src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Mon, 05 Mar 2012 14:19:00 -0500

author
coleenp
date
Mon, 05 Mar 2012 14:19:00 -0500
changeset 3627
8a48c2906f91
parent 3582
931e5f39e365
child 3969
1d7922586cf6
permissions
-rw-r--r--

7150046: SIGILL on sparcv9 fastdebug
Summary: Breakpoint needs to do 64-bit compare for pointers on sparcv9
Reviewed-by: coleenp, never
Contributed-by: dean.long@oracle.com

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_sparc.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    43 #ifdef SHARK
    44 #include "compiler/compileBroker.hpp"
    45 #include "shark/sharkCompiler.hpp"
    46 #endif
    48 #define __ masm->
    51 class RegisterSaver {
    53   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    54   // The Oregs are problematic. In the 32bit build the compiler can
    55   // have O registers live with 64 bit quantities. A window save will
    56   // cut the heads off of the registers. We have to do a very extensive
    57   // stack dance to save and restore these properly.
    59   // Note that the Oregs problem only exists if we block at either a polling
    60   // page exception a compiled code safepoint that was not originally a call
    61   // or deoptimize following one of these kinds of safepoints.
    63   // Lots of registers to save.  For all builds, a window save will preserve
    64   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    65   // builds a window-save will preserve the %o registers.  In the LION build
    66   // we need to save the 64-bit %o registers which requires we save them
    67   // before the window-save (as then they become %i registers and get their
    68   // heads chopped off on interrupt).  We have to save some %g registers here
    69   // as well.
    70   enum {
    71     // This frame's save area.  Includes extra space for the native call:
    72     // vararg's layout space and the like.  Briefly holds the caller's
    73     // register save area.
    74     call_args_area = frame::register_save_words_sp_offset +
    75                      frame::memory_parameter_word_sp_offset*wordSize,
    76     // Make sure save locations are always 8 byte aligned.
    77     // can't use round_to because it doesn't produce compile time constant
    78     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    79     g1_offset = start_of_extra_save_area, // g-regs needing saving
    80     g3_offset = g1_offset+8,
    81     g4_offset = g3_offset+8,
    82     g5_offset = g4_offset+8,
    83     o0_offset = g5_offset+8,
    84     o1_offset = o0_offset+8,
    85     o2_offset = o1_offset+8,
    86     o3_offset = o2_offset+8,
    87     o4_offset = o3_offset+8,
    88     o5_offset = o4_offset+8,
    89     start_of_flags_save_area = o5_offset+8,
    90     ccr_offset = start_of_flags_save_area,
    91     fsr_offset = ccr_offset + 8,
    92     d00_offset = fsr_offset+8,  // Start of float save area
    93     register_save_size = d00_offset+8*32
    94   };
    97   public:
    99   static int Oexception_offset() { return o0_offset; };
   100   static int G3_offset() { return g3_offset; };
   101   static int G5_offset() { return g5_offset; };
   102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   103   static void restore_live_registers(MacroAssembler* masm);
   105   // During deoptimization only the result register need to be restored
   106   // all the other values have already been extracted.
   108   static void restore_result_registers(MacroAssembler* masm);
   109 };
   111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   112   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   113   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   114   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   115   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   116   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   117   int i;
   118   // Always make the frame size 16 byte aligned.
   119   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   120   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   121   int frame_size_in_slots = frame_size / sizeof(jint);
   122   // CodeBlob frame size is in words.
   123   *total_frame_words = frame_size / wordSize;
   124   // OopMap* map = new OopMap(*total_frame_words, 0);
   125   OopMap* map = new OopMap(frame_size_in_slots, 0);
   127 #if !defined(_LP64)
   129   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   130   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   131   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   132   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   133   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   134   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   135   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   136 #endif /* _LP64 */
   138   __ save(SP, -frame_size, SP);
   140 #ifndef _LP64
   141   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   142   // to Oregs here to avoid interrupts cutting off their heads
   144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   149   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   151   __ stx(O0, SP, o0_offset+STACK_BIAS);
   152   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   154   __ stx(O1, SP, o1_offset+STACK_BIAS);
   156   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   158   __ stx(O2, SP, o2_offset+STACK_BIAS);
   159   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   161   __ stx(O3, SP, o3_offset+STACK_BIAS);
   162   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   164   __ stx(O4, SP, o4_offset+STACK_BIAS);
   165   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   167   __ stx(O5, SP, o5_offset+STACK_BIAS);
   168   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   169 #endif /* _LP64 */
   172 #ifdef _LP64
   173   int debug_offset = 0;
   174 #else
   175   int debug_offset = 4;
   176 #endif
   177   // Save the G's
   178   __ stx(G1, SP, g1_offset+STACK_BIAS);
   179   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   181   __ stx(G3, SP, g3_offset+STACK_BIAS);
   182   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   184   __ stx(G4, SP, g4_offset+STACK_BIAS);
   185   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   187   __ stx(G5, SP, g5_offset+STACK_BIAS);
   188   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   190   // This is really a waste but we'll keep things as they were for now
   191   if (true) {
   192 #ifndef _LP64
   193     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   195     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   196     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   197     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   198     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   199     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   200     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   201     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   202     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   203 #endif /* _LP64 */
   204   }
   207   // Save the flags
   208   __ rdccr( G5 );
   209   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   210   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   212   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   213   int offset = d00_offset;
   214   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   215     FloatRegister f = as_FloatRegister(i);
   216     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   217     // Record as callee saved both halves of double registers (2 float registers).
   218     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   219     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   220     offset += sizeof(double);
   221   }
   223   // And we're done.
   225   return map;
   226 }
   229 // Pop the current frame and restore all the registers that we
   230 // saved.
   231 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   233   // Restore all the FP registers
   234   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   235     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   236   }
   238   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   239   __ wrccr (G1) ;
   241   // Restore the G's
   242   // Note that G2 (AKA GThread) must be saved and restored separately.
   243   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   245   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   246   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   247   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   248   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   251 #if !defined(_LP64)
   252   // Restore the 64-bit O's.
   253   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   254   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   255   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   256   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   257   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   258   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   260   // And temporarily place them in TLS
   262   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   263   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   264   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   265   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   266   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   267   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   268 #endif /* _LP64 */
   270   // Restore flags
   272   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   274   __ restore();
   276 #if !defined(_LP64)
   277   // Now reload the 64bit Oregs after we've restore the window.
   278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   283   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   284 #endif /* _LP64 */
   286 }
   288 // Pop the current frame and restore the registers that might be holding
   289 // a result.
   290 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   292 #if !defined(_LP64)
   293   // 32bit build returns longs in G1
   294   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   296   // Retrieve the 64-bit O's.
   297   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   298   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   299   // and save to TLS
   300   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   301   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   302 #endif /* _LP64 */
   304   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   306   __ restore();
   308 #if !defined(_LP64)
   309   // Now reload the 64bit Oregs after we've restore the window.
   310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   311   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   312 #endif /* _LP64 */
   314 }
   316 // The java_calling_convention describes stack locations as ideal slots on
   317 // a frame with no abi restrictions. Since we must observe abi restrictions
   318 // (like the placement of the register window) the slots must be biased by
   319 // the following value.
   320 static int reg2offset(VMReg r) {
   321   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   322 }
   324 static VMRegPair reg64_to_VMRegPair(Register r) {
   325   VMRegPair ret;
   326   if (wordSize == 8) {
   327     ret.set2(r->as_VMReg());
   328   } else {
   329     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
   330   }
   331   return ret;
   332 }
   334 // ---------------------------------------------------------------------------
   335 // Read the array of BasicTypes from a signature, and compute where the
   336 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   337 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   338 // refer to 4-byte stack slots.  All stack slots are based off of the window
   339 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   340 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   341 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   342 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   343 // Each 32-bit quantity is given its own number, so the integer registers
   344 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   345 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   347 // Register results are passed in O0-O5, for outgoing call arguments.  To
   348 // convert to incoming arguments, convert all O's to I's.  The regs array
   349 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   350 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   351 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   352 // passed (used as a placeholder for the other half of longs and doubles in
   353 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   354 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   355 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   356 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   357 // same VMRegPair.
   359 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   360 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   361 // units regardless of build.
   364 // ---------------------------------------------------------------------------
   365 // The compiled Java calling convention.  The Java convention always passes
   366 // 64-bit values in adjacent aligned locations (either registers or stack),
   367 // floats in float registers and doubles in aligned float pairs.  Values are
   368 // packed in the registers.  There is no backing varargs store for values in
   369 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
   370 // passed in I's, because longs in I's get their heads chopped off at
   371 // interrupt).
   372 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   373                                            VMRegPair *regs,
   374                                            int total_args_passed,
   375                                            int is_outgoing) {
   376   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   378   // Convention is to pack the first 6 int/oop args into the first 6 registers
   379   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
   380   // into F0-F7, extras spill to the stack.  Then pad all register sets to
   381   // align.  Then put longs and doubles into the same registers as they fit,
   382   // else spill to the stack.
   383   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   384   const int flt_reg_max = 8;
   385   //
   386   // Where 32-bit 1-reg longs start being passed
   387   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
   388   // So make it look like we've filled all the G regs that c2 wants to use.
   389   Register g_reg = TieredCompilation ? noreg : G1;
   391   // Count int/oop and float args.  See how many stack slots we'll need and
   392   // where the longs & doubles will go.
   393   int int_reg_cnt   = 0;
   394   int flt_reg_cnt   = 0;
   395   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
   396   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
   397   int stk_reg_pairs = 0;
   398   for (int i = 0; i < total_args_passed; i++) {
   399     switch (sig_bt[i]) {
   400     case T_LONG:                // LP64, longs compete with int args
   401       assert(sig_bt[i+1] == T_VOID, "");
   402 #ifdef _LP64
   403       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   404 #endif
   405       break;
   406     case T_OBJECT:
   407     case T_ARRAY:
   408     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   409       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   410 #ifndef _LP64
   411       else                            stk_reg_pairs++;
   412 #endif
   413       break;
   414     case T_INT:
   415     case T_SHORT:
   416     case T_CHAR:
   417     case T_BYTE:
   418     case T_BOOLEAN:
   419       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   420       else                            stk_reg_pairs++;
   421       break;
   422     case T_FLOAT:
   423       if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
   424       else                            stk_reg_pairs++;
   425       break;
   426     case T_DOUBLE:
   427       assert(sig_bt[i+1] == T_VOID, "");
   428       break;
   429     case T_VOID:
   430       break;
   431     default:
   432       ShouldNotReachHere();
   433     }
   434   }
   436   // This is where the longs/doubles start on the stack.
   437   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
   439   int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
   440   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
   442   // int stk_reg = frame::register_save_words*(wordSize>>2);
   443   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
   444   int stk_reg = 0;
   445   int int_reg = 0;
   446   int flt_reg = 0;
   448   // Now do the signature layout
   449   for (int i = 0; i < total_args_passed; i++) {
   450     switch (sig_bt[i]) {
   451     case T_INT:
   452     case T_SHORT:
   453     case T_CHAR:
   454     case T_BYTE:
   455     case T_BOOLEAN:
   456 #ifndef _LP64
   457     case T_OBJECT:
   458     case T_ARRAY:
   459     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   460 #endif // _LP64
   461       if (int_reg < int_reg_max) {
   462         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   463         regs[i].set1(r->as_VMReg());
   464       } else {
   465         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
   466       }
   467       break;
   469 #ifdef _LP64
   470     case T_OBJECT:
   471     case T_ARRAY:
   472     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   473       if (int_reg < int_reg_max) {
   474         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   475         regs[i].set2(r->as_VMReg());
   476       } else {
   477         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   478         stk_reg_pairs += 2;
   479       }
   480       break;
   481 #endif // _LP64
   483     case T_LONG:
   484       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   485 #ifdef _LP64
   486         if (int_reg < int_reg_max) {
   487           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   488           regs[i].set2(r->as_VMReg());
   489         } else {
   490           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   491           stk_reg_pairs += 2;
   492         }
   493 #else
   494 #ifdef COMPILER2
   495         // For 32-bit build, can't pass longs in O-regs because they become
   496         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
   497         // spare and available.  This convention isn't used by the Sparc ABI or
   498         // anywhere else. If we're tiered then we don't use G-regs because c1
   499         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
   500         // G0: zero
   501         // G1: 1st Long arg
   502         // G2: global allocated to TLS
   503         // G3: used in inline cache check
   504         // G4: 2nd Long arg
   505         // G5: used in inline cache check
   506         // G6: used by OS
   507         // G7: used by OS
   509         if (g_reg == G1) {
   510           regs[i].set2(G1->as_VMReg()); // This long arg in G1
   511           g_reg = G4;                  // Where the next arg goes
   512         } else if (g_reg == G4) {
   513           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
   514           g_reg = noreg;               // No more longs in registers
   515         } else {
   516           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   517           stk_reg_pairs += 2;
   518         }
   519 #else // COMPILER2
   520         if (int_reg_pairs + 1 < int_reg_max) {
   521           if (is_outgoing) {
   522             regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
   523           } else {
   524             regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
   525           }
   526           int_reg_pairs += 2;
   527         } else {
   528           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   529           stk_reg_pairs += 2;
   530         }
   531 #endif // COMPILER2
   532 #endif // _LP64
   533       break;
   535     case T_FLOAT:
   536       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
   537       else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
   538       break;
   539     case T_DOUBLE:
   540       assert(sig_bt[i+1] == T_VOID, "expecting half");
   541       if (flt_reg_pairs + 1 < flt_reg_max) {
   542         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
   543         flt_reg_pairs += 2;
   544       } else {
   545         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   546         stk_reg_pairs += 2;
   547       }
   548       break;
   549     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
   550     default:
   551       ShouldNotReachHere();
   552     }
   553   }
   555   // retun the amount of stack space these arguments will need.
   556   return stk_reg_pairs;
   558 }
   560 // Helper class mostly to avoid passing masm everywhere, and handle
   561 // store displacement overflow logic.
   562 class AdapterGenerator {
   563   MacroAssembler *masm;
   564   Register Rdisp;
   565   void set_Rdisp(Register r)  { Rdisp = r; }
   567   void patch_callers_callsite();
   569   // base+st_off points to top of argument
   570   int arg_offset(const int st_off) { return st_off; }
   571   int next_arg_offset(const int st_off) {
   572     return st_off - Interpreter::stackElementSize;
   573   }
   575   // Argument slot values may be loaded first into a register because
   576   // they might not fit into displacement.
