src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Tue, 11 Sep 2012 16:20:57 +0200

author
roland
date
Tue, 11 Sep 2012 16:20:57 +0200
changeset 4051
8a02ca5e5576
parent 4037
da91efe96a93
child 4106
7eca5de9e0b6
permissions
-rw-r--r--

7195816: NPG: Crash in c1_ValueType - ShouldNotReachHere
Summary: C1 needs knowledge of T_METADATA at the LIR level.
Reviewed-by: kvn, coleenp

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArray.hpp"
    34 #include "ci/ciObjArrayKlass.hpp"
    35 #include "ci/ciTypeArrayKlass.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "vmreg_x86.inline.hpp"
    40 #ifdef ASSERT
    41 #define __ gen()->lir(__FILE__, __LINE__)->
    42 #else
    43 #define __ gen()->lir()->
    44 #endif
    46 // Item will be loaded into a byte register; Intel only
    47 void LIRItem::load_byte_item() {
    48   load_item();
    49   LIR_Opr res = result();
    51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    52     // make sure that it is a byte register
    53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
    54            "can't load floats in byte register");
    55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    56     __ move(res, reg);
    58     _result = reg;
    59   }
    60 }
    63 void LIRItem::load_nonconstant() {
    64   LIR_Opr r = value()->operand();
    65   if (r->is_constant()) {
    66     _result = r;
    67   } else {
    68     load_item();
    69   }
    70 }
    72 //--------------------------------------------------------------
    73 //               LIRGenerator
    74 //--------------------------------------------------------------
    77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
    78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
    79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
    80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
    81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
    82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
    83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
    84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
    87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    88   LIR_Opr opr;
    89   switch (type->tag()) {
    90     case intTag:     opr = FrameMap::rax_opr;          break;
    91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    92     case longTag:    opr = FrameMap::long0_opr;        break;
    93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
    96     case addressTag:
    97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    98   }
   100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
   101   return opr;
   102 }
   105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
   106   LIR_Opr reg = new_register(T_INT);
   107   set_vreg_flag(reg, LIRGenerator::byte_reg);
   108   return reg;
   109 }
   112 //--------- loading items into registers --------------------------------
   115 // i486 instructions can inline constants
   116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   117   if (type == T_SHORT || type == T_CHAR) {
   118     // there is no immediate move of word values in asembler_i486.?pp
   119     return false;
   120   }
   121   Constant* c = v->as_Constant();
   122   if (c && c->state_before() == NULL) {
   123     // constants of any type can be stored directly, except for
   124     // unloaded object constants.
   125     return true;
   126   }
   127   return false;
   128 }
   131 bool LIRGenerator::can_inline_as_constant(Value v) const {
   132   if (v->type()->tag() == longTag) return false;
   133   return v->type()->tag() != objectTag ||
   134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
   135 }
   138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
   139   if (c->type() == T_LONG) return false;
   140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
   141 }
   144 LIR_Opr LIRGenerator::safepoint_poll_register() {
   145   return LIR_OprFact::illegalOpr;
   146 }
   149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   150                                             int shift, int disp, BasicType type) {
   151   assert(base->is_register(), "must be");
   152   if (index->is_constant()) {
   153     return new LIR_Address(base,
   154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
   155                            type);
   156   } else {
   157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
   158   }
   159 }
   162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   163                                               BasicType type, bool needs_card_mark) {
   164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
   166   LIR_Address* addr;
   167   if (index_opr->is_constant()) {
   168     int elem_size = type2aelembytes(type);
   169     addr = new LIR_Address(array_opr,
   170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
   171   } else {
   172 #ifdef _LP64
   173     if (index_opr->type() == T_INT) {
   174       LIR_Opr tmp = new_register(T_LONG);
   175       __ convert(Bytecodes::_i2l, index_opr, tmp);
   176       index_opr = tmp;
   177     }
   178 #endif // _LP64
   179     addr =  new LIR_Address(array_opr,
   180                             index_opr,
   181                             LIR_Address::scale(type),
   182                             offset_in_bytes, type);
   183   }
   184   if (needs_card_mark) {
   185     // This store will need a precise card mark, so go ahead and
   186     // compute the full adddres instead of computing once for the
   187     // store and again for the card mark.
