src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Fri, 16 Mar 2012 16:14:04 +0100

author
nloodin
date
Fri, 16 Mar 2012 16:14:04 +0100
changeset 3665
8a729074feae
parent 3540
ab4422d0ed59
child 4037
da91efe96a93
permissions
-rw-r--r--

7154517: Build error in hotspot-gc without precompiled headers
Reviewed-by: jcoomes, brutisso

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
    30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
    31 #include "gc_implementation/shared/collectorCounters.hpp"
    32 #include "gc_implementation/shared/markSweep.hpp"
    33 #include "gc_implementation/shared/mutableSpace.hpp"
    34 #include "memory/sharedHeap.hpp"
    35 #include "oops/oop.hpp"
    37 class ParallelScavengeHeap;
    38 class PSAdaptiveSizePolicy;
    39 class PSYoungGen;
    40 class PSOldGen;
    41 class PSPermGen;
    42 class ParCompactionManager;
    43 class ParallelTaskTerminator;
    44 class PSParallelCompact;
    45 class GCTaskManager;
    46 class GCTaskQueue;
    47 class PreGCValues;
    48 class MoveAndUpdateClosure;
    49 class RefProcTaskExecutor;
    51 // The SplitInfo class holds the information needed to 'split' a source region
    52 // so that the live data can be copied to two destination *spaces*.  Normally,
    53 // all the live data in a region is copied to a single destination space (e.g.,
    54 // everything live in a region in eden is copied entirely into the old gen).
    55 // However, when the heap is nearly full, all the live data in eden may not fit
    56 // into the old gen.  Copying only some of the regions from eden to old gen
    57 // requires finding a region that does not contain a partial object (i.e., no
    58 // live object crosses the region boundary) somewhere near the last object that
    59 // does fit into the old gen.  Since it's not always possible to find such a
    60 // region, splitting is necessary for predictable behavior.
    61 //
    62 // A region is always split at the end of the partial object.  This avoids
    63 // additional tests when calculating the new location of a pointer, which is a
    64 // very hot code path.  The partial object and everything to its left will be
    65 // copied to another space (call it dest_space_1).  The live data to the right
    66 // of the partial object will be copied either within the space itself, or to a
    67 // different destination space (distinct from dest_space_1).
    68 //
    69 // Split points are identified during the summary phase, when region
    70 // destinations are computed:  data about the split, including the
    71 // partial_object_size, is recorded in a SplitInfo record and the
    72 // partial_object_size field in the summary data is set to zero.  The zeroing is
    73 // possible (and necessary) since the partial object will move to a different
    74 // destination space than anything to its right, thus the partial object should
    75 // not affect the locations of any objects to its right.
    76 //
    77 // The recorded data is used during the compaction phase, but only rarely:  when
    78 // the partial object on the split region will be copied across a destination
    79 // region boundary.  This test is made once each time a region is filled, and is
    80 // a simple address comparison, so the overhead is negligible (see
    81 // PSParallelCompact::first_src_addr()).
    82 //
    83 // Notes:
    84 //
    85 // Only regions with partial objects are split; a region without a partial
    86 // object does not need any extra bookkeeping.
    87 //
    88 // At most one region is split per space, so the amount of data required is
    89 // constant.
    90 //
    91 // A region is split only when the destination space would overflow.  Once that
    92 // happens, the destination space is abandoned and no other data (even from
    93 // other source spaces) is targeted to that destination space.  Abandoning the
    94 // destination space may leave a somewhat large unused area at the end, if a
    95 // large object caused the overflow.
    96 //
    97 // Future work:
    98 //
    99 // More bookkeeping would be required to continue to use the destination space.
   100 // The most general solution would allow data from regions in two different
   101 // source spaces to be "joined" in a single destination region.  At the very
   102 // least, additional code would be required in next_src_region() to detect the
   103 // join and skip to an out-of-order source region.  If the join region was also
   104 // the last destination region to which a split region was copied (the most
   105 // likely case), then additional work would be needed to get fill_region() to
   106 // stop iteration and switch to a new source region at the right point.  Basic
   107 // idea would be to use a fake value for the top of the source space.  It is
   108 // doable, if a bit tricky.
   109 //
   110 // A simpler (but less general) solution would fill the remainder of the
   111 // destination region with a dummy object and continue filling the next
   112 // destination region.
   114 class SplitInfo
   115 {
   116 public:
   117   // Return true if this split info is valid (i.e., if a split has been
   118   // recorded).  The very first region cannot have a partial object and thus is
   119   // never split, so 0 is the 'invalid' value.
   120   bool is_valid() const { return _src_region_idx > 0; }
   122   // Return true if this split holds data for the specified source region.
   123   inline bool is_split(size_t source_region) const;
   125   // The index of the split region, the size of the partial object on that
   126   // region and the destination of the partial object.
   127   size_t    src_region_idx() const   { return _src_region_idx; }
   128   size_t    partial_obj_size() const { return _partial_obj_size; }
   129   HeapWord* destination() const      { return _destination; }
   131   // The destination count of the partial object referenced by this split
   132   // (either 1 or 2).  This must be added to the destination count of the
   133   // remainder of the source region.
   134   unsigned int destination_count() const { return _destination_count; }
   136   // If a word within the partial object will be written to the first word of a
   137   // destination region, this is the address of the destination region;
   138   // otherwise this is NULL.
   139   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
   141   // If a word within the partial object will be written to the first word of a
   142   // destination region, this is the address of that word within the partial
   143   // object; otherwise this is NULL.
   144   HeapWord* first_src_addr() const       { return _first_src_addr; }
   146   // Record the data necessary to split the region src_region_idx.
   147   void record(size_t src_region_idx, size_t partial_obj_size,
   148               HeapWord* destination);
   150   void clear();
   152   DEBUG_ONLY(void verify_clear();)
   154 private:
   155   size_t       _src_region_idx;
   156   size_t       _partial_obj_size;
   157   HeapWord*    _destination;
   158   unsigned int _destination_count;
   159   HeapWord*    _dest_region_addr;
   160   HeapWord*    _first_src_addr;
   161 };
   163 inline bool SplitInfo::is_split(size_t region_idx) const
   164 {
   165   return _src_region_idx == region_idx && is_valid();
   166 }
   168 class SpaceInfo
   169 {
   170  public:
   171   MutableSpace* space() const { return _space; }
   173   // Where the free space will start after the collection.  Valid only after the
   174   // summary phase completes.