   577   RegisterOrConstant arg_slot(const int st_off);
   578   RegisterOrConstant next_arg_slot(const int st_off);
   580   // Stores long into offset pointed to by base
   581   void store_c2i_long(Register r, Register base,
   582                       const int st_off, bool is_stack);
   583   void store_c2i_object(Register r, Register base,
   584                         const int st_off);
   585   void store_c2i_int(Register r, Register base,
   586                      const int st_off);
   587   void store_c2i_double(VMReg r_2,
   588                         VMReg r_1, Register base, const int st_off);
   589   void store_c2i_float(FloatRegister f, Register base,
   590                        const int st_off);
   592  public:
   593   void gen_c2i_adapter(int total_args_passed,
   594                               // VMReg max_arg,
   595                               int comp_args_on_stack, // VMRegStackSlots
   596                               const BasicType *sig_bt,
   597                               const VMRegPair *regs,
   598                               Label& skip_fixup);
   599   void gen_i2c_adapter(int total_args_passed,
   600                               // VMReg max_arg,
   601                               int comp_args_on_stack, // VMRegStackSlots
   602                               const BasicType *sig_bt,
   603                               const VMRegPair *regs);
   605   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   606 };
   609 // Patch the callers callsite with entry to compiled code if it exists.
   610 void AdapterGenerator::patch_callers_callsite() {
   611   Label L;
   612   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
   613   __ br_null(G3_scratch, false, Assembler::pt, L);
   614   // Schedule the branch target address early.
   615   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   616   // Call into the VM to patch the caller, then jump to compiled callee
   617   __ save_frame(4);     // Args in compiled layout; do not blow them
   619   // Must save all the live Gregs the list is:
   620   // G1: 1st Long arg (32bit build)
   621   // G2: global allocated to TLS
   622   // G3: used in inline cache check (scratch)
   623   // G4: 2nd Long arg (32bit build);
   624   // G5: used in inline cache check (methodOop)
   626   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   628 #ifdef _LP64
   629   // mov(s,d)
   630   __ mov(G1, L1);
   631   __ mov(G4, L4);
   632   __ mov(G5_method, L5);
   633   __ mov(G5_method, O0);         // VM needs target method
   634   __ mov(I7, O1);                // VM needs caller's callsite
   635   // Must be a leaf call...
   636   // can be very far once the blob has been relocated
   637   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   638   __ relocate(relocInfo::runtime_call_type);
   639   __ jumpl_to(dest, O7, O7);
   640   __ delayed()->mov(G2_thread, L7_thread_cache);
   641   __ mov(L7_thread_cache, G2_thread);
   642   __ mov(L1, G1);
   643   __ mov(L4, G4);
   644   __ mov(L5, G5_method);
   645 #else
   646   __ stx(G1, FP, -8 + STACK_BIAS);
   647   __ stx(G4, FP, -16 + STACK_BIAS);
   648   __ mov(G5_method, L5);
   649   __ mov(G5_method, O0);         // VM needs target method
   650   __ mov(I7, O1);                // VM needs caller's callsite
   651   // Must be a leaf call...
   652   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   653   __ delayed()->mov(G2_thread, L7_thread_cache);
   654   __ mov(L7_thread_cache, G2_thread);
   655   __ ldx(FP, -8 + STACK_BIAS, G1);
   656   __ ldx(FP, -16 + STACK_BIAS, G4);
   657   __ mov(L5, G5_method);
   658   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   659 #endif /* _LP64 */
   661   __ restore();      // Restore args
   662   __ bind(L);
   663 }
   666 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   667   RegisterOrConstant roc(arg_offset(st_off));
   668   return __ ensure_simm13_or_reg(roc, Rdisp);
   669 }
   671 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   672   RegisterOrConstant roc(next_arg_offset(st_off));
   673   return __ ensure_simm13_or_reg(roc, Rdisp);
   674 }
   677 // Stores long into offset pointed to by base
   678 void AdapterGenerator::store_c2i_long(Register r, Register base,
   679                                       const int st_off, bool is_stack) {
   680 #ifdef _LP64
   681   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   682   // data is passed in only 1 slot.
   683   __ stx(r, base, next_arg_slot(st_off));
   684 #else
   685 #ifdef COMPILER2
   686   // Misaligned store of 64-bit data
   687   __ stw(r, base, arg_slot(st_off));    // lo bits
   688   __ srlx(r, 32, r);
   689   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   690 #else
   691   if (is_stack) {
   692     // Misaligned store of 64-bit data
   693     __ stw(r, base, arg_slot(st_off));    // lo bits
   694     __ srlx(r, 32, r);
   695     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   696   } else {
   697     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   698     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   699   }
   700 #endif // COMPILER2
   701 #endif // _LP64
   702 }
   704 void AdapterGenerator::store_c2i_object(Register r, Register base,
   705                       const int st_off) {
   706   __ st_ptr (r, base, arg_slot(st_off));
   707 }
   709 void AdapterGenerator::store_c2i_int(Register r, Register base,
   710                    const int st_off) {
   711   __ st (r, base, arg_slot(st_off));
   712 }
   714 // Stores into offset pointed to by base
   715 void AdapterGenerator::store_c2i_double(VMReg r_2,
   716                       VMReg r_1, Register base, const int st_off) {
   717 #ifdef _LP64
   718   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   719   // data is passed in only 1 slot.
   720   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   721 #else
   722   // Need to marshal 64-bit value from misaligned Lesp loads
   723   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   724   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   725 #endif
   726 }
   728 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   729                                        const int st_off) {
   730   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   731 }
   733 void AdapterGenerator::gen_c2i_adapter(
   734                             int total_args_passed,
   735                             // VMReg max_arg,
   736                             int comp_args_on_stack, // VMRegStackSlots
   737                             const BasicType *sig_bt,
   738                             const VMRegPair *regs,
   739                             Label& skip_fixup) {
   741   // Before we get into the guts of the C2I adapter, see if we should be here
   742   // at all.  We've come from compiled code and are attempting to jump to the
   743   // interpreter, which means the caller made a static call to get here
   744   // (vcalls always get a compiled target if there is one).  Check for a
   745   // compiled target.  If there is one, we need to patch the caller's call.
   746   // However we will run interpreted if we come thru here. The next pass
   747   // thru the call site will run compiled. If we ran compiled here then
   748   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   749   // deopt/uncommon trap cycles. If we always go interpreted here then
   750   // we can have at most one and don't need to play any tricks to keep
   751   // from endlessly growing the stack.
   752   //
   753   // Actually if we detected that we had an i2c->c2i transition here we
   754   // ought to be able to reset the world back to the state of the interpreted
   755   // call and not bother building another interpreter arg area. We don't
   756   // do that at this point.
   758   patch_callers_callsite();
   760   __ bind(skip_fixup);
   762   // Since all args are passed on the stack, total_args_passed*wordSize is the
   763   // space we need.  Add in varargs area needed by the interpreter. Round up
   764   // to stack alignment.
   765   const int arg_size = total_args_passed * Interpreter::stackElementSize;
   766   const int varargs_area =
   767                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   768   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   770   int bias = STACK_BIAS;
   771   const int interp_arg_offset = frame::varargs_offset*wordSize +
   772                         (total_args_passed-1)*Interpreter::stackElementSize;
   774   Register base = SP;
   776 #ifdef _LP64
   777   // In the 64bit build because of wider slots and STACKBIAS we can run
   778   // out of bits in the displacement to do loads and stores.  Use g3 as
   779   // temporary displacement.
   780   if (!Assembler::is_simm13(extraspace)) {
   781     __ set(extraspace, G3_scratch);
   782     __ sub(SP, G3_scratch, SP);
   783   } else {
   784     __ sub(SP, extraspace, SP);
   785   }
   786   set_Rdisp(G3_scratch);
   787 #else
   788   __ sub(SP, extraspace, SP);
   789 #endif // _LP64
   791   // First write G1 (if used) to where ever it must go
   792   for (int i=0; i<total_args_passed; i++) {
   793     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   794     VMReg r_1 = regs[i].first();
   795     VMReg r_2 = regs[i].second();
   796     if (r_1 == G1_scratch->as_VMReg()) {
   797       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   798         store_c2i_object(G1_scratch, base, st_off);
   799       } else if (sig_bt[i] == T_LONG) {
   800         assert(!TieredCompilation, "should not use register args for longs");
   801         store_c2i_long(G1_scratch, base, st_off, false);
   802       } else {
   803         store_c2i_int(G1_scratch, base, st_off);
   804       }
   805     }
   806   }
   808   // Now write the args into the outgoing interpreter space
   809   for (int i=0; i<total_args_passed; i++) {
   810     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   811     VMReg r_1 = regs[i].first();
   812     VMReg r_2 = regs[i].second();
   813     if (!r_1->is_valid()) {
   814       assert(!r_2->is_valid(), "");
   815       continue;
   816     }
   817     // Skip G1 if found as we did it first in order to free it up
   818     if (r_1 == G1_scratch->as_VMReg()) {
   819       continue;
   820     }
   821 #ifdef ASSERT
   822     bool G1_forced = false;
   823 #endif // ASSERT
   824     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   825 #ifdef _LP64
   826       Register ld_off = Rdisp;
   827       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
   828 #else
   829       int ld_off = reg2offset(r_1) + extraspace + bias;
   830 #endif // _LP64
   831 #ifdef ASSERT
   832       G1_forced = true;
   833 #endif // ASSERT
   834       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   835       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   836       else                  __ ldx(base, ld_off, G1_scratch);
   837     }
   839     if (r_1->is_Register()) {
   840       Register r = r_1->as_Register()->after_restore();
   841       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   842         store_c2i_object(r, base, st_off);
   843       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   844 #ifndef _LP64
   845         if (TieredCompilation) {
   846           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
   847         }
   848 #endif // _LP64
   849         store_c2i_long(r, base, st_off, r_2->is_stack());
   850       } else {
   851         store_c2i_int(r, base, st_off);
   852       }
   853     } else {
   854       assert(r_1->is_FloatRegister(), "");
   855       if (sig_bt[i] == T_FLOAT) {
   856         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   857       } else {
   858         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   859         store_c2i_double(r_2, r_1, base, st_off);
   860       }
   861     }
   862   }
   864 #ifdef _LP64
   865   // Need to reload G3_scratch, used for temporary displacements.
   866   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   868   // Pass O5_savedSP as an argument to the interpreter.
   869   // The interpreter will restore SP to this value before returning.
   870   __ set(extraspace, G1);
   871   __ add(SP, G1, O5_savedSP);
   872 #else
   873   // Pass O5_savedSP as an argument to the interpreter.
   874   // The interpreter will restore SP to this value before returning.
   875   __ add(SP, extraspace, O5_savedSP);
   876 #endif // _LP64
   878   __ mov((frame::varargs_offset)*wordSize -
   879          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
   880   // Jump to the interpreter just as if interpreter was doing it.
   881   __ jmpl(G3_scratch, 0, G0);
   882   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   883   // (really L0) is in use by the compiled frame as a generic temp.  However,
   884   // the interpreter does not know where its args are without some kind of
   885   // arg pointer being passed in.  Pass it in Gargs.
   886   __ delayed()->add(SP, G1, Gargs);
   887 }
   889 void AdapterGenerator::gen_i2c_adapter(
   890                             int total_args_passed,
   891                             // VMReg max_arg,
   892                             int comp_args_on_stack, // VMRegStackSlots
   893                             const BasicType *sig_bt,
   894                             const VMRegPair *regs) {
   896   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   897   // layout.  Lesp was saved by the calling I-frame and will be restored on
   898   // return.  Meanwhile, outgoing arg space is all owned by the callee
   899   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   900   // hoist register arguments and repack other args according to the compiled
   901   // code convention.  Finally, end in a jump to the compiled code.  The entry
   902   // point address is the start of the buffer.
   904   // We will only enter here from an interpreted frame and never from after
   905   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   906   // race and use a c2i we will remain interpreted for the race loser(s).
   907   // This removes all sorts of headaches on the x86 side and also eliminates
   908   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   910   // As you can see from the list of inputs & outputs there are not a lot
   911   // of temp registers to work with: mostly G1, G3 & G4.
   913   // Inputs:
   914   // G2_thread      - TLS
   915   // G5_method      - Method oop
   916   // G4 (Gargs)     - Pointer to interpreter's args
   917   // O0..O4         - free for scratch
   918   // O5_savedSP     - Caller's saved SP, to be restored if needed
   919   // O6             - Current SP!
   920   // O7             - Valid return address
   921   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   923   // Outputs:
   924   // G2_thread      - TLS
   925   // G1, G4         - Outgoing long args in 32-bit build
   926   // O0-O5          - Outgoing args in compiled layout
   927   // O6             - Adjusted or restored SP
   928   // O7             - Valid return address
   929   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   930   // F0-F7          - more outgoing args
   933   // Gargs is the incoming argument base, and also an outgoing argument.
   934   __ sub(Gargs, BytesPerWord, Gargs);
   936   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   937   // WITH O7 HOLDING A VALID RETURN PC
   938   //
   939   // |              |
   940   // :  java stack  :
   941   // |              |
   942   // +--------------+ <--- start of outgoing args
   943   // |   receiver   |   |
   944   // : rest of args :   |---size is java-arg-words
   945   // |              |   |
   946   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   947   // |              |   |
   948   // :    unused    :   |---Space for max Java stack, plus stack alignment
   949   // |              |   |
   950   // +--------------+ <--- SP + 16*wordsize
   951   // |              |
   952   // :    window    :
   953   // |              |
   954   // +--------------+ <--- SP
   956   // WE REPACK THE STACK.  We use the common calling convention layout as
   957   // discovered by calling SharedRuntime::calling_convention.  We assume it
   958   // causes an arbitrary shuffle of memory, which may require some register
   959   // temps to do the shuffle.  We hope for (and optimize for) the case where
   960   // temps are not needed.  We may have to resize the stack slightly, in case
   961   // we need alignment padding (32-bit interpreter can pass longs & doubles
   962   // misaligned, but the compilers expect them aligned).
   963   //
   964   // |              |
   965   // :  java stack  :
   966   // |              |
   967   // +--------------+ <--- start of outgoing args
   968   // |  pad, align  |   |
   969   // +--------------+   |
   970   // | ints, floats |   |---Outgoing stack args, packed low.
   971   // +--------------+   |   First few args in registers.
   972   // :   doubles    :   |
   973   // |   longs      |   |
   974   // +--------------+ <--- SP' + 16*wordsize
   975   // |              |
   976   // :    window    :
   977   // |              |
   978   // +--------------+ <--- SP'
   980   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
   981   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
   982   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
   984   // Cut-out for having no stack args.  Since up to 6 args are passed
   985   // in registers, we will commonly have no stack args.
   986   if (comp_args_on_stack > 0) {
   988     // Convert VMReg stack slots to words.
   989     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   990     // Round up to miminum stack alignment, in wordSize
   991     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   992     // Now compute the distance from Lesp to SP.  This calculation does not
   993     // include the space for total_args_passed because Lesp has not yet popped
   994     // the arguments.
   995     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
   996   }
   998   // Will jump to the compiled code just as if compiled code was doing it.
   999   // Pre-load the register-jump target early, to schedule it better.
  1000   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
  1002   // Now generate the shuffle code.  Pick up all register args and move the
  1003   // rest through G1_scratch.
  1004   for (int i=0; i<total_args_passed; i++) {
  1005     if (sig_bt[i] == T_VOID) {
  1006       // Longs and doubles are passed in native word order, but misaligned
  1007       // in the 32-bit build.
  1008       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
  1009       continue;
  1012     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
  1013     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
  1014     // ldx/lddf optimizations.
  1016     // Load in argument order going down.
  1017     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
  1018     set_Rdisp(G1_scratch);
  1020     VMReg r_1 = regs[i].first();
  1021     VMReg r_2 = regs[i].second();
  1022     if (!r_1->is_valid()) {
  1023       assert(!r_2->is_valid(), "");
  1024       continue;
  1026     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
  1027       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
  1028       if (r_2->is_valid()) r_2 = r_1->next();
  1030     if (r_1->is_Register()) {  // Register argument
  1031       Register r = r_1->as_Register()->after_restore();
  1032       if (!r_2->is_valid()) {
  1033         __ ld(Gargs, arg_slot(ld_off), r);
  1034       } else {
  1035 #ifdef _LP64
  1036         // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1037         // data is passed in only 1 slot.
  1038         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
  1039               next_arg_slot(ld_off) : arg_slot(ld_off);
  1040         __ ldx(Gargs, slot, r);
  1041 #else
  1042         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
  1043         // stack shuffle.  Load the first 2 longs into G1/G4 later.
  1044 #endif
  1046     } else {
  1047       assert(r_1->is_FloatRegister(), "");
  1048       if (!r_2->is_valid()) {
  1049         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
  1050       } else {
  1051 #ifdef _LP64
  1052         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
  1053         // data is passed in only 1 slot.  This code also handles longs that
  1054         // are passed on the stack, but need a stack-to-stack move through a
  1055         // spare float register.
  1056         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
  1057               next_arg_slot(ld_off) : arg_slot(ld_off);
  1058         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
  1059 #else
  1060         // Need to marshal 64-bit value from misaligned Lesp loads
  1061         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
  1062         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
  1063 #endif
  1066     // Was the argument really intended to be on the stack, but was loaded
  1067     // into F8/F9?
  1068     if (regs[i].first()->is_stack()) {
  1069       assert(r_1->as_FloatRegister() == F8, "fix this code");
  1070       // Convert stack slot to an SP offset
  1071       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
  1072       // Store down the shuffled stack word.  Target address _is_ aligned.
  1073       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
  1074       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
  1075       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
  1078   bool made_space = false;
  1079 #ifndef _LP64
  1080   // May need to pick up a few long args in G1/G4
  1081   bool g4_crushed = false;
  1082   bool g3_crushed = false;
  1083   for (int i=0; i<total_args_passed; i++) {
  1084     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
  1085       // Load in argument order going down
  1086       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
  1087       // Need to marshal 64-bit value from misaligned Lesp loads
  1088       Register r = regs[i].first()->as_Register()->after_restore();
  1089       if (r == G1 || r == G4) {
  1090         assert(!g4_crushed, "ordering problem");
  1091         if (r == G4){
  1092           g4_crushed = true;
  1093           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1094           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1095         } else {
  1096           // better schedule this way
  1097           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1098           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1100         g3_crushed = true;
  1101         __ sllx(r, 32, r);
  1102         __ or3(G3_scratch, r, r);
  1103       } else {
  1104         assert(r->is_out(), "longs passed in two O registers");
  1105         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
  1106         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
  1110 #endif
  1112   // Jump to the compiled code just as if compiled code was doing it.
  1113   //
  1114 #ifndef _LP64
  1115     if (g3_crushed) {
  1116       // Rats load was wasted, at least it is in cache...
  1117       __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
  1119 #endif /* _LP64 */
  1121     // 6243940 We might end up in handle_wrong_method if
  1122     // the callee is deoptimized as we race thru here. If that
  1123     // happens we don't want to take a safepoint because the
  1124     // caller frame will look interpreted and arguments are now
  1125     // "compiled" so it is much better to make this transition
  1126     // invisible to the stack walking code. Unfortunately if
  1127     // we try and find the callee by normal means a safepoint
  1128     // is possible. So we stash the desired callee in the thread
  1129     // and the vm will find there should this case occur.
  1130     Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
  1131     __ st_ptr(G5_method, callee_target_addr);
  1133     if (StressNonEntrant) {
  1134       // Open a big window for deopt failure
  1135       __ save_frame(0);
  1136       __ mov(G0, L0);
  1137       Label loop;
  1138       __ bind(loop);
  1139       __ sub(L0, 1, L0);
  1140       __ br_null_short(L0, Assembler::pt, loop);
  1142       __ restore();
  1146     __ jmpl(G3, 0, G0);
  1147     __ delayed()->nop();
  1150 // ---------------------------------------------------------------
  1151 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1152                                                             int total_args_passed,
  1153                                                             // VMReg max_arg,
  1154                                                             int comp_args_on_stack, // VMRegStackSlots
  1155                                                             const BasicType *sig_bt,
  1156                                                             const VMRegPair *regs,
  1157                                                             AdapterFingerPrint* fingerprint) {
  1158   address i2c_entry = __ pc();
  1160   AdapterGenerator agen(masm);
  1162   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1165   // -------------------------------------------------------------------------
  1166   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
  1167   // args start out packed in the compiled layout.  They need to be unpacked
  1168   // into the interpreter layout.  This will almost always require some stack
  1169   // space.  We grow the current (compiled) stack, then repack the args.  We
  1170   // finally end in a jump to the generic interpreter entry point.  On exit
  1171   // from the interpreter, the interpreter will restore our SP (lest the
  1172   // compiled code, which relys solely on SP and not FP, get sick).
  1174   address c2i_unverified_entry = __ pc();
  1175   Label skip_fixup;
  1177 #if !defined(_LP64) && defined(COMPILER2)
  1178     Register R_temp   = L0;   // another scratch register
  1179 #else
  1180     Register R_temp   = G1;   // another scratch register
  1181 #endif
  1183     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1185     __ verify_oop(O0);
  1186     __ verify_oop(G5_method);
  1187     __ load_klass(O0, G3_scratch);
  1188     __ verify_oop(G3_scratch);
  1190 #if !defined(_LP64) && defined(COMPILER2)
  1191     __ save(SP, -frame::register_save_words*wordSize, SP);
  1192     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1193     __ verify_oop(R_temp);
  1194     __ cmp(G3_scratch, R_temp);
  1195     __ restore();
  1196 #else
  1197     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1198     __ verify_oop(R_temp);
  1199     __ cmp(G3_scratch, R_temp);
  1200 #endif
  1202     Label ok, ok2;
  1203     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1204     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
  1205     __ jump_to(ic_miss, G3_scratch);
  1206     __ delayed()->nop();
  1208     __ bind(ok);
  1209     // Method might have been compiled since the call site was patched to
  1210     // interpreted if that is the case treat it as a miss so we can get
  1211     // the call site corrected.
  1212     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
  1213     __ bind(ok2);
  1214     __ br_null(G3_scratch, false, Assembler::pt, skip_fixup);
  1215     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
  1216     __ jump_to(ic_miss, G3_scratch);
  1217     __ delayed()->nop();
  1221   address c2i_entry = __ pc();
  1223   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
  1225   __ flush();
  1226   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1230 // Helper function for native calling conventions
  1231 static VMReg int_stk_helper( int i ) {
  1232   // Bias any stack based VMReg we get by ignoring the window area
  1233   // but not the register parameter save area.
  1234   //
  1235   // This is strange for the following reasons. We'd normally expect
  1236   // the calling convention to return an VMReg for a stack slot
  1237   // completely ignoring any abi reserved area. C2 thinks of that
  1238   // abi area as only out_preserve_stack_slots. This does not include
  1239   // the area allocated by the C abi to store down integer arguments
  1240   // because the java calling convention does not use it. So
  1241   // since c2 assumes that there are only out_preserve_stack_slots
  1242   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1243   // location the c calling convention must add in this bias amount
  1244   // to make up for the fact that the out_preserve_stack_slots is
  1245   // insufficient for C calls. What a mess. I sure hope those 6
  1246   // stack words were worth it on every java call!
  1248   // Another way of cleaning this up would be for out_preserve_stack_slots
  1249   // to take a parameter to say whether it was C or java calling conventions.
  1250   // Then things might look a little better (but not much).
  1252   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1253   if( mem_parm_offset < 0 ) {
  1254     return as_oRegister(i)->as_VMReg();
  1255   } else {
  1256     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1257     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1258     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1263 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1264                                          VMRegPair *regs,
  1265                                          int total_args_passed) {
  1267     // Return the number of VMReg stack_slots needed for the args.
  1268     // This value does not include an abi space (like register window
  1269     // save area).
  1271     // The native convention is V8 if !LP64
  1272     // The LP64 convention is the V9 convention which is slightly more sane.
  1274     // We return the amount of VMReg stack slots we need to reserve for all
  1275     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1276     // have space for storing at least 6 registers to memory we start with that.
  1277     // See int_stk_helper for a further discussion.
  1278     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1280 #ifdef _LP64
  1281     // V9 convention: All things "as-if" on double-wide stack slots.
  1282     // Hoist any int/ptr/long's in the first 6 to int regs.
  1283     // Hoist any flt/dbl's in the first 16 dbl regs.
  1284     int j = 0;                  // Count of actual args, not HALVES
  1285     for( int i=0; i<total_args_passed; i++, j++ ) {
  1286       switch( sig_bt[i] ) {
  1287       case T_BOOLEAN:
  1288       case T_BYTE:
  1289       case T_CHAR:
  1290       case T_INT:
  1291       case T_SHORT:
  1292         regs[i].set1( int_stk_helper( j ) ); break;
  1293       case T_LONG:
  1294         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1295       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1296       case T_ARRAY:
  1297       case T_OBJECT:
  1298         regs[i].set2( int_stk_helper( j ) );
  1299         break;
  1300       case T_FLOAT:
  1301         if ( j < 16 ) {
  1302           // V9ism: floats go in ODD registers
  1303           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1304         } else {
  1305           // V9ism: floats go in ODD stack slot
  1306           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1308         break;
  1309       case T_DOUBLE:
  1310         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1311         if ( j < 16 ) {
  1312           // V9ism: doubles go in EVEN/ODD regs
  1313           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1314         } else {
  1315           // V9ism: doubles go in EVEN/ODD stack slots
  1316           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1318         break;
  1319       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1320       default:
  1321         ShouldNotReachHere();
  1323       if (regs[i].first()->is_stack()) {
  1324         int off =  regs[i].first()->reg2stack();
  1325         if (off > max_stack_slots) max_stack_slots = off;
  1327       if (regs[i].second()->is_stack()) {
  1328         int off =  regs[i].second()->reg2stack();
  1329         if (off > max_stack_slots) max_stack_slots = off;
  1333 #else // _LP64
  1334     // V8 convention: first 6 things in O-regs, rest on stack.
  1335     // Alignment is willy-nilly.
  1336     for( int i=0; i<total_args_passed; i++ ) {
  1337       switch( sig_bt[i] ) {
  1338       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1339       case T_ARRAY:
  1340       case T_BOOLEAN:
  1341       case T_BYTE:
  1342       case T_CHAR:
  1343       case T_FLOAT:
  1344       case T_INT:
  1345       case T_OBJECT:
  1346       case T_SHORT:
  1347         regs[i].set1( int_stk_helper( i ) );
  1348         break;
  1349       case T_DOUBLE:
  1350       case T_LONG:
  1351         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1352         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1353         break;
  1354       case T_VOID: regs[i].set_bad(); break;
  1355       default:
  1356         ShouldNotReachHere();
  1358       if (regs[i].first()->is_stack()) {
  1359         int off =  regs[i].first()->reg2stack();
  1360         if (off > max_stack_slots) max_stack_slots = off;
  1362       if (regs[i].second()->is_stack()) {
  1363         int off =  regs[i].second()->reg2stack();
  1364         if (off > max_stack_slots) max_stack_slots = off;
  1367 #endif // _LP64
  1369   return round_to(max_stack_slots + 1, 2);
  1374 // ---------------------------------------------------------------------------
  1375 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1376   switch (ret_type) {
  1377   case T_FLOAT:
  1378     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1379     break;
  1380   case T_DOUBLE:
  1381     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1382     break;
  1386 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1387   switch (ret_type) {
  1388   case T_FLOAT:
  1389     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1390     break;
  1391   case T_DOUBLE:
  1392     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1393     break;
  1397 // Check and forward and pending exception.  Thread is stored in
  1398 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1399 // is no exception handler.  We merely pop this frame off and throw the
  1400 // exception in the caller's frame.
  1401 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1402   Label L;
  1403   __ br_null(Rex_oop, false, Assembler::pt, L);
  1404   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1405   // Since this is a native call, we *know* the proper exception handler
  1406   // without calling into the VM: it's the empty function.  Just pop this
  1407   // frame and then jump to forward_exception_entry; O7 will contain the
  1408   // native caller's return PC.
  1409  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1410   __ jump_to(exception_entry, G3_scratch);
  1411   __ delayed()->restore();      // Pop this frame off.
  1412   __ bind(L);
  1415 // A simple move of integer like type
  1416 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1417   if (src.first()->is_stack()) {
  1418     if (dst.first()->is_stack()) {
  1419       // stack to stack
  1420       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1421       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1422     } else {
  1423       // stack to reg
  1424       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1426   } else if (dst.first()->is_stack()) {
  1427     // reg to stack
  1428     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1429   } else {
  1430     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1434 // On 64 bit we will store integer like items to the stack as
  1435 // 64 bits items (sparc abi) even though java would only store
  1436 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1437 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1438 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1439   if (src.first()->is_stack()) {
  1440     if (dst.first()->is_stack()) {
  1441       // stack to stack
  1442       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1443       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1444     } else {
  1445       // stack to reg
  1446       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1448   } else if (dst.first()->is_stack()) {
  1449     // reg to stack
  1450     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1451   } else {
  1452     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1457 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1458   if (src.first()->is_stack()) {
  1459     if (dst.first()->is_stack()) {
  1460       // stack to stack
  1461       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1462       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1463     } else {
  1464       // stack to reg
  1465       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1467   } else if (dst.first()->is_stack()) {
  1468     // reg to stack
  1469     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1470   } else {
  1471     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1476 // An oop arg. Must pass a handle not the oop itself
  1477 static void object_move(MacroAssembler* masm,
  1478                         OopMap* map,
  1479                         int oop_handle_offset,
  1480                         int framesize_in_slots,
  1481                         VMRegPair src,
  1482                         VMRegPair dst,
  1483                         bool is_receiver,
  1484                         int* receiver_offset) {
  1486   // must pass a handle. First figure out the location we use as a handle
  1488   if (src.first()->is_stack()) {
  1489     // Oop is already on the stack
  1490     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1491     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1492     __ ld_ptr(rHandle, 0, L4);
  1493 #ifdef _LP64
  1494     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1495 #else
  1496     __ tst( L4 );
  1497     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1498 #endif
  1499     if (dst.first()->is_stack()) {
  1500       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1502     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1503     if (is_receiver) {
  1504       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1506     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1507   } else {
  1508     // Oop is in an input register pass we must flush it to the stack
  1509     const Register rOop = src.first()->as_Register();
  1510     const Register rHandle = L5;
  1511     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1512     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1513     Label skip;
  1514     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1515     if (is_receiver) {
  1516       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1518     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1519     __ add(SP, offset + STACK_BIAS, rHandle);
  1520 #ifdef _LP64
  1521     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1522 #else
  1523     __ tst( rOop );
  1524     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1525 #endif
  1527     if (dst.first()->is_stack()) {
  1528       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1529     } else {
  1530       __ mov(rHandle, dst.first()->as_Register());
  1535 // A float arg may have to do float reg int reg conversion
  1536 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1537   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1539   if (src.first()->is_stack()) {
  1540     if (dst.first()->is_stack()) {
  1541       // stack to stack the easiest of the bunch
  1542       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1543       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1544     } else {
  1545       // stack to reg
  1546       if (dst.first()->is_Register()) {
  1547         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1548       } else {
  1549         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1552   } else if (dst.first()->is_stack()) {
  1553     // reg to stack
  1554     if (src.first()->is_Register()) {
  1555       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1556     } else {
  1557       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1559   } else {
  1560     // reg to reg
  1561     if (src.first()->is_Register()) {
  1562       if (dst.first()->is_Register()) {
  1563         // gpr -> gpr
  1564         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1565       } else {
  1566         // gpr -> fpr
  1567         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1568         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1570     } else if (dst.first()->is_Register()) {
  1571       // fpr -> gpr
  1572       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1573       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1574     } else {
  1575       // fpr -> fpr
  1576       // In theory these overlap but the ordering is such that this is likely a nop
  1577       if ( src.first() != dst.first()) {
  1578         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1584 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1585   VMRegPair src_lo(src.first());
  1586   VMRegPair src_hi(src.second());
  1587   VMRegPair dst_lo(dst.first());
  1588   VMRegPair dst_hi(dst.second());
  1589   simple_move32(masm, src_lo, dst_lo);
  1590   simple_move32(masm, src_hi, dst_hi);
  1593 // A long move
  1594 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1596   // Do the simple ones here else do two int moves
  1597   if (src.is_single_phys_reg() ) {
  1598     if (dst.is_single_phys_reg()) {
  1599       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1600     } else {
  1601       // split src into two separate registers
  1602       // Remember hi means hi address or lsw on sparc
  1603       // Move msw to lsw
  1604       if (dst.second()->is_reg()) {
  1605         // MSW -> MSW
  1606         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1607         // Now LSW -> LSW
  1608         // this will only move lo -> lo and ignore hi
  1609         VMRegPair split(dst.second());
  1610         simple_move32(masm, src, split);
  1611       } else {
  1612         VMRegPair split(src.first(), L4->as_VMReg());
  1613         // MSW -> MSW (lo ie. first word)
  1614         __ srax(src.first()->as_Register(), 32, L4);
  1615         split_long_move(masm, split, dst);
  1618   } else if (dst.is_single_phys_reg()) {
  1619     if (src.is_adjacent_aligned_on_stack(2)) {
  1620       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1621     } else {
  1622       // dst is a single reg.
  1623       // Remember lo is low address not msb for stack slots
  1624       // and lo is the "real" register for registers
  1625       // src is
  1627       VMRegPair split;
  1629       if (src.first()->is_reg()) {
  1630         // src.lo (msw) is a reg, src.hi is stk/reg
  1631         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1632         split.set_pair(dst.first(), src.first());
  1633       } else {
  1634         // msw is stack move to L5
  1635         // lsw is stack move to dst.lo (real reg)
  1636         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1637         split.set_pair(dst.first(), L5->as_VMReg());
  1640       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1641       // msw   -> src.lo/L5,  lsw -> dst.lo
  1642       split_long_move(masm, src, split);
  1644       // So dst now has the low order correct position the
  1645       // msw half
  1646       __ sllx(split.first()->as_Register(), 32, L5);
  1648       const Register d = dst.first()->as_Register();
  1649       __ or3(L5, d, d);
  1651   } else {
  1652     // For LP64 we can probably do better.
  1653     split_long_move(masm, src, dst);
  1657 // A double move
  1658 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1660   // The painful thing here is that like long_move a VMRegPair might be
  1661   // 1: a single physical register
  1662   // 2: two physical registers (v8)
  1663   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1664   // 4: two stack slots
  1666   // Since src is always a java calling convention we know that the src pair
  1667   // is always either all registers or all stack (and aligned?)
  1669   // in a register [lo] and a stack slot [hi]
  1670   if (src.first()->is_stack()) {
  1671     if (dst.first()->is_stack()) {
  1672       // stack to stack the easiest of the bunch
  1673       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1674       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1675       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1676       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1677       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1678     } else {
  1679       // stack to reg
  1680       if (dst.second()->is_stack()) {
  1681         // stack -> reg, stack -> stack
  1682         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1683         if (dst.first()->is_Register()) {
  1684           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1685         } else {
  1686           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1688         // This was missing. (very rare case)
  1689         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1690       } else {
  1691         // stack -> reg
  1692         // Eventually optimize for alignment QQQ
  1693         if (dst.first()->is_Register()) {
  1694           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1695           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1696         } else {
  1697           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1698           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1702   } else if (dst.first()->is_stack()) {
  1703     // reg to stack
  1704     if (src.first()->is_Register()) {
  1705       // Eventually optimize for alignment QQQ
  1706       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1707       if (src.second()->is_stack()) {
  1708         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1709         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1710       } else {
  1711         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1713     } else {
  1714       // fpr to stack
  1715       if (src.second()->is_stack()) {
  1716         ShouldNotReachHere();
  1717       } else {
  1718         // Is the stack aligned?
  1719         if (reg2offset(dst.first()) & 0x7) {
  1720           // No do as pairs
  1721           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1722           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1723         } else {
  1724           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1728   } else {
  1729     // reg to reg
  1730     if (src.first()->is_Register()) {
  1731       if (dst.first()->is_Register()) {
  1732         // gpr -> gpr
  1733         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1734         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1735       } else {
  1736         // gpr -> fpr
  1737         // ought to be able to do a single store
  1738         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1739         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1740         // ought to be able to do a single load
  1741         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1742         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1744     } else if (dst.first()->is_Register()) {
  1745       // fpr -> gpr
  1746       // ought to be able to do a single store
  1747       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1748       // ought to be able to do a single load
  1749       // REMEMBER first() is low address not LSB
  1750       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1751       if (dst.second()->is_Register()) {
  1752         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1753       } else {
  1754         __ ld(FP, -4 + STACK_BIAS, L4);
  1755         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1757     } else {
  1758       // fpr -> fpr
  1759       // In theory these overlap but the ordering is such that this is likely a nop
  1760       if ( src.first() != dst.first()) {
  1761         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1767 // Creates an inner frame if one hasn't already been created, and
  1768 // saves a copy of the thread in L7_thread_cache
  1769 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1770   if (!*already_created) {
  1771     __ save_frame(0);
  1772     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1773     // Don't use save_thread because it smashes G2 and we merely want to save a
  1774     // copy
  1775     __ mov(G2_thread, L7_thread_cache);
  1776     *already_created = true;
  1781 static void save_or_restore_arguments(MacroAssembler* masm,
  1782                                       const int stack_slots,
  1783                                       const int total_in_args,
  1784                                       const int arg_save_area,
  1785                                       OopMap* map,
  1786                                       VMRegPair* in_regs,
  1787                                       BasicType* in_sig_bt) {
  1788   // if map is non-NULL then the code should store the values,
  1789   // otherwise it should load them.
  1790   if (map != NULL) {
  1791     // Fill in the map
  1792     for (int i = 0; i < total_in_args; i++) {
  1793       if (in_sig_bt[i] == T_ARRAY) {
  1794         if (in_regs[i].first()->is_stack()) {
  1795           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1796           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1797         } else if (in_regs[i].first()->is_Register()) {
  1798           map->set_oop(in_regs[i].first());
  1799         } else {
  1800           ShouldNotReachHere();
  1806   // Save or restore double word values
  1807   int handle_index = 0;
  1808   for (int i = 0; i < total_in_args; i++) {
  1809     int slot = handle_index + arg_save_area;
  1810     int offset = slot * VMRegImpl::stack_slot_size;
  1811     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
  1812       const Register reg = in_regs[i].first()->as_Register();
  1813       if (reg->is_global()) {
  1814         handle_index += 2;
  1815         assert(handle_index <= stack_slots, "overflow");
  1816         if (map != NULL) {
  1817           __ stx(reg, SP, offset + STACK_BIAS);
  1818         } else {
  1819           __ ldx(SP, offset + STACK_BIAS, reg);
  1822     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
  1823       handle_index += 2;
  1824       assert(handle_index <= stack_slots, "overflow");
  1825       if (map != NULL) {
  1826         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1827       } else {
  1828         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1832   // Save floats
  1833   for (int i = 0; i < total_in_args; i++) {
  1834     int slot = handle_index + arg_save_area;
  1835     int offset = slot * VMRegImpl::stack_slot_size;
  1836     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
  1837       handle_index++;
  1838       assert(handle_index <= stack_slots, "overflow");
  1839       if (map != NULL) {
  1840         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1841       } else {
  1842         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1850 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1851 // keeps a new JNI critical region from starting until a GC has been
  1852 // forced.  Save down any oops in registers and describe them in an
  1853 // OopMap.
  1854 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1855                                                const int stack_slots,
  1856                                                const int total_in_args,
  1857                                                const int arg_save_area,
  1858                                                OopMapSet* oop_maps,
  1859                                                VMRegPair* in_regs,
  1860                                                BasicType* in_sig_bt) {
  1861   __ block_comment("check GC_locker::needs_gc");
  1862   Label cont;
  1863   AddressLiteral sync_state(GC_locker::needs_gc_address());
  1864   __ load_bool_contents(sync_state, G3_scratch);
  1865   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
  1866   __ delayed()->nop();
  1868   // Save down any values that are live in registers and call into the
  1869   // runtime to halt for a GC
  1870   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1871   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1872                             arg_save_area, map, in_regs, in_sig_bt);
  1874   __ mov(G2_thread, L7_thread_cache);
  1876   __ set_last_Java_frame(SP, noreg);
  1878   __ block_comment("block_for_jni_critical");
  1879   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
  1880   __ delayed()->mov(L7_thread_cache, O0);
  1881   oop_maps->add_gc_map( __ offset(), map);
  1883   __ restore_thread(L7_thread_cache); // restore G2_thread
  1884   __ reset_last_Java_frame();
  1886   // Reload all the register arguments
  1887   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1888                             arg_save_area, NULL, in_regs, in_sig_bt);
  1890   __ bind(cont);
  1891 #ifdef ASSERT
  1892   if (StressCriticalJNINatives) {
  1893     // Stress register saving
  1894     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1895     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1896                               arg_save_area, map, in_regs, in_sig_bt);
  1897     // Destroy argument registers
  1898     for (int i = 0; i < total_in_args; i++) {
  1899       if (in_regs[i].first()->is_Register()) {
  1900         const Register reg = in_regs[i].first()->as_Register();
  1901         if (reg->is_global()) {
  1902           __ mov(G0, reg);
  1904       } else if (in_regs[i].first()->is_FloatRegister()) {
  1905         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1909     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1910                               arg_save_area, NULL, in_regs, in_sig_bt);
  1912 #endif
  1915 // Unpack an array argument into a pointer to the body and the length
  1916 // if the array is non-null, otherwise pass 0 for both.
  1917 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1918   // Pass the length, ptr pair
  1919   Label is_null, done;
  1920   if (reg.first()->is_stack()) {
  1921     VMRegPair tmp  = reg64_to_VMRegPair(L2);
  1922     // Load the arg up from the stack
  1923     move_ptr(masm, reg, tmp);
  1924     reg = tmp;
  1926   __ cmp(reg.first()->as_Register(), G0);
  1927   __ brx(Assembler::equal, false, Assembler::pt, is_null);
  1928   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
  1929   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
  1930   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
  1931   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
  1932   __ ba_short(done);
  1933   __ bind(is_null);
  1934   // Pass zeros
  1935   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
  1936   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
  1937   __ bind(done);
  1940 // ---------------------------------------------------------------------------
  1941 // Generate a native wrapper for a given method.  The method takes arguments
  1942 // in the Java compiled code convention, marshals them to the native
  1943 // convention (handlizes oops, etc), transitions to native, makes the call,
  1944 // returns to java state (possibly blocking), unhandlizes any result and
  1945 // returns.
  1946 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1947                                                 methodHandle method,
  1948                                                 int compile_id,
  1949                                                 int total_in_args,
  1950                                                 int comp_args_on_stack, // in VMRegStackSlots
  1951                                                 BasicType *in_sig_bt,
  1952                                                 VMRegPair *in_regs,
  1953                                                 BasicType ret_type) {
  1954   bool is_critical_native = true;
  1955   address native_func = method->critical_native_function();
  1956   if (native_func == NULL) {
  1957     native_func = method->native_function();
  1958     is_critical_native = false;
  1960   assert(native_func != NULL, "must have function");
  1962   // Native nmethod wrappers never take possesion of the oop arguments.
  1963   // So the caller will gc the arguments. The only thing we need an
  1964   // oopMap for is if the call is static
  1965   //
  1966   // An OopMap for lock (and class if static), and one for the VM call itself
  1967   OopMapSet *oop_maps = new OopMapSet();
  1968   intptr_t start = (intptr_t)__ pc();
  1970   // First thing make an ic check to see if we should even be here
  1972     Label L;
  1973     const Register temp_reg = G3_scratch;
  1974     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1975     __ verify_oop(O0);
  1976     __ load_klass(O0, temp_reg);
  1977     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  1979     __ jump_to(ic_miss, temp_reg);
  1980     __ delayed()->nop();
  1981     __ align(CodeEntryAlignment);
  1982     __ bind(L);
  1985   int vep_offset = ((intptr_t)__ pc()) - start;
  1987 #ifdef COMPILER1
  1988   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1989     // Object.hashCode can pull the hashCode from the header word
  1990     // instead of doing a full VM transition once it's been computed.
  1991     // Since hashCode is usually polymorphic at call sites we can't do
  1992     // this optimization at the call site without a lot of work.
  1993     Label slowCase;
  1994     Register receiver             = O0;
  1995     Register result               = O0;
  1996     Register header               = G3_scratch;
  1997     Register hash                 = G3_scratch; // overwrite header value with hash value
  1998     Register mask                 = G1;         // to get hash field from header
  2000     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  2001     // We depend on hash_mask being at most 32 bits and avoid the use of
  2002     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  2003     // vm: see markOop.hpp.
  2004     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  2005     __ sethi(markOopDesc::hash_mask, mask);
  2006     __ btst(markOopDesc::unlocked_value, header);
  2007     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  2008     if (UseBiasedLocking) {
  2009       // Check if biased and fall through to runtime if so
  2010       __ delayed()->nop();
  2011       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  2012       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  2014     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  2016     // Check for a valid (non-zero) hash code and get its value.
  2017 #ifdef _LP64
  2018     __ srlx(header, markOopDesc::hash_shift, hash);
  2019 #else
  2020     __ srl(header, markOopDesc::hash_shift, hash);
  2021 #endif
  2022     __ andcc(hash, mask, hash);
  2023     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  2024     __ delayed()->nop();
  2026     // leaf return.
  2027     __ retl();
  2028     __ delayed()->mov(hash, result);
  2029     __ bind(slowCase);
  2031 #endif // COMPILER1
  2034   // We have received a description of where all the java arg are located
  2035   // on entry to the wrapper. We need to convert these args to where
  2036   // the jni function will expect them. To figure out where they go
  2037   // we convert the java signature to a C signature by inserting
  2038   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  2040   int total_c_args = total_in_args;
  2041   int total_save_slots = 6 * VMRegImpl::slots_per_word;
  2042   if (!is_critical_native) {
  2043     total_c_args += 1;
  2044     if (method->is_static()) {
  2045       total_c_args++;
  2047   } else {
  2048     for (int i = 0; i < total_in_args; i++) {
  2049       if (in_sig_bt[i] == T_ARRAY) {
  2050         // These have to be saved and restored across the safepoint
  2051         total_c_args++;
  2056   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  2057   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  2058   BasicType* in_elem_bt = NULL;
  2060   int argc = 0;
  2061   if (!is_critical_native) {
  2062     out_sig_bt[argc++] = T_ADDRESS;
  2063     if (method->is_static()) {
  2064       out_sig_bt[argc++] = T_OBJECT;
  2067     for (int i = 0; i < total_in_args ; i++ ) {
  2068       out_sig_bt[argc++] = in_sig_bt[i];
  2070   } else {
  2071     Thread* THREAD = Thread::current();
  2072     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  2073     SignatureStream ss(method->signature());
  2074     for (int i = 0; i < total_in_args ; i++ ) {
  2075       if (in_sig_bt[i] == T_ARRAY) {
  2076         // Arrays are passed as int, elem* pair
  2077         out_sig_bt[argc++] = T_INT;
  2078         out_sig_bt[argc++] = T_ADDRESS;
  2079         Symbol* atype = ss.as_symbol(CHECK_NULL);
  2080         const char* at = atype->as_C_string();
  2081         if (strlen(at) == 2) {
  2082           assert(at[0] == '[', "must be");
  2083           switch (at[1]) {
  2084             case 'B': in_elem_bt[i]  = T_BYTE; break;
  2085             case 'C': in_elem_bt[i]  = T_CHAR; break;
  2086             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  2087             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  2088             case 'I': in_elem_bt[i]  = T_INT; break;
  2089             case 'J': in_elem_bt[i]  = T_LONG; break;
  2090             case 'S': in_elem_bt[i]  = T_SHORT; break;
  2091             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  2092             default: ShouldNotReachHere();
  2095       } else {
  2096         out_sig_bt[argc++] = in_sig_bt[i];
  2097         in_elem_bt[i] = T_VOID;
  2099       if (in_sig_bt[i] != T_VOID) {
  2100         assert(in_sig_bt[i] == ss.type(), "must match");
  2101         ss.next();
  2106   // Now figure out where the args must be stored and how much stack space
  2107   // they require (neglecting out_preserve_stack_slots but space for storing
  2108   // the 1st six register arguments). It's weird see int_stk_helper.
  2109   //
  2110   int out_arg_slots;
  2111   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2113   if (is_critical_native) {
  2114     // Critical natives may have to call out so they need a save area
  2115     // for register arguments.
  2116     int double_slots = 0;
  2117     int single_slots = 0;
  2118     for ( int i = 0; i < total_in_args; i++) {
  2119       if (in_regs[i].first()->is_Register()) {
  2120         const Register reg = in_regs[i].first()->as_Register();
  2121         switch (in_sig_bt[i]) {
  2122           case T_ARRAY:
  2123           case T_BOOLEAN:
  2124           case T_BYTE:
  2125           case T_SHORT:
  2126           case T_CHAR:
  2127           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
  2128           case T_LONG: if (reg->is_global()) double_slots++; break;
  2129           default:  ShouldNotReachHere();
  2131       } else if (in_regs[i].first()->is_FloatRegister()) {
  2132         switch (in_sig_bt[i]) {
  2133           case T_FLOAT:  single_slots++; break;
  2134           case T_DOUBLE: double_slots++; break;
  2135           default:  ShouldNotReachHere();
  2139     total_save_slots = double_slots * 2 + single_slots;
  2142   // Compute framesize for the wrapper.  We need to handlize all oops in
  2143   // registers. We must create space for them here that is disjoint from
  2144   // the windowed save area because we have no control over when we might
  2145   // flush the window again and overwrite values that gc has since modified.
  2146   // (The live window race)
  2147   //
  2148   // We always just allocate 6 word for storing down these object. This allow
  2149   // us to simply record the base and use the Ireg number to decide which
  2150   // slot to use. (Note that the reg number is the inbound number not the
  2151   // outbound number).
  2152   // We must shuffle args to match the native convention, and include var-args space.
  2154   // Calculate the total number of stack slots we will need.
  2156   // First count the abi requirement plus all of the outgoing args
  2157   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2159   // Now the space for the inbound oop handle area
  2161   int oop_handle_offset = round_to(stack_slots, 2);
  2162   stack_slots += total_save_slots;
  2164   // Now any space we need for handlizing a klass if static method
  2166   int klass_slot_offset = 0;
  2167   int klass_offset = -1;
  2168   int lock_slot_offset = 0;
  2169   bool is_static = false;
  2171   if (method->is_static()) {
  2172     klass_slot_offset = stack_slots;
  2173     stack_slots += VMRegImpl::slots_per_word;
  2174     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  2175     is_static = true;
  2178   // Plus a lock if needed
  2180   if (method->is_synchronized()) {
  2181     lock_slot_offset = stack_slots;
  2182     stack_slots += VMRegImpl::slots_per_word;
  2185   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  2186   stack_slots += 2;
  2188   // Ok The space we have allocated will look like:
  2189   //
  2190   //
  2191   // FP-> |                     |
  2192   //      |---------------------|
  2193   //      | 2 slots for moves   |
  2194   //      |---------------------|
  2195   //      | lock box (if sync)  |
  2196   //      |---------------------| <- lock_slot_offset
  2197   //      | klass (if static)   |
  2198   //      |---------------------| <- klass_slot_offset
  2199   //      | oopHandle area      |
  2200   //      |---------------------| <- oop_handle_offset
  2201   //      | outbound memory     |
  2202   //      | based arguments     |
  2203   //      |                     |
  2204   //      |---------------------|
  2205   //      | vararg area         |
  2206   //      |---------------------|
  2207   //      |                     |
  2208   // SP-> | out_preserved_slots |
  2209   //
  2210   //
  2213   // Now compute actual number of stack words we need rounding to make
  2214   // stack properly aligned.
  2215   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2217   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2219   // Generate stack overflow check before creating frame
  2220   __ generate_stack_overflow_check(stack_size);
  2222   // Generate a new frame for the wrapper.
  2223   __ save(SP, -stack_size, SP);
  2225   int frame_complete = ((intptr_t)__ pc()) - start;
  2227   __ verify_thread();
  2229   if (is_critical_native) {
  2230     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
  2231                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2234   //
  2235   // We immediately shuffle the arguments so that any vm call we have to
  2236   // make from here on out (sync slow path, jvmti, etc.) we will have
  2237   // captured the oops from our caller and have a valid oopMap for
  2238   // them.
  2240   // -----------------
  2241   // The Grand Shuffle
  2242   //
  2243   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2244   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2245   // the class mirror instead of a receiver.  This pretty much guarantees that
  2246   // register layout will not match.  We ignore these extra arguments during
  2247   // the shuffle. The shuffle is described by the two calling convention
  2248   // vectors we have in our possession. We simply walk the java vector to
  2249   // get the source locations and the c vector to get the destinations.
  2250   // Because we have a new window and the argument registers are completely
  2251   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2252   // here.
  2254   // This is a trick. We double the stack slots so we can claim
  2255   // the oops in the caller's frame. Since we are sure to have
  2256   // more args than the caller doubling is enough to make
  2257   // sure we can capture all the incoming oop args from the
  2258   // caller.
  2259   //
  2260   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2261   // Record sp-based slot for receiver on stack for non-static methods
  2262   int receiver_offset = -1;
  2264   // We move the arguments backward because the floating point registers
  2265   // destination will always be to a register with a greater or equal register
  2266   // number or the stack.
  2268 #ifdef ASSERT
  2269   bool reg_destroyed[RegisterImpl::number_of_registers];
  2270   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2271   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2272     reg_destroyed[r] = false;
  2274   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2275     freg_destroyed[f] = false;
  2278 #endif /* ASSERT */
  2280   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
  2282 #ifdef ASSERT
  2283     if (in_regs[i].first()->is_Register()) {
  2284       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2285     } else if (in_regs[i].first()->is_FloatRegister()) {
  2286       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2288     if (out_regs[c_arg].first()->is_Register()) {
  2289       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2290     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2291       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2293 #endif /* ASSERT */
  2295     switch (in_sig_bt[i]) {
  2296       case T_ARRAY:
  2297         if (is_critical_native) {
  2298           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
  2299           c_arg--;
  2300           break;
  2302       case T_OBJECT:
  2303         assert(!is_critical_native, "no oop arguments");
  2304         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2305                     ((i == 0) && (!is_static)),
  2306                     &receiver_offset);
  2307         break;
  2308       case T_VOID:
  2309         break;
  2311       case T_FLOAT:
  2312         float_move(masm, in_regs[i], out_regs[c_arg]);
  2313         break;
  2315       case T_DOUBLE:
  2316         assert( i + 1 < total_in_args &&
  2317                 in_sig_bt[i + 1] == T_VOID &&
  2318                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2319         double_move(masm, in_regs[i], out_regs[c_arg]);
  2320         break;
  2322       case T_LONG :
  2323         long_move(masm, in_regs[i], out_regs[c_arg]);
  2324         break;
  2326       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2328       default:
  2329         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2333   // Pre-load a static method's oop into O1.  Used both by locking code and
  2334   // the normal JNI call code.
  2335   if (method->is_static() && !is_critical_native) {
  2336     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
  2338     // Now handlize the static class mirror in O1.  It's known not-null.
  2339     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2340     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2341     __ add(SP, klass_offset + STACK_BIAS, O1);
  2345   const Register L6_handle = L6;
  2347   if (method->is_synchronized()) {
  2348     assert(!is_critical_native, "unhandled");
  2349     __ mov(O1, L6_handle);
  2352   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2353   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2354   // push a new frame and flush the windows.
  2355 #ifdef _LP64
  2356   intptr_t thepc = (intptr_t) __ pc();
  2358     address here = __ pc();
  2359     // Call the next instruction
  2360     __ call(here + 8, relocInfo::none);
  2361     __ delayed()->nop();
  2363 #else
  2364   intptr_t thepc = __ load_pc_address(O7, 0);
  2365 #endif /* _LP64 */
  2367   // We use the same pc/oopMap repeatedly when we call out
  2368   oop_maps->add_gc_map(thepc - start, map);
  2370   // O7 now has the pc loaded that we will use when we finally call to native.
  2372   // Save thread in L7; it crosses a bunch of VM calls below
  2373   // Don't use save_thread because it smashes G2 and we merely
  2374   // want to save a copy
  2375   __ mov(G2_thread, L7_thread_cache);
  2378   // If we create an inner frame once is plenty
  2379   // when we create it we must also save G2_thread
  2380   bool inner_frame_created = false;
  2382   // dtrace method entry support
  2384     SkipIfEqual skip_if(
  2385       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2386     // create inner frame
  2387     __ save_frame(0);
  2388     __ mov(G2_thread, L7_thread_cache);
  2389     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2390     __ call_VM_leaf(L7_thread_cache,
  2391          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2392          G2_thread, O1);
  2393     __ restore();
  2396   // RedefineClasses() tracing support for obsolete method entry
  2397   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2398     // create inner frame
  2399     __ save_frame(0);
  2400     __ mov(G2_thread, L7_thread_cache);
  2401     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2402     __ call_VM_leaf(L7_thread_cache,
  2403          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2404          G2_thread, O1);
  2405     __ restore();
  2408   // We are in the jni frame unless saved_frame is true in which case
  2409   // we are in one frame deeper (the "inner" frame). If we are in the
  2410   // "inner" frames the args are in the Iregs and if the jni frame then
  2411   // they are in the Oregs.
  2412   // If we ever need to go to the VM (for locking, jvmti) then
  2413   // we will always be in the "inner" frame.
  2415   // Lock a synchronized method
  2416   int lock_offset = -1;         // Set if locked
  2417   if (method->is_synchronized()) {
  2418     Register Roop = O1;
  2419     const Register L3_box = L3;
  2421     create_inner_frame(masm, &inner_frame_created);
  2423     __ ld_ptr(I1, 0, O1);
  2424     Label done;
  2426     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2427     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2428 #ifdef ASSERT
  2429     if (UseBiasedLocking) {
  2430       // making the box point to itself will make it clear it went unused
  2431       // but also be obviously invalid
  2432       __ st_ptr(L3_box, L3_box, 0);
  2434 #endif // ASSERT
  2435     //
  2436     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2437     //
  2438     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2439     __ br(Assembler::equal, false, Assembler::pt, done);
  2440     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2443     // None of the above fast optimizations worked so we have to get into the
  2444     // slow case of monitor enter.  Inline a special case of call_VM that
  2445     // disallows any pending_exception.
  2446     __ mov(Roop, O0);            // Need oop in O0
  2447     __ mov(L3_box, O1);
  2449     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2451     __ set_last_Java_frame(FP, I7);
  2453     // do the call
  2454     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2455     __ delayed()->mov(L7_thread_cache, O2);
  2457     __ restore_thread(L7_thread_cache); // restore G2_thread
  2458     __ reset_last_Java_frame();
  2460 #ifdef ASSERT
  2461     { Label L;
  2462     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2463     __ br_null_short(O0, Assembler::pt, L);
  2464     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2465     __ bind(L);
  2467 #endif
  2468     __ bind(done);
  2472   // Finally just about ready to make the JNI call
  2474   __ flush_windows();
  2475   if (inner_frame_created) {
  2476     __ restore();
  2477   } else {
  2478     // Store only what we need from this frame
  2479     // QQQ I think that non-v9 (like we care) we don't need these saves
  2480     // either as the flush traps and the current window goes too.
  2481     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2482     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2485   // get JNIEnv* which is first argument to native
  2486   if (!is_critical_native) {
  2487     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2490   // Use that pc we placed in O7 a while back as the current frame anchor
  2491   __ set_last_Java_frame(SP, O7);
  2493   // We flushed the windows ages ago now mark them as flushed before transitioning.
  2494   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2495   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2497   // Transition from _thread_in_Java to _thread_in_native.
  2498   __ set(_thread_in_native, G3_scratch);
  2500 #ifdef _LP64
  2501   AddressLiteral dest(native_func);
  2502   __ relocate(relocInfo::runtime_call_type);
  2503   __ jumpl_to(dest, O7, O7);
  2504 #else
  2505   __ call(native_func, relocInfo::runtime_call_type);
  2506 #endif
  2507   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2509   __ restore_thread(L7_thread_cache); // restore G2_thread
  2511   // Unpack native results.  For int-types, we do any needed sign-extension
  2512   // and move things into I0.  The return value there will survive any VM
  2513   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2514   // specially in the slow-path code.
  2515   switch (ret_type) {
  2516   case T_VOID:    break;        // Nothing to do!
  2517   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2518   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2519   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2520   case T_LONG:
  2521 #ifndef _LP64
  2522                   __ mov(O1, I1);
  2523 #endif
  2524                   // Fall thru
  2525   case T_OBJECT:                // Really a handle
  2526   case T_ARRAY:
  2527   case T_INT:
  2528                   __ mov(O0, I0);
  2529                   break;
  2530   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2531   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2532   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2533   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2534     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2535   default:
  2536     ShouldNotReachHere();
  2539   Label after_transition;
  2540   // must we block?
  2542   // Block, if necessary, before resuming in _thread_in_Java state.
  2543   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2544   { Label no_block;
  2545     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2547     // Switch thread to "native transition" state before reading the synchronization state.
  2548     // This additional state is necessary because reading and testing the synchronization
  2549     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2550     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2551     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2552     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2553     //     didn't see any synchronization is progress, and escapes.
  2554     __ set(_thread_in_native_trans, G3_scratch);
  2555     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2556     if(os::is_MP()) {
  2557       if (UseMembar) {
  2558         // Force this write out before the read below
  2559         __ membar(Assembler::StoreLoad);
  2560       } else {
  2561         // Write serialization page so VM thread can do a pseudo remote membar.
  2562         // We use the current thread pointer to calculate a thread specific
  2563         // offset to write to within the page. This minimizes bus traffic
  2564         // due to cache line collision.
  2565         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2568     __ load_contents(sync_state, G3_scratch);
  2569     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2571     Label L;
  2572     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2573     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2574     __ delayed()->ld(suspend_state, G3_scratch);
  2575     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  2576     __ bind(L);
  2578     // Block.  Save any potential method result value before the operation and
  2579     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2580     // lets us share the oopMap we used when we went native rather the create
  2581     // a distinct one for this pc
  2582     //
  2583     save_native_result(masm, ret_type, stack_slots);
  2584     if (!is_critical_native) {
  2585       __ call_VM_leaf(L7_thread_cache,
  2586                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2587                       G2_thread);
  2588     } else {
  2589       __ call_VM_leaf(L7_thread_cache,
  2590                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
  2591                       G2_thread);
  2594     // Restore any method result value
  2595     restore_native_result(masm, ret_type, stack_slots);
  2597     if (is_critical_native) {
  2598       // The call above performed the transition to thread_in_Java so
  2599       // skip the transition logic below.
  2600       __ ba(after_transition);
  2601       __ delayed()->nop();
  2604     __ bind(no_block);
  2607   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2608   // happened so we can now change state to _thread_in_Java.
  2609   __ set(_thread_in_Java, G3_scratch);
  2610   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2611   __ bind(after_transition);
  2613   Label no_reguard;
  2614   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2615   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
  2617     save_native_result(masm, ret_type, stack_slots);
  2618   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2619   __ delayed()->nop();
  2621   __ restore_thread(L7_thread_cache); // restore G2_thread
  2622     restore_native_result(masm, ret_type, stack_slots);
  2624   __ bind(no_reguard);
  2626   // Handle possible exception (will unlock if necessary)
  2628   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2630   // Unlock
  2631   if (method->is_synchronized()) {
  2632     Label done;
  2633     Register I2_ex_oop = I2;
  2634     const Register L3_box = L3;
  2635     // Get locked oop from the handle we passed to jni
  2636     __ ld_ptr(L6_handle, 0, L4);
  2637     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2638     // Must save pending exception around the slow-path VM call.  Since it's a
  2639     // leaf call, the pending exception (if any) can be kept in a register.
  2640     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2641     // Now unlock
  2642     //                       (Roop, Rmark, Rbox,   Rscratch)
  2643     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2644     __ br(Assembler::equal, false, Assembler::pt, done);
  2645     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2647     // save and restore any potential method result value around the unlocking
  2648     // operation.  Will save in I0 (or stack for FP returns).
  2649     save_native_result(masm, ret_type, stack_slots);
  2651     // Must clear pending-exception before re-entering the VM.  Since this is
  2652     // a leaf call, pending-exception-oop can be safely kept in a register.
  2653     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2655     // slow case of monitor enter.  Inline a special case of call_VM that
  2656     // disallows any pending_exception.
  2657     __ mov(L3_box, O1);
  2659     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2660     __ delayed()->mov(L4, O0);              // Need oop in O0
  2662     __ restore_thread(L7_thread_cache); // restore G2_thread
  2664 #ifdef ASSERT
  2665     { Label L;
  2666     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2667     __ br_null_short(O0, Assembler::pt, L);
  2668     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2669     __ bind(L);
  2671 #endif
  2672     restore_native_result(masm, ret_type, stack_slots);
  2673     // check_forward_pending_exception jump to forward_exception if any pending
  2674     // exception is set.  The forward_exception routine expects to see the
  2675     // exception in pending_exception and not in a register.  Kind of clumsy,
  2676     // since all folks who branch to forward_exception must have tested
  2677     // pending_exception first and hence have it in a register already.
  2678     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2679     __ bind(done);
  2682   // Tell dtrace about this method exit
  2684     SkipIfEqual skip_if(
  2685       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2686     save_native_result(masm, ret_type, stack_slots);
  2687     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2688     __ call_VM_leaf(L7_thread_cache,
  2689        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2690        G2_thread, O1);
  2691     restore_native_result(masm, ret_type, stack_slots);
  2694   // Clear "last Java frame" SP and PC.
  2695   __ verify_thread(); // G2_thread must be correct
  2696   __ reset_last_Java_frame();
  2698   // Unpack oop result
  2699   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2700       Label L;
  2701       __ addcc(G0, I0, G0);
  2702       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2703       __ delayed()->ld_ptr(I0, 0, I0);
  2704       __ mov(G0, I0);
  2705       __ bind(L);
  2706       __ verify_oop(I0);
  2709   if (!is_critical_native) {
  2710     // reset handle block
  2711     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2712     __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2714     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2715     check_forward_pending_exception(masm, G3_scratch);
  2719   // Return
  2721 #ifndef _LP64
  2722   if (ret_type == T_LONG) {
  2724     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2725     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2726     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2727     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2729 #endif
  2731   __ ret();
  2732   __ delayed()->restore();
  2734   __ flush();
  2736   nmethod *nm = nmethod::new_native_nmethod(method,
  2737                                             compile_id,
  2738                                             masm->code(),
  2739                                             vep_offset,
  2740                                             frame_complete,
  2741                                             stack_slots / VMRegImpl::slots_per_word,
  2742                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2743                                             in_ByteSize(lock_offset),
  2744                                             oop_maps);
  2746   if (is_critical_native) {
  2747     nm->set_lazy_critical_native(true);
  2749   return nm;
  2753 #ifdef HAVE_DTRACE_H
  2754 // ---------------------------------------------------------------------------
  2755 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2756 // in the Java compiled code convention, marshals them to the native
  2757 // abi and then leaves nops at the position you would expect to call a native
  2758 // function. When the probe is enabled the nops are replaced with a trap
  2759 // instruction that dtrace inserts and the trace will cause a notification
  2760 // to dtrace.
  2761 //
  2762 // The probes are only able to take primitive types and java/lang/String as
  2763 // arguments.  No other java types are allowed. Strings are converted to utf8
  2764 // strings so that from dtrace point of view java strings are converted to C
  2765 // strings. There is an arbitrary fixed limit on the total space that a method
  2766 // can use for converting the strings. (256 chars per string in the signature).
  2767 // So any java string larger then this is truncated.
  2769 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2770 static bool offsets_initialized = false;
  2772 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2773     MacroAssembler *masm, methodHandle method) {
  2776   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2777   // be single threaded in this method.
  2778   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2780   // Fill in the signature array, for the calling-convention call.
  2781   int total_args_passed = method->size_of_parameters();
  2783   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2784   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2786   // The signature we are going to use for the trap that dtrace will see
  2787   // java/lang/String is converted. We drop "this" and any other object
  2788   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2789   // is converted to a two-slot long, which is why we double the allocation).
  2790   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2791   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2793   int i=0;
  2794   int total_strings = 0;
  2795   int first_arg_to_pass = 0;
  2796   int total_c_args = 0;
  2798   // Skip the receiver as dtrace doesn't want to see it
  2799   if( !method->is_static() ) {
  2800     in_sig_bt[i++] = T_OBJECT;
  2801     first_arg_to_pass = 1;
  2804   SignatureStream ss(method->signature());
  2805   for ( ; !ss.at_return_type(); ss.next()) {
  2806     BasicType bt = ss.type();
  2807     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2808     out_sig_bt[total_c_args++] = bt;
  2809     if( bt == T_OBJECT) {
  2810       Symbol* s = ss.as_symbol_or_null();
  2811       if (s == vmSymbols::java_lang_String()) {
  2812         total_strings++;
  2813         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2814       } else if (s == vmSymbols::java_lang_Boolean() ||
  2815                  s == vmSymbols::java_lang_Byte()) {
  2816         out_sig_bt[total_c_args-1] = T_BYTE;
  2817       } else if (s == vmSymbols::java_lang_Character() ||
  2818                  s == vmSymbols::java_lang_Short()) {
  2819         out_sig_bt[total_c_args-1] = T_SHORT;
  2820       } else if (s == vmSymbols::java_lang_Integer() ||
  2821                  s == vmSymbols::java_lang_Float()) {
  2822         out_sig_bt[total_c_args-1] = T_INT;
  2823       } else if (s == vmSymbols::java_lang_Long() ||
  2824                  s == vmSymbols::java_lang_Double()) {
  2825         out_sig_bt[total_c_args-1] = T_LONG;
  2826         out_sig_bt[total_c_args++] = T_VOID;
  2828     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2829       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2830       // We convert double to long
  2831       out_sig_bt[total_c_args-1] = T_LONG;
  2832       out_sig_bt[total_c_args++] = T_VOID;
  2833     } else if ( bt == T_FLOAT) {
  2834       // We convert float to int
  2835       out_sig_bt[total_c_args-1] = T_INT;
  2839   assert(i==total_args_passed, "validly parsed signature");
  2841   // Now get the compiled-Java layout as input arguments
  2842   int comp_args_on_stack;
  2843   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2844       in_sig_bt, in_regs, total_args_passed, false);
  2846   // We have received a description of where all the java arg are located
  2847   // on entry to the wrapper. We need to convert these args to where
  2848   // the a  native (non-jni) function would expect them. To figure out
  2849   // where they go we convert the java signature to a C signature and remove
  2850   // T_VOID for any long/double we might have received.
  2853   // Now figure out where the args must be stored and how much stack space
  2854   // they require (neglecting out_preserve_stack_slots but space for storing
  2855   // the 1st six register arguments). It's weird see int_stk_helper.
  2856   //
  2857   int out_arg_slots;
  2858   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2860   // Calculate the total number of stack slots we will need.
  2862   // First count the abi requirement plus all of the outgoing args
  2863   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2865   // Plus a temp for possible converion of float/double/long register args
  2867   int conversion_temp = stack_slots;
  2868   stack_slots += 2;
  2871   // Now space for the string(s) we must convert
  2873   int string_locs = stack_slots;
  2874   stack_slots += total_strings *
  2875                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2877   // Ok The space we have allocated will look like:
  2878   //
  2879   //
  2880   // FP-> |                     |
  2881   //      |---------------------|
  2882   //      | string[n]           |
  2883   //      |---------------------| <- string_locs[n]
  2884   //      | string[n-1]         |
  2885   //      |---------------------| <- string_locs[n-1]
  2886   //      | ...                 |
  2887   //      | ...                 |
  2888   //      |---------------------| <- string_locs[1]
  2889   //      | string[0]           |
  2890   //      |---------------------| <- string_locs[0]
  2891   //      | temp                |
  2892   //      |---------------------| <- conversion_temp
  2893   //      | outbound memory     |
  2894   //      | based arguments     |
  2895   //      |                     |
  2896   //      |---------------------|
  2897   //      |                     |
  2898   // SP-> | out_preserved_slots |
  2899   //
  2900   //
  2902   // Now compute actual number of stack words we need rounding to make
  2903   // stack properly aligned.
  2904   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2906   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2908   intptr_t start = (intptr_t)__ pc();
  2910   // First thing make an ic check to see if we should even be here
  2913     Label L;
  2914     const Register temp_reg = G3_scratch;
  2915     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2916     __ verify_oop(O0);
  2917     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2918     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  2920     __ jump_to(ic_miss, temp_reg);
  2921     __ delayed()->nop();
  2922     __ align(CodeEntryAlignment);
  2923     __ bind(L);
  2926   int vep_offset = ((intptr_t)__ pc()) - start;
  2929   // The instruction at the verified entry point must be 5 bytes or longer
  2930   // because it can be patched on the fly by make_non_entrant. The stack bang
  2931   // instruction fits that requirement.
  2933   // Generate stack overflow check before creating frame
  2934   __ generate_stack_overflow_check(stack_size);
  2936   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2937          "valid size for make_non_entrant");
  2939   // Generate a new frame for the wrapper.
  2940   __ save(SP, -stack_size, SP);
  2942   // Frame is now completed as far a size and linkage.
  2944   int frame_complete = ((intptr_t)__ pc()) - start;
  2946 #ifdef ASSERT
  2947   bool reg_destroyed[RegisterImpl::number_of_registers];
  2948   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2949   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2950     reg_destroyed[r] = false;
  2952   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2953     freg_destroyed[f] = false;
  2956 #endif /* ASSERT */
  2958   VMRegPair zero;
  2959   const Register g0 = G0; // without this we get a compiler warning (why??)
  2960   zero.set2(g0->as_VMReg());
  2962   int c_arg, j_arg;
  2964   Register conversion_off = noreg;
  2966   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2967        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2969     VMRegPair src = in_regs[j_arg];
  2970     VMRegPair dst = out_regs[c_arg];
  2972 #ifdef ASSERT
  2973     if (src.first()->is_Register()) {
  2974       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2975     } else if (src.first()->is_FloatRegister()) {
  2976       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2977                                                FloatRegisterImpl::S)], "ack!");
  2979     if (dst.first()->is_Register()) {
  2980       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2981     } else if (dst.first()->is_FloatRegister()) {
  2982       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2983                                                  FloatRegisterImpl::S)] = true;
  2985 #endif /* ASSERT */
  2987     switch (in_sig_bt[j_arg]) {
  2988       case T_ARRAY:
  2989       case T_OBJECT:
  2991           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  2992               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2993             // need to unbox a one-slot value
  2994             Register in_reg = L0;
  2995             Register tmp = L2;
  2996             if ( src.first()->is_reg() ) {
  2997               in_reg = src.first()->as_Register();
  2998             } else {
  2999               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  3000                      "must be");
  3001               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  3003             // If the final destination is an acceptable register
  3004             if ( dst.first()->is_reg() ) {
  3005               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  3006                 tmp = dst.first()->as_Register();
  3010             Label skipUnbox;
  3011             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  3012               __ mov(G0, tmp->successor());
  3014             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  3015             __ delayed()->mov(G0, tmp);
  3017             BasicType bt = out_sig_bt[c_arg];
  3018             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3019             switch (bt) {
  3020                 case T_BYTE:
  3021                   __ ldub(in_reg, box_offset, tmp); break;
  3022                 case T_SHORT:
  3023                   __ lduh(in_reg, box_offset, tmp); break;
  3024                 case T_INT:
  3025                   __ ld(in_reg, box_offset, tmp); break;
  3026                 case T_LONG:
  3027                   __ ld_long(in_reg, box_offset, tmp); break;
  3028                 default: ShouldNotReachHere();
  3031             __ bind(skipUnbox);
  3032             // If tmp wasn't final destination copy to final destination
  3033             if (tmp == L2) {
  3034               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  3035               if (out_sig_bt[c_arg] == T_LONG) {
  3036                 long_move(masm, tmp_as_VM, dst);
  3037               } else {
  3038                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  3041             if (out_sig_bt[c_arg] == T_LONG) {
  3042               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3043               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  3045           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  3046             Register s =
  3047                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  3048             Register d =
  3049                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3051             // We store the oop now so that the conversion pass can reach
  3052             // while in the inner frame. This will be the only store if
  3053             // the oop is NULL.
  3054             if (s != L2) {
  3055               // src is register
  3056               if (d != L2) {
  3057                 // dst is register
  3058                 __ mov(s, d);
  3059               } else {
  3060                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3061                           STACK_BIAS), "must be");
  3062                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  3064             } else {
  3065                 // src not a register
  3066                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  3067                            STACK_BIAS), "must be");
  3068                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  3069                 if (d == L2) {
  3070                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3071                              STACK_BIAS), "must be");
  3072                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  3075           } else if (out_sig_bt[c_arg] != T_VOID) {
  3076             // Convert the arg to NULL
  3077             if (dst.first()->is_reg()) {
  3078               __ mov(G0, dst.first()->as_Register());
  3079             } else {
  3080               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3081                          STACK_BIAS), "must be");
  3082               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  3086         break;
  3087       case T_VOID:
  3088         break;
  3090       case T_FLOAT:
  3091         if (src.first()->is_stack()) {
  3092           // Stack to stack/reg is simple
  3093           move32_64(masm, src, dst);
  3094         } else {
  3095           if (dst.first()->is_reg()) {
  3096             // freg -> reg
  3097             int off =
  3098               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3099             Register d = dst.first()->as_Register();
  3100             if (Assembler::is_simm13(off)) {
  3101               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3102                      SP, off);
  3103               __ ld(SP, off, d);
  3104             } else {
  3105               if (conversion_off == noreg) {
  3106                 __ set(off, L6);
  3107                 conversion_off = L6;
  3109               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3110                      SP, conversion_off);
  3111               __ ld(SP, conversion_off , d);
  3113           } else {
  3114             // freg -> mem
  3115             int off = STACK_BIAS + reg2offset(dst.first());
  3116             if (Assembler::is_simm13(off)) {
  3117               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3118                      SP, off);
  3119             } else {
  3120               if (conversion_off == noreg) {
  3121                 __ set(off, L6);
  3122                 conversion_off = L6;
  3124               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3125                      SP, conversion_off);
  3129         break;
  3131       case T_DOUBLE:
  3132         assert( j_arg + 1 < total_args_passed &&
  3133                 in_sig_bt[j_arg + 1] == T_VOID &&
  3134                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  3135         if (src.first()->is_stack()) {
  3136           // Stack to stack/reg is simple
  3137           long_move(masm, src, dst);
  3138         } else {
  3139           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3141           // Destination could be an odd reg on 32bit in which case
  3142           // we can't load direct to the destination.
  3144           if (!d->is_even() && wordSize == 4) {
  3145             d = L2;
  3147           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3148           if (Assembler::is_simm13(off)) {
  3149             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3150                    SP, off);
  3151             __ ld_long(SP, off, d);
  3152           } else {
  3153             if (conversion_off == noreg) {
  3154               __ set(off, L6);
  3155               conversion_off = L6;
  3157             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3158                    SP, conversion_off);
  3159             __ ld_long(SP, conversion_off, d);
  3161           if (d == L2) {
  3162             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3165         break;
  3167       case T_LONG :
  3168         // 32bit can't do a split move of something like g1 -> O0, O1
  3169         // so use a memory temp
  3170         if (src.is_single_phys_reg() && wordSize == 4) {
  3171           Register tmp = L2;
  3172           if (dst.first()->is_reg() &&
  3173               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  3174             tmp = dst.first()->as_Register();
  3177           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3178           if (Assembler::is_simm13(off)) {
  3179             __ stx(src.first()->as_Register(), SP, off);
  3180             __ ld_long(SP, off, tmp);
  3181           } else {
  3182             if (conversion_off == noreg) {
  3183               __ set(off, L6);
  3184               conversion_off = L6;
  3186             __ stx(src.first()->as_Register(), SP, conversion_off);
  3187             __ ld_long(SP, conversion_off, tmp);
  3190           if (tmp == L2) {
  3191             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3193         } else {
  3194           long_move(masm, src, dst);
  3196         break;
  3198       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3200       default:
  3201         move32_64(masm, src, dst);
  3206   // If we have any strings we must store any register based arg to the stack
  3207   // This includes any still live xmm registers too.
  3209   if (total_strings > 0 ) {
  3211     // protect all the arg registers
  3212     __ save_frame(0);
  3213     __ mov(G2_thread, L7_thread_cache);
  3214     const Register L2_string_off = L2;
  3216     // Get first string offset
  3217     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  3219     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  3220       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3222         VMRegPair dst = out_regs[c_arg];
  3223         const Register d = dst.first()->is_reg() ?
  3224             dst.first()->as_Register()->after_save() : noreg;
  3226         // It's a string the oop and it was already copied to the out arg
  3227         // position
  3228         if (d != noreg) {
  3229           __ mov(d, O0);
  3230         } else {
  3231           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3232                  "must be");
  3233           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3235         Label skip;
  3237         __ br_null(O0, false, Assembler::pn, skip);
  3238         __ delayed()->add(FP, L2_string_off, O1);
  3240         if (d != noreg) {
  3241           __ mov(O1, d);
  3242         } else {
  3243           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3244                  "must be");
  3245           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3248         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3249                 relocInfo::runtime_call_type);
  3250         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3252         __ bind(skip);
  3257     __ mov(L7_thread_cache, G2_thread);
  3258     __ restore();
  3263   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3264   // patch in the trap
  3266   int patch_offset = ((intptr_t)__ pc()) - start;
  3268   __ nop();
  3271   // Return
  3273   __ ret();
  3274   __ delayed()->restore();
  3276   __ flush();
  3278   nmethod *nm = nmethod::new_dtrace_nmethod(
  3279       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3280       stack_slots / VMRegImpl::slots_per_word);
  3281   return nm;
  3285 #endif // HAVE_DTRACE_H
  3287 // this function returns the adjust size (in number of words) to a c2i adapter
  3288 // activation for use during deoptimization
  3289 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3290   assert(callee_locals >= callee_parameters,
  3291           "test and remove; got more parms than locals");
  3292   if (callee_locals < callee_parameters)
  3293     return 0;                   // No adjustment for negative locals
  3294   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3295   return round_to(diff, WordsPerLong);
  3298 // "Top of Stack" slots that may be unused by the calling convention but must
  3299 // otherwise be preserved.
  3300 // On Intel these are not necessary and the value can be zero.
  3301 // On Sparc this describes the words reserved for storing a register window
  3302 // when an interrupt occurs.
  3303 uint SharedRuntime::out_preserve_stack_slots() {
  3304   return frame::register_save_words * VMRegImpl::slots_per_word;
  3307 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3308 //
  3309 // Common out the new frame generation for deopt and uncommon trap
  3310 //
  3311   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3312   Register        Oreturn0           = O0;
  3313   Register        Oreturn1           = O1;
  3314   Register        O2UnrollBlock      = O2;
  3315   Register        O3array            = O3;         // Array of frame sizes (input)
  3316   Register        O4array_size       = O4;         // number of frames (input)
  3317   Register        O7frame_size       = O7;         // number of frames (input)
  3319   __ ld_ptr(O3array, 0, O7frame_size);
  3320   __ sub(G0, O7frame_size, O7frame_size);
  3321   __ save(SP, O7frame_size, SP);
  3322   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3324   #ifdef ASSERT
  3325   // make sure that the frames are aligned properly
  3326 #ifndef _LP64
  3327   __ btst(wordSize*2-1, SP);
  3328   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
  3329 #endif
  3330   #endif
  3332   // Deopt needs to pass some extra live values from frame to frame
  3334   if (deopt) {
  3335     __ mov(Oreturn0->after_save(), Oreturn0);
  3336     __ mov(Oreturn1->after_save(), Oreturn1);
  3339   __ mov(O4array_size->after_save(), O4array_size);
  3340   __ sub(O4array_size, 1, O4array_size);
  3341   __ mov(O3array->after_save(), O3array);
  3342   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3343   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3345   #ifdef ASSERT
  3346   // trash registers to show a clear pattern in backtraces
  3347   __ set(0xDEAD0000, I0);
  3348   __ add(I0,  2, I1);
  3349   __ add(I0,  4, I2);
  3350   __ add(I0,  6, I3);
  3351   __ add(I0,  8, I4);
  3352   // Don't touch I5 could have valuable savedSP
  3353   __ set(0xDEADBEEF, L0);
  3354   __ mov(L0, L1);
  3355   __ mov(L0, L2);
  3356   __ mov(L0, L3);
  3357   __ mov(L0, L4);
  3358   __ mov(L0, L5);
  3360   // trash the return value as there is nothing to return yet
  3361   __ set(0xDEAD0001, O7);
  3362   #endif
  3364   __ mov(SP, O5_savedSP);
  3368 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3369   //
  3370   // loop through the UnrollBlock info and create new frames
  3371   //
  3372   Register        G3pcs              = G3_scratch;
  3373   Register        Oreturn0           = O0;
  3374   Register        Oreturn1           = O1;
  3375   Register        O2UnrollBlock      = O2;
  3376   Register        O3array            = O3;
  3377   Register        O4array_size       = O4;
  3378   Label           loop;
  3380   // Before we make new frames, check to see if stack is available.
  3381   // Do this after the caller's return address is on top of stack
  3382   if (UseStackBanging) {
  3383     // Get total frame size for interpreted frames
  3384     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3385     __ bang_stack_size(O4, O3, G3_scratch);
  3388   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3389   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3390   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3392   // Adjust old interpreter frame to make space for new frame's extra java locals
  3393   //
  3394   // We capture the original sp for the transition frame only because it is needed in
  3395   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3396   // every interpreter frame captures a savedSP it is only needed at the transition
  3397   // (fortunately). If we had to have it correct everywhere then we would need to
  3398   // be told the sp_adjustment for each frame we create. If the frame size array
  3399   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3400   // for each frame we create and keep up the illusion every where.
  3401   //
  3403   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3404   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3405   __ sub(SP, O7, SP);
  3407 #ifdef ASSERT
  3408   // make sure that there is at least one entry in the array
  3409   __ tst(O4array_size);
  3410   __ breakpoint_trap(Assembler::zero, Assembler::icc);
  3411 #endif
  3413   // Now push the new interpreter frames
  3414   __ bind(loop);
  3416   // allocate a new frame, filling the registers
  3418   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3420   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
  3421   __ delayed()->add(O3array, wordSize, O3array);
  3422   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3426 //------------------------------generate_deopt_blob----------------------------
  3427 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3428 // instead.
  3429 void SharedRuntime::generate_deopt_blob() {
  3430   // allocate space for the code
  3431   ResourceMark rm;
  3432   // setup code generation tools
  3433   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3434   if (UseStackBanging) {
  3435     pad += StackShadowPages*16 + 32;
  3437 #ifdef _LP64
  3438   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3439 #else
  3440   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3441   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3442   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3443 #endif /* _LP64 */
  3444   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3445   FloatRegister   Freturn0           = F0;
  3446   Register        Greturn1           = G1;
  3447   Register        Oreturn0           = O0;
  3448   Register        Oreturn1           = O1;
  3449   Register        O2UnrollBlock      = O2;
  3450   Register        L0deopt_mode       = L0;
  3451   Register        G4deopt_mode       = G4_scratch;
  3452   int             frame_size_words;
  3453   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3454 #if !defined(_LP64) && defined(COMPILER2)
  3455   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3456 #endif
  3457   Label           cont;
  3459   OopMapSet *oop_maps = new OopMapSet();
  3461   //
  3462   // This is the entry point for code which is returning to a de-optimized
  3463   // frame.
  3464   // The steps taken by this frame are as follows:
  3465   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3466   //     and all potentially live registers (at a pollpoint many registers can be live).
  3467   //
  3468   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3469   //     returns information about the number and size of interpreter frames
  3470   //     which are equivalent to the frame which is being deoptimized)
  3471   //   - deallocate the unpack frame, restoring only results values. Other
  3472   //     volatile registers will now be captured in the vframeArray as needed.
  3473   //   - deallocate the deoptimization frame
  3474   //   - in a loop using the information returned in the previous step
  3475   //     push new interpreter frames (take care to propagate the return
  3476   //     values through each new frame pushed)
  3477   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3478   //   - call the C routine: Deoptimization::unpack_frames (this function
  3479   //     lays out values on the interpreter frame which was just created)
  3480   //   - deallocate the dummy unpack_frame
  3481   //   - ensure that all the return values are correctly set and then do
  3482   //     a return to the interpreter entry point
  3483   //
  3484   // Refer to the following methods for more information:
  3485   //   - Deoptimization::fetch_unroll_info
  3486   //   - Deoptimization::unpack_frames
  3488   OopMap* map = NULL;
  3490   int start = __ offset();
  3492   // restore G2, the trampoline destroyed it
  3493   __ get_thread();
  3495   // On entry we have been called by the deoptimized nmethod with a call that
  3496   // replaced the original call (or safepoint polling location) so the deoptimizing
  3497   // pc is now in O7. Return values are still in the expected places
  3499   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3500   __ ba(cont);
  3501   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3503   int exception_offset = __ offset() - start;
  3505   // restore G2, the trampoline destroyed it
  3506   __ get_thread();
  3508   // On entry we have been jumped to by the exception handler (or exception_blob
  3509   // for server).  O0 contains the exception oop and O7 contains the original
  3510   // exception pc.  So if we push a frame here it will look to the
  3511   // stack walking code (fetch_unroll_info) just like a normal call so
  3512   // state will be extracted normally.
  3514   // save exception oop in JavaThread and fall through into the
  3515   // exception_in_tls case since they are handled in same way except
  3516   // for where the pending exception is kept.
  3517   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3519   //
  3520   // Vanilla deoptimization with an exception pending in exception_oop
  3521   //
  3522   int exception_in_tls_offset = __ offset() - start;
  3524   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3525   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3527   // Restore G2_thread
  3528   __ get_thread();
  3530 #ifdef ASSERT
  3532     // verify that there is really an exception oop in exception_oop
  3533     Label has_exception;
  3534     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3535     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
  3536     __ stop("no exception in thread");
  3537     __ bind(has_exception);
  3539     // verify that there is no pending exception
  3540     Label no_pending_exception;
  3541     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3542     __ ld_ptr(exception_addr, Oexception);
  3543     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
  3544     __ stop("must not have pending exception here");
  3545     __ bind(no_pending_exception);
  3547 #endif
  3549   __ ba(cont);
  3550   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3552   //
  3553   // Reexecute entry, similar to c2 uncommon trap
  3554   //
  3555   int reexecute_offset = __ offset() - start;
  3557   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3558   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3560   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3562   __ bind(cont);
  3564   __ set_last_Java_frame(SP, noreg);
  3566   // do the call by hand so we can get the oopmap
  3568   __ mov(G2_thread, L7_thread_cache);
  3569   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3570   __ delayed()->mov(G2_thread, O0);
  3572   // Set an oopmap for the call site this describes all our saved volatile registers
  3574   oop_maps->add_gc_map( __ offset()-start, map);
  3576   __ mov(L7_thread_cache, G2_thread);
  3578   __ reset_last_Java_frame();
  3580   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3581   // so this move will survive
  3583   __ mov(L0deopt_mode, G4deopt_mode);
  3585   __ mov(O0, O2UnrollBlock->after_save());
  3587   RegisterSaver::restore_result_registers(masm);
  3589   Label noException;
  3590   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
  3592   // Move the pending exception from exception_oop to Oexception so
  3593   // the pending exception will be picked up the interpreter.
  3594   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3595   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3596   __ bind(noException);
  3598   // deallocate the deoptimization frame taking care to preserve the return values
  3599   __ mov(Oreturn0,     Oreturn0->after_save());
  3600   __ mov(Oreturn1,     Oreturn1->after_save());
  3601   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3602   __ restore();
  3604   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3606   make_new_frames(masm, true);
  3608   // push a dummy "unpack_frame" taking care of float return values and
  3609   // call Deoptimization::unpack_frames to have the unpacker layout
  3610   // information in the interpreter frames just created and then return
  3611   // to the interpreter entry point
  3612   __ save(SP, -frame_size_words*wordSize, SP);
  3613   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3614 #if !defined(_LP64)
  3615 #if defined(COMPILER2)
  3616   // 32-bit 1-register longs return longs in G1
  3617   __ stx(Greturn1, saved_Greturn1_addr);
  3618 #endif
  3619   __ set_last_Java_frame(SP, noreg);
  3620   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3621 #else
  3622   // LP64 uses g4 in set_last_Java_frame
  3623   __ mov(G4deopt_mode, O1);
  3624   __ set_last_Java_frame(SP, G0);
  3625   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3626 #endif
  3627   __ reset_last_Java_frame();
  3628   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3630 #if !defined(_LP64) && defined(COMPILER2)
  3631   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3632   // I0/I1 if the return value is long.
  3633   Label not_long;
  3634   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
  3635   __ ldd(saved_Greturn1_addr,I0);
  3636   __ bind(not_long);
  3637 #endif
  3638   __ ret();
  3639   __ delayed()->restore();
  3641   masm->flush();
  3642   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3643   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3646 #ifdef COMPILER2
  3648 //------------------------------generate_uncommon_trap_blob--------------------
  3649 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3650 // instead.
  3651 void SharedRuntime::generate_uncommon_trap_blob() {
  3652   // allocate space for the code
  3653   ResourceMark rm;
  3654   // setup code generation tools
  3655   int pad = VerifyThread ? 512 : 0;
  3656   if (UseStackBanging) {
  3657     pad += StackShadowPages*16 + 32;
  3659 #ifdef _LP64
  3660   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3661 #else
  3662   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3663   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3664   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3665 #endif
  3666   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3667   Register        O2UnrollBlock      = O2;
  3668   Register        O2klass_index      = O2;
  3670   //
  3671   // This is the entry point for all traps the compiler takes when it thinks
  3672   // it cannot handle further execution of compilation code. The frame is
  3673   // deoptimized in these cases and converted into interpreter frames for
  3674   // execution
  3675   // The steps taken by this frame are as follows:
  3676   //   - push a fake "unpack_frame"
  3677   //   - call the C routine Deoptimization::uncommon_trap (this function
  3678   //     packs the current compiled frame into vframe arrays and returns
  3679   //     information about the number and size of interpreter frames which
  3680   //     are equivalent to the frame which is being deoptimized)
  3681   //   - deallocate the "unpack_frame"
  3682   //   - deallocate the deoptimization frame
  3683   //   - in a loop using the information returned in the previous step
  3684   //     push interpreter frames;
  3685   //   - create a dummy "unpack_frame"
  3686   //   - call the C routine: Deoptimization::unpack_frames (this function
  3687   //     lays out values on the interpreter frame which was just created)
  3688   //   - deallocate the dummy unpack_frame
  3689   //   - return to the interpreter entry point
  3690   //
  3691   //  Refer to the following methods for more information:
  3692   //   - Deoptimization::uncommon_trap
  3693   //   - Deoptimization::unpack_frame
  3695   // the unloaded class index is in O0 (first parameter to this blob)
  3697   // push a dummy "unpack_frame"
  3698   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3699   // vframe array and return the UnrollBlock information
  3700   __ save_frame(0);
  3701   __ set_last_Java_frame(SP, noreg);
  3702   __ mov(I0, O2klass_index);
  3703   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3704   __ reset_last_Java_frame();
  3705   __ mov(O0, O2UnrollBlock->after_save());
  3706   __ restore();
  3708   // deallocate the deoptimized frame taking care to preserve the return values
  3709   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3710   __ restore();
  3712   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3714   make_new_frames(masm, false);
  3716   // push a dummy "unpack_frame" taking care of float return values and
  3717   // call Deoptimization::unpack_frames to have the unpacker layout
  3718   // information in the interpreter frames just created and then return
  3719   // to the interpreter entry point
  3720   __ save_frame(0);
  3721   __ set_last_Java_frame(SP, noreg);
  3722   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3723   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3724   __ reset_last_Java_frame();
  3725   __ ret();
  3726   __ delayed()->restore();
  3728   masm->flush();
  3729   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3732 #endif // COMPILER2
  3734 //------------------------------generate_handler_blob-------------------
  3735 //
  3736 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3737 // up an OopMap.
  3738 //
  3739 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3740 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3741 // address in the original nmethod at which we should resume normal execution.
  3742 // Thus, this blob looks like a subroutine which must preserve lots of
  3743 // registers and return normally.  Note that O7 is never register-allocated,
  3744 // so it is guaranteed to be free here.
  3745 //
  3747 // The hardest part of what this blob must do is to save the 64-bit %o
  3748 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3749 // an interrupt will chop off their heads.  Making space in the caller's frame
  3750 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3751 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3752 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3753 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3754 // Tricky, tricky, tricky...
  3756 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3757   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3759   // allocate space for the code
  3760   ResourceMark rm;
  3761   // setup code generation tools
  3762   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3763   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3764   // even larger with TraceJumps
  3765   int pad = TraceJumps ? 512 : 0;
  3766   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3767   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3768   int             frame_size_words;
  3769   OopMapSet *oop_maps = new OopMapSet();
  3770   OopMap* map = NULL;
  3772   int start = __ offset();
  3774   // If this causes a return before the processing, then do a "restore"
  3775   if (cause_return) {
  3776     __ restore();
  3777   } else {
  3778     // Make it look like we were called via the poll
  3779     // so that frame constructor always sees a valid return address
  3780     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3781     __ sub(O7, frame::pc_return_offset, O7);
  3784   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3786   // setup last_Java_sp (blows G4)
  3787   __ set_last_Java_frame(SP, noreg);
  3789   // call into the runtime to handle illegal instructions exception
  3790   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3791   __ mov(G2_thread, O0);
  3792   __ save_thread(L7_thread_cache);
  3793   __ call(call_ptr);
  3794   __ delayed()->nop();
  3796   // Set an oopmap for the call site.
  3797   // We need this not only for callee-saved registers, but also for volatile
  3798   // registers that the compiler might be keeping live across a safepoint.
  3800   oop_maps->add_gc_map( __ offset() - start, map);
  3802   __ restore_thread(L7_thread_cache);
  3803   // clear last_Java_sp
  3804   __ reset_last_Java_frame();
  3806   // Check for exceptions
  3807   Label pending;
  3809   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3810   __ br_notnull_short(O1, Assembler::pn, pending);
  3812   RegisterSaver::restore_live_registers(masm);
  3814   // We are back the the original state on entry and ready to go.
  3816   __ retl();
  3817   __ delayed()->nop();
  3819   // Pending exception after the safepoint
  3821   __ bind(pending);
  3823   RegisterSaver::restore_live_registers(masm);
  3825   // We are back the the original state on entry.
  3827   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3828   // so it looks like the original nmethod called forward_exception_entry.
  3829   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3830   __ JMP(O0, 0);
  3831   __ delayed()->nop();
  3833   // -------------
  3834   // make sure all code is generated
  3835   masm->flush();
  3837   // return exception blob
  3838   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3841 //
  3842 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3843 //
  3844 // Generate a stub that calls into vm to find out the proper destination
  3845 // of a java call. All the argument registers are live at this point
  3846 // but since this is generic code we don't know what they are and the caller
  3847 // must do any gc of the args.
  3848 //
  3849 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3850   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3852   // allocate space for the code
  3853   ResourceMark rm;
  3854   // setup code generation tools
  3855   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3856   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3857   // even larger with TraceJumps
  3858   int pad = TraceJumps ? 512 : 0;
  3859   CodeBuffer buffer(name, 1600 + pad, 512);
  3860   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3861   int             frame_size_words;
  3862   OopMapSet *oop_maps = new OopMapSet();
  3863   OopMap* map = NULL;
  3865   int start = __ offset();
  3867   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3869   int frame_complete = __ offset();
  3871   // setup last_Java_sp (blows G4)
  3872   __ set_last_Java_frame(SP, noreg);
  3874   // call into the runtime to handle illegal instructions exception
  3875   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3876   __ mov(G2_thread, O0);
  3877   __ save_thread(L7_thread_cache);
  3878   __ call(destination, relocInfo::runtime_call_type);
  3879   __ delayed()->nop();
  3881   // O0 contains the address we are going to jump to assuming no exception got installed
  3883   // Set an oopmap for the call site.
  3884   // We need this not only for callee-saved registers, but also for volatile
  3885   // registers that the compiler might be keeping live across a safepoint.
  3887   oop_maps->add_gc_map( __ offset() - start, map);
  3889   __ restore_thread(L7_thread_cache);
  3890   // clear last_Java_sp
  3891   __ reset_last_Java_frame();
  3893   // Check for exceptions
  3894   Label pending;
  3896   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3897   __ br_notnull_short(O1, Assembler::pn, pending);
  3899   // get the returned methodOop
  3901   __ get_vm_result(G5_method);
  3902   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3904   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3906   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3908   RegisterSaver::restore_live_registers(masm);
  3910   // We are back the the original state on entry and ready to go.
  3912   __ JMP(G3, 0);
  3913   __ delayed()->nop();
  3915   // Pending exception after the safepoint
  3917   __ bind(pending);
  3919   RegisterSaver::restore_live_registers(masm);
  3921   // We are back the the original state on entry.
  3923   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3924   // so it looks like the original nmethod called forward_exception_entry.
  3925   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3926   __ JMP(O0, 0);
  3927   __ delayed()->nop();
  3929   // -------------
  3930   // make sure all code is generated
  3931   masm->flush();
  3933   // return the  blob
  3934   // frame_size_words or bytes??
  3935   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial