src/share/vm/oops/methodDataOop.hpp

Tue, 22 Sep 2009 14:06:10 -0700

author
xdono
date
Tue, 22 Sep 2009 14:06:10 -0700
changeset 1383
89e0543e1737
parent 1376
8b46c4d82093
child 1641
87684f1a88b5
permissions
-rw-r--r--

6884624: Update copyright year
Summary: Update copyright for files that have been modified in 2009 through Septermber
Reviewed-by: tbell, ohair

     1 /*
     2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BytecodeStream;
    27 // The MethodData object collects counts and other profile information
    28 // during zeroth-tier (interpretive) and first-tier execution.
    29 // The profile is used later by compilation heuristics.  Some heuristics
    30 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    31 // optimization often has a down-side, a corner case that it handles
    32 // poorly, but which is thought to be rare.  The profile provides
    33 // evidence of this rarity for a given method or even BCI.  It allows
    34 // the compiler to back out of the optimization at places where it
    35 // has historically been a poor choice.  Other heuristics try to use
    36 // specific information gathered about types observed at a given site.
    37 //
    38 // All data in the profile is approximate.  It is expected to be accurate
    39 // on the whole, but the system expects occasional inaccuraces, due to
    40 // counter overflow, multiprocessor races during data collection, space
    41 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    42 // optimization quality but will not affect correctness.  Also, each MDO
    43 // is marked with its birth-date ("creation_mileage") which can be used
    44 // to assess the quality ("maturity") of its data.
    45 //
    46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    47 // state.  Also, certain recorded per-BCI events are given one-bit counters
    48 // which overflow to a saturated state which applied to all counters at
    49 // that BCI.  In other words, there is a small lattice which approximates
    50 // the ideal of an infinite-precision counter for each event at each BCI,
    51 // and the lattice quickly "bottoms out" in a state where all counters
    52 // are taken to be indefinitely large.
    53 //
    54 // The reader will find many data races in profile gathering code, starting
    55 // with invocation counter incrementation.  None of these races harm correct
    56 // execution of the compiled code.
    58 // forward decl
    59 class ProfileData;
    61 // DataLayout
    62 //
    63 // Overlay for generic profiling data.
    64 class DataLayout VALUE_OBJ_CLASS_SPEC {
    65 private:
    66   // Every data layout begins with a header.  This header
    67   // contains a tag, which is used to indicate the size/layout
    68   // of the data, 4 bits of flags, which can be used in any way,
    69   // 4 bits of trap history (none/one reason/many reasons),
    70   // and a bci, which is used to tie this piece of data to a
    71   // specific bci in the bytecodes.
    72   union {
    73     intptr_t _bits;
    74     struct {
    75       u1 _tag;
    76       u1 _flags;
    77       u2 _bci;
    78     } _struct;
    79   } _header;
    81   // The data layout has an arbitrary number of cells, each sized
    82   // to accomodate a pointer or an integer.
    83   intptr_t _cells[1];
    85   // Some types of data layouts need a length field.
    86   static bool needs_array_len(u1 tag);
    88 public:
    89   enum {
    90     counter_increment = 1
    91   };
    93   enum {
    94     cell_size = sizeof(intptr_t)
    95   };
    97   // Tag values
    98   enum {
    99     no_tag,
   100     bit_data_tag,
   101     counter_data_tag,
   102     jump_data_tag,
   103     receiver_type_data_tag,
   104     virtual_call_data_tag,
   105     ret_data_tag,
   106     branch_data_tag,
   107     multi_branch_data_tag,
   108     arg_info_data_tag
   109   };
   111   enum {
   112     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   113     // The trap state breaks down further as [recompile:1 | reason:3].
   114     // This further breakdown is defined in deoptimization.cpp.
   115     // See Deoptimization::trap_state_reason for an assert that
   116     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   117     //
   118     // The trap_state is collected only if ProfileTraps is true.
   119     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   120     trap_shift = BitsPerByte - trap_bits,
   121     trap_mask = right_n_bits(trap_bits),
   122     trap_mask_in_place = (trap_mask << trap_shift),
   123     flag_limit = trap_shift,
   124     flag_mask = right_n_bits(flag_limit),
   125     first_flag = 0
   126   };
   128   // Size computation
   129   static int header_size_in_bytes() {
   130     return cell_size;
   131   }
   132   static int header_size_in_cells() {
   133     return 1;
   134   }
   136   static int compute_size_in_bytes(int cell_count) {
   137     return header_size_in_bytes() + cell_count * cell_size;
   138   }
   140   // Initialization
   141   void initialize(u1 tag, u2 bci, int cell_count);
   143   // Accessors
   144   u1 tag() {
   145     return _header._struct._tag;
   146   }
   148   // Return a few bits of trap state.  Range is [0..trap_mask].
   149   // The state tells if traps with zero, one, or many reasons have occurred.
   150   // It also tells whether zero or many recompilations have occurred.
   151   // The associated trap histogram in the MDO itself tells whether
   152   // traps are common or not.  If a BCI shows that a trap X has
   153   // occurred, and the MDO shows N occurrences of X, we make the
   154   // simplifying assumption that all N occurrences can be blamed
   155   // on that BCI.