   175   HeapWord* new_top() const { return _new_top; }
   177   // Allows new_top to be set.
   178   HeapWord** new_top_addr() { return &_new_top; }
   180   // Where the smallest allowable dense prefix ends (used only for perm gen).
   181   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
   183   // Where the dense prefix ends, or the compacted region begins.
   184   HeapWord* dense_prefix() const { return _dense_prefix; }
   186   // The start array for the (generation containing the) space, or NULL if there
   187   // is no start array.
   188   ObjectStartArray* start_array() const { return _start_array; }
   190   SplitInfo& split_info() { return _split_info; }
   192   void set_space(MutableSpace* s)           { _space = s; }
   193   void set_new_top(HeapWord* addr)          { _new_top = addr; }
   194   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
   195   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
   196   void set_start_array(ObjectStartArray* s) { _start_array = s; }
   198   void publish_new_top() const              { _space->set_top(_new_top); }
   200  private:
   201   MutableSpace*     _space;
   202   HeapWord*         _new_top;
   203   HeapWord*         _min_dense_prefix;
   204   HeapWord*         _dense_prefix;
   205   ObjectStartArray* _start_array;
   206   SplitInfo         _split_info;
   207 };
   209 class ParallelCompactData
   210 {
   211 public:
   212   // Sizes are in HeapWords, unless indicated otherwise.
   213   static const size_t Log2RegionSize;
   214   static const size_t RegionSize;
   215   static const size_t RegionSizeBytes;
   217   // Mask for the bits in a size_t to get an offset within a region.
   218   static const size_t RegionSizeOffsetMask;
   219   // Mask for the bits in a pointer to get an offset within a region.
   220   static const size_t RegionAddrOffsetMask;
   221   // Mask for the bits in a pointer to get the address of the start of a region.
   222   static const size_t RegionAddrMask;
   224   class RegionData
   225   {
   226   public:
   227     // Destination address of the region.
   228     HeapWord* destination() const { return _destination; }
   230     // The first region containing data destined for this region.
   231     size_t source_region() const { return _source_region; }
   233     // The object (if any) starting in this region and ending in a different
   234     // region that could not be updated during the main (parallel) compaction
   235     // phase.  This is different from _partial_obj_addr, which is an object that
   236     // extends onto a source region.  However, the two uses do not overlap in
   237     // time, so the same field is used to save space.
   238     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
   240     // The starting address of the partial object extending onto the region.
   241     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
   243     // Size of the partial object extending onto the region (words).
   244     size_t partial_obj_size() const { return _partial_obj_size; }
   246     // Size of live data that lies within this region due to objects that start
   247     // in this region (words).  This does not include the partial object
   248     // extending onto the region (if any), or the part of an object that extends
   249     // onto the next region (if any).
   250     size_t live_obj_size() const { return _dc_and_los & los_mask; }
   252     // Total live data that lies within the region (words).
   253     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
   255     // The destination_count is the number of other regions to which data from
   256     // this region will be copied.  At the end of the summary phase, the valid
   257     // values of destination_count are
   258     //
   259     // 0 - data from the region will be compacted completely into itself, or the
   260     //     region is empty.  The region can be claimed and then filled.
   261     // 1 - data from the region will be compacted into 1 other region; some
   262     //     data from the region may also be compacted into the region itself.
   263     // 2 - data from the region will be copied to 2 other regions.
   264     //
   265     // During compaction as regions are emptied, the destination_count is
   266     // decremented (atomically) and when it reaches 0, it can be claimed and
   267     // then filled.
   268     //
   269     // A region is claimed for processing by atomically changing the
   270     // destination_count to the claimed value (dc_claimed).  After a region has
   271     // been filled, the destination_count should be set to the completed value
   272     // (dc_completed).
   273     inline uint destination_count() const;
   274     inline uint destination_count_raw() const;
   276     // The location of the java heap data that corresponds to this region.
   277     inline HeapWord* data_location() const;
   279     // The highest address referenced by objects in this region.
   280     inline HeapWord* highest_ref() const;
   282     // Whether this region is available to be claimed, has been claimed, or has
   283     // been completed.
   284     //
   285     // Minor subtlety:  claimed() returns true if the region is marked
   286     // completed(), which is desirable since a region must be claimed before it
   287     // can be completed.
   288     bool available() const { return _dc_and_los < dc_one; }
   289     bool claimed() const   { return _dc_and_los >= dc_claimed; }
   290     bool completed() const { return _dc_and_los >= dc_completed; }
   292     // These are not atomic.
   293     void set_destination(HeapWord* addr)       { _destination = addr; }
   294     void set_source_region(size_t region)      { _source_region = region; }
   295     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
   296     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
   297     void set_partial_obj_size(size_t words)    {
   298       _partial_obj_size = (region_sz_t) words;
   299     }
   301     inline void set_destination_count(uint count);
   302     inline void set_live_obj_size(size_t words);
   303     inline void set_data_location(HeapWord* addr);
   304     inline void set_completed();
   305     inline bool claim_unsafe();
   307     // These are atomic.
   308     inline void add_live_obj(size_t words);
   309     inline void set_highest_ref(HeapWord* addr);
   310     inline void decrement_destination_count();
   311     inline bool claim();
   313   private:
   314     // The type used to represent object sizes within a region.
   315     typedef uint region_sz_t;
   317     // Constants for manipulating the _dc_and_los field, which holds both the
   318     // destination count and live obj size.  The live obj size lives at the
   319     // least significant end so no masking is necessary when adding.
   320     static const region_sz_t dc_shift;           // Shift amount.
   321     static const region_sz_t dc_mask;            // Mask for destination count.
   322     static const region_sz_t dc_one;             // 1, shifted appropriately.
   323     static const region_sz_t dc_claimed;         // Region has been claimed.
   324     static const region_sz_t dc_completed;       // Region has been completed.
   325     static const region_sz_t los_mask;           // Mask for live obj size.
   327     HeapWord*            _destination;
   328     size_t               _source_region;
   329     HeapWord*            _partial_obj_addr;
   330     region_sz_t          _partial_obj_size;
   331     region_sz_t volatile _dc_and_los;
   332 #ifdef ASSERT
   333     // These enable optimizations that are only partially implemented.  Use
   334     // debug builds to prevent the code fragments from breaking.
