
   145     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   146     __ movl(Address(rsi, 0), rax);
   147     __ movl(Address(rsi, 4), rbx);
   148     __ movl(Address(rsi, 8), rcx);
   149     __ movl(Address(rsi,12), rdx);
   151     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   152     __ jccb(Assembler::belowEqual, std_cpuid4);
   154     //
   155     // cpuid(0xB) Processor Topology
   156     //
   157     __ movl(rax, 0xb);
   158     __ xorl(rcx, rcx);   // Threads level
   159     __ cpuid();
   161     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   162     __ movl(Address(rsi, 0), rax);
   163     __ movl(Address(rsi, 4), rbx);
   164     __ movl(Address(rsi, 8), rcx);
   165     __ movl(Address(rsi,12), rdx);
   167     __ movl(rax, 0xb);
   168     __ movl(rcx, 1);     // Cores level
   169     __ cpuid();
   170     __ push(rax);
   171     __ andl(rax, 0x1f);  // Determine if valid topology level
   172     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   173     __ andl(rax, 0xffff);
   174     __ pop(rax);
   175     __ jccb(Assembler::equal, std_cpuid4);
   177     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   178     __ movl(Address(rsi, 0), rax);
   179     __ movl(Address(rsi, 4), rbx);
   180     __ movl(Address(rsi, 8), rcx);
   181     __ movl(Address(rsi,12), rdx);
   183     __ movl(rax, 0xb);
   184     __ movl(rcx, 2);     // Packages level
   185     __ cpuid();
   186     __ push(rax);
   187     __ andl(rax, 0x1f);  // Determine if valid topology level
   188     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   189     __ andl(rax, 0xffff);
   190     __ pop(rax);
   191     __ jccb(Assembler::equal, std_cpuid4);
   193     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   194     __ movl(Address(rsi, 0), rax);
   195     __ movl(Address(rsi, 4), rbx);
   196     __ movl(Address(rsi, 8), rcx);
   197     __ movl(Address(rsi,12), rdx);
   199     //
   200     // cpuid(0x4) Deterministic cache params
   201     //
   202     __ bind(std_cpuid4);
   203     __ movl(rax, 4);
   204     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   205     __ jccb(Assembler::greater, std_cpuid1);
   207     __ xorl(rcx, rcx);   // L1 cache
   208     __ cpuid();
   209     __ push(rax);
   210     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   211     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   212     __ pop(rax);
   213     __ jccb(Assembler::equal, std_cpuid1);
   215     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   216     __ movl(Address(rsi, 0), rax);
   217     __ movl(Address(rsi, 4), rbx);
   218     __ movl(Address(rsi, 8), rcx);
   219     __ movl(Address(rsi,12), rdx);
   221     //
   222     // Standard cpuid(0x1)
   223     //
   224     __ bind(std_cpuid1);
   225     __ movl(rax, 1);
   226     __ cpuid();
   227     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   228     __ movl(Address(rsi, 0), rax);
   229     __ movl(Address(rsi, 4), rbx);
   230     __ movl(Address(rsi, 8), rcx);
   231     __ movl(Address(rsi,12), rdx);
   233     //
   234     // Check if OS has enabled XGETBV instruction to access XCR0
   235     // (OSXSAVE feature flag) and CPU supports AVX
   236     //
   237     __ andl(rcx, 0x18000000);
   238     __ cmpl(rcx, 0x18000000);
   239     __ jccb(Assembler::notEqual, sef_cpuid);
   241     //
   242     // XCR0, XFEATURE_ENABLED_MASK register
   243     //
   244     __ xorl(rcx, rcx);   // zero for XCR0 register
   245     __ xgetbv();
   246     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   247     __ movl(Address(rsi, 0), rax);
   248     __ movl(Address(rsi, 4), rdx);
   250     //
   251     // cpuid(0x7) Structured Extended Features
   252     //
   253     __ bind(sef_cpuid);
   254     __ movl(rax, 7);