   156   int trap_state() {
   157     return ((_header._struct._flags >> trap_shift) & trap_mask);
   158   }
   160   void set_trap_state(int new_state) {
   161     assert(ProfileTraps, "used only under +ProfileTraps");
   162     uint old_flags = (_header._struct._flags & flag_mask);
   163     _header._struct._flags = (new_state << trap_shift) | old_flags;
   164   }
   166   u1 flags() {
   167     return _header._struct._flags;
   168   }
   170   u2 bci() {
   171     return _header._struct._bci;
   172   }
   174   void set_header(intptr_t value) {
   175     _header._bits = value;
   176   }
   177   void release_set_header(intptr_t value) {
   178     OrderAccess::release_store_ptr(&_header._bits, value);
   179   }
   180   intptr_t header() {
   181     return _header._bits;
   182   }
   183   void set_cell_at(int index, intptr_t value) {
   184     _cells[index] = value;
   185   }
   186   void release_set_cell_at(int index, intptr_t value) {
   187     OrderAccess::release_store_ptr(&_cells[index], value);
   188   }
   189   intptr_t cell_at(int index) {
   190     return _cells[index];
   191   }
   192   intptr_t* adr_cell_at(int index) {
   193     return &_cells[index];
   194   }
   195   oop* adr_oop_at(int index) {
   196     return (oop*)&(_cells[index]);
   197   }
   199   void set_flag_at(int flag_number) {
   200     assert(flag_number < flag_limit, "oob");
   201     _header._struct._flags |= (0x1 << flag_number);
   202   }
   203   bool flag_at(int flag_number) {
   204     assert(flag_number < flag_limit, "oob");
   205     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   206   }
   208   // Low-level support for code generation.
   209   static ByteSize header_offset() {
   210     return byte_offset_of(DataLayout, _header);
   211   }
   212   static ByteSize tag_offset() {
   213     return byte_offset_of(DataLayout, _header._struct._tag);
   214   }
   215   static ByteSize flags_offset() {
   216     return byte_offset_of(DataLayout, _header._struct._flags);
   217   }
   218   static ByteSize bci_offset() {
   219     return byte_offset_of(DataLayout, _header._struct._bci);
   220   }
   221   static ByteSize cell_offset(int index) {
   222     return byte_offset_of(DataLayout, _cells[index]);
   223   }
   224   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   225   static int flag_number_to_byte_constant(int flag_number) {
   226     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   227     DataLayout temp; temp.set_header(0);
   228     temp.set_flag_at(flag_number);
   229     return temp._header._struct._flags;
   230   }
   231   // Return a value which, when or-ed as a word into _header, sets the flag.
   232   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   233     DataLayout temp; temp.set_header(0);
   234     temp._header._struct._flags = byte_constant;
   235     return temp._header._bits;
   236   }
   238   // GC support
   239   ProfileData* data_in();
   240   void follow_weak_refs(BoolObjectClosure* cl);
   241 };
   244 // ProfileData class hierarchy
   245 class ProfileData;
   246 class   BitData;
   247 class     CounterData;
   248 class       ReceiverTypeData;
   249 class         VirtualCallData;
   250 class       RetData;
   251 class   JumpData;
   252 class     BranchData;
   253 class   ArrayData;
   254 class     MultiBranchData;
   255 class     ArgInfoData;
   258 // ProfileData
   259 //
   260 // A ProfileData object is created to refer to a section of profiling
   261 // data in a structured way.
   262 class ProfileData : public ResourceObj {
   263 private:
   264 #ifndef PRODUCT
   265   enum {
   266     tab_width_one = 16,
   267     tab_width_two = 36
   268   };
   269 #endif // !PRODUCT
   271   // This is a pointer to a section of profiling data.
   272   DataLayout* _data;
   274 protected:
   275   DataLayout* data() { return _data; }
   277   enum {
   278     cell_size = DataLayout::cell_size
   279   };
   281 public:
   282   // How many cells are in this?
   283   virtual int cell_count() {
   284     ShouldNotReachHere();
   285     return -1;
   286   }
   288   // Return the size of this data.
   289   int size_in_bytes() {
   290     return DataLayout::compute_size_in_bytes(cell_count());
   291   }
   293 protected:
   294   // Low-level accessors for underlying data
   295   void set_intptr_at(int index, intptr_t value) {
   296     assert(0 <= index && index < cell_count(), "oob");
   297     data()->set_cell_at(index, value);
   298   }
   299   void release_set_intptr_at(int index, intptr_t value) {
   300     assert(0 <= index && index < cell_count(), "oob");
   301     data()->release_set_cell_at(index, value);
   302   }
   303   intptr_t intptr_at(int index) {
   304     assert(0 <= index && index < cell_count(), "oob");
   305     return data()->cell_at(index);
   306   }
   307   void set_uint_at(int index, uint value) {
   308     set_intptr_at(index, (intptr_t) value);
   309   }
   310   void release_set_uint_at(int index, uint value) {
   311     release_set_intptr_at(index, (intptr_t) value);
   312   }
   313   uint uint_at(int index) {
   314     return (uint)intptr_at(index);
   315   }
   316   void set_int_at(int index, int value) {
   317     set_intptr_at(index, (intptr_t) value);
   318   }
   319   void release_set_int_at(int index, int value) {
   320     release_set_intptr_at(index, (intptr_t) value);
   321   }
   322   int int_at(int index) {
   323     return (int)intptr_at(index);
   324   }
   325   int int_at_unchecked(int index) {
   326     return (int)data()->cell_at(index);
   327   }
   328   void set_oop_at(int index, oop value) {
   329     set_intptr_at(index, (intptr_t) value);
   330   }
   331   oop oop_at(int index) {
   332     return (oop)intptr_at(index);
   333   }
   334   oop* adr_oop_at(int index) {
   335     assert(0 <= index && index < cell_count(), "oob");
   336     return data()->adr_oop_at(index);
   337   }
   339   void set_flag_at(int flag_number) {
   340     data()->set_flag_at(flag_number);
   341   }
   342   bool flag_at(int flag_number) {
   343     return data()->flag_at(flag_number);
   344   }
   346   // two convenient imports for use by subclasses:
   347   static ByteSize cell_offset(int index) {
   348     return DataLayout::cell_offset(index);
   349   }
   350   static int flag_number_to_byte_constant(int flag_number) {
   351     return DataLayout::flag_number_to_byte_constant(flag_number);
   352   }
   354   ProfileData(DataLayout* data) {
   355     _data = data;
   356   }
   358 public:
   359   // Constructor for invalid ProfileData.