   335     HeapWord*            _data_location;
   336     HeapWord*            _highest_ref;
   337 #endif  // #ifdef ASSERT
   339 #ifdef ASSERT
   340    public:
   341     uint            _pushed;   // 0 until region is pushed onto a worker's stack
   342    private:
   343 #endif
   344   };
   346 public:
   347   ParallelCompactData();
   348   bool initialize(MemRegion covered_region);
   350   size_t region_count() const { return _region_count; }
   352   // Convert region indices to/from RegionData pointers.
   353   inline RegionData* region(size_t region_idx) const;
   354   inline size_t     region(const RegionData* const region_ptr) const;
   356   // Returns true if the given address is contained within the region
   357   bool region_contains(size_t region_index, HeapWord* addr);
   359   void add_obj(HeapWord* addr, size_t len);
   360   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
   362   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
   363   // destination of region n is simply the start of region n.  The argument beg
   364   // must be region-aligned; end need not be.
   365   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
   367   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
   368                                   HeapWord* destination, HeapWord* target_end,
   369                                   HeapWord** target_next);
   370   bool summarize(SplitInfo& split_info,
   371                  HeapWord* source_beg, HeapWord* source_end,
   372                  HeapWord** source_next,
   373                  HeapWord* target_beg, HeapWord* target_end,
   374                  HeapWord** target_next);
   376   void clear();
   377   void clear_range(size_t beg_region, size_t end_region);
   378   void clear_range(HeapWord* beg, HeapWord* end) {
   379     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
   380   }
   382   // Return the number of words between addr and the start of the region
   383   // containing addr.
   384   inline size_t     region_offset(const HeapWord* addr) const;
   386   // Convert addresses to/from a region index or region pointer.
   387   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
   388   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
   389   inline HeapWord*  region_to_addr(size_t region) const;
   390   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
   391   inline HeapWord*  region_to_addr(const RegionData* region) const;
   393   inline HeapWord*  region_align_down(HeapWord* addr) const;
   394   inline HeapWord*  region_align_up(HeapWord* addr) const;
   395   inline bool       is_region_aligned(HeapWord* addr) const;
   397   // Return the address one past the end of the partial object.
   398   HeapWord* partial_obj_end(size_t region_idx) const;
   400   // Return the new location of the object p after the
   401   // the compaction.
   402   HeapWord* calc_new_pointer(HeapWord* addr);
   404   HeapWord* calc_new_pointer(oop p) {
   405     return calc_new_pointer((HeapWord*) p);
   406   }
   408   // Return the updated address for the given klass
   409   klassOop calc_new_klass(klassOop);
   411 #ifdef  ASSERT
   412   void verify_clear(const PSVirtualSpace* vspace);
   413   void verify_clear();
   414 #endif  // #ifdef ASSERT
   416 private:
   417   bool initialize_region_data(size_t region_size);
   418   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
   420 private:
   421   HeapWord*       _region_start;
   422 #ifdef  ASSERT
   423   HeapWord*       _region_end;
   424 #endif  // #ifdef ASSERT
   426   PSVirtualSpace* _region_vspace;
   427   RegionData*     _region_data;
   428   size_t          _region_count;
   429 };
   431 inline uint
   432 ParallelCompactData::RegionData::destination_count_raw() const
   433 {
   434   return _dc_and_los & dc_mask;
   435 }
   437 inline uint
   438 ParallelCompactData::RegionData::destination_count() const
   439 {
   440   return destination_count_raw() >> dc_shift;
   441 }
   443 inline void
   444 ParallelCompactData::RegionData::set_destination_count(uint count)
   445 {
   446   assert(count <= (dc_completed >> dc_shift), "count too large");
   447   const region_sz_t live_sz = (region_sz_t) live_obj_size();
   448   _dc_and_los = (count << dc_shift) | live_sz;
   449 }
   451 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
   452 {
   453   assert(words <= los_mask, "would overflow");
   454   _dc_and_los = destination_count_raw() | (region_sz_t)words;
   455 }
   457 inline void ParallelCompactData::RegionData::decrement_destination_count()
   458 {
   459   assert(_dc_and_los < dc_claimed, "already claimed");
   460   assert(_dc_and_los >= dc_one, "count would go negative");
   461   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
   462 }
   464 inline HeapWord* ParallelCompactData::RegionData::data_location() const
   465 {
   466   DEBUG_ONLY(return _data_location;)
   467   NOT_DEBUG(return NULL;)
   468 }
   470 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
   471 {
   472   DEBUG_ONLY(return _highest_ref;)
   473   NOT_DEBUG(return NULL;)
   474 }
   476 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
   477 {
   478   DEBUG_ONLY(_data_location = addr;)
   479 }
   481 inline void ParallelCompactData::RegionData::set_completed()
   482 {
   483   assert(claimed(), "must be claimed first");
   484   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
   485 }
   487 // MT-unsafe claiming of a region.  Should only be used during single threaded
   488 // execution.
   489 inline bool ParallelCompactData::RegionData::claim_unsafe()
   490 {
   491   if (available()) {
   492     _dc_and_los |= dc_claimed;
   493     return true;
   494   }
   495   return false;
   496 }
   498 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
   499 {
   500   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
   501   Atomic::add((int) words, (volatile int*) &_dc_and_los);
   502 }
   504 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
   505 {
   506 #ifdef ASSERT
   507   HeapWord* tmp = _highest_ref;
   508   while (addr > tmp) {
   509     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
   510   }
   511 #endif  // #ifdef ASSERT
   512 }
   514 inline bool ParallelCompactData::RegionData::claim()
   515 {
   516   const int los = (int) live_obj_size();
   517   const int old = Atomic::cmpxchg(dc_claimed | los,
   518                                   (volatile int*) &_dc_and_los, los);
   519   return old == los;
   520 }
   522 inline ParallelCompactData::RegionData*
   523 ParallelCompactData::region(size_t region_idx) const
   524 {
   525   assert(region_idx <= region_count(), "bad arg");
   526   return _region_data + region_idx;
   527 }
   529 inline size_t
   530 ParallelCompactData::region(const RegionData* const region_ptr) const
   531 {
   532   assert(region_ptr >= _region_data, "bad arg");
   533   assert(region_ptr <= _region_data + region_count(), "bad arg");
   534   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
   535 }
   537 inline size_t
   538 ParallelCompactData::region_offset(const HeapWord* addr) const
   539 {
   540   assert(addr >= _region_start, "bad addr");
   541   assert(addr <= _region_end, "bad addr");
   542   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
   543 }
   545 inline size_t
   546 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
   547 {
   548   assert(addr >= _region_start, "bad addr");
   549   assert(addr <= _region_end, "bad addr");
   550   return pointer_delta(addr, _region_start) >> Log2RegionSize;
   551 }
   553 inline ParallelCompactData::RegionData*
   554 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
   555 {
   556   return region(addr_to_region_idx(addr));
   557 }
   559 inline HeapWord*
   560 ParallelCompactData::region_to_addr(size_t region) const
   561 {
   562   assert(region <= _region_count, "region out of range");
   563   return _region_start + (region << Log2RegionSize);
   564 }
   566 inline HeapWord*
   567 ParallelCompactData::region_to_addr(const RegionData* region) const
   568 {
   569   return region_to_addr(pointer_delta(region, _region_data,
   570                                       sizeof(RegionData)));
   571 }
   573 inline HeapWord*
   574 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
   575 {
   576   assert(region <= _region_count, "region out of range");
   577   assert(offset < RegionSize, "offset too big");  // This may be too strict.