   188     LIR_Opr tmp = new_pointer_register();
   189     __ leal(LIR_OprFact::address(addr), tmp);
   190     return new LIR_Address(tmp, type);
   191   } else {
   192     return addr;
   193   }
   194 }
   197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
   198   LIR_Opr r;
   199   if (type == T_LONG) {
   200     r = LIR_OprFact::longConst(x);
   201   } else if (type == T_INT) {
   202     r = LIR_OprFact::intConst(x);
   203   } else {
   204     ShouldNotReachHere();
   205   }
   206   return r;
   207 }
   209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
   210   LIR_Opr pointer = new_pointer_register();
   211   __ move(LIR_OprFact::intptrConst(counter), pointer);
   212   LIR_Address* addr = new LIR_Address(pointer, type);
   213   increment_counter(addr, step);
   214 }
   217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
   219 }
   221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   222   __ cmp_mem_int(condition, base, disp, c, info);
   223 }
   226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   228 }
   231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   233 }
   236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   237   if (tmp->is_valid()) {
   238     if (is_power_of_2(c + 1)) {
   239       __ move(left, tmp);
   240       __ shift_left(left, log2_intptr(c + 1), left);
   241       __ sub(left, tmp, result);
   242       return true;
   243     } else if (is_power_of_2(c - 1)) {
   244       __ move(left, tmp);
   245       __ shift_left(left, log2_intptr(c - 1), left);
   246       __ add(left, tmp, result);
   247       return true;
   248     }
   249   }
   250   return false;
   251 }
   254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   255   BasicType type = item->type();
   256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
   257 }
   259 //----------------------------------------------------------------------
   260 //             visitor functions
   261 //----------------------------------------------------------------------
   264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   265   assert(x->is_pinned(),"");
   266   bool needs_range_check = true;
   267   bool use_length = x->length() != NULL;
   268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   270                                          !get_jobject_constant(x->value())->is_null_object() ||
   271                                          x->should_profile());
   273   LIRItem array(x->array(), this);
   274   LIRItem index(x->index(), this);
   275   LIRItem value(x->value(), this);
   276   LIRItem length(this);
   278   array.load_item();
   279   index.load_nonconstant();
   281   if (use_length) {
   282     needs_range_check = x->compute_needs_range_check();
   283     if (needs_range_check) {
   284       length.set_instruction(x->length());
   285       length.load_item();
   286     }
   287   }
   288   if (needs_store_check) {
   289     value.load_item();
   290   } else {
   291     value.load_for_store(x->elt_type());
   292   }
   294   set_no_result(x);
   296   // the CodeEmitInfo must be duplicated for each different
   297   // LIR-instruction because spilling can occur anywhere between two
   298   // instructions and so the debug information must be different
   299   CodeEmitInfo* range_check_info = state_for(x);
   300   CodeEmitInfo* null_check_info = NULL;
   301   if (x->needs_null_check()) {
   302     null_check_info = new CodeEmitInfo(range_check_info);
   303   }
   305   // emit array address setup early so it schedules better
   306   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   308   if (GenerateRangeChecks && needs_range_check) {
   309     if (use_length) {
   310       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   311       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   312     } else {
   313       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   314       // range_check also does the null check
   315       null_check_info = NULL;
   316     }
   317   }
   319   if (GenerateArrayStoreCheck && needs_store_check) {
   320     LIR_Opr tmp1 = new_register(objectType);
   321     LIR_Opr tmp2 = new_register(objectType);
   322     LIR_Opr tmp3 = new_register(objectType);
   324     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   325     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
   326   }
   328   if (obj_store) {
   329     // Needs GC write barriers.
   330     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
   331                 true /* do_load */, false /* patch */, NULL);
   332     __ move(value.result(), array_addr, null_check_info);
   333     // Seems to be a precise
   334     post_barrier(LIR_OprFact::address(array_addr), value.result());
   335   } else {
   336     __ move(value.result(), array_addr, null_check_info);
   337   }
   338 }
   341 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   342   assert(x->is_pinned(),"");
   343   LIRItem obj(x->obj(), this);
   344   obj.load_item();
   346   set_no_result(x);
   348   // "lock" stores the address of the monitor stack slot, so this is not an oop
   349   LIR_Opr lock = new_register(T_INT);
   350   // Need a scratch register for biased locking on x86
   351   LIR_Opr scratch = LIR_OprFact::illegalOpr;
   352   if (UseBiasedLocking) {
   353     scratch = new_register(T_INT);
   354   }
   356   CodeEmitInfo* info_for_exception = NULL;
   357   if (x->needs_null_check()) {
   358     info_for_exception = state_for(x);
   359   }
   360   // this CodeEmitInfo must not have the xhandlers because here the
   361   // object is already locked (xhandlers expect object to be unlocked)
   362   CodeEmitInfo* info = state_for(x, x->state(), true);
   363   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
   364                         x->monitor_no(), info_for_exception, info);
   365 }
   368 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   369   assert(x->is_pinned(),"");
   371   LIRItem obj(x->obj(), this);
   372   obj.dont_load_item();
   374   LIR_Opr lock = new_register(T_INT);
   375   LIR_Opr obj_temp = new_register(T_INT);
   376   set_no_result(x);
   377   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
   378 }
   381 // _ineg, _lneg, _fneg, _dneg
   382 void LIRGenerator::do_NegateOp(NegateOp* x) {
   383   LIRItem value(x->x(), this);
   384   value.set_destroys_register();
   385   value.load_item();
