src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Fri, 16 Mar 2012 16:14:04 +0100

author
nloodin
date
Fri, 16 Mar 2012 16:14:04 +0100
changeset 3665
8a729074feae
parent 3294
bca17e38de00
child 3712
dde53abda3d6
permissions
-rw-r--r--

7154517: Build error in hotspot-gc without precompiled headers
Reviewed-by: jcoomes, brutisso

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    27 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    28 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    29 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    30 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "oops/oop.psgc.inline.hpp"
    34 // Checks an individual oop for missing precise marks. Mark
    35 // may be either dirty or newgen.
    36 class CheckForUnmarkedOops : public OopClosure {
    37  private:
    38   PSYoungGen*         _young_gen;
    39   CardTableExtension* _card_table;
    40   HeapWord*           _unmarked_addr;
    41   jbyte*              _unmarked_card;
    43  protected:
    44   template <class T> void do_oop_work(T* p) {
    45     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    46     if (_young_gen->is_in_reserved(obj) &&
    47         !_card_table->addr_is_marked_imprecise(p)) {
    48       // Don't overwrite the first missing card mark
    49       if (_unmarked_addr == NULL) {
    50         _unmarked_addr = (HeapWord*)p;
    51         _unmarked_card = _card_table->byte_for(p);
    52       }
    53     }
    54   }
    56  public:
    57   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
    58     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    60   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
    61   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
    63   bool has_unmarked_oop() {
    64     return _unmarked_addr != NULL;
    65   }
    66 };
    68 // Checks all objects for the existance of some type of mark,
    69 // precise or imprecise, dirty or newgen.
    70 class CheckForUnmarkedObjects : public ObjectClosure {
    71  private:
    72   PSYoungGen*         _young_gen;
    73   CardTableExtension* _card_table;
    75  public:
    76   CheckForUnmarkedObjects() {
    77     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    78     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    80     _young_gen = heap->young_gen();
    81     _card_table = (CardTableExtension*)heap->barrier_set();
    82     // No point in asserting barrier set type here. Need to make CardTableExtension
    83     // a unique barrier set type.
    84   }
    86   // Card marks are not precise. The current system can leave us with
    87   // a mismash of precise marks and beginning of object marks. This means
    88   // we test for missing precise marks first. If any are found, we don't
    89   // fail unless the object head is also unmarked.
    90   virtual void do_object(oop obj) {
    91     CheckForUnmarkedOops object_check(_young_gen, _card_table);
    92     obj->oop_iterate(&object_check);
    93     if (object_check.has_unmarked_oop()) {
    94       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    95     }
    96   }
    97 };
    99 // Checks for precise marking of oops as newgen.
   100 class CheckForPreciseMarks : public OopClosure {
   101  private:
   102   PSYoungGen*         _young_gen;
   103   CardTableExtension* _card_table;
   105  protected:
   106   template <class T> void do_oop_work(T* p) {
   107     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   108     if (_young_gen->is_in_reserved(obj)) {
   109       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
   110       _card_table->set_card_newgen(p);
   111     }
   112   }
   114  public:
   115   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
   116     _young_gen(young_gen), _card_table(card_table) { }
   118   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
   119   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
   120 };
   122 // We get passed the space_top value to prevent us from traversing into
   123 // the old_gen promotion labs, which cannot be safely parsed.
   124 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
   125                                            MutableSpace* sp,
   126                                            HeapWord* space_top,
   127                                            PSPromotionManager* pm)
   128 {
   129   assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
   130   assert(start_array->covered_region().contains(sp->used_region()),
   131          "ObjectStartArray does not cover space");
   133   if (sp->not_empty()) {
   134     oop* sp_top = (oop*)space_top;
   135     oop* prev_top = NULL;
   136     jbyte* current_card = byte_for(sp->bottom());
   137     jbyte* end_card     = byte_for(sp_top - 1);    // sp_top is exclusive
   138     // scan card marking array
   139     while (current_card <= end_card) {
   140       jbyte value = *current_card;
   141       // skip clean cards
   142       if (card_is_clean(value)) {
   143         current_card++;
   144       } else {
   145         // we found a non-clean card
   146         jbyte* first_nonclean_card = current_card++;
   147         oop* bottom = (oop*)addr_for(first_nonclean_card);
   148         // find object starting on card
   149         oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   150         // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   151         assert(bottom_obj <= bottom, "just checking");
   152         // make sure we don't scan oops we already looked at
   153         if (bottom < prev_top) bottom = prev_top;
   154         // figure out when to stop scanning
   155         jbyte* first_clean_card;
   156         oop* top;
   157         bool restart_scanning;
   158         do {
   159           restart_scanning = false;
   160           // find a clean card
   161           while (current_card <= end_card) {
   162             value = *current_card;
   163             if (card_is_clean(value)) break;
   164             current_card++;
   165           }
   166           // check if we reached the end, if so we are done
   167           if (current_card >= end_card) {
   168             first_clean_card = end_card + 1;
   169             current_card++;
   170             top = sp_top;
   171           } else {
   172             // we have a clean card, find object starting on that card
   173             first_clean_card = current_card++;
   174             top = (oop*)addr_for(first_clean_card);
   175             oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
   176             // top_obj = (oop*)start_array->object_start((HeapWord*)top);
   177             assert(top_obj <= top, "just checking");
   178             if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   179               // an arrayOop is starting on the clean card - since we do exact store
   180               // checks for objArrays we are done
   181             } else {
   182               // otherwise, it is possible that the object starting on the clean card
   183               // spans the entire card, and that the store happened on a later card.
   184               // figure out where the object ends
   185               top = top_obj + oop(top_obj)->size();
   186               jbyte* top_card = CardTableModRefBS::byte_for(top - 1);   // top is exclusive
   187               if (top_card > first_clean_card) {
   188                 // object ends a different card
   189                 current_card = top_card + 1;
   190                 if (card_is_clean(*top_card)) {
   191                   // the ending card is clean, we are done
   192                   first_clean_card = top_card;
   193                 } else {
   194                   // the ending card is not clean, continue scanning at start of do-while
   195                   restart_scanning = true;
   196                 }
   197               } else {
   198                 // object ends on the clean card, we are done.
   199                 assert(first_clean_card == top_card, "just checking");
   200               }
   201             }
   202           }
   203         } while (restart_scanning);
   204         // we know which cards to scan, now clear them
   205         while (first_nonclean_card < first_clean_card) {
   206           *first_nonclean_card++ = clean_card;
   207         }
   208         // scan oops in objects
   209         do {
   210           oop(bottom_obj)->push_contents(pm);
   211           bottom_obj += oop(bottom_obj)->size();
   212           assert(bottom_obj <= sp_top, "just checking");
   213         } while (bottom_obj < top);
   214         pm->drain_stacks_cond_depth();
   215         // remember top oop* scanned
   216         prev_top = top;
   217       }
   218     }
   219   }
   220 }
   222 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   223                                                     MutableSpace* sp,
   224                                                     HeapWord* space_top,
   225                                                     PSPromotionManager* pm,
   226                                                     uint stripe_number,
   227                                                     uint stripe_total) {
   228   int ssize = 128; // Naked constant!  Work unit = 64k.
   229   int dirty_card_count = 0;
   231   oop* sp_top = (oop*)space_top;
   232   jbyte* start_card = byte_for(sp->bottom());
   233   jbyte* end_card   = byte_for(sp_top - 1) + 1;
   234   oop* last_scanned = NULL; // Prevent scanning objects more than once
   235   // The width of the stripe ssize*stripe_total must be
   236   // consistent with the number of stripes so that the complete slice
   237   // is covered.
   238   size_t slice_width = ssize * stripe_total;
   239   for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
   240     jbyte* worker_start_card = slice + stripe_number * ssize;
   241     if (worker_start_card >= end_card)
   242       return; // We're done.
   244     jbyte* worker_end_card = worker_start_card + ssize;
   245     if (worker_end_card > end_card)
   246       worker_end_card = end_card;
   248     // We do not want to scan objects more than once. In order to accomplish
   249     // this, we assert that any object with an object head inside our 'slice'
   250     // belongs to us. We may need to extend the range of scanned cards if the
   251     // last object continues into the next 'slice'.
   252     //
   253     // Note! ending cards are exclusive!
   254     HeapWord* slice_start = addr_for(worker_start_card);
   255     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   257     // If there are not objects starting within the chunk, skip it.
   258     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   259       continue;
   260     }
   261     // Update our beginning addr
   262     HeapWord* first_object = start_array->object_start(slice_start);
   263     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   264     if (first_object < slice_start) {
   265       last_scanned = (oop*)(first_object + oop(first_object)->size());
   266       debug_only(first_object_within_slice = last_scanned;)
   267       worker_start_card = byte_for(last_scanned);
   268     }
   270     // Update the ending addr
   271     if (slice_end < (HeapWord*)sp_top) {
   272       // The subtraction is important! An object may start precisely at slice_end.
   273       HeapWord* last_object = start_array->object_start(slice_end - 1);
   274       slice_end = last_object + oop(last_object)->size();
   275       // worker_end_card is exclusive, so bump it one past the end of last_object's
   276       // covered span.
   277       worker_end_card = byte_for(slice_end) + 1;
   279       if (worker_end_card > end_card)
   280         worker_end_card = end_card;
   281     }
   283     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   284     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   285     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   286     // Note that worker_start_card >= worker_end_card is legal, and happens when
   287     // an object spans an entire slice.
   288     assert(worker_start_card <= end_card, "worker start card beyond end card");
   289     assert(worker_end_card <= end_card, "worker end card beyond end card");
   291     jbyte* current_card = worker_start_card;
   292     while (current_card < worker_end_card) {
   293       // Find an unclean card.
   294       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   295         current_card++;
   296       }
   297       jbyte* first_unclean_card = current_card;
   299       // Find the end of a run of contiguous unclean cards
   300       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   301         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   302           current_card++;
   303         }
   305         if (current_card < worker_end_card) {
   306           // Some objects may be large enough to span several cards. If such
   307           // an object has more than one dirty card, separated by a clean card,
   308           // we will attempt to scan it twice. The test against "last_scanned"
   309           // prevents the redundant object scan, but it does not prevent newly
   310           // marked cards from being cleaned.
   311           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   312           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   313           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   314           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   315           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   316           if (ending_card_of_last_object > current_card) {
   317             // This means the object spans the next complete card.
   318             // We need to bump the current_card to ending_card_of_last_object
   319             current_card = ending_card_of_last_object;
   320           }
   321         }
   322       }
   323       jbyte* following_clean_card = current_card;
   325       if (first_unclean_card < worker_end_card) {
   326         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   327         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   328         // "p" should always be >= "last_scanned" because newly GC dirtied
   329         // cards are no longer scanned again (see comment at end
   330         // of loop on the increment of "current_card").  Test that
   331         // hypothesis before removing this code.
   332         // If this code is removed, deal with the first time through
   333         // the loop when the last_scanned is the object starting in
   334         // the previous slice.
   335         assert((p >= last_scanned) ||
   336                (last_scanned == first_object_within_slice),
   337                "Should no longer be possible");
   338         if (p < last_scanned) {
   339           // Avoid scanning more than once; this can happen because
   340           // newgen cards set by GC may a different set than the
   341           // originally dirty set
   342           p = last_scanned;
   343         }
   344         oop* to = (oop*)addr_for(following_clean_card);
   346         // Test slice_end first!
   347         if ((HeapWord*)to > slice_end) {
   348           to = (oop*)slice_end;
   349         } else if (to > sp_top) {
   350           to = sp_top;
   351         }
   353         // we know which cards to scan, now clear them
   354         if (first_unclean_card <= worker_start_card+1)
   355           first_unclean_card = worker_start_card+1;
   356         if (following_clean_card >= worker_end_card-1)
   357           following_clean_card = worker_end_card-1;
   359         while (first_unclean_card < following_clean_card) {
   360           *first_unclean_card++ = clean_card;
   361         }
   363         const int interval = PrefetchScanIntervalInBytes;
   364         // scan all objects in the range
   365         if (interval != 0) {
   366           while (p < to) {
   367             Prefetch::write(p, interval);
   368             oop m = oop(p);
   369             assert(m->is_oop_or_null(), "check for header");
   370             m->push_contents(pm);
   371             p += m->size();
   372           }
   373           pm->drain_stacks_cond_depth();
   374         } else {
   375           while (p < to) {
   376             oop m = oop(p);
   377             assert(m->is_oop_or_null(), "check for header");
   378             m->push_contents(pm);
   379             p += m->size();
   380           }
   381           pm->drain_stacks_cond_depth();
   382         }
   383         last_scanned = p;
   384       }
   385       // "current_card" is still the "following_clean_card" or
   386       // the current_card is >= the worker_end_card so the
   387       // loop will not execute again.
   388       assert((current_card == following_clean_card) ||
   389              (current_card >= worker_end_card),
   390         "current_card should only be incremented if it still equals "
   391         "following_clean_card");
   392       // Increment current_card so that it is not processed again.
   393       // It may now be dirty because a old-to-young pointer was
   394       // found on it an updated.  If it is now dirty, it cannot be
   395       // be safely cleaned in the next iteration.
   396       current_card++;
   397     }
   398   }
   399 }
   401 // This should be called before a scavenge.
   402 void CardTableExtension::verify_all_young_refs_imprecise() {
   403   CheckForUnmarkedObjects check;
   405   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   406   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   408   PSOldGen* old_gen = heap->old_gen();
   409   PSPermGen* perm_gen = heap->perm_gen();
   411   old_gen->object_iterate(&check);
   412   perm_gen->object_iterate(&check);
   413 }
   415 // This should be called immediately after a scavenge, before mutators resume.
   416 void CardTableExtension::verify_all_young_refs_precise() {
   417   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   418   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   420   PSOldGen* old_gen = heap->old_gen();
   421   PSPermGen* perm_gen = heap->perm_gen();
   423   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   425   old_gen->oop_iterate(&check);
   426   perm_gen->oop_iterate(&check);
   428   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   429   verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
   430 }
   432 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   433   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   434   // FIX ME ASSERT HERE
   436   jbyte* bot = card_table->byte_for(mr.start());
   437   jbyte* top = card_table->byte_for(mr.end());
   438   while(bot <= top) {
   439     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   440     if (*bot == verify_card)
   441       *bot = youngergen_card;
   442     bot++;
   443   }
   444 }
   446 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   447   jbyte* p = byte_for(addr);
   448   jbyte val = *p;
   450   if (card_is_dirty(val))
   451     return true;
   453   if (card_is_newgen(val))
   454     return true;
   456   if (card_is_clean(val))
   457     return false;
   459   assert(false, "Found unhandled card mark type");
   461   return false;
   462 }
   464 // Also includes verify_card
   465 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   466   jbyte* p = byte_for(addr);
   467   jbyte val = *p;
   469   if (card_is_newgen(val))
   470     return true;
   472   if (card_is_verify(val))
   473     return true;
   475   if (card_is_clean(val))
   476     return false;
   478   if (card_is_dirty(val))
   479     return false;
   481   assert(false, "Found unhandled card mark type");
   483   return false;
   484 }
   486 // Assumes that only the base or the end changes.  This allows indentification
   487 // of the region that is being resized.  The
   488 // CardTableModRefBS::resize_covered_region() is used for the normal case
   489 // where the covered regions are growing or shrinking at the high end.
   490 // The method resize_covered_region_by_end() is analogous to
   491 // CardTableModRefBS::resize_covered_region() but
   492 // for regions that grow or shrink at the low end.
   493 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   495   for (int i = 0; i < _cur_covered_regions; i++) {
   496     if (_covered[i].start() == new_region.start()) {
   497       // Found a covered region with the same start as the
   498       // new region.  The region is growing or shrinking
   499       // from the start of the region.
   500       resize_covered_region_by_start(new_region);
   501       return;
   502     }
   503     if (_covered[i].start() > new_region.start()) {
   504       break;
   505     }
   506   }
   508   int changed_region = -1;
   509   for (int j = 0; j < _cur_covered_regions; j++) {
   510     if (_covered[j].end() == new_region.end()) {
   511       changed_region = j;
   512       // This is a case where the covered region is growing or shrinking
   513       // at the start of the region.
   514       assert(changed_region != -1, "Don't expect to add a covered region");
   515       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   516         "The sizes should be different here");
   517       resize_covered_region_by_end(changed_region, new_region);
   518       return;
   519     }
   520   }
   521   // This should only be a new covered region (where no existing
   522   // covered region matches at the start or the end).
   523   assert(_cur_covered_regions < _max_covered_regions,
   524     "An existing region should have been found");
   525   resize_covered_region_by_start(new_region);
   526 }
   528 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   529   CardTableModRefBS::resize_covered_region(new_region);
   530   debug_only(verify_guard();)
   531 }
   533 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   534                                                       MemRegion new_region) {
   535   assert(SafepointSynchronize::is_at_safepoint(),
   536     "Only expect an expansion at the low end at a GC");
   537   debug_only(verify_guard();)
   538 #ifdef ASSERT
   539   for (int k = 0; k < _cur_covered_regions; k++) {
   540     if (_covered[k].end() == new_region.end()) {
   541       assert(changed_region == k, "Changed region is incorrect");
   542       break;
   543     }
   544   }
   545 #endif
   547   // Commit new or uncommit old pages, if necessary.
   548   if (resize_commit_uncommit(changed_region, new_region)) {
   549     // Set the new start of the committed region
   550     resize_update_committed_table(changed_region, new_region);
   551   }
   553   // Update card table entries
   554   resize_update_card_table_entries(changed_region, new_region);
   556   // Update the covered region
   557   resize_update_covered_table(changed_region, new_region);
   559   if (TraceCardTableModRefBS) {
   560     int ind = changed_region;
   561     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   562     gclog_or_tty->print_cr("  "
   563                   "  _covered[%d].start(): " INTPTR_FORMAT
   564                   "  _covered[%d].last(): " INTPTR_FORMAT,
   565                   ind, _covered[ind].start(),
   566                   ind, _covered[ind].last());
   567     gclog_or_tty->print_cr("  "
   568                   "  _committed[%d].start(): " INTPTR_FORMAT
   569                   "  _committed[%d].last(): " INTPTR_FORMAT,
   570                   ind, _committed[ind].start(),
   571                   ind, _committed[ind].last());
   572     gclog_or_tty->print_cr("  "
   573                   "  byte_for(start): " INTPTR_FORMAT
   574                   "  byte_for(last): " INTPTR_FORMAT,
   575                   byte_for(_covered[ind].start()),
   576                   byte_for(_covered[ind].last()));
   577     gclog_or_tty->print_cr("  "
   578                   "  addr_for(start): " INTPTR_FORMAT
   579                   "  addr_for(last): " INTPTR_FORMAT,
   580                   addr_for((jbyte*) _committed[ind].start()),
   581                   addr_for((jbyte*) _committed[ind].last()));
   582   }
   583   debug_only(verify_guard();)
   584 }
   586 bool CardTableExtension::resize_commit_uncommit(int changed_region,
   587                                                 MemRegion new_region) {
   588   bool result = false;
   589   // Commit new or uncommit old pages, if necessary.
   590   MemRegion cur_committed = _committed[changed_region];
   591   assert(_covered[changed_region].end() == new_region.end(),
   592     "The ends of the regions are expected to match");
   593   // Extend the start of this _committed region to
   594   // to cover the start of any previous _committed region.
   595   // This forms overlapping regions, but never interior regions.
   596   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   597   if (min_prev_start < cur_committed.start()) {
   598     // Only really need to set start of "cur_committed" to
   599     // the new start (min_prev_start) but assertion checking code
   600     // below use cur_committed.end() so make it correct.
   601     MemRegion new_committed =
   602         MemRegion(min_prev_start, cur_committed.end());
   603     cur_committed = new_committed;
   604   }
   605 #ifdef ASSERT
   606   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   607   assert(cur_committed.start() ==
   608     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   609                               os::vm_page_size()),
   610     "Starts should have proper alignment");
   611 #endif
   613   jbyte* new_start = byte_for(new_region.start());
   614   // Round down because this is for the start address
   615   HeapWord* new_start_aligned =
   616     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   617   // The guard page is always committed and should not be committed over.
   618   // This method is used in cases where the generation is growing toward
   619   // lower addresses but the guard region is still at the end of the
   620   // card table.  That still makes sense when looking for writes
   621   // off the end of the card table.
   622   if (new_start_aligned < cur_committed.start()) {
   623     // Expand the committed region
   624     //
   625     // Case A
   626     //                                          |+ guard +|
   627     //                          |+ cur committed +++++++++|
   628     //                  |+ new committed +++++++++++++++++|
   629     //
   630     // Case B
   631     //                                          |+ guard +|
   632     //                        |+ cur committed +|
   633     //                  |+ new committed +++++++|
   634     //
   635     // These are not expected because the calculation of the
   636     // cur committed region and the new committed region
   637     // share the same end for the covered region.
   638     // Case C
   639     //                                          |+ guard +|
   640     //                        |+ cur committed +|
   641     //                  |+ new committed +++++++++++++++++|
   642     // Case D
   643     //                                          |+ guard +|
   644     //                        |+ cur committed +++++++++++|
   645     //                  |+ new committed +++++++|
   647     HeapWord* new_end_for_commit =
   648       MIN2(cur_committed.end(), _guard_region.start());
   649     if(new_start_aligned < new_end_for_commit) {
   650       MemRegion new_committed =
   651         MemRegion(new_start_aligned, new_end_for_commit);
   652       if (!os::commit_memory((char*)new_committed.start(),
   653                              new_committed.byte_size())) {
   654         vm_exit_out_of_memory(new_committed.byte_size(),
   655                               "card table expansion");
   656       }
   657     }
   658     result = true;
   659   } else if (new_start_aligned > cur_committed.start()) {
   660     // Shrink the committed region
   661 #if 0 // uncommitting space is currently unsafe because of the interactions
   662       // of growing and shrinking regions.  One region A can uncommit space
   663       // that it owns but which is being used by another region B (maybe).
   664       // Region B has not committed the space because it was already
   665       // committed by region A.
   666     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   667       MemRegion(cur_committed.start(), new_start_aligned));
   668     if (!uncommit_region.is_empty()) {
   669       if (!os::uncommit_memory((char*)uncommit_region.start(),
   670                                uncommit_region.byte_size())) {
   671         // If the uncommit fails, ignore it.  Let the
   672         // committed table resizing go even though the committed
   673         // table will over state the committed space.
   674       }
   675     }
   676 #else
   677     assert(!result, "Should be false with current workaround");
   678 #endif
   679   }
   680   assert(_committed[changed_region].end() == cur_committed.end(),
   681     "end should not change");
   682   return result;
   683 }
   685 void CardTableExtension::resize_update_committed_table(int changed_region,
   686                                                        MemRegion new_region) {
   688   jbyte* new_start = byte_for(new_region.start());
   689   // Set the new start of the committed region
   690   HeapWord* new_start_aligned =
   691     (HeapWord*)align_size_down((uintptr_t)new_start,
   692                              os::vm_page_size());
   693   MemRegion new_committed = MemRegion(new_start_aligned,
   694     _committed[changed_region].end());
   695   _committed[changed_region] = new_committed;
   696   _committed[changed_region].set_start(new_start_aligned);
   697 }
   699 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   700                                                           MemRegion new_region) {
   701   debug_only(verify_guard();)
   702   MemRegion original_covered = _covered[changed_region];
   703   // Initialize the card entries.  Only consider the
   704   // region covered by the card table (_whole_heap)
   705   jbyte* entry;
   706   if (new_region.start() < _whole_heap.start()) {
   707     entry = byte_for(_whole_heap.start());
   708   } else {
   709     entry = byte_for(new_region.start());
   710   }
   711   jbyte* end = byte_for(original_covered.start());
   712   // If _whole_heap starts at the original covered regions start,
   713   // this loop will not execute.
   714   while (entry < end) { *entry++ = clean_card; }
   715 }
   717 void CardTableExtension::resize_update_covered_table(int changed_region,
   718                                                      MemRegion new_region) {
   719   // Update the covered region
   720   _covered[changed_region].set_start(new_region.start());
   721   _covered[changed_region].set_word_size(new_region.word_size());
   723   // reorder regions.  There should only be at most 1 out
   724   // of order.
   725   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   726     if (_covered[i].start() < _covered[i-1].start()) {
   727         MemRegion covered_mr = _covered[i-1];
   728         _covered[i-1] = _covered[i];
   729         _covered[i] = covered_mr;
   730         MemRegion committed_mr = _committed[i-1];
   731       _committed[i-1] = _committed[i];
   732       _committed[i] = committed_mr;
   733       break;
   734     }
   735   }
   736 #ifdef ASSERT
   737   for (int m = 0; m < _cur_covered_regions-1; m++) {
   738     assert(_covered[m].start() <= _covered[m+1].start(),
   739       "Covered regions out of order");
   740     assert(_committed[m].start() <= _committed[m+1].start(),
   741       "Committed regions out of order");
   742   }
   743 #endif
   744 }
   746 // Returns the start of any committed region that is lower than
   747 // the target committed region (index ind) and that intersects the
   748 // target region.  If none, return start of target region.
   749 //
   750 //      -------------
   751 //      |           |
   752 //      -------------
   753 //              ------------
   754 //              | target   |
   755 //              ------------
   756 //                               -------------
   757 //                               |           |
   758 //                               -------------
   759 //      ^ returns this
   760 //
   761 //      -------------
   762 //      |           |
   763 //      -------------
   764 //                      ------------
   765 //                      | target   |
   766 //                      ------------
   767 //                               -------------
   768 //                               |           |
   769 //                               -------------
   770 //                      ^ returns this
   772 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   773   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   774   HeapWord* min_start = _committed[ind].start();
   775   for (int j = 0; j < ind; j++) {
   776     HeapWord* this_start = _committed[j].start();
   777     if ((this_start < min_start) &&
   778         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   779        min_start = this_start;
   780     }
   781   }
   782   return min_start;
   783 }

mercurial