   578   return region_to_addr(region) + offset;
   579 }
   581 inline HeapWord*
   582 ParallelCompactData::region_align_down(HeapWord* addr) const
   583 {
   584   assert(addr >= _region_start, "bad addr");
   585   assert(addr < _region_end + RegionSize, "bad addr");
   586   return (HeapWord*)(size_t(addr) & RegionAddrMask);
   587 }
   589 inline HeapWord*
   590 ParallelCompactData::region_align_up(HeapWord* addr) const
   591 {
   592   assert(addr >= _region_start, "bad addr");
   593   assert(addr <= _region_end, "bad addr");
   594   return region_align_down(addr + RegionSizeOffsetMask);
   595 }
   597 inline bool
   598 ParallelCompactData::is_region_aligned(HeapWord* addr) const
   599 {
   600   return region_offset(addr) == 0;
   601 }
   603 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
   604 // do_addr() method.
   605 //
   606 // The closure is initialized with the number of heap words to process
   607 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
   608 // methods in subclasses should update the total as words are processed.  Since
   609 // only one subclass actually uses this mechanism to terminate iteration, the
   610 // default initial value is > 0.  The implementation is here and not in the
   611 // single subclass that uses it to avoid making is_full() virtual, and thus
   612 // adding a virtual call per live object.
   614 class ParMarkBitMapClosure: public StackObj {
   615  public:
   616   typedef ParMarkBitMap::idx_t idx_t;
   617   typedef ParMarkBitMap::IterationStatus IterationStatus;
   619  public:
   620   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
   621                               size_t words = max_uintx);
   623   inline ParCompactionManager* compaction_manager() const;
   624   inline ParMarkBitMap*        bitmap() const;
   625   inline size_t                words_remaining() const;
   626   inline bool                  is_full() const;
   627   inline HeapWord*             source() const;
   629   inline void                  set_source(HeapWord* addr);
   631   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
   633  protected:
   634   inline void decrement_words_remaining(size_t words);
   636  private:
   637   ParMarkBitMap* const        _bitmap;
   638   ParCompactionManager* const _compaction_manager;
   639   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
   640   size_t                      _words_remaining; // Words left to copy.
   642  protected:
   643   HeapWord*                   _source;          // Next addr that would be read.
   644 };
   646 inline
   647 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
   648                                            ParCompactionManager* cm,
   649                                            size_t words):
   650   _bitmap(bitmap), _compaction_manager(cm)
   651 #ifdef  ASSERT
   652   , _initial_words_remaining(words)
   653 #endif
   654 {
   655   _words_remaining = words;
   656   _source = NULL;
   657 }
   659 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
   660   return _compaction_manager;
   661 }
   663 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
   664   return _bitmap;
   665 }
   667 inline size_t ParMarkBitMapClosure::words_remaining() const {
   668   return _words_remaining;
   669 }
   671 inline bool ParMarkBitMapClosure::is_full() const {
   672   return words_remaining() == 0;
   673 }
   675 inline HeapWord* ParMarkBitMapClosure::source() const {
   676   return _source;
   677 }
   679 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
   680   _source = addr;
   681 }
   683 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
   684   assert(_words_remaining >= words, "processed too many words");
   685   _words_remaining -= words;
   686 }
   688 // The UseParallelOldGC collector is a stop-the-world garbage collector that
   689 // does parts of the collection using parallel threads.  The collection includes
   690 // the tenured generation and the young generation.  The permanent generation is
   691 // collected at the same time as the other two generations but the permanent
   692 // generation is collect by a single GC thread.  The permanent generation is
   693 // collected serially because of the requirement that during the processing of a
   694 // klass AAA, any objects reference by AAA must already have been processed.
   695 // This requirement is enforced by a left (lower address) to right (higher
   696 // address) sliding compaction.
   697 //
   698 // There are four phases of the collection.
   699 //
   700 //      - marking phase
   701 //      - summary phase
   702 //      - compacting phase
   703 //      - clean up phase
   704 //
   705 // Roughly speaking these phases correspond, respectively, to
   706 //      - mark all the live objects
   707 //      - calculate the destination of each object at the end of the collection
   708 //      - move the objects to their destination
   709 //      - update some references and reinitialize some variables
   710 //
   711 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
   712 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
   713 // complete marking of the heap.  The summary phase is implemented in
   714 // PSParallelCompact::summary_phase().  The move and update phase is implemented
   715 // in PSParallelCompact::compact().
   716 //
   717 // A space that is being collected is divided into regions and with each region
   718 // is associated an object of type ParallelCompactData.  Each region is of a
   719 // fixed size and typically will contain more than 1 object and may have parts
   720 // of objects at the front and back of the region.
   721 //
   722 // region            -----+---------------------+----------
   723 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
   724 //
   725 // The marking phase does a complete marking of all live objects in the heap.
   726 // The marking also compiles the size of the data for all live objects covered
   727 // by the region.  This size includes the part of any live object spanning onto
   728 // the region (part of AAA if it is live) from the front, all live objects
   729 // contained in the region (BBB and/or CCC if they are live), and the part of
   730 // any live objects covered by the region that extends off the region (part of
   731 // DDD if it is live).  The marking phase uses multiple GC threads and marking
   732 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
   733 // done atomically as is the accumulation of the size of the live objects
   734 // covered by a region.
   735 //
   736 // The summary phase calculates the total live data to the left of each region
   737 // XXX.  Based on that total and the bottom of the space, it can calculate the
   738 // starting location of the live data in XXX.  The summary phase calculates for
   739 // each region XXX quantites such as
   740 //
   741 //      - the amount of live data at the beginning of a region from an object
   742 //        entering the region.