   386   LIR_Opr reg = rlock(x);
   387   __ negate(value.result(), reg);
   389   set_result(x, round_item(reg));
   390 }
   393 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   394 //      _dadd, _dmul, _dsub, _ddiv, _drem
   395 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   396   LIRItem left(x->x(),  this);
   397   LIRItem right(x->y(), this);
   398   LIRItem* left_arg  = &left;
   399   LIRItem* right_arg = &right;
   400   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
   401   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
   402   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
   403     left.load_item();
   404   } else {
   405     left.dont_load_item();
   406   }
   408   // do not load right operand if it is a constant.  only 0 and 1 are
   409   // loaded because there are special instructions for loading them
   410   // without memory access (not needed for SSE2 instructions)
   411   bool must_load_right = false;
   412   if (right.is_constant()) {
   413     LIR_Const* c = right.result()->as_constant_ptr();
   414     assert(c != NULL, "invalid constant");
   415     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
   417     if (c->type() == T_FLOAT) {
   418       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
   419     } else {
   420       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
   421     }
   422   }
   424   if (must_load_both) {
   425     // frem and drem destroy also right operand, so move it to a new register
   426     right.set_destroys_register();
   427     right.load_item();
   428   } else if (right.is_register() || must_load_right) {
   429     right.load_item();
   430   } else {
   431     right.dont_load_item();
   432   }
   433   LIR_Opr reg = rlock(x);
   434   LIR_Opr tmp = LIR_OprFact::illegalOpr;
   435   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
   436     tmp = new_register(T_DOUBLE);
   437   }
   439   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
   440     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
   441     LIR_Opr fpu0, fpu1;
   442     if (x->op() == Bytecodes::_frem) {
   443       fpu0 = LIR_OprFact::single_fpu(0);
   444       fpu1 = LIR_OprFact::single_fpu(1);
   445     } else {
   446       fpu0 = LIR_OprFact::double_fpu(0);
   447       fpu1 = LIR_OprFact::double_fpu(1);
   448     }
   449     __ move(right.result(), fpu1); // order of left and right operand is important!
   450     __ move(left.result(), fpu0);
   451     __ rem (fpu0, fpu1, fpu0);
   452     __ move(fpu0, reg);
   454   } else {
   455     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
   456   }
   458   set_result(x, round_item(reg));
   459 }
   462 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   463 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   464   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
   465     // long division is implemented as a direct call into the runtime
   466     LIRItem left(x->x(), this);
   467     LIRItem right(x->y(), this);
   469     // the check for division by zero destroys the right operand
   470     right.set_destroys_register();
   472     BasicTypeList signature(2);
   473     signature.append(T_LONG);
   474     signature.append(T_LONG);
   475     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   477     // check for division by zero (destroys registers of right operand!)
   478     CodeEmitInfo* info = state_for(x);
   480     const LIR_Opr result_reg = result_register_for(x->type());
   481     left.load_item_force(cc->at(1));
   482     right.load_item();
   484     __ move(right.result(), cc->at(0));
   486     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
   487     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   489     address entry;
   490     switch (x->op()) {
   491     case Bytecodes::_lrem:
   492       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   493       break; // check if dividend is 0 is done elsewhere
   494     case Bytecodes::_ldiv:
   495       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   496       break; // check if dividend is 0 is done elsewhere
   497     case Bytecodes::_lmul:
   498       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   499       break;
   500     default:
   501       ShouldNotReachHere();
   502     }
   504     LIR_Opr result = rlock_result(x);
   505     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
   506     __ move(result_reg, result);
   507   } else if (x->op() == Bytecodes::_lmul) {
   508     // missing test if instr is commutative and if we should swap
   509     LIRItem left(x->x(), this);
   510     LIRItem right(x->y(), this);
   512     // right register is destroyed by the long mul, so it must be
   513     // copied to a new register.
   514     right.set_destroys_register();
   516     left.load_item();
   517     right.load_item();
   519     LIR_Opr reg = FrameMap::long0_opr;
   520     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
   521     LIR_Opr result = rlock_result(x);
   522     __ move(reg, result);
   523   } else {
   524     // missing test if instr is commutative and if we should swap
   525     LIRItem left(x->x(), this);
   526     LIRItem right(x->y(), this);
   528     left.load_item();
   529     // don't load constants to save register
   530     right.load_nonconstant();
   531     rlock_result(x);
   532     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   533   }
   534 }
   538 // for: _iadd, _imul, _isub, _idiv, _irem
   539 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   540   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
   541     // The requirements for division and modulo
   542     // input : rax,: dividend                         min_int
   543     //         reg: divisor   (may not be rax,/rdx)   -1
   544     //
   545     // output: rax,: quotient  (= rax, idiv reg)       min_int
   546     //         rdx: remainder (= rax, irem reg)       0
   548     // rax, and rdx will be destroyed
   550     // Note: does this invalidate the spec ???
   551     LIRItem right(x->y(), this);
   552     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
   554     // call state_for before load_item_force because state_for may
   555     // force the evaluation of other instructions that are needed for
   556     // correct debug info.  Otherwise the live range of the fix
   557     // register might be too long.