   255     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   256     __ jccb(Assembler::greater, ext_cpuid);
   258     __ xorl(rcx, rcx);
   259     __ cpuid();
   260     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   261     __ movl(Address(rsi, 0), rax);
   262     __ movl(Address(rsi, 4), rbx);
   264     //
   265     // Extended cpuid(0x80000000)
   266     //
   267     __ bind(ext_cpuid);
   268     __ movl(rax, 0x80000000);
   269     __ cpuid();
   270     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   271     __ jcc(Assembler::belowEqual, done);
   272     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   273     __ jccb(Assembler::belowEqual, ext_cpuid1);
   274     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
   275     __ jccb(Assembler::belowEqual, ext_cpuid5);
   276     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   277     __ jccb(Assembler::belowEqual, ext_cpuid7);
   278     //
   279     // Extended cpuid(0x80000008)
   280     //
   281     __ movl(rax, 0x80000008);
   282     __ cpuid();
   283     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   284     __ movl(Address(rsi, 0), rax);
   285     __ movl(Address(rsi, 4), rbx);
   286     __ movl(Address(rsi, 8), rcx);
   287     __ movl(Address(rsi,12), rdx);
   289     //
   290     // Extended cpuid(0x80000007)
   291     //
   292     __ bind(ext_cpuid7);
   293     __ movl(rax, 0x80000007);
   294     __ cpuid();
   295     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
   296     __ movl(Address(rsi, 0), rax);
   297     __ movl(Address(rsi, 4), rbx);
   298     __ movl(Address(rsi, 8), rcx);
   299     __ movl(Address(rsi,12), rdx);
   301     //
   302     // Extended cpuid(0x80000005)
   303     //
   304     __ bind(ext_cpuid5);
   305     __ movl(rax, 0x80000005);
   306     __ cpuid();
   307     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   308     __ movl(Address(rsi, 0), rax);
   309     __ movl(Address(rsi, 4), rbx);
   310     __ movl(Address(rsi, 8), rcx);
   311     __ movl(Address(rsi,12), rdx);
   313     //
   314     // Extended cpuid(0x80000001)
   315     //
   316     __ bind(ext_cpuid1);
   317     __ movl(rax, 0x80000001);
   318     __ cpuid();
   319     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   320     __ movl(Address(rsi, 0), rax);
   321     __ movl(Address(rsi, 4), rbx);
   322     __ movl(Address(rsi, 8), rcx);
   323     __ movl(Address(rsi,12), rdx);
   325     //
   326     // return
   327     //
   328     __ bind(done);
   329     __ popf();
   330     __ pop(rsi);
   331     __ pop(rbx);
   332     __ pop(rbp);
   333     __ ret(0);
   335 #   undef __
   337     return start;
   338   };
   339 };
   342 void VM_Version::get_processor_features() {
   344   _cpu = 4; // 486 by default
   345   _model = 0;
   346   _stepping = 0;
   347   _cpuFeatures = 0;
   348   _logical_processors_per_package = 1;
   350   if (!Use486InstrsOnly) {
   351     // Get raw processor info
   352     getPsrInfo_stub(&_cpuid_info);
   353     assert_is_initialized();
   354     _cpu = extended_cpu_family();
   355     _model = extended_cpu_model();
   356     _stepping = cpu_stepping();
   358     if (cpu_family() > 4) { // it supports CPUID
   359       _cpuFeatures = feature_flags();
   360       // Logical processors are only available on P4s and above,
   361       // and only if hyperthreading is available.
   362       _logical_processors_per_package = logical_processor_count();
   363     }
   364   }
   366   _supports_cx8 = supports_cmpxchg8();
   367   // xchg and xadd instructions
   368   _supports_atomic_getset4 = true;
   369   _supports_atomic_getadd4 = true;
   370   LP64_ONLY(_supports_atomic_getset8 = true);
   371   LP64_ONLY(_supports_atomic_getadd8 = true);
   373 #ifdef _LP64
   374   // OS should support SSE for x64 and hardware should support at least SSE2.
   375   if (!VM_Version::supports_sse2()) {
   376     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   377   }
   378   // in 64 bit the use of SSE2 is the minimum
   379   if (UseSSE < 2) UseSSE = 2;
   380 #endif
   382 #ifdef AMD64
   383   // flush_icache_stub have to be generated first.
   384   // That is why Icache line size is hard coded in ICache class,
   385   // see icache_x86.hpp. It is also the reason why we can't use
   386   // clflush instruction in 32-bit VM since it could be running
   387   // on CPU which does not support it.
   388   //
   389   // The only thing we can do is to verify that flushed
   390   // ICache::line_size has correct value.
   391   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   392   // clflush_size is size in quadwords (8 bytes).
   393   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   394 #endif
   396   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   397   if (!os::supports_sse())
   398     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   400   if (UseSSE < 4) {
   401     _cpuFeatures &= ~CPU_SSE4_1;
   402     _cpuFeatures &= ~CPU_SSE4_2;
   403   }
   405   if (UseSSE < 3) {
   406     _cpuFeatures &= ~CPU_SSE3;
   407     _cpuFeatures &= ~CPU_SSSE3;
   408     _cpuFeatures &= ~CPU_SSE4A;
   409   }
   411   if (UseSSE < 2)
   412     _cpuFeatures &= ~CPU_SSE2;
   414   if (UseSSE < 1)
   415     _cpuFeatures &= ~CPU_SSE;
   417   if (UseAVX < 2)
   418     _cpuFeatures &= ~CPU_AVX2;
   420   if (UseAVX < 1)
   421     _cpuFeatures &= ~CPU_AVX;
   423   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
   424     _cpuFeatures &= ~CPU_AES;
   426   if (logical_processors_per_package() == 1) {
   427     // HT processor could be installed on a system which doesn't support HT.
   428     _cpuFeatures &= ~CPU_HT;
   429   }
   431   char buf[256];
   432   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   433                cores_per_cpu(), threads_per_core(),
   434                cpu_family(), _model, _stepping,
   435                (supports_cmov() ? ", cmov" : ""),
   436                (supports_cmpxchg8() ? ", cx8" : ""),
   437                (supports_fxsr() ? ", fxsr" : ""),
   438                (supports_mmx()  ? ", mmx"  : ""),
   439                (supports_sse()  ? ", sse"  : ""),
   440                (supports_sse2() ? ", sse2" : ""),
   441                (supports_sse3() ? ", sse3" : ""),
   442                (supports_ssse3()? ", ssse3": ""),
   443                (supports_sse4_1() ? ", sse4.1" : ""),
   444                (supports_sse4_2() ? ", sse4.2" : ""),
   445                (supports_popcnt() ? ", popcnt" : ""),
   446                (supports_avx()    ? ", avx" : ""),
   447                (supports_avx2()   ? ", avx2" : ""),
   448                (supports_aes()    ? ", aes" : ""),
   449                (supports_clmul()    ? ", clmul" : ""),
   450                (supports_erms()   ? ", erms" : ""),
   451                (supports_mmx_ext() ? ", mmxext" : ""),
   452                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   453                (supports_lzcnt()   ? ", lzcnt": ""),
   454                (supports_sse4a()   ? ", sse4a": ""),
   455                (supports_ht() ? ", ht": ""),
   456                (supports_tsc() ? ", tsc": ""),
   457                (supports_tscinv_bit() ? ", tscinvbit": ""),
   458                (supports_tscinv() ? ", tscinv": ""),
   459                (supports_bmi1() ? ", bmi1" : ""),
   460                (supports_bmi2() ? ", bmi2" : ""));
   461   _features_str = strdup(buf);
   463   // UseSSE is set to the smaller of what hardware supports and what
   464   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   465   // older Pentiums which do not support it.
   466   if (UseSSE > 4) UseSSE=4;
   467   if (UseSSE < 0) UseSSE=0;
   468   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   469     UseSSE = MIN2((intx)3,UseSSE);
   470   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   471     UseSSE = MIN2((intx)2,UseSSE);
   472   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   473     UseSSE = MIN2((intx)1,UseSSE);
   474   if (!supports_sse ()) // Drop to 0 if no SSE  support
   475     UseSSE = 0;
   477   if (UseAVX > 2) UseAVX=2;
   478   if (UseAVX < 0) UseAVX=0;
   479   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   480     UseAVX = MIN2((intx)1,UseAVX);
   481   if (!supports_avx ()) // Drop to 0 if no AVX  support
   482     UseAVX = 0;
   484   // Use AES instructions if available.
   485   if (supports_aes()) {
   486     if (FLAG_IS_DEFAULT(UseAES)) {
   487       UseAES = true;
   488     }
   489   } else if (UseAES) {
   490     if (!FLAG_IS_DEFAULT(UseAES))
   491       warning("AES instructions not available on this CPU");
   492     FLAG_SET_DEFAULT(UseAES, false);
   493   }
   495   // Use CLMUL instructions if available.
   496   if (supports_clmul()) {
   497     if (FLAG_IS_DEFAULT(UseCLMUL)) {
   498       UseCLMUL = true;
   499     }
   500   } else if (UseCLMUL) {
   501     if (!FLAG_IS_DEFAULT(UseCLMUL))
   502       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
   503     FLAG_SET_DEFAULT(UseCLMUL, false);
   504   }
   506   if (UseCLMUL && (UseAVX > 0) && (UseSSE > 2)) {
   507     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
   508       UseCRC32Intrinsics = true;
   509     }
   510   } else if (UseCRC32Intrinsics) {
   511     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
   512       warning("CRC32 Intrinsics requires AVX and CLMUL instructions (not available on this CPU)");
   513     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
   514   }
   516   // The AES intrinsic stubs require AES instruction support (of course)
   517   // but also require sse3 mode for instructions it use.
   518   if (UseAES && (UseSSE > 2)) {
   519     if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   520       UseAESIntrinsics = true;
   521     }
   522   } else if (UseAESIntrinsics) {
   523     if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
   524       warning("AES intrinsics not available on this CPU");
   525     FLAG_SET_DEFAULT(UseAESIntrinsics, false);
   526   }
   528 #ifdef COMPILER2
   529   if (UseFPUForSpilling) {
   530     if (UseSSE < 2) {
   531       // Only supported with SSE2+
   532       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   533     }
   534   }
   535   if (MaxVectorSize > 0) {
   536     if (!is_power_of_2(MaxVectorSize)) {
   537       warning("MaxVectorSize must be a power of 2");
   538       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   539     }
   540     if (MaxVectorSize > 32) {
   541       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   542     }
   543     if (MaxVectorSize > 16 && UseAVX == 0) {
   544       // Only supported with AVX+
   545       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   546     }
   547     if (UseSSE < 2) {
   548       // Only supported with SSE2+
   549       FLAG_SET_DEFAULT(MaxVectorSize, 0);
   550     }
   551   }
   552 #endif
   554   // On new cpus instructions which update whole XMM register should be used
   555   // to prevent partial register stall due to dependencies on high half.
   556   //
   557   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   558   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   559   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   560   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   562   if( is_amd() ) { // AMD cpus specific settings
   563     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   564       // Use it on new AMD cpus starting from Opteron.
   565       UseAddressNop = true;
   566     }
   567     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   568       // Use it on new AMD cpus starting from Opteron.
   569       UseNewLongLShift = true;
   570     }
   571     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   572       if( supports_sse4a() ) {
   573         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   574       } else {
   575         UseXmmLoadAndClearUpper = false;
   576       }
   577     }
   578     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   579       if( supports_sse4a() ) {
   580         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   581       } else {
   582         UseXmmRegToRegMoveAll = false;
   583       }
   584     }
   585     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   586       if( supports_sse4a() ) {
   587         UseXmmI2F = true;
   588       } else {
   589         UseXmmI2F = false;
   590       }
   591     }
   592     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   593       if( supports_sse4a() ) {
   594         UseXmmI2D = true;
   595       } else {
   596         UseXmmI2D = false;
   597       }
   598     }
   599     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   600       if( supports_sse4_2() && UseSSE >= 4 ) {
   601         UseSSE42Intrinsics = true;
   602       }
   603     }
   605     // some defaults for AMD family 15h
   606     if ( cpu_family() == 0x15 ) {
   607       // On family 15h processors default is no sw prefetch
   608       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   609         AllocatePrefetchStyle = 0;
   610       }
   611       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   612       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   613         AllocatePrefetchInstr = 3;
   614       }
   615       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   616       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   617         UseXMMForArrayCopy = true;
   618       }
   619       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   620         UseUnalignedLoadStores = true;
   621       }
   622     }
   624 #ifdef COMPILER2
   625     if (MaxVectorSize > 16) {
   626       // Limit vectors size to 16 bytes on current AMD cpus.
   627       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   628     }
   629 #endif // COMPILER2
   630   }
   632   if( is_intel() ) { // Intel cpus specific settings
   633     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   634       UseStoreImmI16 = false; // don't use it on Intel cpus
   635     }
   636     if( cpu_family() == 6 || cpu_family() == 15 ) {
   637       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   638         // Use it on all Intel cpus starting from PentiumPro
   639         UseAddressNop = true;
   640       }
   641     }
   642     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   643       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   644     }
   645     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   646       if( supports_sse3() ) {
   647         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   648       } else {
   649         UseXmmRegToRegMoveAll = false;
   650       }
   651     }
   652     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   653 #ifdef COMPILER2
   654       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   655         // For new Intel cpus do the next optimization:
   656         // don't align the beginning of a loop if there are enough instructions
   657         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   658         // in current fetch line (OptoLoopAlignment) or the padding
   659         // is big (> MaxLoopPad).
   660         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   661         // generated NOP instructions. 11 is the largest size of one
   662         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   663         MaxLoopPad = 11;
   664       }
   665 #endif // COMPILER2
   666       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   667         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   668       }
   669       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
   670         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   671           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   672         }
   673       }
   674       if (supports_sse4_2() && UseSSE >= 4) {
   675         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   676           UseSSE42Intrinsics = true;
   677         }
   678       }
   679     }
   680   }
   681 #if defined(COMPILER2) && defined(_ALLBSD_SOURCE)
   682     if (MaxVectorSize > 16) {
   683       // Limit vectors size to 16 bytes on BSD until it fixes
   684       // restoring upper 128bit of YMM registers on return
   685       // from signal handler.
   686       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   687     }
   688 #endif // COMPILER2
   690   // Use count leading zeros count instruction if available.
   691   if (supports_lzcnt()) {
   692     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   693       UseCountLeadingZerosInstruction = true;
   694     }
   695    } else if (UseCountLeadingZerosInstruction) {
   696     warning("lzcnt instruction is not available on this CPU");
   697     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
   698   }
   700   if (supports_bmi1()) {
   701     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
   702       UseBMI1Instructions = true;
   703     }
   704   } else if (UseBMI1Instructions) {
   705     warning("BMI1 instructions are not available on this CPU");
   706     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
   707   }
   709   // Use count trailing zeros instruction if available
   710   if (supports_bmi1()) {
   711     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
   712       UseCountTrailingZerosInstruction = UseBMI1Instructions;
   713     }
   714   } else if (UseCountTrailingZerosInstruction) {
   715     warning("tzcnt instruction is not available on this CPU");
   716     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
   717   }
   719   // Use population count instruction if available.
   720   if (supports_popcnt()) {
   721     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   722       UsePopCountInstruction = true;
   723     }
   724   } else if (UsePopCountInstruction) {
   725     warning("POPCNT instruction is not available on this CPU");
   726     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   727   }
   729   // Use fast-string operations if available.
   730   if (supports_erms()) {
   731     if (FLAG_IS_DEFAULT(UseFastStosb)) {
   732       UseFastStosb = true;
   733     }
   734   } else if (UseFastStosb) {
   735     warning("fast-string operations are not available on this CPU");
   736     FLAG_SET_DEFAULT(UseFastStosb, false);
   737   }
   739 #ifdef COMPILER2
   740   if (FLAG_IS_DEFAULT(AlignVector)) {
   741     // Modern processors allow misaligned memory operations for vectors.
   742     AlignVector = !UseUnalignedLoadStores;
   743   }
   744 #endif // COMPILER2
   746   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   747   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   749   // set valid Prefetch instruction
   750   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   751   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   752   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   753   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   755   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   756   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   757   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   758   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   760   // Allocation prefetch settings
   761   intx cache_line_size = prefetch_data_size();
   762   if( cache_line_size > AllocatePrefetchStepSize )
   763     AllocatePrefetchStepSize = cache_line_size;
   765   assert(AllocatePrefetchLines > 0, "invalid value");
   766   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
   767     AllocatePrefetchLines = 3;
   768   assert(AllocateInstancePrefetchLines > 0, "invalid value");
   769   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
   770     AllocateInstancePrefetchLines = 1;
   772   AllocatePrefetchDistance = allocate_prefetch_distance();
   773   AllocatePrefetchStyle    = allocate_prefetch_style();
   775   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   776     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   777 #ifdef _LP64
   778       AllocatePrefetchDistance = 384;
   779 #else
   780       AllocatePrefetchDistance = 320;
   781 #endif
   782     }
   783     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   784       AllocatePrefetchDistance = 192;
   785       AllocatePrefetchLines = 4;
   786 #ifdef COMPILER2
   787       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   788         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   789       }
   790 #endif
   791     }
   792   }
   793   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   795 #ifdef _LP64
   796   // Prefetch settings
   797   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   798   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   799   PrefetchFieldsAhead         = prefetch_fields_ahead();
   800 #endif
   802   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
   803      (cache_line_size > ContendedPaddingWidth))
   804      ContendedPaddingWidth = cache_line_size;
   806 #ifndef PRODUCT
   807   if (PrintMiscellaneous && Verbose) {
   808     tty->print_cr("Logical CPUs per core: %u",
   809                   logical_processors_per_package());
   810     tty->print("UseSSE=%d",UseSSE);
   811     if (UseAVX > 0) {
   812       tty->print("  UseAVX=%d",UseAVX);
   813     }
   814     if (UseAES) {
   815       tty->print("  UseAES=1");
   816     }
   817     tty->cr();
   818     tty->print("Allocation");
   819     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   820       tty->print_cr(": no prefetching");
   821     } else {
   822       tty->print(" prefetching: ");
   823       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   824         tty->print("PREFETCHW");
   825       } else if (UseSSE >= 1) {
   826         if (AllocatePrefetchInstr == 0) {
   827           tty->print("PREFETCHNTA");
   828         } else if (AllocatePrefetchInstr == 1) {
   829           tty->print("PREFETCHT0");
   830         } else if (AllocatePrefetchInstr == 2) {
   831           tty->print("PREFETCHT2");
   832         } else if (AllocatePrefetchInstr == 3) {
   833           tty->print("PREFETCHW");
   834         }
   835       }
   836       if (AllocatePrefetchLines > 1) {
   837         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   838       } else {
   839         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
   840       }
   841     }
   843     if (PrefetchCopyIntervalInBytes > 0) {
   844       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   845     }
   846     if (PrefetchScanIntervalInBytes > 0) {
   847       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   848     }
   849     if (PrefetchFieldsAhead > 0) {
   850       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   851     }
   852     if (ContendedPaddingWidth > 0) {
   853       tty->print_cr("ContendedPaddingWidth %d", ContendedPaddingWidth);
   854     }
   855   }
   856 #endif // !PRODUCT
   857 }
   859 void VM_Version::initialize() {
   860   ResourceMark rm;
   861   // Making this stub must be FIRST use of assembler
   863   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   864   if (stub_blob == NULL) {
   865     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   866   }
   867   CodeBuffer c(stub_blob);
   868   VM_Version_StubGenerator g(&c);
   869   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   870                                    g.generate_getPsrInfo());
   872   get_processor_features();
   873 }

mercurial