   743 //      - the location of the first live data on the region
   744 //      - a count of the number of regions receiving live data from XXX.
   745 //
   746 // See ParallelCompactData for precise details.  The summary phase also
   747 // calculates the dense prefix for the compaction.  The dense prefix is a
   748 // portion at the beginning of the space that is not moved.  The objects in the
   749 // dense prefix do need to have their object references updated.  See method
   750 // summarize_dense_prefix().
   751 //
   752 // The summary phase is done using 1 GC thread.
   753 //
   754 // The compaction phase moves objects to their new location and updates all
   755 // references in the object.
   756 //
   757 // A current exception is that objects that cross a region boundary are moved
   758 // but do not have their references updated.  References are not updated because
   759 // it cannot easily be determined if the klass pointer KKK for the object AAA
   760 // has been updated.  KKK likely resides in a region to the left of the region
   761 // containing AAA.  These AAA's have there references updated at the end in a
   762 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
   763 // An alternate strategy is being investigated for this deferral of updating.
   764 //
   765 // Compaction is done on a region basis.  A region that is ready to be filled is
   766 // put on a ready list and GC threads take region off the list and fill them.  A
   767 // region is ready to be filled if it empty of live objects.  Such a region may
   768 // have been initially empty (only contained dead objects) or may have had all
   769 // its live objects copied out already.  A region that compacts into itself is
   770 // also ready for filling.  The ready list is initially filled with empty
   771 // regions and regions compacting into themselves.  There is always at least 1
   772 // region that can be put on the ready list.  The regions are atomically added
   773 // and removed from the ready list.
   775 class PSParallelCompact : AllStatic {
   776  public:
   777   // Convenient access to type names.
   778   typedef ParMarkBitMap::idx_t idx_t;
   779   typedef ParallelCompactData::RegionData RegionData;
   781   typedef enum {
   782     perm_space_id, old_space_id, eden_space_id,
   783     from_space_id, to_space_id, last_space_id
   784   } SpaceId;
   786  public:
   787   // Inline closure decls
   788   //
   789   class IsAliveClosure: public BoolObjectClosure {
   790    public:
   791     virtual void do_object(oop p);
   792     virtual bool do_object_b(oop p);
   793   };
   795   class KeepAliveClosure: public OopClosure {
   796    private:
   797     ParCompactionManager* _compaction_manager;
   798    protected:
   799     template <class T> inline void do_oop_work(T* p);
   800    public:
   801     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   802     virtual void do_oop(oop* p);
   803     virtual void do_oop(narrowOop* p);
   804   };
   806   // Current unused
   807   class FollowRootClosure: public OopsInGenClosure {
   808    private:
   809     ParCompactionManager* _compaction_manager;
   810    public:
   811     FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   812     virtual void do_oop(oop* p);
   813     virtual void do_oop(narrowOop* p);
   814  };
   816   class FollowStackClosure: public VoidClosure {
   817    private:
   818     ParCompactionManager* _compaction_manager;
   819    public:
   820     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   821     virtual void do_void();
   822   };
   824   class AdjustPointerClosure: public OopsInGenClosure {
   825    private:
   826     bool _is_root;
   827    public:
   828     AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
   829     virtual void do_oop(oop* p);
   830     virtual void do_oop(narrowOop* p);
   831     // do not walk from thread stacks to the code cache on this phase
   832     virtual void do_code_blob(CodeBlob* cb) const { }
   833   };
   835   friend class KeepAliveClosure;
   836   friend class FollowStackClosure;
   837   friend class AdjustPointerClosure;
   838   friend class FollowRootClosure;
   839   friend class instanceKlassKlass;
   840   friend class RefProcTaskProxy;
   842  private:
   843   static elapsedTimer         _accumulated_time;
   844   static unsigned int         _total_invocations;
   845   static unsigned int         _maximum_compaction_gc_num;
   846   static jlong                _time_of_last_gc;   // ms
   847   static CollectorCounters*   _counters;
   848   static ParMarkBitMap        _mark_bitmap;
   849   static ParallelCompactData  _summary_data;
   850   static IsAliveClosure       _is_alive_closure;
   851   static SpaceInfo            _space_info[last_space_id];
   852   static bool                 _print_phases;
   853   static AdjustPointerClosure _adjust_root_pointer_closure;
   854   static AdjustPointerClosure _adjust_pointer_closure;
   856   // Reference processing (used in ...follow_contents)
   857   static ReferenceProcessor*  _ref_processor;
   859   // Updated location of intArrayKlassObj.
   860   static klassOop _updated_int_array_klass_obj;
   862   // Values computed at initialization and used by dead_wood_limiter().
   863   static double _dwl_mean;
   864   static double _dwl_std_dev;
   865   static double _dwl_first_term;
   866   static double _dwl_adjustment;
   867 #ifdef  ASSERT
   868   static bool   _dwl_initialized;
   869 #endif  // #ifdef ASSERT
   871  private:
   872   // Closure accessors
   873   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
   874   static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
   875   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
   877   static void initialize_space_info();
   879   // Return true if details about individual phases should be printed.
   880   static inline bool print_phases();
   882   // Clear the marking bitmap and summary data that cover the specified space.
   883   static void clear_data_covering_space(SpaceId id);
   885   static void pre_compact(PreGCValues* pre_gc_values);
   886   static void post_compact();
   888   // Mark live objects
   889   static void marking_phase(ParCompactionManager* cm,
   890                             bool maximum_heap_compaction);
   891   static void follow_weak_klass_links();
   892   static void follow_mdo_weak_refs();
   894   template <class T> static inline void adjust_pointer(T* p, bool is_root);
   895   static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
   897   template <class T>
   898   static inline void follow_root(ParCompactionManager* cm, T* p);
   900   // Compute the dense prefix for the designated space.  This is an experimental
   901   // implementation currently not used in production.
   902   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
   903                                                     bool maximum_compaction);
   905   // Methods used to compute the dense prefix.
   907   // Compute the value of the normal distribution at x = density.  The mean and
   908   // standard deviation are values saved by initialize_dead_wood_limiter().
   909   static inline double normal_distribution(double density);
   911   // Initialize the static vars used by dead_wood_limiter().
   912   static void initialize_dead_wood_limiter();
   914   // Return the percentage of space that can be treated as "dead wood" (i.e.,
   915   // not reclaimed).