   558     CodeEmitInfo* info = state_for(x);
   560     left.load_item_force(divInOpr());
   562     right.load_item();
   564     LIR_Opr result = rlock_result(x);
   565     LIR_Opr result_reg;
   566     if (x->op() == Bytecodes::_idiv) {
   567       result_reg = divOutOpr();
   568     } else {
   569       result_reg = remOutOpr();
   570     }
   572     if (!ImplicitDiv0Checks) {
   573       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
   574       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
   575     }
   576     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
   577     if (x->op() == Bytecodes::_irem) {
   578       __ irem(left.result(), right.result(), result_reg, tmp, info);
   579     } else if (x->op() == Bytecodes::_idiv) {
   580       __ idiv(left.result(), right.result(), result_reg, tmp, info);
   581     } else {
   582       ShouldNotReachHere();
   583     }
   585     __ move(result_reg, result);
   586   } else {
   587     // missing test if instr is commutative and if we should swap
   588     LIRItem left(x->x(),  this);
   589     LIRItem right(x->y(), this);
   590     LIRItem* left_arg = &left;
   591     LIRItem* right_arg = &right;
   592     if (x->is_commutative() && left.is_stack() && right.is_register()) {
   593       // swap them if left is real stack (or cached) and right is real register(not cached)
   594       left_arg = &right;
   595       right_arg = &left;
   596     }
   598     left_arg->load_item();
   600     // do not need to load right, as we can handle stack and constants
   601     if (x->op() == Bytecodes::_imul ) {
   602       // check if we can use shift instead
   603       bool use_constant = false;
   604       bool use_tmp = false;
   605       if (right_arg->is_constant()) {
   606         int iconst = right_arg->get_jint_constant();
   607         if (iconst > 0) {
   608           if (is_power_of_2(iconst)) {
   609             use_constant = true;
   610           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
   611             use_constant = true;
   612             use_tmp = true;
   613           }
   614         }
   615       }
   616       if (use_constant) {
   617         right_arg->dont_load_item();
   618       } else {
   619         right_arg->load_item();
   620       }
   621       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   622       if (use_tmp) {
   623         tmp = new_register(T_INT);
   624       }
   625       rlock_result(x);
   627       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   628     } else {
   629       right_arg->dont_load_item();
   630       rlock_result(x);
   631       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   632       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   633     }
   634   }
   635 }
   638 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   639   // when an operand with use count 1 is the left operand, then it is
   640   // likely that no move for 2-operand-LIR-form is necessary
   641   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   642     x->swap_operands();
   643   }
   645   ValueTag tag = x->type()->tag();
   646   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   647   switch (tag) {
   648     case floatTag:
   649     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   650     case longTag:    do_ArithmeticOp_Long(x); return;
   651     case intTag:     do_ArithmeticOp_Int(x);  return;
   652   }
   653   ShouldNotReachHere();
   654 }
   657 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   658 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   659   // count must always be in rcx
   660   LIRItem value(x->x(), this);
   661   LIRItem count(x->y(), this);
   663   ValueTag elemType = x->type()->tag();
   664   bool must_load_count = !count.is_constant() || elemType == longTag;
   665   if (must_load_count) {
   666     // count for long must be in register
   667     count.load_item_force(shiftCountOpr());
   668   } else {
   669     count.dont_load_item();
   670   }
   671   value.load_item();
   672   LIR_Opr reg = rlock_result(x);
   674   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   675 }
   678 // _iand, _land, _ior, _lor, _ixor, _lxor
   679 void LIRGenerator::do_LogicOp(LogicOp* x) {
   680   // when an operand with use count 1 is the left operand, then it is
   681   // likely that no move for 2-operand-LIR-form is necessary
   682   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   683     x->swap_operands();
   684   }
   686   LIRItem left(x->x(), this);
   687   LIRItem right(x->y(), this);
   689   left.load_item();
   690   right.load_nonconstant();
   691   LIR_Opr reg = rlock_result(x);
   693   logic_op(x->op(), reg, left.result(), right.result());
   694 }
   698 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   699 void LIRGenerator::do_CompareOp(CompareOp* x) {
   700   LIRItem left(x->x(), this);
   701   LIRItem right(x->y(), this);
   702   ValueTag tag = x->x()->type()->tag();
   703   if (tag == longTag) {
   704     left.set_destroys_register();
   705   }
   706   left.load_item();
   707   right.load_item();
   708   LIR_Opr reg = rlock_result(x);
   710   if (x->x()->type()->is_float_kind()) {
   711     Bytecodes::Code code = x->op();
   712     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   713   } else if (x->x()->type()->tag() == longTag) {
   714     __ lcmp2int(left.result(), right.result(), reg);
   715   } else {
   716     Unimplemented();
   717   }
   718 }
   721 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   722   assert(x->number_of_arguments() == 4, "wrong type");
   723   LIRItem obj   (x->argument_at(0), this);  // object
   724   LIRItem offset(x->argument_at(1), this);  // offset of field
   725   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   726   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   728   assert(obj.type()->tag() == objectTag, "invalid type");
   730   // In 64bit the type can be long, sparc doesn't have this assert
   731   // assert(offset.type()->tag() == intTag, "invalid type");