   360   ProfileData();
   362   u2 bci() {
   363     return data()->bci();
   364   }
   366   address dp() {
   367     return (address)_data;
   368   }
   370   int trap_state() {
   371     return data()->trap_state();
   372   }
   373   void set_trap_state(int new_state) {
   374     data()->set_trap_state(new_state);
   375   }
   377   // Type checking
   378   virtual bool is_BitData()         { return false; }
   379   virtual bool is_CounterData()     { return false; }
   380   virtual bool is_JumpData()        { return false; }
   381   virtual bool is_ReceiverTypeData(){ return false; }
   382   virtual bool is_VirtualCallData() { return false; }
   383   virtual bool is_RetData()         { return false; }
   384   virtual bool is_BranchData()      { return false; }
   385   virtual bool is_ArrayData()       { return false; }
   386   virtual bool is_MultiBranchData() { return false; }
   387   virtual bool is_ArgInfoData()     { return false; }
   390   BitData* as_BitData() {
   391     assert(is_BitData(), "wrong type");
   392     return is_BitData()         ? (BitData*)        this : NULL;
   393   }
   394   CounterData* as_CounterData() {
   395     assert(is_CounterData(), "wrong type");
   396     return is_CounterData()     ? (CounterData*)    this : NULL;
   397   }
   398   JumpData* as_JumpData() {
   399     assert(is_JumpData(), "wrong type");
   400     return is_JumpData()        ? (JumpData*)       this : NULL;
   401   }
   402   ReceiverTypeData* as_ReceiverTypeData() {
   403     assert(is_ReceiverTypeData(), "wrong type");
   404     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   405   }
   406   VirtualCallData* as_VirtualCallData() {
   407     assert(is_VirtualCallData(), "wrong type");
   408     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   409   }
   410   RetData* as_RetData() {
   411     assert(is_RetData(), "wrong type");
   412     return is_RetData()         ? (RetData*)        this : NULL;
   413   }
   414   BranchData* as_BranchData() {
   415     assert(is_BranchData(), "wrong type");
   416     return is_BranchData()      ? (BranchData*)     this : NULL;
   417   }
   418   ArrayData* as_ArrayData() {
   419     assert(is_ArrayData(), "wrong type");
   420     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   421   }
   422   MultiBranchData* as_MultiBranchData() {
   423     assert(is_MultiBranchData(), "wrong type");
   424     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   425   }
   426   ArgInfoData* as_ArgInfoData() {
   427     assert(is_ArgInfoData(), "wrong type");
   428     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   429   }
   432   // Subclass specific initialization
   433   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
   435   // GC support
   436   virtual void follow_contents() {}
   437   virtual void oop_iterate(OopClosure* blk) {}
   438   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
   439   virtual void adjust_pointers() {}
   440   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
   442 #ifndef SERIALGC
   443   // Parallel old support
   444   virtual void follow_contents(ParCompactionManager* cm) {}
   445   virtual void update_pointers() {}
   446   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
   447 #endif // SERIALGC
   449   // CI translation: ProfileData can represent both MethodDataOop data
   450   // as well as CIMethodData data. This function is provided for translating
   451   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   452   // most ProfileData don't require any translation, so we provide the null
   453   // translation here, and the required translators are in the ci subclasses.
   454   virtual void translate_from(ProfileData* data) {}
   456   virtual void print_data_on(outputStream* st) {
   457     ShouldNotReachHere();
   458   }
   460 #ifndef PRODUCT
   461   void print_shared(outputStream* st, const char* name);
   462   void tab(outputStream* st);
   463 #endif
   464 };
   466 // BitData
   467 //
   468 // A BitData holds a flag or two in its header.
   469 class BitData : public ProfileData {
   470 protected:
   471   enum {
   472     // null_seen:
   473     //  saw a null operand (cast/aastore/instanceof)
   474     null_seen_flag              = DataLayout::first_flag + 0
   475   };
   476   enum { bit_cell_count = 0 };  // no additional data fields needed.
   477 public:
   478   BitData(DataLayout* layout) : ProfileData(layout) {
   479   }
   481   virtual bool is_BitData() { return true; }
   483   static int static_cell_count() {
   484     return bit_cell_count;
   485   }
   487   virtual int cell_count() {
   488     return static_cell_count();
   489   }
   491   // Accessor
   493   // The null_seen flag bit is specially known to the interpreter.
   494   // Consulting it allows the compiler to avoid setting up null_check traps.