   916   static double dead_wood_limiter(double density, size_t min_percent);
   918   // Find the first (left-most) region in the range [beg, end) that has at least
   919   // dead_words of dead space to the left.  The argument beg must be the first
   920   // region in the space that is not completely live.
   921   static RegionData* dead_wood_limit_region(const RegionData* beg,
   922                                             const RegionData* end,
   923                                             size_t dead_words);
   925   // Return a pointer to the first region in the range [beg, end) that is not
   926   // completely full.
   927   static RegionData* first_dead_space_region(const RegionData* beg,
   928                                              const RegionData* end);
   930   // Return a value indicating the benefit or 'yield' if the compacted region
   931   // were to start (or equivalently if the dense prefix were to end) at the
   932   // candidate region.  Higher values are better.
   933   //
   934   // The value is based on the amount of space reclaimed vs. the costs of (a)
   935   // updating references in the dense prefix plus (b) copying objects and
   936   // updating references in the compacted region.
   937   static inline double reclaimed_ratio(const RegionData* const candidate,
   938                                        HeapWord* const bottom,
   939                                        HeapWord* const top,
   940                                        HeapWord* const new_top);
   942   // Compute the dense prefix for the designated space.
   943   static HeapWord* compute_dense_prefix(const SpaceId id,
   944                                         bool maximum_compaction);
   946   // Return true if dead space crosses onto the specified Region; bit must be
   947   // the bit index corresponding to the first word of the Region.
   948   static inline bool dead_space_crosses_boundary(const RegionData* region,
   949                                                  idx_t bit);
   951   // Summary phase utility routine to fill dead space (if any) at the dense
   952   // prefix boundary.  Should only be called if the the dense prefix is
   953   // non-empty.
   954   static void fill_dense_prefix_end(SpaceId id);
   956   // Clear the summary data source_region field for the specified addresses.
   957   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
   959 #ifndef PRODUCT
   960   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
   962   // Fill the region [start, start + words) with live object(s).  Only usable
   963   // for the old and permanent generations.
   964   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
   965                                      size_t words);
   966   // Include the new objects in the summary data.
   967   static void summarize_new_objects(SpaceId id, HeapWord* start);
   969   // Add live objects to a survivor space since it's rare that both survivors
   970   // are non-empty.
   971   static void provoke_split_fill_survivor(SpaceId id);
   973   // Add live objects and/or choose the dense prefix to provoke splitting.
   974   static void provoke_split(bool & maximum_compaction);
   975 #endif
   977   static void summarize_spaces_quick();
   978   static void summarize_space(SpaceId id, bool maximum_compaction);
   979   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
   981   // Adjust addresses in roots.  Does not adjust addresses in heap.
   982   static void adjust_roots();
   984   // Serial code executed in preparation for the compaction phase.
   985   static void compact_prologue();
   987   // Move objects to new locations.
   988   static void compact_perm(ParCompactionManager* cm);
   989   static void compact();
   991   // Add available regions to the stack and draining tasks to the task queue.
   992   static void enqueue_region_draining_tasks(GCTaskQueue* q,
   993                                             uint parallel_gc_threads);
   995   // Add dense prefix update tasks to the task queue.
   996   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
   997                                          uint parallel_gc_threads);
   999   // Add region stealing tasks to the task queue.
  1000   static void enqueue_region_stealing_tasks(
  1001                                        GCTaskQueue* q,
  1002                                        ParallelTaskTerminator* terminator_ptr,
  1003                                        uint parallel_gc_threads);
  1005   // If objects are left in eden after a collection, try to move the boundary
  1006   // and absorb them into the old gen.  Returns true if eden was emptied.
  1007   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  1008                                          PSYoungGen* young_gen,
  1009                                          PSOldGen* old_gen);
  1011   // Reset time since last full gc
  1012   static void reset_millis_since_last_gc();
  1014  protected:
  1015 #ifdef VALIDATE_MARK_SWEEP
  1016   static GrowableArray<void*>*           _root_refs_stack;
  1017   static GrowableArray<oop> *            _live_oops;
  1018   static GrowableArray<oop> *            _live_oops_moved_to;
  1019   static GrowableArray<size_t>*          _live_oops_size;
  1020   static size_t                          _live_oops_index;
  1021   static size_t                          _live_oops_index_at_perm;
  1022   static GrowableArray<void*>*           _other_refs_stack;
  1023   static GrowableArray<void*>*           _adjusted_pointers;
  1024   static bool                            _pointer_tracking;
  1025   static bool                            _root_tracking;
  1027   // The following arrays are saved since the time of the last GC and
  1028   // assist in tracking down problems where someone has done an errant
  1029   // store into the heap, usually to an oop that wasn't properly
  1030   // handleized across a GC. If we crash or otherwise fail before the
  1031   // next GC, we can query these arrays to find out the object we had
  1032   // intended to do the store to (assuming it is still alive) and the
  1033   // offset within that object. Covered under RecordMarkSweepCompaction.
  1034   static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
  1035   static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
  1036   static GrowableArray<size_t>*          _cur_gc_live_oops_size;
  1037   static GrowableArray<HeapWord*> *      _last_gc_live_oops;
  1038   static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
  1039   static GrowableArray<size_t>*          _last_gc_live_oops_size;
  1040 #endif
  1042  public:
  1043   class MarkAndPushClosure: public OopClosure {
  1044    private:
  1045     ParCompactionManager* _compaction_manager;
  1046    public:
  1047     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
  1048     virtual void do_oop(oop* p);
  1049     virtual void do_oop(narrowOop* p);
  1050   };
  1052   PSParallelCompact();
  1054   // Convenient accessor for Universe::heap().
  1055   static ParallelScavengeHeap* gc_heap() {
  1056     return (ParallelScavengeHeap*)Universe::heap();
  1059   static void invoke(bool maximum_heap_compaction);
  1060   static bool invoke_no_policy(bool maximum_heap_compaction);
  1062   static void post_initialize();
  1063   // Perform initialization for PSParallelCompact that requires
  1064   // allocations.  This should be called during the VM initialization
  1065   // at a pointer where it would be appropriate to return a JNI_ENOMEM
  1066   // in the event of a failure.
  1067   static bool initialize();
  1069   // Public accessors
  1070   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  1071   static unsigned int total_invocations() { return _total_invocations; }
  1072   static CollectorCounters* counters()    { return _counters; }
  1074   // Used to add tasks
  1075   static GCTaskManager* const gc_task_manager();
  1076   static klassOop updated_int_array_klass_obj() {
  1077     return _updated_int_array_klass_obj;
  1080   // Marking support
  1081   static inline bool mark_obj(oop obj);
  1082   // Check mark and maybe push on marking stack
  1083   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
  1084                                                       T* p);
  1086   // Compaction support.
