src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp

Fri, 16 Mar 2012 16:14:04 +0100

author
nloodin
date
Fri, 16 Mar 2012 16:14:04 +0100
changeset 3665
8a729074feae
parent 3540
ab4422d0ed59
child 3767
9d679effd28c
permissions
-rw-r--r--

7154517: Build error in hotspot-gc without precompiled headers
Reviewed-by: jcoomes, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    34 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    35 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
    36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    37 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    38 #include "gc_implementation/shared/isGCActiveMark.hpp"
    39 #include "gc_implementation/shared/spaceDecorator.hpp"
    40 #include "gc_interface/gcCause.hpp"
    41 #include "memory/gcLocker.inline.hpp"
    42 #include "memory/referencePolicy.hpp"
    43 #include "memory/referenceProcessor.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/fprofiler.hpp"
    47 #include "runtime/safepoint.hpp"
    48 #include "runtime/vmThread.hpp"
    49 #include "services/management.hpp"
    50 #include "services/memoryService.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/stack.inline.hpp"
    54 elapsedTimer        PSMarkSweep::_accumulated_time;
    55 unsigned int        PSMarkSweep::_total_invocations = 0;
    56 jlong               PSMarkSweep::_time_of_last_gc   = 0;
    57 CollectorCounters*  PSMarkSweep::_counters = NULL;
    59 void PSMarkSweep::initialize() {
    60   MemRegion mr = Universe::heap()->reserved_region();
    61   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
    62   _counters = new CollectorCounters("PSMarkSweep", 1);
    63 }
    65 // This method contains all heap specific policy for invoking mark sweep.
    66 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
    67 // the heap. It will do nothing further. If we need to bail out for policy
    68 // reasons, scavenge before full gc, or any other specialized behavior, it
    69 // needs to be added here.
    70 //
    71 // Note that this method should only be called from the vm_thread while
    72 // at a safepoint!
    73 //
    74 // Note that the all_soft_refs_clear flag in the collector policy
    75 // may be true because this method can be called without intervening
    76 // activity.  For example when the heap space is tight and full measure
    77 // are being taken to free space.
    79 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
    80   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    81   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
    82   assert(!Universe::heap()->is_gc_active(), "not reentrant");
    84   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    85   GCCause::Cause gc_cause = heap->gc_cause();
    86   PSAdaptiveSizePolicy* policy = heap->size_policy();
    87   IsGCActiveMark mark;
    89   if (ScavengeBeforeFullGC) {
    90     PSScavenge::invoke_no_policy();
    91   }
    93   const bool clear_all_soft_refs =
    94     heap->collector_policy()->should_clear_all_soft_refs();
    96   int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
    97   IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
    98   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
    99 }
   101 // This method contains no policy. You should probably
   102 // be calling invoke() instead.
   103 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
   104   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
   105   assert(ref_processor() != NULL, "Sanity");
   107   if (GC_locker::check_active_before_gc()) {
   108     return false;
   109   }
   111   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   112   GCCause::Cause gc_cause = heap->gc_cause();
   113   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   114   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   116   // The scope of casr should end after code that can change
   117   // CollectorPolicy::_should_clear_all_soft_refs.
   118   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
   120   PSYoungGen* young_gen = heap->young_gen();
   121   PSOldGen* old_gen = heap->old_gen();
   122   PSPermGen* perm_gen = heap->perm_gen();
   124   // Increment the invocation count
   125   heap->increment_total_collections(true /* full */);
   127   // Save information needed to minimize mangling
   128   heap->record_gen_tops_before_GC();
   130   // We need to track unique mark sweep invocations as well.
   131   _total_invocations++;
   133   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   135   heap->print_heap_before_gc();
   137   // Fill in TLABs
   138   heap->accumulate_statistics_all_tlabs();
   139   heap->ensure_parsability(true);  // retire TLABs
   141   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   142     HandleMark hm;  // Discard invalid handles created during verification
   143     gclog_or_tty->print(" VerifyBeforeGC:");
   144     Universe::verify(true);
   145   }
   147   // Verify object start arrays
   148   if (VerifyObjectStartArray &&
   149       VerifyBeforeGC) {
   150     old_gen->verify_object_start_array();
   151     perm_gen->verify_object_start_array();
   152   }
   154   heap->pre_full_gc_dump();
   156   // Filled in below to track the state of the young gen after the collection.
   157   bool eden_empty;
   158   bool survivors_empty;
   159   bool young_gen_empty;
   161   {
   162     HandleMark hm;
   163     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
   164     // This is useful for debugging but don't change the output the
   165     // the customer sees.
   166     const char* gc_cause_str = "Full GC";
   167     if (is_system_gc && PrintGCDetails) {
   168       gc_cause_str = "Full GC (System)";
   169     }
   170     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   171     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   172     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
   173     TraceCollectorStats tcs(counters());
   174     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
   176     if (TraceGen1Time) accumulated_time()->start();
   178     // Let the size policy know we're starting
   179     size_policy->major_collection_begin();
   181     // When collecting the permanent generation methodOops may be moving,
   182     // so we either have to flush all bcp data or convert it into bci.
   183     CodeCache::gc_prologue();
   184     Threads::gc_prologue();
   185     BiasedLocking::preserve_marks();
   187     // Capture heap size before collection for printing.
   188     size_t prev_used = heap->used();
   190     // Capture perm gen size before collection for sizing.
   191     size_t perm_gen_prev_used = perm_gen->used_in_bytes();
   193     // For PrintGCDetails
   194     size_t old_gen_prev_used = old_gen->used_in_bytes();
   195     size_t young_gen_prev_used = young_gen->used_in_bytes();
   197     allocate_stacks();
   199     COMPILER2_PRESENT(DerivedPointerTable::clear());
   201     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   202     ref_processor()->setup_policy(clear_all_softrefs);
   204     mark_sweep_phase1(clear_all_softrefs);
   206     mark_sweep_phase2();
   208     // Don't add any more derived pointers during phase3
   209     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
   210     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
   212     mark_sweep_phase3();
   214     mark_sweep_phase4();
   216     restore_marks();
   218     deallocate_stacks();
   220     if (ZapUnusedHeapArea) {
   221       // Do a complete mangle (top to end) because the usage for
   222       // scratch does not maintain a top pointer.
   223       young_gen->to_space()->mangle_unused_area_complete();
   224     }
   226     eden_empty = young_gen->eden_space()->is_empty();
   227     if (!eden_empty) {
   228       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
   229     }
   231     // Update heap occupancy information which is used as
   232     // input to soft ref clearing policy at the next gc.
   233     Universe::update_heap_info_at_gc();
   235     survivors_empty = young_gen->from_space()->is_empty() &&
   236                       young_gen->to_space()->is_empty();
   237     young_gen_empty = eden_empty && survivors_empty;
   239     BarrierSet* bs = heap->barrier_set();
   240     if (bs->is_a(BarrierSet::ModRef)) {
   241       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
   242       MemRegion old_mr = heap->old_gen()->reserved();
   243       MemRegion perm_mr = heap->perm_gen()->reserved();
   244       assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
   246       if (young_gen_empty) {
   247         modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
   248       } else {
   249         modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
   250       }
   251     }
   253     BiasedLocking::restore_marks();
   254     Threads::gc_epilogue();
   255     CodeCache::gc_epilogue();
   256     JvmtiExport::gc_epilogue();
   258     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   260     ref_processor()->enqueue_discovered_references(NULL);
   262     // Update time of last GC
   263     reset_millis_since_last_gc();
   265     // Let the size policy know we're done
   266     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
   268     if (UseAdaptiveSizePolicy) {
   270       if (PrintAdaptiveSizePolicy) {
   271         gclog_or_tty->print("AdaptiveSizeStart: ");
   272         gclog_or_tty->stamp();
   273         gclog_or_tty->print_cr(" collection: %d ",
   274                        heap->total_collections());
   275         if (Verbose) {
   276           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
   277             " perm_gen_capacity: %d ",
   278             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
   279             perm_gen->capacity_in_bytes());
   280         }
   281       }
   283       // Don't check if the size_policy is ready here.  Let
   284       // the size_policy check that internally.
   285       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
   286           ((gc_cause != GCCause::_java_lang_system_gc) ||
   287             UseAdaptiveSizePolicyWithSystemGC)) {
   288         // Calculate optimal free space amounts
   289         assert(young_gen->max_size() >
   290           young_gen->from_space()->capacity_in_bytes() +
   291           young_gen->to_space()->capacity_in_bytes(),
   292           "Sizes of space in young gen are out-of-bounds");
   293         size_t max_eden_size = young_gen->max_size() -
   294           young_gen->from_space()->capacity_in_bytes() -
   295           young_gen->to_space()->capacity_in_bytes();
   296         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   297                                  young_gen->eden_space()->used_in_bytes(),
   298                                  old_gen->used_in_bytes(),
   299                                  perm_gen->used_in_bytes(),
   300                                  young_gen->eden_space()->capacity_in_bytes(),
   301                                  old_gen->max_gen_size(),
   302                                  max_eden_size,
   303                                  true /* full gc*/,
   304                                  gc_cause,
   305                                  heap->collector_policy());
   307         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
   309         // Don't resize the young generation at an major collection.  A
   310         // desired young generation size may have been calculated but
   311         // resizing the young generation complicates the code because the
   312         // resizing of the old generation may have moved the boundary
   313         // between the young generation and the old generation.  Let the
   314         // young generation resizing happen at the minor collections.
   315       }
   316       if (PrintAdaptiveSizePolicy) {
   317         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   318                        heap->total_collections());
   319       }
   320     }
   322     if (UsePerfData) {
   323       heap->gc_policy_counters()->update_counters();
   324       heap->gc_policy_counters()->update_old_capacity(
   325         old_gen->capacity_in_bytes());
   326       heap->gc_policy_counters()->update_young_capacity(
   327         young_gen->capacity_in_bytes());
   328     }
   330     heap->resize_all_tlabs();
   332     // We collected the perm gen, so we'll resize it here.
   333     perm_gen->compute_new_size(perm_gen_prev_used);
   335     if (TraceGen1Time) accumulated_time()->stop();
   337     if (PrintGC) {
   338       if (PrintGCDetails) {
   339         // Don't print a GC timestamp here.  This is after the GC so
   340         // would be confusing.
   341         young_gen->print_used_change(young_gen_prev_used);
   342         old_gen->print_used_change(old_gen_prev_used);
   343       }
   344       heap->print_heap_change(prev_used);
   345       // Do perm gen after heap becase prev_used does
   346       // not include the perm gen (done this way in the other
   347       // collectors).
   348       if (PrintGCDetails) {
   349         perm_gen->print_used_change(perm_gen_prev_used);
   350       }
   351     }
   353     // Track memory usage and detect low memory
   354     MemoryService::track_memory_usage();
   355     heap->update_counters();
   356   }
   358   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   359     HandleMark hm;  // Discard invalid handles created during verification
   360     gclog_or_tty->print(" VerifyAfterGC:");
   361     Universe::verify(false);
   362   }
   364   // Re-verify object start arrays
   365   if (VerifyObjectStartArray &&
   366       VerifyAfterGC) {
   367     old_gen->verify_object_start_array();
   368     perm_gen->verify_object_start_array();
   369   }
   371   if (ZapUnusedHeapArea) {
   372     old_gen->object_space()->check_mangled_unused_area_complete();
   373     perm_gen->object_space()->check_mangled_unused_area_complete();
   374   }
   376   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   378   heap->print_heap_after_gc();
   380   heap->post_full_gc_dump();
   382 #ifdef TRACESPINNING
   383   ParallelTaskTerminator::print_termination_counts();
   384 #endif
   386   return true;
   387 }
   389 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   390                                              PSYoungGen* young_gen,
   391                                              PSOldGen* old_gen) {
   392   MutableSpace* const eden_space = young_gen->eden_space();
   393   assert(!eden_space->is_empty(), "eden must be non-empty");
   394   assert(young_gen->virtual_space()->alignment() ==
   395          old_gen->virtual_space()->alignment(), "alignments do not match");
   397   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
   398     return false;
   399   }
   401   // Both generations must be completely committed.
   402   if (young_gen->virtual_space()->uncommitted_size() != 0) {
   403     return false;
   404   }
   405   if (old_gen->virtual_space()->uncommitted_size() != 0) {
   406     return false;
   407   }
   409   // Figure out how much to take from eden.  Include the average amount promoted
   410   // in the total; otherwise the next young gen GC will simply bail out to a
   411   // full GC.
   412   const size_t alignment = old_gen->virtual_space()->alignment();
   413   const size_t eden_used = eden_space->used_in_bytes();
   414   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
   415   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
   416   const size_t eden_capacity = eden_space->capacity_in_bytes();
   418   if (absorb_size >= eden_capacity) {
   419     return false; // Must leave some space in eden.
   420   }
   422   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
   423   if (new_young_size < young_gen->min_gen_size()) {
   424     return false; // Respect young gen minimum size.
   425   }
   427   if (TraceAdaptiveGCBoundary && Verbose) {
   428     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
   429                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
   430                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
   431                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
   432                         absorb_size / K,
   433                         eden_capacity / K, (eden_capacity - absorb_size) / K,
   434                         young_gen->from_space()->used_in_bytes() / K,
   435                         young_gen->to_space()->used_in_bytes() / K,
   436                         young_gen->capacity_in_bytes() / K, new_young_size / K);
   437   }
   439   // Fill the unused part of the old gen.
   440   MutableSpace* const old_space = old_gen->object_space();
   441   HeapWord* const unused_start = old_space->top();
   442   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
   444   if (unused_words > 0) {
   445     if (unused_words < CollectedHeap::min_fill_size()) {
   446       return false;  // If the old gen cannot be filled, must give up.
   447     }
   448     CollectedHeap::fill_with_objects(unused_start, unused_words);
   449   }
   451   // Take the live data from eden and set both top and end in the old gen to
   452   // eden top.  (Need to set end because reset_after_change() mangles the region
   453   // from end to virtual_space->high() in debug builds).
   454   HeapWord* const new_top = eden_space->top();
   455   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
   456                                         absorb_size);
   457   young_gen->reset_after_change();
   458   old_space->set_top(new_top);
   459   old_space->set_end(new_top);
   460   old_gen->reset_after_change();
   462   // Update the object start array for the filler object and the data from eden.
   463   ObjectStartArray* const start_array = old_gen->start_array();
   464   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
   465     start_array->allocate_block(p);
   466   }
   468   // Could update the promoted average here, but it is not typically updated at
   469   // full GCs and the value to use is unclear.  Something like
   470   //
   471   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
   473   size_policy->set_bytes_absorbed_from_eden(absorb_size);
   474   return true;
   475 }
   477 void PSMarkSweep::allocate_stacks() {
   478   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   479   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   481   PSYoungGen* young_gen = heap->young_gen();
   483   MutableSpace* to_space = young_gen->to_space();
   484   _preserved_marks = (PreservedMark*)to_space->top();
   485   _preserved_count = 0;
   487   // We want to calculate the size in bytes first.
   488   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
   489   // Now divide by the size of a PreservedMark
   490   _preserved_count_max /= sizeof(PreservedMark);
   491 }
   494 void PSMarkSweep::deallocate_stacks() {
   495   _preserved_mark_stack.clear(true);
   496   _preserved_oop_stack.clear(true);
   497   _marking_stack.clear();
   498   _objarray_stack.clear(true);
   499   _revisit_klass_stack.clear(true);
   500   _revisit_mdo_stack.clear(true);
   501 }
   503 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
   504   // Recursively traverse all live objects and mark them
   505   TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
   506   trace(" 1");
   508   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   509   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   511   // General strong roots.
   512   {
   513     ParallelScavengeHeap::ParStrongRootsScope psrs;
   514     Universe::oops_do(mark_and_push_closure());
   515     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
   516     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
   517     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
   518     ObjectSynchronizer::oops_do(mark_and_push_closure());
   519     FlatProfiler::oops_do(mark_and_push_closure());
   520     Management::oops_do(mark_and_push_closure());
   521     JvmtiExport::oops_do(mark_and_push_closure());
   522     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
   523     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
   524     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
   525   }
   527   // Flush marking stack.
   528   follow_stack();
   530   // Process reference objects found during marking
   531   {
   532     ref_processor()->setup_policy(clear_all_softrefs);
   533     ref_processor()->process_discovered_references(
   534       is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL);
   535   }
   537   // Follow system dictionary roots and unload classes
   538   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
   540   // Follow code cache roots
   541   CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
   542                           purged_class);
   543   follow_stack(); // Flush marking stack
   545   // Update subklass/sibling/implementor links of live klasses
   546   follow_weak_klass_links();
   547   assert(_marking_stack.is_empty(), "just drained");
   549   // Visit memoized mdo's and clear unmarked weak refs
   550   follow_mdo_weak_refs();
   551   assert(_marking_stack.is_empty(), "just drained");
   553   // Visit interned string tables and delete unmarked oops
   554   StringTable::unlink(is_alive_closure());
   555   // Clean up unreferenced symbols in symbol table.
   556   SymbolTable::unlink();
   558   assert(_marking_stack.is_empty(), "stack should be empty by now");
   559 }
   562 void PSMarkSweep::mark_sweep_phase2() {
   563   TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
   564   trace("2");
   566   // Now all live objects are marked, compute the new object addresses.
   568   // It is imperative that we traverse perm_gen LAST. If dead space is
   569   // allowed a range of dead object may get overwritten by a dead int
   570   // array. If perm_gen is not traversed last a klassOop may get
   571   // overwritten. This is fine since it is dead, but if the class has dead
   572   // instances we have to skip them, and in order to find their size we
   573   // need the klassOop!
   574   //
   575   // It is not required that we traverse spaces in the same order in
   576   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
   577   // tracking expects us to do so. See comment under phase4.
   579   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   580   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   582   PSOldGen* old_gen = heap->old_gen();
   583   PSPermGen* perm_gen = heap->perm_gen();
   585   // Begin compacting into the old gen
   586   PSMarkSweepDecorator::set_destination_decorator_tenured();
   588   // This will also compact the young gen spaces.
   589   old_gen->precompact();
   591   // Compact the perm gen into the perm gen
   592   PSMarkSweepDecorator::set_destination_decorator_perm_gen();
   594   perm_gen->precompact();
   595 }
   597 // This should be moved to the shared markSweep code!
   598 class PSAlwaysTrueClosure: public BoolObjectClosure {
   599 public:
   600   void do_object(oop p) { ShouldNotReachHere(); }
   601   bool do_object_b(oop p) { return true; }
   602 };
   603 static PSAlwaysTrueClosure always_true;
   605 void PSMarkSweep::mark_sweep_phase3() {
   606   // Adjust the pointers to reflect the new locations
   607   TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
   608   trace("3");
   610   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   611   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   613   PSYoungGen* young_gen = heap->young_gen();
   614   PSOldGen* old_gen = heap->old_gen();
   615   PSPermGen* perm_gen = heap->perm_gen();
   617   // General strong roots.
   618   Universe::oops_do(adjust_root_pointer_closure());
   619   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
   620   Threads::oops_do(adjust_root_pointer_closure(), NULL);
   621   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
   622   FlatProfiler::oops_do(adjust_root_pointer_closure());
   623   Management::oops_do(adjust_root_pointer_closure());
   624   JvmtiExport::oops_do(adjust_root_pointer_closure());
   625   // SO_AllClasses
   626   SystemDictionary::oops_do(adjust_root_pointer_closure());
   627   //CodeCache::scavenge_root_nmethods_oops_do(adjust_root_pointer_closure());
   629   // Now adjust pointers in remaining weak roots.  (All of which should
   630   // have been cleared if they pointed to non-surviving objects.)
   631   // Global (weak) JNI handles
   632   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
   634   CodeCache::oops_do(adjust_pointer_closure());
   635   StringTable::oops_do(adjust_root_pointer_closure());
   636   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
   637   PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
   639   adjust_marks();
   641   young_gen->adjust_pointers();
   642   old_gen->adjust_pointers();
   643   perm_gen->adjust_pointers();
   644 }
   646 void PSMarkSweep::mark_sweep_phase4() {
   647   EventMark m("4 compact heap");
   648   TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
   649   trace("4");
   651   // All pointers are now adjusted, move objects accordingly
   653   // It is imperative that we traverse perm_gen first in phase4. All
   654   // classes must be allocated earlier than their instances, and traversing
   655   // perm_gen first makes sure that all klassOops have moved to their new
   656   // location before any instance does a dispatch through it's klass!
   657   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   658   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   660   PSYoungGen* young_gen = heap->young_gen();
   661   PSOldGen* old_gen = heap->old_gen();
   662   PSPermGen* perm_gen = heap->perm_gen();
   664   perm_gen->compact();
   665   old_gen->compact();
   666   young_gen->compact();
   667 }
   669 jlong PSMarkSweep::millis_since_last_gc() {
   670   // We need a monotonically non-deccreasing time in ms but
   671   // os::javaTimeMillis() does not guarantee monotonicity.
   672   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   673   jlong ret_val = now - _time_of_last_gc;
   674   // XXX See note in genCollectedHeap::millis_since_last_gc().
   675   if (ret_val < 0) {
   676     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
   677     return 0;
   678   }
   679   return ret_val;
   680 }
   682 void PSMarkSweep::reset_millis_since_last_gc() {
   683   // We need a monotonically non-deccreasing time in ms but
   684   // os::javaTimeMillis() does not guarantee monotonicity.
   685   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   686 }

mercurial