   495   bool null_seen()     { return flag_at(null_seen_flag); }
   496   void set_null_seen()    { set_flag_at(null_seen_flag); }
   499   // Code generation support
   500   static int null_seen_byte_constant() {
   501     return flag_number_to_byte_constant(null_seen_flag);
   502   }
   504   static ByteSize bit_data_size() {
   505     return cell_offset(bit_cell_count);
   506   }
   508 #ifndef PRODUCT
   509   void print_data_on(outputStream* st);
   510 #endif
   511 };
   513 // CounterData
   514 //
   515 // A CounterData corresponds to a simple counter.
   516 class CounterData : public BitData {
   517 protected:
   518   enum {
   519     count_off,
   520     counter_cell_count
   521   };
   522 public:
   523   CounterData(DataLayout* layout) : BitData(layout) {}
   525   virtual bool is_CounterData() { return true; }
   527   static int static_cell_count() {
   528     return counter_cell_count;
   529   }
   531   virtual int cell_count() {
   532     return static_cell_count();
   533   }
   535   // Direct accessor
   536   uint count() {
   537     return uint_at(count_off);
   538   }
   540   // Code generation support
   541   static ByteSize count_offset() {
   542     return cell_offset(count_off);
   543   }
   544   static ByteSize counter_data_size() {
   545     return cell_offset(counter_cell_count);
   546   }
   548 #ifndef PRODUCT
   549   void print_data_on(outputStream* st);
   550 #endif
   551 };
   553 // JumpData
   554 //
   555 // A JumpData is used to access profiling information for a direct
   556 // branch.  It is a counter, used for counting the number of branches,
   557 // plus a data displacement, used for realigning the data pointer to
   558 // the corresponding target bci.
   559 class JumpData : public ProfileData {
   560 protected:
   561   enum {
   562     taken_off_set,
   563     displacement_off_set,
   564     jump_cell_count
   565   };
   567   void set_displacement(int displacement) {
   568     set_int_at(displacement_off_set, displacement);
   569   }
   571 public:
   572   JumpData(DataLayout* layout) : ProfileData(layout) {
   573     assert(layout->tag() == DataLayout::jump_data_tag ||
   574       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   575   }
   577   virtual bool is_JumpData() { return true; }
   579   static int static_cell_count() {
   580     return jump_cell_count;
   581   }
   583   virtual int cell_count() {
   584     return static_cell_count();
   585   }
   587   // Direct accessor
   588   uint taken() {
   589     return uint_at(taken_off_set);
   590   }
   591   // Saturating counter
   592   uint inc_taken() {
   593     uint cnt = taken() + 1;
   594     // Did we wrap? Will compiler screw us??
   595     if (cnt == 0) cnt--;
   596     set_uint_at(taken_off_set, cnt);
   597     return cnt;
   598   }
   600   int displacement() {
   601     return int_at(displacement_off_set);
   602   }
   604   // Code generation support
   605   static ByteSize taken_offset() {
   606     return cell_offset(taken_off_set);
   607   }
   609   static ByteSize displacement_offset() {
   610     return cell_offset(displacement_off_set);
   611   }
   613   // Specific initialization.
   614   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   616 #ifndef PRODUCT
   617   void print_data_on(outputStream* st);
   618 #endif
   619 };
   621 // ReceiverTypeData
   622 //
   623 // A ReceiverTypeData is used to access profiling information about a
   624 // dynamic type check.  It consists of a counter which counts the total times
   625 // that the check is reached, and a series of (klassOop, count) pairs
   626 // which are used to store a type profile for the receiver of the check.
   627 class ReceiverTypeData : public CounterData {
   628 protected:
   629   enum {
   630     receiver0_offset = counter_cell_count,
   631     count0_offset,
   632     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   633   };
   635 public:
   636   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   637     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   638            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   639   }
   641   virtual bool is_ReceiverTypeData() { return true; }
   643   static int static_cell_count() {
   644     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   645   }
   647   virtual int cell_count() {
   648     return static_cell_count();
   649   }
   651   // Direct accessors
   652   static uint row_limit() {
   653     return TypeProfileWidth;
   654   }
   655   static int receiver_cell_index(uint row) {
   656     return receiver0_offset + row * receiver_type_row_cell_count;
   657   }
   658   static int receiver_count_cell_index(uint row) {
   659     return count0_offset + row * receiver_type_row_cell_count;
   660   }
   662   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
   663   // gc; it does not assert the receiver is a klass.  During compaction of the
   664   // perm gen, the klass may already have moved, so the is_klass() predicate
   665   // would fail.  The 'normal' version should be used whenever possible.