  1087   // Return true if p is in the range [beg_addr, end_addr).
  1088   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  1089   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
  1091   // Convenience wrappers for per-space data kept in _space_info.
  1092   static inline MutableSpace*     space(SpaceId space_id);
  1093   static inline HeapWord*         new_top(SpaceId space_id);
  1094   static inline HeapWord*         dense_prefix(SpaceId space_id);
  1095   static inline ObjectStartArray* start_array(SpaceId space_id);
  1097   // Return true if the klass should be updated.
  1098   static inline bool should_update_klass(klassOop k);
  1100   // Move and update the live objects in the specified space.
  1101   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
  1103   // Process the end of the given region range in the dense prefix.
  1104   // This includes saving any object not updated.
  1105   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
  1106                                             size_t region_start_index,
  1107                                             size_t region_end_index,
  1108                                             idx_t exiting_object_offset,
  1109                                             idx_t region_offset_start,
  1110                                             idx_t region_offset_end);
  1112   // Update a region in the dense prefix.  For each live object
  1113   // in the region, update it's interior references.  For each
  1114   // dead object, fill it with deadwood. Dead space at the end
  1115   // of a region range will be filled to the start of the next
  1116   // live object regardless of the region_index_end.  None of the
  1117   // objects in the dense prefix move and dead space is dead
  1118   // (holds only dead objects that don't need any processing), so
  1119   // dead space can be filled in any order.
  1120   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  1121                                                   SpaceId space_id,
  1122                                                   size_t region_index_start,
  1123                                                   size_t region_index_end);
  1125   // Return the address of the count + 1st live word in the range [beg, end).
  1126   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
  1128   // Return the address of the word to be copied to dest_addr, which must be
  1129   // aligned to a region boundary.
  1130   static HeapWord* first_src_addr(HeapWord* const dest_addr,
  1131                                   SpaceId src_space_id,
  1132                                   size_t src_region_idx);
  1134   // Determine the next source region, set closure.source() to the start of the
  1135   // new region return the region index.  Parameter end_addr is the address one
  1136   // beyond the end of source range just processed.  If necessary, switch to a
  1137   // new source space and set src_space_id (in-out parameter) and src_space_top
  1138   // (out parameter) accordingly.
  1139   static size_t next_src_region(MoveAndUpdateClosure& closure,
  1140                                 SpaceId& src_space_id,
  1141                                 HeapWord*& src_space_top,
  1142                                 HeapWord* end_addr);
  1144   // Decrement the destination count for each non-empty source region in the
  1145   // range [beg_region, region(region_align_up(end_addr))).  If the destination
  1146   // count for a region goes to 0 and it needs to be filled, enqueue it.
  1147   static void decrement_destination_counts(ParCompactionManager* cm,
  1148                                            SpaceId src_space_id,
  1149                                            size_t beg_region,
  1150                                            HeapWord* end_addr);
  1152   // Fill a region, copying objects from one or more source regions.
  1153   static void fill_region(ParCompactionManager* cm, size_t region_idx);
  1154   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
  1155     fill_region(cm, region);
  1158   // Update the deferred objects in the space.
  1159   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
  1161   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  1162   static ParallelCompactData& summary_data() { return _summary_data; }
  1164   static inline void adjust_pointer(oop* p)       { adjust_pointer(p, false); }
  1165   static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
  1167   // Reference Processing
  1168   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
  1170   // Return the SpaceId for the given address.
  1171   static SpaceId space_id(HeapWord* addr);
  1173   // Time since last full gc (in milliseconds).
  1174   static jlong millis_since_last_gc();
  1176 #ifdef VALIDATE_MARK_SWEEP
  1177   static void track_adjusted_pointer(void* p, bool isroot);
  1178   static void check_adjust_pointer(void* p);
  1179   static void track_interior_pointers(oop obj);
  1180   static void check_interior_pointers();
  1182   static void reset_live_oop_tracking(bool at_perm);
  1183   static void register_live_oop(oop p, size_t size);
  1184   static void validate_live_oop(oop p, size_t size);
  1185   static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
  1186   static void compaction_complete();
  1188   // Querying operation of RecordMarkSweepCompaction results.
  1189   // Finds and prints the current base oop and offset for a word
  1190   // within an oop that was live during the last GC. Helpful for
  1191   // tracking down heap stomps.
  1192   static void print_new_location_of_heap_address(HeapWord* q);
  1193 #endif  // #ifdef VALIDATE_MARK_SWEEP
  1195   // Call backs for class unloading
  1196   // Update subklass/sibling/implementor links at end of marking.
  1197   static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
  1199   // Clear unmarked oops in MDOs at the end of marking.
  1200   static void revisit_mdo(ParCompactionManager* cm, DataLayout* p);
  1202 #ifndef PRODUCT
  1203   // Debugging support.
  1204   static const char* space_names[last_space_id];
  1205   static void print_region_ranges();
  1206   static void print_dense_prefix_stats(const char* const algorithm,
  1207                                        const SpaceId id,
  1208                                        const bool maximum_compaction,
  1209                                        HeapWord* const addr);
  1210   static void summary_phase_msg(SpaceId dst_space_id,
  1211                                 HeapWord* dst_beg, HeapWord* dst_end,
  1212                                 SpaceId src_space_id,
  1213                                 HeapWord* src_beg, HeapWord* src_end);
  1214 #endif  // #ifndef PRODUCT
  1216 #ifdef  ASSERT
  1217   // Sanity check the new location of a word in the heap.
  1218   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
  1219   // Verify that all the regions have been emptied.