   733   assert(cmp.type()->tag() == type->tag(), "invalid type");
   734   assert(val.type()->tag() == type->tag(), "invalid type");
   736   // get address of field
   737   obj.load_item();
   738   offset.load_nonconstant();
   740   if (type == objectType) {
   741     cmp.load_item_force(FrameMap::rax_oop_opr);
   742     val.load_item();
   743   } else if (type == intType) {
   744     cmp.load_item_force(FrameMap::rax_opr);
   745     val.load_item();
   746   } else if (type == longType) {
   747     cmp.load_item_force(FrameMap::long0_opr);
   748     val.load_item_force(FrameMap::long1_opr);
   749   } else {
   750     ShouldNotReachHere();
   751   }
   753   LIR_Opr addr = new_pointer_register();
   754   LIR_Address* a;
   755   if(offset.result()->is_constant()) {
   756     a = new LIR_Address(obj.result(),
   757                         NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
   758                         as_BasicType(type));
   759   } else {
   760     a = new LIR_Address(obj.result(),
   761                         offset.result(),
   762                         LIR_Address::times_1,
   763                         0,
   764                         as_BasicType(type));
   765   }
   766   __ leal(LIR_OprFact::address(a), addr);
   768   if (type == objectType) {  // Write-barrier needed for Object fields.
   769     // Do the pre-write barrier, if any.
   770     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
   771                 true /* do_load */, false /* patch */, NULL);
   772   }
   774   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
   775   if (type == objectType)
   776     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
   777   else if (type == intType)
   778     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
   779   else if (type == longType)
   780     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
   781   else {
   782     ShouldNotReachHere();
   783   }
   785   // generate conditional move of boolean result
   786   LIR_Opr result = rlock_result(x);
   787   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
   788            result, as_BasicType(type));
   789   if (type == objectType) {   // Write-barrier needed for Object fields.
   790     // Seems to be precise
   791     post_barrier(addr, val.result());
   792   }
   793 }
   796 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   797   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
   798   LIRItem value(x->argument_at(0), this);
   800   bool use_fpu = false;
   801   if (UseSSE >= 2) {
   802     switch(x->id()) {
   803       case vmIntrinsics::_dsin:
   804       case vmIntrinsics::_dcos:
   805       case vmIntrinsics::_dtan:
   806       case vmIntrinsics::_dlog:
   807       case vmIntrinsics::_dlog10:
   808       case vmIntrinsics::_dexp:
   809       case vmIntrinsics::_dpow:
   810         use_fpu = true;
   811     }
   812   } else {
   813     value.set_destroys_register();
   814   }
   816   value.load_item();
   818   LIR_Opr calc_input = value.result();
   819   LIR_Opr calc_input2 = NULL;
   820   if (x->id() == vmIntrinsics::_dpow) {
   821     LIRItem extra_arg(x->argument_at(1), this);
   822     if (UseSSE < 2) {
   823       extra_arg.set_destroys_register();
   824     }
   825     extra_arg.load_item();
   826     calc_input2 = extra_arg.result();
   827   }
   828   LIR_Opr calc_result = rlock_result(x);
   830   // sin, cos, pow and exp need two free fpu stack slots, so register
   831   // two temporary operands
   832   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
   833   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
   835   if (use_fpu) {
   836     LIR_Opr tmp = FrameMap::fpu0_double_opr;
   837     int tmp_start = 1;
   838     if (calc_input2 != NULL) {
   839       __ move(calc_input2, tmp);
   840       tmp_start = 2;
   841       calc_input2 = tmp;
   842     }
   843     __ move(calc_input, tmp);
   845     calc_input = tmp;
   846     calc_result = tmp;
   848     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
   849     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
   850   }
   852   switch(x->id()) {
   853     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   854     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   855     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
   856     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
   857     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
   858     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
   859     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
   860     case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   861     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   862     default:                    ShouldNotReachHere();
   863   }
   865   if (use_fpu) {
   866     __ move(calc_result, x->operand());
   867   }
   868 }
   871 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   872   assert(x->number_of_arguments() == 5, "wrong type");
   874   // Make all state_for calls early since they can emit code
   875   CodeEmitInfo* info = state_for(x, x->state());
   877   LIRItem src(x->argument_at(0), this);
   878   LIRItem src_pos(x->argument_at(1), this);
   879   LIRItem dst(x->argument_at(2), this);
   880   LIRItem dst_pos(x->argument_at(3), this);
   881   LIRItem length(x->argument_at(4), this);
   883   // operands for arraycopy must use fixed registers, otherwise
   884   // LinearScan will fail allocation (because arraycopy always needs a
   885   // call)
   887 #ifndef _LP64
   888   src.load_item_force     (FrameMap::rcx_oop_opr);
   889   src_pos.load_item_force (FrameMap::rdx_opr);
   890   dst.load_item_force     (FrameMap::rax_oop_opr);
   891   dst_pos.load_item_force (FrameMap::rbx_opr);
   892   length.load_item_force  (FrameMap::rdi_opr);
   893   LIR_Opr tmp =           (FrameMap::rsi_opr);
   894 #else
   896   // The java calling convention will give us enough registers
   897   // so that on the stub side the args will be perfect already.
   898   // On the other slow/special case side we call C and the arg
   899   // positions are not similar enough to pick one as the best.
   900   // Also because the java calling convention is a "shifted" version
   901   // of the C convention we can process the java args trivially into C
   902   // args without worry of overwriting during the xfer
   904   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
   905   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
   906   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
   907   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
   908   length.load_item_force  (FrameMap::as_opr(j_rarg4));
   910   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
   911 #endif // LP64
   913   set_no_result(x);
   915   int flags;
   916   ciArrayKlass* expected_type;
   917   arraycopy_helper(x, &flags, &expected_type);
   919   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
   920 }
   923 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
   924 // _i2b, _i2c, _i2s
   925 LIR_Opr fixed_register_for(BasicType type) {
   926   switch (type) {
   927     case T_FLOAT:  return FrameMap::fpu0_float_opr;
   928     case T_DOUBLE: return FrameMap::fpu0_double_opr;
   929     case T_INT:    return FrameMap::rax_opr;
   930     case T_LONG:   return FrameMap::long0_opr;
   931     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
   932   }
   933 }
   935 void LIRGenerator::do_Convert(Convert* x) {
   936   // flags that vary for the different operations and different SSE-settings
   937   bool fixed_input, fixed_result, round_result, needs_stub;
   939   switch (x->op()) {
   940     case Bytecodes::_i2l: // fall through
   941     case Bytecodes::_l2i: // fall through
   942     case Bytecodes::_i2b: // fall through
   943     case Bytecodes::_i2c: // fall through
   944     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   946     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
   947     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
   948     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
   949     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   950     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   951     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   952     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
   953     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
   954     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   955     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   956     default: ShouldNotReachHere();
   957   }
   959   LIRItem value(x->value(), this);
   960   value.load_item();
   961   LIR_Opr input = value.result();
   962   LIR_Opr result = rlock(x);
   964   // arguments of lir_convert
   965   LIR_Opr conv_input = input;
   966   LIR_Opr conv_result = result;
   967   ConversionStub* stub = NULL;
   969   if (fixed_input) {
   970     conv_input = fixed_register_for(input->type());
   971     __ move(input, conv_input);
   972   }
   974   assert(fixed_result == false || round_result == false, "cannot set both");
   975   if (fixed_result) {
   976     conv_result = fixed_register_for(result->type());
   977   } else if (round_result) {
   978     result = new_register(result->type());
   979     set_vreg_flag(result, must_start_in_memory);
   980   }
   982   if (needs_stub) {
   983     stub = new ConversionStub(x->op(), conv_input, conv_result);
   984   }
   986   __ convert(x->op(), conv_input, conv_result, stub);
   988   if (result != conv_result) {
   989     __ move(conv_result, result);
   990   }
   992   assert(result->is_virtual(), "result must be virtual register");
   993   set_result(x, result);
   994 }
   997 void LIRGenerator::do_NewInstance(NewInstance* x) {
   998 #ifndef PRODUCT
   999   if (PrintNotLoaded && !x->klass()->is_loaded()) {
  1000     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
  1002 #endif
  1003   CodeEmitInfo* info = state_for(x, x->state());
  1004   LIR_Opr reg = result_register_for(x->type());
  1005   new_instance(reg, x->klass(),
  1006                        FrameMap::rcx_oop_opr,
  1007                        FrameMap::rdi_oop_opr,
  1008                        FrameMap::rsi_oop_opr,
  1009                        LIR_OprFact::illegalOpr,
  1010                        FrameMap::rdx_metadata_opr, info);
  1011   LIR_Opr result = rlock_result(x);
  1012   __ move(reg, result);
  1016 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
  1017   CodeEmitInfo* info = state_for(x, x->state());
  1019   LIRItem length(x->length(), this);
  1020   length.load_item_force(FrameMap::rbx_opr);
  1022   LIR_Opr reg = result_register_for(x->type());
  1023   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1024   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1025   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1026   LIR_Opr tmp4 = reg;
  1027   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1028   LIR_Opr len = length.result();
  1029   BasicType elem_type = x->elt_type();
  1031   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
  1033   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
  1034   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
  1036   LIR_Opr result = rlock_result(x);
  1037   __ move(reg, result);
  1041 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
  1042   LIRItem length(x->length(), this);
  1043   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
  1044   // and therefore provide the state before the parameters have been consumed
  1045   CodeEmitInfo* patching_info = NULL;
  1046   if (!x->klass()->is_loaded() || PatchALot) {
  1047     patching_info =  state_for(x, x->state_before());
  1050   CodeEmitInfo* info = state_for(x, x->state());
  1052   const LIR_Opr reg = result_register_for(x->type());
  1053   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1054   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1055   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1056   LIR_Opr tmp4 = reg;
  1057   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1059   length.load_item_force(FrameMap::rbx_opr);
  1060   LIR_Opr len = length.result();
  1062   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
  1063   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
  1064   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
  1065     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
  1067   klass2reg_with_patching(klass_reg, obj, patching_info);
  1068   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
  1070   LIR_Opr result = rlock_result(x);
  1071   __ move(reg, result);
  1075 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  1076   Values* dims = x->dims();
  1077   int i = dims->length();
  1078   LIRItemList* items = new LIRItemList(dims->length(), NULL);
  1079   while (i-- > 0) {
  1080     LIRItem* size = new LIRItem(dims->at(i), this);
  1081     items->at_put(i, size);
  1084   // Evaluate state_for early since it may emit code.
  1085   CodeEmitInfo* patching_info = NULL;
  1086   if (!x->klass()->is_loaded() || PatchALot) {
  1087     patching_info = state_for(x, x->state_before());
  1089     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  1090     // clone all handlers (NOTE: Usually this is handled transparently
  1091     // by the CodeEmitInfo cloning logic in CodeStub constructors but
  1092     // is done explicitly here because a stub isn't being used).
  1093     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  1095   CodeEmitInfo* info = state_for(x, x->state());
  1097   i = dims->length();
  1098   while (i-- > 0) {
  1099     LIRItem* size = items->at(i);
  1100     size->load_nonconstant();
  1102     store_stack_parameter(size->result(), in_ByteSize(i*4));
  1105   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
  1106   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
  1108   LIR_Opr rank = FrameMap::rbx_opr;
  1109   __ move(LIR_OprFact::intConst(x->rank()), rank);
  1110   LIR_Opr varargs = FrameMap::rcx_opr;
  1111   __ move(FrameMap::rsp_opr, varargs);
  1112   LIR_OprList* args = new LIR_OprList(3);
  1113   args->append(klass_reg);
  1114   args->append(rank);
  1115   args->append(varargs);
  1116   LIR_Opr reg = result_register_for(x->type());
  1117   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1118                   LIR_OprFact::illegalOpr,
  1119                   reg, args, info);
  1121   LIR_Opr result = rlock_result(x);
  1122   __ move(reg, result);
  1126 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1127   // nothing to do for now
  1131 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1132   LIRItem obj(x->obj(), this);
  1134   CodeEmitInfo* patching_info = NULL;
  1135   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1136     // must do this before locking the destination register as an oop register,
  1137     // and before the obj is loaded (the latter is for deoptimization)
  1138     patching_info = state_for(x, x->state_before());
  1140   obj.load_item();
  1142   // info for exceptions
  1143   CodeEmitInfo* info_for_exception = state_for(x);
  1145   CodeStub* stub;
  1146   if (x->is_incompatible_class_change_check()) {
  1147     assert(patching_info == NULL, "can't patch this");
  1148     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1149   } else {
  1150     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1152   LIR_Opr reg = rlock_result(x);
  1153   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1154   if (!x->klass()->is_loaded() || UseCompressedOops) {
  1155     tmp3 = new_register(objectType);
  1157   __ checkcast(reg, obj.result(), x->klass(),
  1158                new_register(objectType), new_register(objectType), tmp3,
  1159                x->direct_compare(), info_for_exception, patching_info, stub,
  1160                x->profiled_method(), x->profiled_bci());
  1164 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1165   LIRItem obj(x->obj(), this);
  1167   // result and test object may not be in same register
  1168   LIR_Opr reg = rlock_result(x);
  1169   CodeEmitInfo* patching_info = NULL;
  1170   if ((!x->klass()->is_loaded() || PatchALot)) {
  1171     // must do this before locking the destination register as an oop register
  1172     patching_info = state_for(x, x->state_before());
  1174   obj.load_item();
  1175   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1176   if (!x->klass()->is_loaded() || UseCompressedOops) {
  1177     tmp3 = new_register(objectType);
  1179   __ instanceof(reg, obj.result(), x->klass(),
  1180                 new_register(objectType), new_register(objectType), tmp3,
  1181                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
  1185 void LIRGenerator::do_If(If* x) {
  1186   assert(x->number_of_sux() == 2, "inconsistency");
  1187   ValueTag tag = x->x()->type()->tag();
  1188   bool is_safepoint = x->is_safepoint();
  1190   If::Condition cond = x->cond();
  1192   LIRItem xitem(x->x(), this);
  1193   LIRItem yitem(x->y(), this);
  1194   LIRItem* xin = &xitem;
  1195   LIRItem* yin = &yitem;
  1197   if (tag == longTag) {
  1198     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1199     // mirror for other conditions
  1200     if (cond == If::gtr || cond == If::leq) {
  1201       cond = Instruction::mirror(cond);
  1202       xin = &yitem;
  1203       yin = &xitem;
  1205     xin->set_destroys_register();
  1207   xin->load_item();
  1208   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
  1209     // inline long zero
  1210     yin->dont_load_item();
  1211   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
  1212     // longs cannot handle constants at right side
  1213     yin->load_item();
  1214   } else {
  1215     yin->dont_load_item();
  1218   // add safepoint before generating condition code so it can be recomputed
  1219   if (x->is_safepoint()) {
  1220     // increment backedge counter if needed
  1221     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
  1222     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  1224   set_no_result(x);
  1226   LIR_Opr left = xin->result();
  1227   LIR_Opr right = yin->result();
  1228   __ cmp(lir_cond(cond), left, right);
  1229   // Generate branch profiling. Profiling code doesn't kill flags.
  1230   profile_branch(x, cond);
  1231   move_to_phi(x->state());
  1232   if (x->x()->type()->is_float_kind()) {
  1233     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1234   } else {
  1235     __ branch(lir_cond(cond), right->type(), x->tsux());
  1237   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1238   __ jump(x->default_sux());
  1242 LIR_Opr LIRGenerator::getThreadPointer() {
  1243 #ifdef _LP64
  1244   return FrameMap::as_pointer_opr(r15_thread);
  1245 #else
  1246   LIR_Opr result = new_register(T_INT);
  1247   __ get_thread(result);
  1248   return result;
  1249 #endif //
  1252 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1253   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
  1254   LIR_OprList* args = new LIR_OprList();
  1255   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1256   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
  1260 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1261                                         CodeEmitInfo* info) {
  1262   if (address->type() == T_LONG) {
  1263     address = new LIR_Address(address->base(),
  1264                               address->index(), address->scale(),
  1265                               address->disp(), T_DOUBLE);
  1266     // Transfer the value atomically by using FP moves.  This means
  1267     // the value has to be moved between CPU and FPU registers.  It
  1268     // always has to be moved through spill slot since there's no
  1269     // quick way to pack the value into an SSE register.
  1270     LIR_Opr temp_double = new_register(T_DOUBLE);
  1271     LIR_Opr spill = new_register(T_LONG);
  1272     set_vreg_flag(spill, must_start_in_memory);
  1273     __ move(value, spill);
  1274     __ volatile_move(spill, temp_double, T_LONG);
  1275     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
  1276   } else {
  1277     __ store(value, address, info);
  1283 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1284                                        CodeEmitInfo* info) {
  1285   if (address->type() == T_LONG) {
  1286     address = new LIR_Address(address->base(),
  1287                               address->index(), address->scale(),
  1288                               address->disp(), T_DOUBLE);
  1289     // Transfer the value atomically by using FP moves.  This means
  1290     // the value has to be moved between CPU and FPU registers.  In
  1291     // SSE0 and SSE1 mode it has to be moved through spill slot but in
  1292     // SSE2+ mode it can be moved directly.
  1293     LIR_Opr temp_double = new_register(T_DOUBLE);
  1294     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
  1295     __ volatile_move(temp_double, result, T_LONG);
  1296     if (UseSSE < 2) {
  1297       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
  1298       set_vreg_flag(result, must_start_in_memory);
  1300   } else {
  1301     __ load(address, result, info);
  1305 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1306                                      BasicType type, bool is_volatile) {
  1307   if (is_volatile && type == T_LONG) {
  1308     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1309     LIR_Opr tmp = new_register(T_DOUBLE);
  1310     __ load(addr, tmp);
  1311     LIR_Opr spill = new_register(T_LONG);
  1312     set_vreg_flag(spill, must_start_in_memory);
  1313     __ move(tmp, spill);
  1314     __ move(spill, dst);
  1315   } else {
  1316     LIR_Address* addr = new LIR_Address(src, offset, type);
  1317     __ load(addr, dst);
  1322 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1323                                      BasicType type, bool is_volatile) {
  1324   if (is_volatile && type == T_LONG) {
  1325     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1326     LIR_Opr tmp = new_register(T_DOUBLE);
  1327     LIR_Opr spill = new_register(T_DOUBLE);
  1328     set_vreg_flag(spill, must_start_in_memory);
  1329     __ move(data, spill);
  1330     __ move(spill, tmp);
  1331     __ move(tmp, addr);
  1332   } else {
  1333     LIR_Address* addr = new LIR_Address(src, offset, type);
  1334     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1335     if (is_obj) {
  1336       // Do the pre-write barrier, if any.
  1337       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1338                   true /* do_load */, false /* patch */, NULL);
  1339       __ move(data, addr);
  1340       assert(src->is_register(), "must be register");
  1341       // Seems to be a precise address
  1342       post_barrier(LIR_OprFact::address(addr), data);
  1343     } else {
  1344       __ move(data, addr);

mercurial