   666   klassOop receiver_unchecked(uint row) {
   667     assert(row < row_limit(), "oob");
   668     oop recv = oop_at(receiver_cell_index(row));
   669     return (klassOop)recv;
   670   }
   672   klassOop receiver(uint row) {
   673     klassOop recv = receiver_unchecked(row);
   674     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
   675     return recv;
   676   }
   678   void set_receiver(uint row, oop p) {
   679     assert((uint)row < row_limit(), "oob");
   680     set_oop_at(receiver_cell_index(row), p);
   681   }
   683   uint receiver_count(uint row) {
   684     assert(row < row_limit(), "oob");
   685     return uint_at(receiver_count_cell_index(row));
   686   }
   688   void set_receiver_count(uint row, uint count) {
   689     assert(row < row_limit(), "oob");
   690     set_uint_at(receiver_count_cell_index(row), count);
   691   }
   693   void clear_row(uint row) {
   694     assert(row < row_limit(), "oob");
   695     set_receiver(row, NULL);
   696     set_receiver_count(row, 0);
   697   }
   699   // Code generation support
   700   static ByteSize receiver_offset(uint row) {
   701     return cell_offset(receiver_cell_index(row));
   702   }
   703   static ByteSize receiver_count_offset(uint row) {
   704     return cell_offset(receiver_count_cell_index(row));
   705   }
   706   static ByteSize receiver_type_data_size() {
   707     return cell_offset(static_cell_count());
   708   }
   710   // GC support
   711   virtual void follow_contents();
   712   virtual void oop_iterate(OopClosure* blk);
   713   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
   714   virtual void adjust_pointers();
   715   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
   717 #ifndef SERIALGC
   718   // Parallel old support
   719   virtual void follow_contents(ParCompactionManager* cm);
   720   virtual void update_pointers();
   721   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
   722 #endif // SERIALGC
   724   oop* adr_receiver(uint row) {
   725     return adr_oop_at(receiver_cell_index(row));
   726   }
   728 #ifndef PRODUCT
   729   void print_receiver_data_on(outputStream* st);
   730   void print_data_on(outputStream* st);
   731 #endif
   732 };
   734 // VirtualCallData
   735 //
   736 // A VirtualCallData is used to access profiling information about a
   737 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   738 class VirtualCallData : public ReceiverTypeData {
   739 public:
   740   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   741     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   742   }
   744   virtual bool is_VirtualCallData() { return true; }
   746   static int static_cell_count() {
   747     // At this point we could add more profile state, e.g., for arguments.
   748     // But for now it's the same size as the base record type.
   749     return ReceiverTypeData::static_cell_count();
   750   }
   752   virtual int cell_count() {
   753     return static_cell_count();
   754   }
   756   // Direct accessors
   757   static ByteSize virtual_call_data_size() {
   758     return cell_offset(static_cell_count());
   759   }
   761 #ifndef PRODUCT
   762   void print_data_on(outputStream* st);
   763 #endif
   764 };
   766 // RetData
   767 //
   768 // A RetData is used to access profiling information for a ret bytecode.
   769 // It is composed of a count of the number of times that the ret has
   770 // been executed, followed by a series of triples of the form
   771 // (bci, count, di) which count the number of times that some bci was the
   772 // target of the ret and cache a corresponding data displacement.
   773 class RetData : public CounterData {
   774 protected:
   775   enum {
   776     bci0_offset = counter_cell_count,
   777     count0_offset,
   778     displacement0_offset,
   779     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   780   };
   782   void set_bci(uint row, int bci) {
   783     assert((uint)row < row_limit(), "oob");
   784     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   785   }
   786   void release_set_bci(uint row, int bci) {
   787     assert((uint)row < row_limit(), "oob");
   788     // 'release' when setting the bci acts as a valid flag for other
   789     // threads wrt bci_count and bci_displacement.
   790     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   791   }
   792   void set_bci_count(uint row, uint count) {
   793     assert((uint)row < row_limit(), "oob");
   794     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   795   }
   796   void set_bci_displacement(uint row, int disp) {
   797     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   798   }
   800 public:
   801   RetData(DataLayout* layout) : CounterData(layout) {
   802     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   803   }
   805   virtual bool is_RetData() { return true; }
   807   enum {
   808     no_bci = -1 // value of bci when bci1/2 are not in use.
   809   };
   811   static int static_cell_count() {
   812     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   813   }
   815   virtual int cell_count() {
   816     return static_cell_count();
   817   }
   819   static uint row_limit() {
   820     return BciProfileWidth;
   821   }
   822   static int bci_cell_index(uint row) {
   823     return bci0_offset + row * ret_row_cell_count;
   824   }
   825   static int bci_count_cell_index(uint row) {
   826     return count0_offset + row * ret_row_cell_count;
   827   }
   828   static int bci_displacement_cell_index(uint row) {
   829     return displacement0_offset + row * ret_row_cell_count;
   830   }
   832   // Direct accessors
   833   int bci(uint row) {
   834     return int_at(bci_cell_index(row));
   835   }
   836   uint bci_count(uint row) {
   837     return uint_at(bci_count_cell_index(row));
   838   }
   839   int bci_displacement(uint row) {
   840     return int_at(bci_displacement_cell_index(row));
   841   }
   843   // Interpreter Runtime support
   844   address fixup_ret(int return_bci, methodDataHandle mdo);
   846   // Code generation support
   847   static ByteSize bci_offset(uint row) {
   848     return cell_offset(bci_cell_index(row));
   849   }
   850   static ByteSize bci_count_offset(uint row) {
   851     return cell_offset(bci_count_cell_index(row));
   852   }
   853   static ByteSize bci_displacement_offset(uint row) {
   854     return cell_offset(bci_displacement_cell_index(row));
   855   }
   857   // Specific initialization.
   858   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   860 #ifndef PRODUCT
   861   void print_data_on(outputStream* st);
   862 #endif
   863 };
   865 // BranchData
   866 //
   867 // A BranchData is used to access profiling data for a two-way branch.
   868 // It consists of taken and not_taken counts as well as a data displacement
   869 // for the taken case.
   870 class BranchData : public JumpData {
   871 protected:
   872   enum {
   873     not_taken_off_set = jump_cell_count,
   874     branch_cell_count
   875   };
   877   void set_displacement(int displacement) {
   878     set_int_at(displacement_off_set, displacement);
   879   }
   881 public:
   882   BranchData(DataLayout* layout) : JumpData(layout) {
   883     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   884   }
   886   virtual bool is_BranchData() { return true; }
   888   static int static_cell_count() {
   889     return branch_cell_count;
   890   }
   892   virtual int cell_count() {
   893     return static_cell_count();
   894   }
   896   // Direct accessor
   897   uint not_taken() {
   898     return uint_at(not_taken_off_set);
   899   }
   901   uint inc_not_taken() {
   902     uint cnt = not_taken() + 1;
   903     // Did we wrap? Will compiler screw us??
   904     if (cnt == 0) cnt--;
   905     set_uint_at(not_taken_off_set, cnt);
   906     return cnt;
   907   }
   909   // Code generation support
   910   static ByteSize not_taken_offset() {
   911     return cell_offset(not_taken_off_set);
   912   }
   913   static ByteSize branch_data_size() {
   914     return cell_offset(branch_cell_count);
   915   }
   917   // Specific initialization.
   918   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   920 #ifndef PRODUCT
   921   void print_data_on(outputStream* st);
   922 #endif
   923 };
   925 // ArrayData
   926 //
   927 // A ArrayData is a base class for accessing profiling data which does
   928 // not have a statically known size.  It consists of an array length
   929 // and an array start.
   930 class ArrayData : public ProfileData {
   931 protected:
   932   friend class DataLayout;
   934   enum {
   935     array_len_off_set,
   936     array_start_off_set
   937   };
   939   uint array_uint_at(int index) {
   940     int aindex = index + array_start_off_set;
   941     return uint_at(aindex);
   942   }
   943   int array_int_at(int index) {
   944     int aindex = index + array_start_off_set;
   945     return int_at(aindex);
   946   }
   947   oop array_oop_at(int index) {
   948     int aindex = index + array_start_off_set;
   949     return oop_at(aindex);
   950   }
   951   void array_set_int_at(int index, int value) {
   952     int aindex = index + array_start_off_set;
   953     set_int_at(aindex, value);
   954   }
   956   // Code generation support for subclasses.
   957   static ByteSize array_element_offset(int index) {
   958     return cell_offset(array_start_off_set + index);
   959   }
   961 public:
   962   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   964   virtual bool is_ArrayData() { return true; }
   966   static int static_cell_count() {
   967     return -1;
   968   }
   970   int array_len() {
   971     return int_at_unchecked(array_len_off_set);
   972   }
   974   virtual int cell_count() {
   975     return array_len() + 1;
   976   }
   978   // Code generation support
   979   static ByteSize array_len_offset() {
   980     return cell_offset(array_len_off_set);
   981   }
   982   static ByteSize array_start_offset() {
   983     return cell_offset(array_start_off_set);
   984   }
   985 };
   987 // MultiBranchData
   988 //
   989 // A MultiBranchData is used to access profiling information for
   990 // a multi-way branch (*switch bytecodes).  It consists of a series
   991 // of (count, displacement) pairs, which count the number of times each
   992 // case was taken and specify the data displacment for each branch target.
   993 class MultiBranchData : public ArrayData {
   994 protected:
   995   enum {
   996     default_count_off_set,
   997     default_disaplacement_off_set,
   998     case_array_start
   999   };
  1000   enum {
  1001     relative_count_off_set,
  1002     relative_displacement_off_set,
  1003     per_case_cell_count
  1004   };
  1006   void set_default_displacement(int displacement) {
  1007     array_set_int_at(default_disaplacement_off_set, displacement);
  1009   void set_displacement_at(int index, int displacement) {
  1010     array_set_int_at(case_array_start +
  1011                      index * per_case_cell_count +
  1012                      relative_displacement_off_set,
  1013                      displacement);
  1016 public:
  1017   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1018     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1021   virtual bool is_MultiBranchData() { return true; }
  1023   static int compute_cell_count(BytecodeStream* stream);
  1025   int number_of_cases() {
  1026     int alen = array_len() - 2; // get rid of default case here.
  1027     assert(alen % per_case_cell_count == 0, "must be even");
  1028     return (alen / per_case_cell_count);
  1031   uint default_count() {
  1032     return array_uint_at(default_count_off_set);
  1034   int default_displacement() {
  1035     return array_int_at(default_disaplacement_off_set);
  1038   uint count_at(int index) {
  1039     return array_uint_at(case_array_start +
  1040                          index * per_case_cell_count +
  1041                          relative_count_off_set);
  1043   int displacement_at(int index) {
  1044     return array_int_at(case_array_start +
  1045                         index * per_case_cell_count +
  1046                         relative_displacement_off_set);
  1049   // Code generation support
  1050   static ByteSize default_count_offset() {
  1051     return array_element_offset(default_count_off_set);
  1053   static ByteSize default_displacement_offset() {
  1054     return array_element_offset(default_disaplacement_off_set);
  1056   static ByteSize case_count_offset(int index) {
  1057     return case_array_offset() +
  1058            (per_case_size() * index) +
  1059            relative_count_offset();
  1061   static ByteSize case_array_offset() {
  1062     return array_element_offset(case_array_start);
  1064   static ByteSize per_case_size() {
  1065     return in_ByteSize(per_case_cell_count) * cell_size;
  1067   static ByteSize relative_count_offset() {
  1068     return in_ByteSize(relative_count_off_set) * cell_size;
  1070   static ByteSize relative_displacement_offset() {
  1071     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1074   // Specific initialization.
  1075   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
  1077 #ifndef PRODUCT
  1078   void print_data_on(outputStream* st);
  1079 #endif
  1080 };
  1082 class ArgInfoData : public ArrayData {
  1084 public:
  1085   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1086     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1089   virtual bool is_ArgInfoData() { return true; }
  1092   int number_of_args() {
  1093     return array_len();
  1096   uint arg_modified(int arg) {
  1097     return array_uint_at(arg);
  1100   void set_arg_modified(int arg, uint val) {
  1101     array_set_int_at(arg, val);
  1104 #ifndef PRODUCT
  1105   void print_data_on(outputStream* st);
  1106 #endif
  1107 };
  1109 // methodDataOop
  1110 //
  1111 // A methodDataOop holds information which has been collected about
  1112 // a method.  Its layout looks like this:
  1113 //
  1114 // -----------------------------
  1115 // | header                    |
  1116 // | klass                     |
  1117 // -----------------------------
  1118 // | method                    |
  1119 // | size of the methodDataOop |
  1120 // -----------------------------
  1121 // | Data entries...           |
  1122 // |   (variable size)         |
  1123 // |                           |
  1124 // .                           .
  1125 // .                           .
  1126 // .                           .
  1127 // |                           |
  1128 // -----------------------------
  1129 //
  1130 // The data entry area is a heterogeneous array of DataLayouts. Each
  1131 // DataLayout in the array corresponds to a specific bytecode in the
  1132 // method.  The entries in the array are sorted by the corresponding
  1133 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1134 // which point to the underlying blocks of DataLayout structures.
  1135 //
  1136 // During interpretation, if profiling in enabled, the interpreter
  1137 // maintains a method data pointer (mdp), which points at the entry
  1138 // in the array corresponding to the current bci.  In the course of
  1139 // intepretation, when a bytecode is encountered that has profile data
  1140 // associated with it, the entry pointed to by mdp is updated, then the
  1141 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1142 // is NULL to begin with, the interpreter assumes that the current method
  1143 // is not (yet) being profiled.
  1144 //
  1145 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
  1146 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1147 // from the base of the data entry array.  A "displacement" is the byte offset
  1148 // in certain ProfileData objects that indicate the amount the mdp must be
  1149 // adjusted in the event of a change in control flow.
  1150 //
  1152 class methodDataOopDesc : public oopDesc {
  1153   friend class VMStructs;
  1154 private:
  1155   friend class ProfileData;
  1157   // Back pointer to the methodOop
  1158   methodOop _method;
  1160   // Size of this oop in bytes
  1161   int _size;
  1163   // Cached hint for bci_to_dp and bci_to_data
  1164   int _hint_di;
  1166   // Whole-method sticky bits and flags
  1167 public:
  1168   enum {
  1169     _trap_hist_limit    = 16,   // decoupled from Deoptimization::Reason_LIMIT
  1170     _trap_hist_mask     = max_jubyte,
  1171     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1172   }; // Public flag values
  1173 private:
  1174   uint _nof_decompiles;             // count of all nmethod removals
  1175   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1176   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1177   union {
  1178     intptr_t _align;
  1179     u1 _array[_trap_hist_limit];
  1180   } _trap_hist;
  1182   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1183   intx              _eflags;          // flags on escape information
  1184   intx              _arg_local;       // bit set of non-escaping arguments
  1185   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1186   intx              _arg_returned;    // bit set of returned arguments
  1188   int _creation_mileage;            // method mileage at MDO creation
  1190   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1191   int _data_size;
  1193   // Beginning of the data entries
  1194   intptr_t _data[1];
  1196   // Helper for size computation
  1197   static int compute_data_size(BytecodeStream* stream);
  1198   static int bytecode_cell_count(Bytecodes::Code code);
  1199   enum { no_profile_data = -1, variable_cell_count = -2 };
  1201   // Helper for initialization
  1202   DataLayout* data_layout_at(int data_index) {
  1203     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1204     return (DataLayout*) (((address)_data) + data_index);
  1207   // Initialize an individual data segment.  Returns the size of
  1208   // the segment in bytes.
  1209   int initialize_data(BytecodeStream* stream, int data_index);
  1211   // Helper for data_at
  1212   DataLayout* limit_data_position() {
  1213     return (DataLayout*)((address)data_base() + _data_size);
  1215   bool out_of_bounds(int data_index) {
  1216     return data_index >= data_size();
  1219   // Give each of the data entries a chance to perform specific
  1220   // data initialization.
  1221   void post_initialize(BytecodeStream* stream);
  1223   // hint accessors
  1224   int      hint_di() const  { return _hint_di; }
  1225   void set_hint_di(int di)  {
  1226     assert(!out_of_bounds(di), "hint_di out of bounds");
  1227     _hint_di = di;
  1229   ProfileData* data_before(int bci) {
  1230     // avoid SEGV on this edge case
  1231     if (data_size() == 0)
  1232       return NULL;
  1233     int hint = hint_di();
  1234     if (data_layout_at(hint)->bci() <= bci)
  1235       return data_at(hint);
  1236     return first_data();
  1239   // What is the index of the first data entry?
  1240   int first_di() { return 0; }
  1242   // Find or create an extra ProfileData:
  1243   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1245   // return the argument info cell
  1246   ArgInfoData *arg_info();
  1248 public:
  1249   static int header_size() {
  1250     return sizeof(methodDataOopDesc)/wordSize;
  1253   // Compute the size of a methodDataOop before it is created.
  1254   static int compute_allocation_size_in_bytes(methodHandle method);
  1255   static int compute_allocation_size_in_words(methodHandle method);
  1256   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1258   // Determine if a given bytecode can have profile information.
  1259   static bool bytecode_has_profile(Bytecodes::Code code) {
  1260     return bytecode_cell_count(code) != no_profile_data;
  1263   // Perform initialization of a new methodDataOop
  1264   void initialize(methodHandle method);
  1266   // My size
  1267   int object_size_in_bytes() { return _size; }
  1268   int object_size() {
  1269     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
  1272   int      creation_mileage() const  { return _creation_mileage; }
  1273   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1274   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1275   static int mileage_of(methodOop m);
  1277   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1278   enum EscapeFlag {
  1279     estimated    = 1 << 0,
  1280     return_local = 1 << 1,
  1281     return_allocated = 1 << 2,
  1282     allocated_escapes = 1 << 3,
  1283     unknown_modified = 1 << 4
  1284   };
  1286   intx eflags()                                  { return _eflags; }
  1287   intx arg_local()                               { return _arg_local; }
  1288   intx arg_stack()                               { return _arg_stack; }
  1289   intx arg_returned()                            { return _arg_returned; }
  1290   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1291                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1292                                                    return aid->arg_modified(a); }
  1294   void set_eflags(intx v)                        { _eflags = v; }
  1295   void set_arg_local(intx v)                     { _arg_local = v; }
  1296   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1297   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1298   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1299                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1301                                                    aid->set_arg_modified(a, v); }
  1303   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1305   // Location and size of data area
  1306   address data_base() const {
  1307     return (address) _data;
  1309   int data_size() {
  1310     return _data_size;
  1313   // Accessors
  1314   methodOop method() { return _method; }
  1316   // Get the data at an arbitrary (sort of) data index.
  1317   ProfileData* data_at(int data_index);
  1319   // Walk through the data in order.
  1320   ProfileData* first_data() { return data_at(first_di()); }
  1321   ProfileData* next_data(ProfileData* current);
  1322   bool is_valid(ProfileData* current) { return current != NULL; }
  1324   // Convert a dp (data pointer) to a di (data index).
  1325   int dp_to_di(address dp) {
  1326     return dp - ((address)_data);
  1329   address di_to_dp(int di) {
  1330     return (address)data_layout_at(di);
  1333   // bci to di/dp conversion.
  1334   address bci_to_dp(int bci);
  1335   int bci_to_di(int bci) {
  1336     return dp_to_di(bci_to_dp(bci));
  1339   // Get the data at an arbitrary bci, or NULL if there is none.
  1340   ProfileData* bci_to_data(int bci);
  1342   // Same, but try to create an extra_data record if one is needed:
  1343   ProfileData* allocate_bci_to_data(int bci) {
  1344     ProfileData* data = bci_to_data(bci);
  1345     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1348   // Add a handful of extra data records, for trap tracking.
  1349   DataLayout* extra_data_base() { return limit_data_position(); }
  1350   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
  1351   int extra_data_size() { return (address)extra_data_limit()
  1352                                - (address)extra_data_base(); }
  1353   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1355   // Return (uint)-1 for overflow.
  1356   uint trap_count(int reason) const {
  1357     assert((uint)reason < _trap_hist_limit, "oob");
  1358     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1360   // For loops:
  1361   static uint trap_reason_limit() { return _trap_hist_limit; }
  1362   static uint trap_count_limit()  { return _trap_hist_mask; }
  1363   uint inc_trap_count(int reason) {
  1364     // Count another trap, anywhere in this method.
  1365     assert(reason >= 0, "must be single trap");
  1366     if ((uint)reason < _trap_hist_limit) {
  1367       uint cnt1 = 1 + _trap_hist._array[reason];
  1368       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1369         _trap_hist._array[reason] = cnt1;
  1370         return cnt1;
  1371       } else {
  1372         return _trap_hist_mask + (++_nof_overflow_traps);
  1374     } else {
  1375       // Could not represent the count in the histogram.
  1376       return (++_nof_overflow_traps);
  1380   uint overflow_trap_count() const {
  1381     return _nof_overflow_traps;
  1383   uint overflow_recompile_count() const {
  1384     return _nof_overflow_recompiles;
  1386   void inc_overflow_recompile_count() {
  1387     _nof_overflow_recompiles += 1;
  1389   uint decompile_count() const {
  1390     return _nof_decompiles;
  1392   void inc_decompile_count() {
  1393     _nof_decompiles += 1;
  1396   // Support for code generation
  1397   static ByteSize data_offset() {
  1398     return byte_offset_of(methodDataOopDesc, _data[0]);
  1401   // GC support
  1402   oop* adr_method() const { return (oop*)&_method; }
  1403   bool object_is_parsable() const { return _size != 0; }
  1404   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1406 #ifndef PRODUCT
  1407   // printing support for method data
  1408   void print_data_on(outputStream* st);
  1409 #endif
  1411   // verification
  1412   void verify_data_on(outputStream* st);
  1413 };

mercurial