  1220   static void verify_complete(SpaceId space_id);
  1221 #endif  // #ifdef ASSERT
  1222 };
  1224 inline bool PSParallelCompact::mark_obj(oop obj) {
  1225   const int obj_size = obj->size();
  1226   if (mark_bitmap()->mark_obj(obj, obj_size)) {
  1227     _summary_data.add_obj(obj, obj_size);
  1228     return true;
  1229   } else {
  1230     return false;
  1234 template <class T>
  1235 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  1236   assert(!Universe::heap()->is_in_reserved(p),
  1237          "roots shouldn't be things within the heap");
  1238 #ifdef VALIDATE_MARK_SWEEP
  1239   if (ValidateMarkSweep) {
  1240     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
  1241     _root_refs_stack->push(p);
  1243 #endif
  1244   T heap_oop = oopDesc::load_heap_oop(p);
  1245   if (!oopDesc::is_null(heap_oop)) {
  1246     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1247     if (mark_bitmap()->is_unmarked(obj)) {
  1248       if (mark_obj(obj)) {
  1249         obj->follow_contents(cm);
  1253   cm->follow_marking_stacks();
  1256 template <class T>
  1257 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  1258   T heap_oop = oopDesc::load_heap_oop(p);
  1259   if (!oopDesc::is_null(heap_oop)) {
  1260     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1261     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
  1262       cm->push(obj);
  1267 template <class T>
  1268 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
  1269   T heap_oop = oopDesc::load_heap_oop(p);
  1270   if (!oopDesc::is_null(heap_oop)) {
  1271     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
  1272     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
  1273     assert(new_obj != NULL ||                     // is forwarding ptr?
  1274            obj->is_shared(),                      // never forwarded?
  1275            "should be forwarded");
  1276     // Just always do the update unconditionally?
  1277     if (new_obj != NULL) {
  1278       assert(Universe::heap()->is_in_reserved(new_obj),
  1279              "should be in object space");
  1280       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
  1283   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
  1286 template <class T>
  1287 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  1288 #ifdef VALIDATE_MARK_SWEEP
  1289   if (ValidateMarkSweep) {
  1290     if (!Universe::heap()->is_in_reserved(p)) {
  1291       _root_refs_stack->push(p);
  1292     } else {
  1293       _other_refs_stack->push(p);
  1296 #endif
  1297   mark_and_push(_compaction_manager, p);
  1300 inline bool PSParallelCompact::print_phases() {
  1301   return _print_phases;
  1304 inline double PSParallelCompact::normal_distribution(double density) {
  1305   assert(_dwl_initialized, "uninitialized");
  1306   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  1307   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
  1310 inline bool
  1311 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
  1312                                                idx_t bit)
  1314   assert(bit > 0, "cannot call this for the first bit/region");
  1315   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
  1316          "sanity check");
  1318   // Dead space crosses the boundary if (1) a partial object does not extend
  1319   // onto the region, (2) an object does not start at the beginning of the
  1320   // region, and (3) an object does not end at the end of the prior region.
  1321   return region->partial_obj_size() == 0 &&
  1322     !_mark_bitmap.is_obj_beg(bit) &&
  1323     !_mark_bitmap.is_obj_end(bit - 1);
  1326 inline bool
  1327 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1328   return p >= beg_addr && p < end_addr;
  1331 inline bool
  1332 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1333   return is_in((HeapWord*)p, beg_addr, end_addr);
  1336 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  1337   assert(id < last_space_id, "id out of range");
  1338   return _space_info[id].space();
  1341 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  1342   assert(id < last_space_id, "id out of range");
  1343   return _space_info[id].new_top();
  1346 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  1347   assert(id < last_space_id, "id out of range");
  1348   return _space_info[id].dense_prefix();
  1351 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  1352   assert(id < last_space_id, "id out of range");
  1353   return _space_info[id].start_array();
  1356 inline bool PSParallelCompact::should_update_klass(klassOop k) {
  1357   return ((HeapWord*) k) >= dense_prefix(perm_space_id);
  1360 #ifdef ASSERT
  1361 inline void
  1362 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
  1364   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
  1365          "must move left or to a different space");
  1366   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
  1367          "checking alignment");
  1369 #endif // ASSERT
  1371 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
  1372  public:
  1373   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
  1374                               ObjectStartArray* start_array,
  1375                               HeapWord* destination, size_t words);
  1377   // Accessors.
  1378   HeapWord* destination() const         { return _destination; }
  1380   // If the object will fit (size <= words_remaining()), copy it to the current
  1381   // destination, update the interior oops and the start array and return either
  1382   // full (if the closure is full) or incomplete.  If the object will not fit,
  1383   // return would_overflow.
  1384   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
  1386   // Copy enough words to fill this closure, starting at source().  Interior
  1387   // oops and the start array are not updated.  Return full.
  1388   IterationStatus copy_until_full();
  1390   // Copy enough words to fill this closure or to the end of an object,
  1391   // whichever is smaller, starting at source().  Interior oops and the start
  1392   // array are not updated.
  1393   void copy_partial_obj();
  1395  protected:
  1396   // Update variables to indicate that word_count words were processed.
  1397   inline void update_state(size_t word_count);
  1399  protected:
  1400   ObjectStartArray* const _start_array;
  1401   HeapWord*               _destination;         // Next addr to be written.
  1402 };
  1404 inline
  1405 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
  1406                                            ParCompactionManager* cm,
  1407                                            ObjectStartArray* start_array,
  1408                                            HeapWord* destination,
  1409                                            size_t words) :
  1410   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
  1412   _destination = destination;
  1415 inline void MoveAndUpdateClosure::update_state(size_t words)
  1417   decrement_words_remaining(words);
  1418   _source += words;
  1419   _destination += words;
  1422 class UpdateOnlyClosure: public ParMarkBitMapClosure {
  1423  private:
  1424   const PSParallelCompact::SpaceId _space_id;
  1425   ObjectStartArray* const          _start_array;
  1427  public:
  1428   UpdateOnlyClosure(ParMarkBitMap* mbm,
  1429                     ParCompactionManager* cm,
  1430                     PSParallelCompact::SpaceId space_id);
  1432   // Update the object.
  1433   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
  1435   inline void do_addr(HeapWord* addr);
  1436 };
  1438 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
  1440   _start_array->allocate_block(addr);
  1441   oop(addr)->update_contents(compaction_manager());
  1444 class FillClosure: public ParMarkBitMapClosure
  1446 public:
  1447   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
  1448     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
  1449     _start_array(PSParallelCompact::start_array(space_id))
  1451     assert(space_id == PSParallelCompact::perm_space_id ||
  1452            space_id == PSParallelCompact::old_space_id,
  1453            "cannot use FillClosure in the young gen");
  1456   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
  1457     CollectedHeap::fill_with_objects(addr, size);
  1458     HeapWord* const end = addr + size;
  1459     do {
  1460       _start_array->allocate_block(addr);
  1461       addr += oop(addr)->size();
  1462     } while (addr < end);
  1463     return ParMarkBitMap::incomplete;
  1466 private:
  1467   ObjectStartArray* const _start_array;
  1468 };
  1470 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial