src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Thu, 19 Jan 2012 10:56:51 -0800

author
iveresov
date
Thu, 19 Jan 2012 10:56:51 -0800
changeset 3435
898522ae3c32
parent 3400
22cee0ee8927
child 3592
701a83c86f28
permissions
-rw-r--r--

7131288: COMPILE SKIPPED: deopt handler overflow (retry at different tier)
Summary: Fix exception handler stub size, enable guarantees to check for the correct deopt and exception stub sizes in the future
Reviewed-by: kvn, never, twisti

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (dst->is_register()) {
   109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   110           return !PatchALot;
   111         } else if (src->is_single_stack()) {
   112           return true;
   113         }
   114       }
   116       if (src->is_register()) {
   117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   118           return !PatchALot;
   119         } else if (dst->is_single_stack()) {
   120           return true;
   121         }
   122       }
   124       if (dst->is_register() &&
   125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   127         return true;
   128       }
   130       return false;
   131     }
   133     default:
   134       return false;
   135   }
   136   ShouldNotReachHere();
   137 }
   140 LIR_Opr LIR_Assembler::receiverOpr() {
   141   return FrameMap::O0_oop_opr;
   142 }
   145 LIR_Opr LIR_Assembler::osrBufferPointer() {
   146   return FrameMap::I0_opr;
   147 }
   150 int LIR_Assembler::initial_frame_size_in_bytes() {
   151   return in_bytes(frame_map()->framesize_in_bytes());
   152 }
   155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   156 // we fetch the class of the receiver (O0) and compare it with the cached class.
   157 // If they do not match we jump to slow case.
   158 int LIR_Assembler::check_icache() {
   159   int offset = __ offset();
   160   __ inline_cache_check(O0, G5_inline_cache_reg);
   161   return offset;
   162 }
   165 void LIR_Assembler::osr_entry() {
   166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   167   //
   168   //   1. Create a new compiled activation.
   169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   170   //      at the osr_bci; it is not initialized.
   171   //   3. Jump to the continuation address in compiled code to resume execution.
   173   // OSR entry point
   174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   176   ValueStack* entry_state = osr_entry->end()->state();
   177   int number_of_locks = entry_state->locks_size();
   179   // Create a frame for the compiled activation.
   180   __ build_frame(initial_frame_size_in_bytes());
   182   // OSR buffer is
   183   //
   184   // locals[nlocals-1..0]
   185   // monitors[number_of_locks-1..0]
   186   //
   187   // locals is a direct copy of the interpreter frame so in the osr buffer
   188   // so first slot in the local array is the last local from the interpreter
   189   // and last slot is local[0] (receiver) from the interpreter
   190   //
   191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   193   // in the interpreter frame (the method lock if a sync method)
   195   // Initialize monitors in the compiled activation.
   196   //   I0: pointer to osr buffer
   197   //
   198   // All other registers are dead at this point and the locals will be
   199   // copied into place by code emitted in the IR.
   201   Register OSR_buf = osrBufferPointer()->as_register();
   202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   203     int monitor_offset = BytesPerWord * method()->max_locals() +
   204       (2 * BytesPerWord) * (number_of_locks - 1);
   205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   206     // the OSR buffer using 2 word entries: first the lock and then
   207     // the oop.
   208     for (int i = 0; i < number_of_locks; i++) {
   209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   210 #ifdef ASSERT
   211       // verify the interpreter's monitor has a non-null object
   212       {
   213         Label L;
   214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   215         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   216         __ stop("locked object is NULL");
   217         __ bind(L);
   218       }
   219 #endif // ASSERT
   220       // Copy the lock field into the compiled activation.
   221       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   222       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   223       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   224       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   225     }
   226   }
   227 }
   230 // Optimized Library calls
   231 // This is the fast version of java.lang.String.compare; it has not
   232 // OSR-entry and therefore, we generate a slow version for OSR's
   233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   234   Register str0 = left->as_register();
   235   Register str1 = right->as_register();
   237   Label Ldone;
   239   Register result = dst->as_register();
   240   {
   241     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   242     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   243     // Also, get string0.count-string1.count in o7 and get the condition code set
   244     // Note: some instructions have been hoisted for better instruction scheduling
   246     Register tmp0 = L0;
   247     Register tmp1 = L1;
   248     Register tmp2 = L2;
   250     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   251     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   252     int  count_offset = java_lang_String:: count_offset_in_bytes();
   254     __ load_heap_oop(str0, value_offset, tmp0);
   255     __ ld(str0, offset_offset, tmp2);
   256     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   257     __ ld(str0, count_offset, str0);
   258     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     // str1 may be null
   261     add_debug_info_for_null_check_here(info);
   263     __ load_heap_oop(str1, value_offset, tmp1);
   264     __ add(tmp0, tmp2, tmp0);
   266     __ ld(str1, offset_offset, tmp2);
   267     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   268     __ ld(str1, count_offset, str1);
   269     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   270     __ subcc(str0, str1, O7);
   271     __ add(tmp1, tmp2, tmp1);
   272   }
   274   {
   275     // Compute the minimum of the string lengths, scale it and store it in limit
   276     Register count0 = I0;
   277     Register count1 = I1;
   278     Register limit  = L3;
   280     Label Lskip;
   281     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   282     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   283     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   284     __ bind(Lskip);
   286     // If either string is empty (or both of them) the result is the difference in lengths
   287     __ cmp(limit, 0);
   288     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   289     __ delayed()->mov(O7, result);  // result is difference in lengths
   290   }
   292   {
   293     // Neither string is empty
   294     Label Lloop;
   296     Register base0 = L0;
   297     Register base1 = L1;
   298     Register chr0  = I0;
   299     Register chr1  = I1;
   300     Register limit = L3;
   302     // Shift base0 and base1 to the end of the arrays, negate limit
   303     __ add(base0, limit, base0);
   304     __ add(base1, limit, base1);
   305     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   307     __ lduh(base0, limit, chr0);
   308     __ bind(Lloop);
   309     __ lduh(base1, limit, chr1);
   310     __ subcc(chr0, chr1, chr0);
   311     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   312     assert(chr0 == result, "result must be pre-placed");
   313     __ delayed()->inccc(limit, sizeof(jchar));
   314     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   315     __ delayed()->lduh(base0, limit, chr0);
   316   }
   318   // If strings are equal up to min length, return the length difference.
   319   __ mov(O7, result);
   321   // Otherwise, return the difference between the first mismatched chars.
   322   __ bind(Ldone);
   323 }
   326 // --------------------------------------------------------------------------------------------
   328 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   329   if (!GenerateSynchronizationCode) return;
   331   Register obj_reg = obj_opr->as_register();
   332   Register lock_reg = lock_opr->as_register();
   334   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   335   Register reg = mon_addr.base();
   336   int offset = mon_addr.disp();
   337   // compute pointer to BasicLock
   338   if (mon_addr.is_simm13()) {
   339     __ add(reg, offset, lock_reg);
   340   }
   341   else {
   342     __ set(offset, lock_reg);
   343     __ add(reg, lock_reg, lock_reg);
   344   }
   345   // unlock object
   346   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   347   // _slow_case_stubs->append(slow_case);
   348   // temporary fix: must be created after exceptionhandler, therefore as call stub
   349   _slow_case_stubs->append(slow_case);
   350   if (UseFastLocking) {
   351     // try inlined fast unlocking first, revert to slow locking if it fails
   352     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   353     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   354     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   355   } else {
   356     // always do slow unlocking
   357     // note: the slow unlocking code could be inlined here, however if we use
   358     //       slow unlocking, speed doesn't matter anyway and this solution is
   359     //       simpler and requires less duplicated code - additionally, the
   360     //       slow unlocking code is the same in either case which simplifies
   361     //       debugging
   362     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   363     __ delayed()->nop();
   364   }
   365   // done
   366   __ bind(*slow_case->continuation());
   367 }
   370 int LIR_Assembler::emit_exception_handler() {
   371   // if the last instruction is a call (typically to do a throw which
   372   // is coming at the end after block reordering) the return address
   373   // must still point into the code area in order to avoid assertion
   374   // failures when searching for the corresponding bci => add a nop
   375   // (was bug 5/14/1999 - gri)
   376   __ nop();
   378   // generate code for exception handler
   379   ciMethod* method = compilation()->method();
   381   address handler_base = __ start_a_stub(exception_handler_size);
   383   if (handler_base == NULL) {
   384     // not enough space left for the handler
   385     bailout("exception handler overflow");
   386     return -1;
   387   }
   389   int offset = code_offset();
   391   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   392   __ delayed()->nop();
   393   __ should_not_reach_here();
   394   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   395   __ end_a_stub();
   397   return offset;
   398 }
   401 // Emit the code to remove the frame from the stack in the exception
   402 // unwind path.
   403 int LIR_Assembler::emit_unwind_handler() {
   404 #ifndef PRODUCT
   405   if (CommentedAssembly) {
   406     _masm->block_comment("Unwind handler");
   407   }
   408 #endif
   410   int offset = code_offset();
   412   // Fetch the exception from TLS and clear out exception related thread state
   413   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   414   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   415   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   417   __ bind(_unwind_handler_entry);
   418   __ verify_not_null_oop(O0);
   419   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   420     __ mov(O0, I0);  // Preserve the exception
   421   }
   423   // Preform needed unlocking
   424   MonitorExitStub* stub = NULL;
   425   if (method()->is_synchronized()) {
   426     monitor_address(0, FrameMap::I1_opr);
   427     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   428     __ unlock_object(I3, I2, I1, *stub->entry());
   429     __ bind(*stub->continuation());
   430   }
   432   if (compilation()->env()->dtrace_method_probes()) {
   433     __ mov(G2_thread, O0);
   434     jobject2reg(method()->constant_encoding(), O1);
   435     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   436     __ delayed()->nop();
   437   }
   439   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   440     __ mov(I0, O0);  // Restore the exception
   441   }
   443   // dispatch to the unwind logic
   444   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   445   __ delayed()->nop();
   447   // Emit the slow path assembly
   448   if (stub != NULL) {
   449     stub->emit_code(this);
   450   }
   452   return offset;
   453 }
   456 int LIR_Assembler::emit_deopt_handler() {
   457   // if the last instruction is a call (typically to do a throw which
   458   // is coming at the end after block reordering) the return address
   459   // must still point into the code area in order to avoid assertion
   460   // failures when searching for the corresponding bci => add a nop
   461   // (was bug 5/14/1999 - gri)
   462   __ nop();
   464   // generate code for deopt handler
   465   ciMethod* method = compilation()->method();
   466   address handler_base = __ start_a_stub(deopt_handler_size);
   467   if (handler_base == NULL) {
   468     // not enough space left for the handler
   469     bailout("deopt handler overflow");
   470     return -1;
   471   }
   473   int offset = code_offset();
   474   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   475   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   476   __ delayed()->nop();
   477   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   478   __ end_a_stub();
   480   return offset;
   481 }
   484 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   485   if (o == NULL) {
   486     __ set(NULL_WORD, reg);
   487   } else {
   488     int oop_index = __ oop_recorder()->find_index(o);
   489     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   490     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   491   }
   492 }
   495 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   496   // Allocate a new index in oop table to hold the oop once it's been patched
   497   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   498   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   500   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   501   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   502   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   503   // NULL will be dynamically patched later and the patched value may be large.  We must
   504   // therefore generate the sethi/add as a placeholders
   505   __ patchable_set(addrlit, reg);
   507   patching_epilog(patch, lir_patch_normal, reg, info);
   508 }
   511 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   512   Register Rdividend = op->in_opr1()->as_register();
   513   Register Rdivisor  = noreg;
   514   Register Rscratch  = op->in_opr3()->as_register();
   515   Register Rresult   = op->result_opr()->as_register();
   516   int divisor = -1;
   518   if (op->in_opr2()->is_register()) {
   519     Rdivisor = op->in_opr2()->as_register();
   520   } else {
   521     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   522     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   523   }
   525   assert(Rdividend != Rscratch, "");
   526   assert(Rdivisor  != Rscratch, "");
   527   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   529   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   530     // convert division by a power of two into some shifts and logical operations
   531     if (op->code() == lir_idiv) {
   532       if (divisor == 2) {
   533         __ srl(Rdividend, 31, Rscratch);
   534       } else {
   535         __ sra(Rdividend, 31, Rscratch);
   536         __ and3(Rscratch, divisor - 1, Rscratch);
   537       }
   538       __ add(Rdividend, Rscratch, Rscratch);
   539       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   540       return;
   541     } else {
   542       if (divisor == 2) {
   543         __ srl(Rdividend, 31, Rscratch);
   544       } else {
   545         __ sra(Rdividend, 31, Rscratch);
   546         __ and3(Rscratch, divisor - 1,Rscratch);
   547       }
   548       __ add(Rdividend, Rscratch, Rscratch);
   549       __ andn(Rscratch, divisor - 1,Rscratch);
   550       __ sub(Rdividend, Rscratch, Rresult);
   551       return;
   552     }
   553   }
   555   __ sra(Rdividend, 31, Rscratch);
   556   __ wry(Rscratch);
   557   if (!VM_Version::v9_instructions_work()) {
   558     // v9 doesn't require these nops
   559     __ nop();
   560     __ nop();
   561     __ nop();
   562     __ nop();
   563   }
   565   add_debug_info_for_div0_here(op->info());
   567   if (Rdivisor != noreg) {
   568     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   569   } else {
   570     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   571     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   572   }
   574   Label skip;
   575   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   576   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   577   __ bind(skip);
   579   if (op->code() == lir_irem) {
   580     if (Rdivisor != noreg) {
   581       __ smul(Rscratch, Rdivisor, Rscratch);
   582     } else {
   583       __ smul(Rscratch, divisor, Rscratch);
   584     }
   585     __ sub(Rdividend, Rscratch, Rresult);
   586   }
   587 }
   590 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   591 #ifdef ASSERT
   592   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   593   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   594   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   595 #endif
   596   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   598   if (op->cond() == lir_cond_always) {
   599     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   600   } else if (op->code() == lir_cond_float_branch) {
   601     assert(op->ublock() != NULL, "must have unordered successor");
   602     bool is_unordered = (op->ublock() == op->block());
   603     Assembler::Condition acond;
   604     switch (op->cond()) {
   605       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   606       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   607       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   608       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   609       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   610       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   611       default :                         ShouldNotReachHere();
   612     };
   614     if (!VM_Version::v9_instructions_work()) {
   615       __ nop();
   616     }
   617     __ fb( acond, false, Assembler::pn, *(op->label()));
   618   } else {
   619     assert (op->code() == lir_branch, "just checking");
   621     Assembler::Condition acond;
   622     switch (op->cond()) {
   623       case lir_cond_equal:        acond = Assembler::equal;                break;
   624       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   625       case lir_cond_less:         acond = Assembler::less;                 break;
   626       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   627       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   628       case lir_cond_greater:      acond = Assembler::greater;              break;
   629       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   630       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   631       default:                         ShouldNotReachHere();
   632     };
   634     // sparc has different condition codes for testing 32-bit
   635     // vs. 64-bit values.  We could always test xcc is we could
   636     // guarantee that 32-bit loads always sign extended but that isn't
   637     // true and since sign extension isn't free, it would impose a
   638     // slight cost.
   639 #ifdef _LP64
   640     if  (op->type() == T_INT) {
   641       __ br(acond, false, Assembler::pn, *(op->label()));
   642     } else
   643 #endif
   644       __ brx(acond, false, Assembler::pn, *(op->label()));
   645   }
   646   // The peephole pass fills the delay slot
   647 }
   650 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   651   Bytecodes::Code code = op->bytecode();
   652   LIR_Opr dst = op->result_opr();
   654   switch(code) {
   655     case Bytecodes::_i2l: {
   656       Register rlo  = dst->as_register_lo();
   657       Register rhi  = dst->as_register_hi();
   658       Register rval = op->in_opr()->as_register();
   659 #ifdef _LP64
   660       __ sra(rval, 0, rlo);
   661 #else
   662       __ mov(rval, rlo);
   663       __ sra(rval, BitsPerInt-1, rhi);
   664 #endif
   665       break;
   666     }
   667     case Bytecodes::_i2d:
   668     case Bytecodes::_i2f: {
   669       bool is_double = (code == Bytecodes::_i2d);
   670       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   671       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   672       FloatRegister rsrc = op->in_opr()->as_float_reg();
   673       if (rsrc != rdst) {
   674         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   675       }
   676       __ fitof(w, rdst, rdst);
   677       break;
   678     }
   679     case Bytecodes::_f2i:{
   680       FloatRegister rsrc = op->in_opr()->as_float_reg();
   681       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   682       Label L;
   683       // result must be 0 if value is NaN; test by comparing value to itself
   684       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   685       if (!VM_Version::v9_instructions_work()) {
   686         __ nop();
   687       }
   688       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   689       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   690       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   691       // move integer result from float register to int register
   692       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   693       __ bind (L);
   694       break;
   695     }
   696     case Bytecodes::_l2i: {
   697       Register rlo  = op->in_opr()->as_register_lo();
   698       Register rhi  = op->in_opr()->as_register_hi();
   699       Register rdst = dst->as_register();
   700 #ifdef _LP64
   701       __ sra(rlo, 0, rdst);
   702 #else
   703       __ mov(rlo, rdst);
   704 #endif
   705       break;
   706     }
   707     case Bytecodes::_d2f:
   708     case Bytecodes::_f2d: {
   709       bool is_double = (code == Bytecodes::_f2d);
   710       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   711       LIR_Opr val = op->in_opr();
   712       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   713       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   714       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   715       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   716       __ ftof(vw, dw, rval, rdst);
   717       break;
   718     }
   719     case Bytecodes::_i2s:
   720     case Bytecodes::_i2b: {
   721       Register rval = op->in_opr()->as_register();
   722       Register rdst = dst->as_register();
   723       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   724       __ sll (rval, shift, rdst);
   725       __ sra (rdst, shift, rdst);
   726       break;
   727     }
   728     case Bytecodes::_i2c: {
   729       Register rval = op->in_opr()->as_register();
   730       Register rdst = dst->as_register();
   731       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   732       __ sll (rval, shift, rdst);
   733       __ srl (rdst, shift, rdst);
   734       break;
   735     }
   737     default: ShouldNotReachHere();
   738   }
   739 }
   742 void LIR_Assembler::align_call(LIR_Code) {
   743   // do nothing since all instructions are word aligned on sparc
   744 }
   747 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   748   __ call(op->addr(), rtype);
   749   // The peephole pass fills the delay slot, add_call_info is done in
   750   // LIR_Assembler::emit_delay.
   751 }
   754 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   755   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   756   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   757   __ relocate(rspec);
   758   __ call(op->addr(), relocInfo::none);
   759   // The peephole pass fills the delay slot, add_call_info is done in
   760   // LIR_Assembler::emit_delay.
   761 }
   764 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   765   add_debug_info_for_null_check_here(op->info());
   766   __ load_klass(O0, G3_scratch);
   767   if (Assembler::is_simm13(op->vtable_offset())) {
   768     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   769   } else {
   770     // This will generate 2 instructions
   771     __ set(op->vtable_offset(), G5_method);
   772     // ld_ptr, set_hi, set
   773     __ ld_ptr(G3_scratch, G5_method, G5_method);
   774   }
   775   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   776   __ callr(G3_scratch, G0);
   777   // the peephole pass fills the delay slot
   778 }
   780 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   781   int store_offset;
   782   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   783     assert(!unaligned, "can't handle this");
   784     // for offsets larger than a simm13 we setup the offset in O7
   785     __ set(offset, O7);
   786     store_offset = store(from_reg, base, O7, type, wide);
   787   } else {
   788     if (type == T_ARRAY || type == T_OBJECT) {
   789       __ verify_oop(from_reg->as_register());
   790     }
   791     store_offset = code_offset();
   792     switch (type) {
   793       case T_BOOLEAN: // fall through
   794       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   795       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   796       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   797       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   798       case T_LONG  :
   799 #ifdef _LP64
   800         if (unaligned || PatchALot) {
   801           __ srax(from_reg->as_register_lo(), 32, O7);
   802           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   803           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   804         } else {
   805           __ stx(from_reg->as_register_lo(), base, offset);
   806         }
   807 #else
   808         assert(Assembler::is_simm13(offset + 4), "must be");
   809         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   810         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   811 #endif
   812         break;
   813       case T_ADDRESS:
   814         __ st_ptr(from_reg->as_register(), base, offset);
   815         break;
   816       case T_ARRAY : // fall through
   817       case T_OBJECT:
   818         {
   819           if (UseCompressedOops && !wide) {
   820             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   821             store_offset = code_offset();
   822             __ stw(G3_scratch, base, offset);
   823           } else {
   824             __ st_ptr(from_reg->as_register(), base, offset);
   825           }
   826           break;
   827         }
   829       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   830       case T_DOUBLE:
   831         {
   832           FloatRegister reg = from_reg->as_double_reg();
   833           // split unaligned stores
   834           if (unaligned || PatchALot) {
   835             assert(Assembler::is_simm13(offset + 4), "must be");
   836             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   837             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   838           } else {
   839             __ stf(FloatRegisterImpl::D, reg, base, offset);
   840           }
   841           break;
   842         }
   843       default      : ShouldNotReachHere();
   844     }
   845   }
   846   return store_offset;
   847 }
   850 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   851   if (type == T_ARRAY || type == T_OBJECT) {
   852     __ verify_oop(from_reg->as_register());
   853   }
   854   int store_offset = code_offset();
   855   switch (type) {
   856     case T_BOOLEAN: // fall through
   857     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   858     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   859     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   860     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   861     case T_LONG  :
   862 #ifdef _LP64
   863       __ stx(from_reg->as_register_lo(), base, disp);
   864 #else
   865       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   866       __ std(from_reg->as_register_hi(), base, disp);
   867 #endif
   868       break;
   869     case T_ADDRESS:
   870       __ st_ptr(from_reg->as_register(), base, disp);
   871       break;
   872     case T_ARRAY : // fall through
   873     case T_OBJECT:
   874       {
   875         if (UseCompressedOops && !wide) {
   876           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   877           store_offset = code_offset();
   878           __ stw(G3_scratch, base, disp);
   879         } else {
   880           __ st_ptr(from_reg->as_register(), base, disp);
   881         }
   882         break;
   883       }
   884     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   885     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   886     default      : ShouldNotReachHere();
   887   }
   888   return store_offset;
   889 }
   892 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   893   int load_offset;
   894   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   895     assert(base != O7, "destroying register");
   896     assert(!unaligned, "can't handle this");
   897     // for offsets larger than a simm13 we setup the offset in O7
   898     __ set(offset, O7);
   899     load_offset = load(base, O7, to_reg, type, wide);
   900   } else {
   901     load_offset = code_offset();
   902     switch(type) {
   903       case T_BOOLEAN: // fall through
   904       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   905       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   906       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   907       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   908       case T_LONG  :
   909         if (!unaligned) {
   910 #ifdef _LP64
   911           __ ldx(base, offset, to_reg->as_register_lo());
   912 #else
   913           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   914                  "must be sequential");
   915           __ ldd(base, offset, to_reg->as_register_hi());
   916 #endif
   917         } else {
   918 #ifdef _LP64
   919           assert(base != to_reg->as_register_lo(), "can't handle this");
   920           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   921           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   922           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   923           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   924           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   925 #else
   926           if (base == to_reg->as_register_lo()) {
   927             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   928             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   929           } else {
   930             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   931             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   932           }
   933 #endif
   934         }
   935         break;
   936       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   937       case T_ARRAY : // fall through
   938       case T_OBJECT:
   939         {
   940           if (UseCompressedOops && !wide) {
   941             __ lduw(base, offset, to_reg->as_register());
   942             __ decode_heap_oop(to_reg->as_register());
   943           } else {
   944             __ ld_ptr(base, offset, to_reg->as_register());
   945           }
   946           break;
   947         }
   948       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   949       case T_DOUBLE:
   950         {
   951           FloatRegister reg = to_reg->as_double_reg();
   952           // split unaligned loads
   953           if (unaligned || PatchALot) {
   954             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   955             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   956           } else {
   957             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   958           }
   959           break;
   960         }
   961       default      : ShouldNotReachHere();
   962     }
   963     if (type == T_ARRAY || type == T_OBJECT) {
   964       __ verify_oop(to_reg->as_register());
   965     }
   966   }
   967   return load_offset;
   968 }
   971 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
   972   int load_offset = code_offset();
   973   switch(type) {
   974     case T_BOOLEAN: // fall through
   975     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
   976     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
   977     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
   978     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
   979     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
   980     case T_ARRAY : // fall through
   981     case T_OBJECT:
   982       {
   983           if (UseCompressedOops && !wide) {
   984             __ lduw(base, disp, to_reg->as_register());
   985             __ decode_heap_oop(to_reg->as_register());
   986           } else {
   987             __ ld_ptr(base, disp, to_reg->as_register());
   988           }
   989           break;
   990       }
   991     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
   992     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
   993     case T_LONG  :
   994 #ifdef _LP64
   995       __ ldx(base, disp, to_reg->as_register_lo());
   996 #else
   997       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   998              "must be sequential");
   999       __ ldd(base, disp, to_reg->as_register_hi());
  1000 #endif
  1001       break;
  1002     default      : ShouldNotReachHere();
  1004   if (type == T_ARRAY || type == T_OBJECT) {
  1005     __ verify_oop(to_reg->as_register());
  1007   return load_offset;
  1010 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1011   LIR_Const* c = src->as_constant_ptr();
  1012   switch (c->type()) {
  1013     case T_INT:
  1014     case T_FLOAT: {
  1015       Register src_reg = O7;
  1016       int value = c->as_jint_bits();
  1017       if (value == 0) {
  1018         src_reg = G0;
  1019       } else {
  1020         __ set(value, O7);
  1022       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1023       __ stw(src_reg, addr.base(), addr.disp());
  1024       break;
  1026     case T_ADDRESS: {
  1027       Register src_reg = O7;
  1028       int value = c->as_jint_bits();
  1029       if (value == 0) {
  1030         src_reg = G0;
  1031       } else {
  1032         __ set(value, O7);
  1034       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1035       __ st_ptr(src_reg, addr.base(), addr.disp());
  1036       break;
  1038     case T_OBJECT: {
  1039       Register src_reg = O7;
  1040       jobject2reg(c->as_jobject(), src_reg);
  1041       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1042       __ st_ptr(src_reg, addr.base(), addr.disp());
  1043       break;
  1045     case T_LONG:
  1046     case T_DOUBLE: {
  1047       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1049       Register tmp = O7;
  1050       int value_lo = c->as_jint_lo_bits();
  1051       if (value_lo == 0) {
  1052         tmp = G0;
  1053       } else {
  1054         __ set(value_lo, O7);
  1056       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1057       int value_hi = c->as_jint_hi_bits();
  1058       if (value_hi == 0) {
  1059         tmp = G0;
  1060       } else {
  1061         __ set(value_hi, O7);
  1063       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1064       break;
  1066     default:
  1067       Unimplemented();
  1072 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1073   LIR_Const* c = src->as_constant_ptr();
  1074   LIR_Address* addr     = dest->as_address_ptr();
  1075   Register base = addr->base()->as_pointer_register();
  1076   int offset = -1;
  1078   switch (c->type()) {
  1079     case T_INT:
  1080     case T_FLOAT:
  1081     case T_ADDRESS: {
  1082       LIR_Opr tmp = FrameMap::O7_opr;
  1083       int value = c->as_jint_bits();
  1084       if (value == 0) {
  1085         tmp = FrameMap::G0_opr;
  1086       } else if (Assembler::is_simm13(value)) {
  1087         __ set(value, O7);
  1089       if (addr->index()->is_valid()) {
  1090         assert(addr->disp() == 0, "must be zero");
  1091         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1092       } else {
  1093         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1094         offset = store(tmp, base, addr->disp(), type, wide, false);
  1096       break;
  1098     case T_LONG:
  1099     case T_DOUBLE: {
  1100       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1101       assert(Assembler::is_simm13(addr->disp()) &&
  1102              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1104       LIR_Opr tmp = FrameMap::O7_opr;
  1105       int value_lo = c->as_jint_lo_bits();
  1106       if (value_lo == 0) {
  1107         tmp = FrameMap::G0_opr;
  1108       } else {
  1109         __ set(value_lo, O7);
  1111       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1112       int value_hi = c->as_jint_hi_bits();
  1113       if (value_hi == 0) {
  1114         tmp = FrameMap::G0_opr;
  1115       } else {
  1116         __ set(value_hi, O7);
  1118       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1119       break;
  1121     case T_OBJECT: {
  1122       jobject obj = c->as_jobject();
  1123       LIR_Opr tmp;
  1124       if (obj == NULL) {
  1125         tmp = FrameMap::G0_opr;
  1126       } else {
  1127         tmp = FrameMap::O7_opr;
  1128         jobject2reg(c->as_jobject(), O7);
  1130       // handle either reg+reg or reg+disp address
  1131       if (addr->index()->is_valid()) {
  1132         assert(addr->disp() == 0, "must be zero");
  1133         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1134       } else {
  1135         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1136         offset = store(tmp, base, addr->disp(), type, wide, false);
  1139       break;
  1141     default:
  1142       Unimplemented();
  1144   if (info != NULL) {
  1145     assert(offset != -1, "offset should've been set");
  1146     add_debug_info_for_null_check(offset, info);
  1151 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1152   LIR_Const* c = src->as_constant_ptr();
  1153   LIR_Opr to_reg = dest;
  1155   switch (c->type()) {
  1156     case T_INT:
  1157     case T_ADDRESS:
  1159         jint con = c->as_jint();
  1160         if (to_reg->is_single_cpu()) {
  1161           assert(patch_code == lir_patch_none, "no patching handled here");
  1162           __ set(con, to_reg->as_register());
  1163         } else {
  1164           ShouldNotReachHere();
  1165           assert(to_reg->is_single_fpu(), "wrong register kind");
  1167           __ set(con, O7);
  1168           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1169           __ st(O7, temp_slot);
  1170           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1173       break;
  1175     case T_LONG:
  1177         jlong con = c->as_jlong();
  1179         if (to_reg->is_double_cpu()) {
  1180 #ifdef _LP64
  1181           __ set(con,  to_reg->as_register_lo());
  1182 #else
  1183           __ set(low(con),  to_reg->as_register_lo());
  1184           __ set(high(con), to_reg->as_register_hi());
  1185 #endif
  1186 #ifdef _LP64
  1187         } else if (to_reg->is_single_cpu()) {
  1188           __ set(con, to_reg->as_register());
  1189 #endif
  1190         } else {
  1191           ShouldNotReachHere();
  1192           assert(to_reg->is_double_fpu(), "wrong register kind");
  1193           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1194           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1195           __ set(low(con),  O7);
  1196           __ st(O7, temp_slot_lo);
  1197           __ set(high(con), O7);
  1198           __ st(O7, temp_slot_hi);
  1199           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1202       break;
  1204     case T_OBJECT:
  1206         if (patch_code == lir_patch_none) {
  1207           jobject2reg(c->as_jobject(), to_reg->as_register());
  1208         } else {
  1209           jobject2reg_with_patching(to_reg->as_register(), info);
  1212       break;
  1214     case T_FLOAT:
  1216         address const_addr = __ float_constant(c->as_jfloat());
  1217         if (const_addr == NULL) {
  1218           bailout("const section overflow");
  1219           break;
  1221         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1222         AddressLiteral const_addrlit(const_addr, rspec);
  1223         if (to_reg->is_single_fpu()) {
  1224           __ patchable_sethi(const_addrlit, O7);
  1225           __ relocate(rspec);
  1226           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1228         } else {
  1229           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1231           __ set(const_addrlit, O7);
  1232           __ ld(O7, 0, to_reg->as_register());
  1235       break;
  1237     case T_DOUBLE:
  1239         address const_addr = __ double_constant(c->as_jdouble());
  1240         if (const_addr == NULL) {
  1241           bailout("const section overflow");
  1242           break;
  1244         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1246         if (to_reg->is_double_fpu()) {
  1247           AddressLiteral const_addrlit(const_addr, rspec);
  1248           __ patchable_sethi(const_addrlit, O7);
  1249           __ relocate(rspec);
  1250           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1251         } else {
  1252           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1253 #ifdef _LP64
  1254           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1255 #else
  1256           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1257           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1258 #endif
  1262       break;
  1264     default:
  1265       ShouldNotReachHere();
  1269 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1270   Register reg = addr->base()->as_register();
  1271   return Address(reg, addr->disp());
  1275 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1276   switch (type) {
  1277     case T_INT:
  1278     case T_FLOAT: {
  1279       Register tmp = O7;
  1280       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1281       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1282       __ lduw(from.base(), from.disp(), tmp);
  1283       __ stw(tmp, to.base(), to.disp());
  1284       break;
  1286     case T_OBJECT: {
  1287       Register tmp = O7;
  1288       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1289       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1290       __ ld_ptr(from.base(), from.disp(), tmp);
  1291       __ st_ptr(tmp, to.base(), to.disp());
  1292       break;
  1294     case T_LONG:
  1295     case T_DOUBLE: {
  1296       Register tmp = O7;
  1297       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1298       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1299       __ lduw(from.base(), from.disp(), tmp);
  1300       __ stw(tmp, to.base(), to.disp());
  1301       __ lduw(from.base(), from.disp() + 4, tmp);
  1302       __ stw(tmp, to.base(), to.disp() + 4);
  1303       break;
  1306     default:
  1307       ShouldNotReachHere();
  1312 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1313   Address base = as_Address(addr);
  1314   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1318 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1319   Address base = as_Address(addr);
  1320   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1324 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1325                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1327   LIR_Address* addr = src_opr->as_address_ptr();
  1328   LIR_Opr to_reg = dest;
  1330   Register src = addr->base()->as_pointer_register();
  1331   Register disp_reg = noreg;
  1332   int disp_value = addr->disp();
  1333   bool needs_patching = (patch_code != lir_patch_none);
  1335   if (addr->base()->type() == T_OBJECT) {
  1336     __ verify_oop(src);
  1339   PatchingStub* patch = NULL;
  1340   if (needs_patching) {
  1341     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1342     assert(!to_reg->is_double_cpu() ||
  1343            patch_code == lir_patch_none ||
  1344            patch_code == lir_patch_normal, "patching doesn't match register");
  1347   if (addr->index()->is_illegal()) {
  1348     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1349       if (needs_patching) {
  1350         __ patchable_set(0, O7);
  1351       } else {
  1352         __ set(disp_value, O7);
  1354       disp_reg = O7;
  1356   } else if (unaligned || PatchALot) {
  1357     __ add(src, addr->index()->as_register(), O7);
  1358     src = O7;
  1359   } else {
  1360     disp_reg = addr->index()->as_pointer_register();
  1361     assert(disp_value == 0, "can't handle 3 operand addresses");
  1364   // remember the offset of the load.  The patching_epilog must be done
  1365   // before the call to add_debug_info, otherwise the PcDescs don't get
  1366   // entered in increasing order.
  1367   int offset = code_offset();
  1369   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1370   if (disp_reg == noreg) {
  1371     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1372   } else {
  1373     assert(!unaligned, "can't handle this");
  1374     offset = load(src, disp_reg, to_reg, type, wide);
  1377   if (patch != NULL) {
  1378     patching_epilog(patch, patch_code, src, info);
  1380   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1384 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1385   LIR_Address* addr = src->as_address_ptr();
  1386   Address from_addr = as_Address(addr);
  1388   if (VM_Version::has_v9()) {
  1389     __ prefetch(from_addr, Assembler::severalReads);
  1394 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1395   LIR_Address* addr = src->as_address_ptr();
  1396   Address from_addr = as_Address(addr);
  1398   if (VM_Version::has_v9()) {
  1399     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1404 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1405   Address addr;
  1406   if (src->is_single_word()) {
  1407     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1408   } else if (src->is_double_word())  {
  1409     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1412   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1413   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1417 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1418   Address addr;
  1419   if (dest->is_single_word()) {
  1420     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1421   } else if (dest->is_double_word())  {
  1422     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1424   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1425   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1429 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1430   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1431     if (from_reg->is_double_fpu()) {
  1432       // double to double moves
  1433       assert(to_reg->is_double_fpu(), "should match");
  1434       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1435     } else {
  1436       // float to float moves
  1437       assert(to_reg->is_single_fpu(), "should match");
  1438       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1440   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1441     if (from_reg->is_double_cpu()) {
  1442 #ifdef _LP64
  1443       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1444 #else
  1445       assert(to_reg->is_double_cpu() &&
  1446              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1447              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1448              "should both be long and not overlap");
  1449       // long to long moves
  1450       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1451       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1452 #endif
  1453 #ifdef _LP64
  1454     } else if (to_reg->is_double_cpu()) {
  1455       // int to int moves
  1456       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1457 #endif
  1458     } else {
  1459       // int to int moves
  1460       __ mov(from_reg->as_register(), to_reg->as_register());
  1462   } else {
  1463     ShouldNotReachHere();
  1465   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1466     __ verify_oop(to_reg->as_register());
  1471 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1472                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1473                             bool wide, bool unaligned) {
  1474   LIR_Address* addr = dest->as_address_ptr();
  1476   Register src = addr->base()->as_pointer_register();
  1477   Register disp_reg = noreg;
  1478   int disp_value = addr->disp();
  1479   bool needs_patching = (patch_code != lir_patch_none);
  1481   if (addr->base()->is_oop_register()) {
  1482     __ verify_oop(src);
  1485   PatchingStub* patch = NULL;
  1486   if (needs_patching) {
  1487     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1488     assert(!from_reg->is_double_cpu() ||
  1489            patch_code == lir_patch_none ||
  1490            patch_code == lir_patch_normal, "patching doesn't match register");
  1493   if (addr->index()->is_illegal()) {
  1494     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1495       if (needs_patching) {
  1496         __ patchable_set(0, O7);
  1497       } else {
  1498         __ set(disp_value, O7);
  1500       disp_reg = O7;
  1502   } else if (unaligned || PatchALot) {
  1503     __ add(src, addr->index()->as_register(), O7);
  1504     src = O7;
  1505   } else {
  1506     disp_reg = addr->index()->as_pointer_register();
  1507     assert(disp_value == 0, "can't handle 3 operand addresses");
  1510   // remember the offset of the store.  The patching_epilog must be done
  1511   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1512   // entered in increasing order.
  1513   int offset;
  1515   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1516   if (disp_reg == noreg) {
  1517     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1518   } else {
  1519     assert(!unaligned, "can't handle this");
  1520     offset = store(from_reg, src, disp_reg, type, wide);
  1523   if (patch != NULL) {
  1524     patching_epilog(patch, patch_code, src, info);
  1527   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1531 void LIR_Assembler::return_op(LIR_Opr result) {
  1532   // the poll may need a register so just pick one that isn't the return register
  1533 #if defined(TIERED) && !defined(_LP64)
  1534   if (result->type_field() == LIR_OprDesc::long_type) {
  1535     // Must move the result to G1
  1536     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1537     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1538     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1539     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1540 #ifdef ASSERT
  1541     // mangle it so any problems will show up
  1542     __ set(0xdeadbeef, I0);
  1543     __ set(0xdeadbeef, I1);
  1544 #endif
  1546 #endif // TIERED
  1547   __ set((intptr_t)os::get_polling_page(), L0);
  1548   __ relocate(relocInfo::poll_return_type);
  1549   __ ld_ptr(L0, 0, G0);
  1550   __ ret();
  1551   __ delayed()->restore();
  1555 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1556   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1557   if (info != NULL) {
  1558     add_debug_info_for_branch(info);
  1559   } else {
  1560     __ relocate(relocInfo::poll_type);
  1563   int offset = __ offset();
  1564   __ ld_ptr(tmp->as_register(), 0, G0);
  1566   return offset;
  1570 void LIR_Assembler::emit_static_call_stub() {
  1571   address call_pc = __ pc();
  1572   address stub = __ start_a_stub(call_stub_size);
  1573   if (stub == NULL) {
  1574     bailout("static call stub overflow");
  1575     return;
  1578   int start = __ offset();
  1579   __ relocate(static_stub_Relocation::spec(call_pc));
  1581   __ set_oop(NULL, G5);
  1582   // must be set to -1 at code generation time
  1583   AddressLiteral addrlit(-1);
  1584   __ jump_to(addrlit, G3);
  1585   __ delayed()->nop();
  1587   assert(__ offset() - start <= call_stub_size, "stub too big");
  1588   __ end_a_stub();
  1592 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1593   if (opr1->is_single_fpu()) {
  1594     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1595   } else if (opr1->is_double_fpu()) {
  1596     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1597   } else if (opr1->is_single_cpu()) {
  1598     if (opr2->is_constant()) {
  1599       switch (opr2->as_constant_ptr()->type()) {
  1600         case T_INT:
  1601           { jint con = opr2->as_constant_ptr()->as_jint();
  1602             if (Assembler::is_simm13(con)) {
  1603               __ cmp(opr1->as_register(), con);
  1604             } else {
  1605               __ set(con, O7);
  1606               __ cmp(opr1->as_register(), O7);
  1609           break;
  1611         case T_OBJECT:
  1612           // there are only equal/notequal comparisions on objects
  1613           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1614             if (con == NULL) {
  1615               __ cmp(opr1->as_register(), 0);
  1616             } else {
  1617               jobject2reg(con, O7);
  1618               __ cmp(opr1->as_register(), O7);
  1621           break;
  1623         default:
  1624           ShouldNotReachHere();
  1625           break;
  1627     } else {
  1628       if (opr2->is_address()) {
  1629         LIR_Address * addr = opr2->as_address_ptr();
  1630         BasicType type = addr->type();
  1631         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1632         else                    __ ld(as_Address(addr), O7);
  1633         __ cmp(opr1->as_register(), O7);
  1634       } else {
  1635         __ cmp(opr1->as_register(), opr2->as_register());
  1638   } else if (opr1->is_double_cpu()) {
  1639     Register xlo = opr1->as_register_lo();
  1640     Register xhi = opr1->as_register_hi();
  1641     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1642       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1643 #ifdef _LP64
  1644       __ orcc(xhi, G0, G0);
  1645 #else
  1646       __ orcc(xhi, xlo, G0);
  1647 #endif
  1648     } else if (opr2->is_register()) {
  1649       Register ylo = opr2->as_register_lo();
  1650       Register yhi = opr2->as_register_hi();
  1651 #ifdef _LP64
  1652       __ cmp(xlo, ylo);
  1653 #else
  1654       __ subcc(xlo, ylo, xlo);
  1655       __ subccc(xhi, yhi, xhi);
  1656       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1657         __ orcc(xhi, xlo, G0);
  1659 #endif
  1660     } else {
  1661       ShouldNotReachHere();
  1663   } else if (opr1->is_address()) {
  1664     LIR_Address * addr = opr1->as_address_ptr();
  1665     BasicType type = addr->type();
  1666     assert (opr2->is_constant(), "Checking");
  1667     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1668     else                    __ ld(as_Address(addr), O7);
  1669     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1670   } else {
  1671     ShouldNotReachHere();
  1676 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1677   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1678     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1679     if (left->is_single_fpu()) {
  1680       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1681     } else if (left->is_double_fpu()) {
  1682       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1683     } else {
  1684       ShouldNotReachHere();
  1686   } else if (code == lir_cmp_l2i) {
  1687 #ifdef _LP64
  1688     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1689 #else
  1690     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1691             right->as_register_hi(), right->as_register_lo(),
  1692             dst->as_register());
  1693 #endif
  1694   } else {
  1695     ShouldNotReachHere();
  1700 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1701   Assembler::Condition acond;
  1702   switch (condition) {
  1703     case lir_cond_equal:        acond = Assembler::equal;        break;
  1704     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1705     case lir_cond_less:         acond = Assembler::less;         break;
  1706     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1707     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1708     case lir_cond_greater:      acond = Assembler::greater;      break;
  1709     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1710     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1711     default:                         ShouldNotReachHere();
  1712   };
  1714   if (opr1->is_constant() && opr1->type() == T_INT) {
  1715     Register dest = result->as_register();
  1716     // load up first part of constant before branch
  1717     // and do the rest in the delay slot.
  1718     if (!Assembler::is_simm13(opr1->as_jint())) {
  1719       __ sethi(opr1->as_jint(), dest);
  1721   } else if (opr1->is_constant()) {
  1722     const2reg(opr1, result, lir_patch_none, NULL);
  1723   } else if (opr1->is_register()) {
  1724     reg2reg(opr1, result);
  1725   } else if (opr1->is_stack()) {
  1726     stack2reg(opr1, result, result->type());
  1727   } else {
  1728     ShouldNotReachHere();
  1730   Label skip;
  1731 #ifdef _LP64
  1732     if  (type == T_INT) {
  1733       __ br(acond, false, Assembler::pt, skip);
  1734     } else
  1735 #endif
  1736       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1737   if (opr1->is_constant() && opr1->type() == T_INT) {
  1738     Register dest = result->as_register();
  1739     if (Assembler::is_simm13(opr1->as_jint())) {
  1740       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1741     } else {
  1742       // the sethi has been done above, so just put in the low 10 bits
  1743       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1745   } else {
  1746     // can't do anything useful in the delay slot
  1747     __ delayed()->nop();
  1749   if (opr2->is_constant()) {
  1750     const2reg(opr2, result, lir_patch_none, NULL);
  1751   } else if (opr2->is_register()) {
  1752     reg2reg(opr2, result);
  1753   } else if (opr2->is_stack()) {
  1754     stack2reg(opr2, result, result->type());
  1755   } else {
  1756     ShouldNotReachHere();
  1758   __ bind(skip);
  1762 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1763   assert(info == NULL, "unused on this code path");
  1764   assert(left->is_register(), "wrong items state");
  1765   assert(dest->is_register(), "wrong items state");
  1767   if (right->is_register()) {
  1768     if (dest->is_float_kind()) {
  1770       FloatRegister lreg, rreg, res;
  1771       FloatRegisterImpl::Width w;
  1772       if (right->is_single_fpu()) {
  1773         w = FloatRegisterImpl::S;
  1774         lreg = left->as_float_reg();
  1775         rreg = right->as_float_reg();
  1776         res  = dest->as_float_reg();
  1777       } else {
  1778         w = FloatRegisterImpl::D;
  1779         lreg = left->as_double_reg();
  1780         rreg = right->as_double_reg();
  1781         res  = dest->as_double_reg();
  1784       switch (code) {
  1785         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1786         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1787         case lir_mul: // fall through
  1788         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1789         case lir_div: // fall through
  1790         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1791         default: ShouldNotReachHere();
  1794     } else if (dest->is_double_cpu()) {
  1795 #ifdef _LP64
  1796       Register dst_lo = dest->as_register_lo();
  1797       Register op1_lo = left->as_pointer_register();
  1798       Register op2_lo = right->as_pointer_register();
  1800       switch (code) {
  1801         case lir_add:
  1802           __ add(op1_lo, op2_lo, dst_lo);
  1803           break;
  1805         case lir_sub:
  1806           __ sub(op1_lo, op2_lo, dst_lo);
  1807           break;
  1809         default: ShouldNotReachHere();
  1811 #else
  1812       Register op1_lo = left->as_register_lo();
  1813       Register op1_hi = left->as_register_hi();
  1814       Register op2_lo = right->as_register_lo();
  1815       Register op2_hi = right->as_register_hi();
  1816       Register dst_lo = dest->as_register_lo();
  1817       Register dst_hi = dest->as_register_hi();
  1819       switch (code) {
  1820         case lir_add:
  1821           __ addcc(op1_lo, op2_lo, dst_lo);
  1822           __ addc (op1_hi, op2_hi, dst_hi);
  1823           break;
  1825         case lir_sub:
  1826           __ subcc(op1_lo, op2_lo, dst_lo);
  1827           __ subc (op1_hi, op2_hi, dst_hi);
  1828           break;
  1830         default: ShouldNotReachHere();
  1832 #endif
  1833     } else {
  1834       assert (right->is_single_cpu(), "Just Checking");
  1836       Register lreg = left->as_register();
  1837       Register res  = dest->as_register();
  1838       Register rreg = right->as_register();
  1839       switch (code) {
  1840         case lir_add:  __ add  (lreg, rreg, res); break;
  1841         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1842         case lir_mul:  __ mult (lreg, rreg, res); break;
  1843         default: ShouldNotReachHere();
  1846   } else {
  1847     assert (right->is_constant(), "must be constant");
  1849     if (dest->is_single_cpu()) {
  1850       Register lreg = left->as_register();
  1851       Register res  = dest->as_register();
  1852       int    simm13 = right->as_constant_ptr()->as_jint();
  1854       switch (code) {
  1855         case lir_add:  __ add  (lreg, simm13, res); break;
  1856         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1857         case lir_mul:  __ mult (lreg, simm13, res); break;
  1858         default: ShouldNotReachHere();
  1860     } else {
  1861       Register lreg = left->as_pointer_register();
  1862       Register res  = dest->as_register_lo();
  1863       long con = right->as_constant_ptr()->as_jlong();
  1864       assert(Assembler::is_simm13(con), "must be simm13");
  1866       switch (code) {
  1867         case lir_add:  __ add  (lreg, (int)con, res); break;
  1868         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1869         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1870         default: ShouldNotReachHere();
  1877 void LIR_Assembler::fpop() {
  1878   // do nothing
  1882 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1883   switch (code) {
  1884     case lir_sin:
  1885     case lir_tan:
  1886     case lir_cos: {
  1887       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1888       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1889       break;
  1891     case lir_sqrt: {
  1892       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1893       FloatRegister src_reg = value->as_double_reg();
  1894       FloatRegister dst_reg = dest->as_double_reg();
  1895       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1896       break;
  1898     case lir_abs: {
  1899       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1900       FloatRegister src_reg = value->as_double_reg();
  1901       FloatRegister dst_reg = dest->as_double_reg();
  1902       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1903       break;
  1905     default: {
  1906       ShouldNotReachHere();
  1907       break;
  1913 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1914   if (right->is_constant()) {
  1915     if (dest->is_single_cpu()) {
  1916       int simm13 = right->as_constant_ptr()->as_jint();
  1917       switch (code) {
  1918         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1919         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1920         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1921         default: ShouldNotReachHere();
  1923     } else {
  1924       long c = right->as_constant_ptr()->as_jlong();
  1925       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1926       int simm13 = (int)c;
  1927       switch (code) {
  1928         case lir_logic_and:
  1929 #ifndef _LP64
  1930           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1931 #endif
  1932           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1933           break;
  1935         case lir_logic_or:
  1936 #ifndef _LP64
  1937           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1938 #endif
  1939           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1940           break;
  1942         case lir_logic_xor:
  1943 #ifndef _LP64
  1944           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1945 #endif
  1946           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1947           break;
  1949         default: ShouldNotReachHere();
  1952   } else {
  1953     assert(right->is_register(), "right should be in register");
  1955     if (dest->is_single_cpu()) {
  1956       switch (code) {
  1957         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1958         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1959         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1960         default: ShouldNotReachHere();
  1962     } else {
  1963 #ifdef _LP64
  1964       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1965                                                                         left->as_register_lo();
  1966       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  1967                                                                           right->as_register_lo();
  1969       switch (code) {
  1970         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  1971         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  1972         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  1973         default: ShouldNotReachHere();
  1975 #else
  1976       switch (code) {
  1977         case lir_logic_and:
  1978           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1979           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1980           break;
  1982         case lir_logic_or:
  1983           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1984           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1985           break;
  1987         case lir_logic_xor:
  1988           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1989           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1990           break;
  1992         default: ShouldNotReachHere();
  1994 #endif
  2000 int LIR_Assembler::shift_amount(BasicType t) {
  2001   int elem_size = type2aelembytes(t);
  2002   switch (elem_size) {
  2003     case 1 : return 0;
  2004     case 2 : return 1;
  2005     case 4 : return 2;
  2006     case 8 : return 3;
  2008   ShouldNotReachHere();
  2009   return -1;
  2013 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2014   assert(exceptionOop->as_register() == Oexception, "should match");
  2015   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2017   info->add_register_oop(exceptionOop);
  2019   // reuse the debug info from the safepoint poll for the throw op itself
  2020   address pc_for_athrow  = __ pc();
  2021   int pc_for_athrow_offset = __ offset();
  2022   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2023   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2024   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2026   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2027   __ delayed()->nop();
  2031 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2032   assert(exceptionOop->as_register() == Oexception, "should match");
  2034   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2035   __ delayed()->nop();
  2039 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2040   Register src = op->src()->as_register();
  2041   Register dst = op->dst()->as_register();
  2042   Register src_pos = op->src_pos()->as_register();
  2043   Register dst_pos = op->dst_pos()->as_register();
  2044   Register length  = op->length()->as_register();
  2045   Register tmp = op->tmp()->as_register();
  2046   Register tmp2 = O7;
  2048   int flags = op->flags();
  2049   ciArrayKlass* default_type = op->expected_type();
  2050   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2051   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2053 #ifdef _LP64
  2054   // higher 32bits must be null
  2055   __ sra(dst_pos, 0, dst_pos);
  2056   __ sra(src_pos, 0, src_pos);
  2057   __ sra(length, 0, length);
  2058 #endif
  2060   // set up the arraycopy stub information
  2061   ArrayCopyStub* stub = op->stub();
  2063   // always do stub if no type information is available.  it's ok if
  2064   // the known type isn't loaded since the code sanity checks
  2065   // in debug mode and the type isn't required when we know the exact type
  2066   // also check that the type is an array type.
  2067   if (op->expected_type() == NULL) {
  2068     __ mov(src,     O0);
  2069     __ mov(src_pos, O1);
  2070     __ mov(dst,     O2);
  2071     __ mov(dst_pos, O3);
  2072     __ mov(length,  O4);
  2073     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2075     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2076       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2077     } else {
  2078 #ifndef PRODUCT
  2079       if (PrintC1Statistics) {
  2080         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2081         __ inc_counter(counter, G1, G3);
  2083 #endif
  2084       __ call_VM_leaf(tmp, copyfunc_addr);
  2087     if (copyfunc_addr != NULL) {
  2088       __ xor3(O0, -1, tmp);
  2089       __ sub(length, tmp, length);
  2090       __ add(src_pos, tmp, src_pos);
  2091       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2092       __ delayed()->add(dst_pos, tmp, dst_pos);
  2093     } else {
  2094       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2095       __ delayed()->nop();
  2097     __ bind(*stub->continuation());
  2098     return;
  2101   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2103   // make sure src and dst are non-null and load array length
  2104   if (flags & LIR_OpArrayCopy::src_null_check) {
  2105     __ tst(src);
  2106     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2107     __ delayed()->nop();
  2110   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2111     __ tst(dst);
  2112     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2113     __ delayed()->nop();
  2116   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2117     // test src_pos register
  2118     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2119     __ delayed()->nop();
  2122   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2123     // test dst_pos register
  2124     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2125     __ delayed()->nop();
  2128   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2129     // make sure length isn't negative
  2130     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2131     __ delayed()->nop();
  2134   if (flags & LIR_OpArrayCopy::src_range_check) {
  2135     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2136     __ add(length, src_pos, tmp);
  2137     __ cmp(tmp2, tmp);
  2138     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2139     __ delayed()->nop();
  2142   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2143     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2144     __ add(length, dst_pos, tmp);
  2145     __ cmp(tmp2, tmp);
  2146     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2147     __ delayed()->nop();
  2150   int shift = shift_amount(basic_type);
  2152   if (flags & LIR_OpArrayCopy::type_check) {
  2153     // We don't know the array types are compatible
  2154     if (basic_type != T_OBJECT) {
  2155       // Simple test for basic type arrays
  2156       if (UseCompressedOops) {
  2157         // We don't need decode because we just need to compare
  2158         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2159         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2160         __ cmp(tmp, tmp2);
  2161         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2162       } else {
  2163         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2164         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2165         __ cmp(tmp, tmp2);
  2166         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2168       __ delayed()->nop();
  2169     } else {
  2170       // For object arrays, if src is a sub class of dst then we can
  2171       // safely do the copy.
  2172       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2174       Label cont, slow;
  2175       assert_different_registers(tmp, tmp2, G3, G1);
  2177       __ load_klass(src, G3);
  2178       __ load_klass(dst, G1);
  2180       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2182       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2183       __ delayed()->nop();
  2185       __ cmp(G3, 0);
  2186       if (copyfunc_addr != NULL) { // use stub if available
  2187         // src is not a sub class of dst so we have to do a
  2188         // per-element check.
  2189         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2190         __ delayed()->nop();
  2192         __ bind(slow);
  2194         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2195         if ((flags & mask) != mask) {
  2196           // Check that at least both of them object arrays.
  2197           assert(flags & mask, "one of the two should be known to be an object array");
  2199           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2200             __ load_klass(src, tmp);
  2201           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2202             __ load_klass(dst, tmp);
  2204           int lh_offset = in_bytes(Klass::layout_helper_offset());
  2206           __ lduw(tmp, lh_offset, tmp2);
  2208           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2209           __ set(objArray_lh, tmp);
  2210           __ cmp(tmp, tmp2);
  2211           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2212           __ delayed()->nop();
  2215         Register src_ptr = O0;
  2216         Register dst_ptr = O1;
  2217         Register len     = O2;
  2218         Register chk_off = O3;
  2219         Register super_k = O4;
  2221         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2222         if (shift == 0) {
  2223           __ add(src_ptr, src_pos, src_ptr);
  2224         } else {
  2225           __ sll(src_pos, shift, tmp);
  2226           __ add(src_ptr, tmp, src_ptr);
  2229         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2230         if (shift == 0) {
  2231           __ add(dst_ptr, dst_pos, dst_ptr);
  2232         } else {
  2233           __ sll(dst_pos, shift, tmp);
  2234           __ add(dst_ptr, tmp, dst_ptr);
  2236         __ mov(length, len);
  2237         __ load_klass(dst, tmp);
  2239         int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  2240         __ ld_ptr(tmp, ek_offset, super_k);
  2242         int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2243         __ lduw(super_k, sco_offset, chk_off);
  2245         __ call_VM_leaf(tmp, copyfunc_addr);
  2247 #ifndef PRODUCT
  2248         if (PrintC1Statistics) {
  2249           Label failed;
  2250           __ br_notnull_short(O0, Assembler::pn, failed);
  2251           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2252           __ bind(failed);
  2254 #endif
  2256         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2257         __ delayed()->xor3(O0, -1, tmp);
  2259 #ifndef PRODUCT
  2260         if (PrintC1Statistics) {
  2261           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2263 #endif
  2265         __ sub(length, tmp, length);
  2266         __ add(src_pos, tmp, src_pos);
  2267         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2268         __ delayed()->add(dst_pos, tmp, dst_pos);
  2270         __ bind(cont);
  2271       } else {
  2272         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2273         __ delayed()->nop();
  2274         __ bind(cont);
  2279 #ifdef ASSERT
  2280   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2281     // Sanity check the known type with the incoming class.  For the
  2282     // primitive case the types must match exactly with src.klass and
  2283     // dst.klass each exactly matching the default type.  For the
  2284     // object array case, if no type check is needed then either the
  2285     // dst type is exactly the expected type and the src type is a
  2286     // subtype which we can't check or src is the same array as dst
  2287     // but not necessarily exactly of type default_type.
  2288     Label known_ok, halt;
  2289     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2290     if (UseCompressedOops) {
  2291       // tmp holds the default type. It currently comes uncompressed after the
  2292       // load of a constant, so encode it.
  2293       __ encode_heap_oop(tmp);
  2294       // load the raw value of the dst klass, since we will be comparing
  2295       // uncompressed values directly.
  2296       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2297       if (basic_type != T_OBJECT) {
  2298         __ cmp(tmp, tmp2);
  2299         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2300         // load the raw value of the src klass.
  2301         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2302         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2303       } else {
  2304         __ cmp(tmp, tmp2);
  2305         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2306         __ delayed()->cmp(src, dst);
  2307         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2308         __ delayed()->nop();
  2310     } else {
  2311       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2312       if (basic_type != T_OBJECT) {
  2313         __ cmp(tmp, tmp2);
  2314         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2315         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2316         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2317       } else {
  2318         __ cmp(tmp, tmp2);
  2319         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2320         __ delayed()->cmp(src, dst);
  2321         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2322         __ delayed()->nop();
  2325     __ bind(halt);
  2326     __ stop("incorrect type information in arraycopy");
  2327     __ bind(known_ok);
  2329 #endif
  2331 #ifndef PRODUCT
  2332   if (PrintC1Statistics) {
  2333     address counter = Runtime1::arraycopy_count_address(basic_type);
  2334     __ inc_counter(counter, G1, G3);
  2336 #endif
  2338   Register src_ptr = O0;
  2339   Register dst_ptr = O1;
  2340   Register len     = O2;
  2342   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2343   if (shift == 0) {
  2344     __ add(src_ptr, src_pos, src_ptr);
  2345   } else {
  2346     __ sll(src_pos, shift, tmp);
  2347     __ add(src_ptr, tmp, src_ptr);
  2350   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2351   if (shift == 0) {
  2352     __ add(dst_ptr, dst_pos, dst_ptr);
  2353   } else {
  2354     __ sll(dst_pos, shift, tmp);
  2355     __ add(dst_ptr, tmp, dst_ptr);
  2358   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2359   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2360   const char *name;
  2361   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2363   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2364   __ mov(length, len);
  2365   __ call_VM_leaf(tmp, entry);
  2367   __ bind(*stub->continuation());
  2371 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2372   if (dest->is_single_cpu()) {
  2373 #ifdef _LP64
  2374     if (left->type() == T_OBJECT) {
  2375       switch (code) {
  2376         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2377         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2378         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2379         default: ShouldNotReachHere();
  2381     } else
  2382 #endif
  2383       switch (code) {
  2384         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2385         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2386         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2387         default: ShouldNotReachHere();
  2389   } else {
  2390 #ifdef _LP64
  2391     switch (code) {
  2392       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2393       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2394       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2395       default: ShouldNotReachHere();
  2397 #else
  2398     switch (code) {
  2399       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2400       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2401       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2402       default: ShouldNotReachHere();
  2404 #endif
  2409 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2410 #ifdef _LP64
  2411   if (left->type() == T_OBJECT) {
  2412     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2413     Register l = left->as_register();
  2414     Register d = dest->as_register_lo();
  2415     switch (code) {
  2416       case lir_shl:  __ sllx  (l, count, d); break;
  2417       case lir_shr:  __ srax  (l, count, d); break;
  2418       case lir_ushr: __ srlx  (l, count, d); break;
  2419       default: ShouldNotReachHere();
  2421     return;
  2423 #endif
  2425   if (dest->is_single_cpu()) {
  2426     count = count & 0x1F; // Java spec
  2427     switch (code) {
  2428       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2429       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2430       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2431       default: ShouldNotReachHere();
  2433   } else if (dest->is_double_cpu()) {
  2434     count = count & 63; // Java spec
  2435     switch (code) {
  2436       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2437       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2438       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2439       default: ShouldNotReachHere();
  2441   } else {
  2442     ShouldNotReachHere();
  2447 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2448   assert(op->tmp1()->as_register()  == G1 &&
  2449          op->tmp2()->as_register()  == G3 &&
  2450          op->tmp3()->as_register()  == G4 &&
  2451          op->obj()->as_register()   == O0 &&
  2452          op->klass()->as_register() == G5, "must be");
  2453   if (op->init_check()) {
  2454     __ ldub(op->klass()->as_register(),
  2455           in_bytes(instanceKlass::init_state_offset()),
  2456           op->tmp1()->as_register());
  2457     add_debug_info_for_null_check_here(op->stub()->info());
  2458     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2459     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2460     __ delayed()->nop();
  2462   __ allocate_object(op->obj()->as_register(),
  2463                      op->tmp1()->as_register(),
  2464                      op->tmp2()->as_register(),
  2465                      op->tmp3()->as_register(),
  2466                      op->header_size(),
  2467                      op->object_size(),
  2468                      op->klass()->as_register(),
  2469                      *op->stub()->entry());
  2470   __ bind(*op->stub()->continuation());
  2471   __ verify_oop(op->obj()->as_register());
  2475 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2476   assert(op->tmp1()->as_register()  == G1 &&
  2477          op->tmp2()->as_register()  == G3 &&
  2478          op->tmp3()->as_register()  == G4 &&
  2479          op->tmp4()->as_register()  == O1 &&
  2480          op->klass()->as_register() == G5, "must be");
  2482   LP64_ONLY( __ signx(op->len()->as_register()); )
  2483   if (UseSlowPath ||
  2484       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2485       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2486     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2487     __ delayed()->nop();
  2488   } else {
  2489     __ allocate_array(op->obj()->as_register(),
  2490                       op->len()->as_register(),
  2491                       op->tmp1()->as_register(),
  2492                       op->tmp2()->as_register(),
  2493                       op->tmp3()->as_register(),
  2494                       arrayOopDesc::header_size(op->type()),
  2495                       type2aelembytes(op->type()),
  2496                       op->klass()->as_register(),
  2497                       *op->stub()->entry());
  2499   __ bind(*op->stub()->continuation());
  2503 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2504                                         ciMethodData *md, ciProfileData *data,
  2505                                         Register recv, Register tmp1, Label* update_done) {
  2506   uint i;
  2507   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2508     Label next_test;
  2509     // See if the receiver is receiver[n].
  2510     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2511                           mdo_offset_bias);
  2512     __ ld_ptr(receiver_addr, tmp1);
  2513     __ verify_oop(tmp1);
  2514     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2515     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2516                       mdo_offset_bias);
  2517     __ ld_ptr(data_addr, tmp1);
  2518     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2519     __ st_ptr(tmp1, data_addr);
  2520     __ ba(*update_done);
  2521     __ delayed()->nop();
  2522     __ bind(next_test);
  2525   // Didn't find receiver; find next empty slot and fill it in
  2526   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2527     Label next_test;
  2528     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2529                       mdo_offset_bias);
  2530     __ ld_ptr(recv_addr, tmp1);
  2531     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2532     __ st_ptr(recv, recv_addr);
  2533     __ set(DataLayout::counter_increment, tmp1);
  2534     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2535               mdo_offset_bias);
  2536     __ ba(*update_done);
  2537     __ delayed()->nop();
  2538     __ bind(next_test);
  2543 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2544                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2545   md = method->method_data_or_null();
  2546   assert(md != NULL, "Sanity");
  2547   data = md->bci_to_data(bci);
  2548   assert(data != NULL,       "need data for checkcast");
  2549   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2550   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2551     // The offset is large so bias the mdo by the base of the slot so
  2552     // that the ld can use simm13s to reference the slots of the data
  2553     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2557 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2558   // we always need a stub for the failure case.
  2559   CodeStub* stub = op->stub();
  2560   Register obj = op->object()->as_register();
  2561   Register k_RInfo = op->tmp1()->as_register();
  2562   Register klass_RInfo = op->tmp2()->as_register();
  2563   Register dst = op->result_opr()->as_register();
  2564   Register Rtmp1 = op->tmp3()->as_register();
  2565   ciKlass* k = op->klass();
  2568   if (obj == k_RInfo) {
  2569     k_RInfo = klass_RInfo;
  2570     klass_RInfo = obj;
  2573   ciMethodData* md;
  2574   ciProfileData* data;
  2575   int mdo_offset_bias = 0;
  2576   if (op->should_profile()) {
  2577     ciMethod* method = op->profiled_method();
  2578     assert(method != NULL, "Should have method");
  2579     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2581     Label not_null;
  2582     __ br_notnull_short(obj, Assembler::pn, not_null);
  2583     Register mdo      = k_RInfo;
  2584     Register data_val = Rtmp1;
  2585     jobject2reg(md->constant_encoding(), mdo);
  2586     if (mdo_offset_bias > 0) {
  2587       __ set(mdo_offset_bias, data_val);
  2588       __ add(mdo, data_val, mdo);
  2590     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2591     __ ldub(flags_addr, data_val);
  2592     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2593     __ stb(data_val, flags_addr);
  2594     __ ba(*obj_is_null);
  2595     __ delayed()->nop();
  2596     __ bind(not_null);
  2597   } else {
  2598     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2599     __ delayed()->nop();
  2602   Label profile_cast_failure, profile_cast_success;
  2603   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2604   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2606   // patching may screw with our temporaries on sparc,
  2607   // so let's do it before loading the class
  2608   if (k->is_loaded()) {
  2609     jobject2reg(k->constant_encoding(), k_RInfo);
  2610   } else {
  2611     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2613   assert(obj != k_RInfo, "must be different");
  2615   // get object class
  2616   // not a safepoint as obj null check happens earlier
  2617   __ load_klass(obj, klass_RInfo);
  2618   if (op->fast_check()) {
  2619     assert_different_registers(klass_RInfo, k_RInfo);
  2620     __ cmp(k_RInfo, klass_RInfo);
  2621     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2622     __ delayed()->nop();
  2623   } else {
  2624     bool need_slow_path = true;
  2625     if (k->is_loaded()) {
  2626       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  2627         need_slow_path = false;
  2628       // perform the fast part of the checking logic
  2629       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2630                                        (need_slow_path ? success_target : NULL),
  2631                                        failure_target, NULL,
  2632                                        RegisterOrConstant(k->super_check_offset()));
  2633     } else {
  2634       // perform the fast part of the checking logic
  2635       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2636                                        failure_target, NULL);
  2638     if (need_slow_path) {
  2639       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2640       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2641       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2642       __ delayed()->nop();
  2643       __ cmp(G3, 0);
  2644       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2645       __ delayed()->nop();
  2646       // Fall through to success case
  2650   if (op->should_profile()) {
  2651     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2652     assert_different_registers(obj, mdo, recv, tmp1);
  2653     __ bind(profile_cast_success);
  2654     jobject2reg(md->constant_encoding(), mdo);
  2655     if (mdo_offset_bias > 0) {
  2656       __ set(mdo_offset_bias, tmp1);
  2657       __ add(mdo, tmp1, mdo);
  2659     __ load_klass(obj, recv);
  2660     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2661     // Jump over the failure case
  2662     __ ba(*success);
  2663     __ delayed()->nop();
  2664     // Cast failure case
  2665     __ bind(profile_cast_failure);
  2666     jobject2reg(md->constant_encoding(), mdo);
  2667     if (mdo_offset_bias > 0) {
  2668       __ set(mdo_offset_bias, tmp1);
  2669       __ add(mdo, tmp1, mdo);
  2671     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2672     __ ld_ptr(data_addr, tmp1);
  2673     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2674     __ st_ptr(tmp1, data_addr);
  2675     __ ba(*failure);
  2676     __ delayed()->nop();
  2678   __ ba(*success);
  2679   __ delayed()->nop();
  2682 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2683   LIR_Code code = op->code();
  2684   if (code == lir_store_check) {
  2685     Register value = op->object()->as_register();
  2686     Register array = op->array()->as_register();
  2687     Register k_RInfo = op->tmp1()->as_register();
  2688     Register klass_RInfo = op->tmp2()->as_register();
  2689     Register Rtmp1 = op->tmp3()->as_register();
  2691     __ verify_oop(value);
  2692     CodeStub* stub = op->stub();
  2693     // check if it needs to be profiled
  2694     ciMethodData* md;
  2695     ciProfileData* data;
  2696     int mdo_offset_bias = 0;
  2697     if (op->should_profile()) {
  2698       ciMethod* method = op->profiled_method();
  2699       assert(method != NULL, "Should have method");
  2700       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2702     Label profile_cast_success, profile_cast_failure, done;
  2703     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2704     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2706     if (op->should_profile()) {
  2707       Label not_null;
  2708       __ br_notnull_short(value, Assembler::pn, not_null);
  2709       Register mdo      = k_RInfo;
  2710       Register data_val = Rtmp1;
  2711       jobject2reg(md->constant_encoding(), mdo);
  2712       if (mdo_offset_bias > 0) {
  2713         __ set(mdo_offset_bias, data_val);
  2714         __ add(mdo, data_val, mdo);
  2716       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2717       __ ldub(flags_addr, data_val);
  2718       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2719       __ stb(data_val, flags_addr);
  2720       __ ba_short(done);
  2721       __ bind(not_null);
  2722     } else {
  2723       __ br_null_short(value, Assembler::pn, done);
  2725     add_debug_info_for_null_check_here(op->info_for_exception());
  2726     __ load_klass(array, k_RInfo);
  2727     __ load_klass(value, klass_RInfo);
  2729     // get instance klass
  2730     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
  2731     // perform the fast part of the checking logic
  2732     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2734     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2735     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2736     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2737     __ delayed()->nop();
  2738     __ cmp(G3, 0);
  2739     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2740     __ delayed()->nop();
  2741     // fall through to the success case
  2743     if (op->should_profile()) {
  2744       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2745       assert_different_registers(value, mdo, recv, tmp1);
  2746       __ bind(profile_cast_success);
  2747       jobject2reg(md->constant_encoding(), mdo);
  2748       if (mdo_offset_bias > 0) {
  2749         __ set(mdo_offset_bias, tmp1);
  2750         __ add(mdo, tmp1, mdo);
  2752       __ load_klass(value, recv);
  2753       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2754       __ ba_short(done);
  2755       // Cast failure case
  2756       __ bind(profile_cast_failure);
  2757       jobject2reg(md->constant_encoding(), mdo);
  2758       if (mdo_offset_bias > 0) {
  2759         __ set(mdo_offset_bias, tmp1);
  2760         __ add(mdo, tmp1, mdo);
  2762       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2763       __ ld_ptr(data_addr, tmp1);
  2764       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2765       __ st_ptr(tmp1, data_addr);
  2766       __ ba(*stub->entry());
  2767       __ delayed()->nop();
  2769     __ bind(done);
  2770   } else if (code == lir_checkcast) {
  2771     Register obj = op->object()->as_register();
  2772     Register dst = op->result_opr()->as_register();
  2773     Label success;
  2774     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2775     __ bind(success);
  2776     __ mov(obj, dst);
  2777   } else if (code == lir_instanceof) {
  2778     Register obj = op->object()->as_register();
  2779     Register dst = op->result_opr()->as_register();
  2780     Label success, failure, done;
  2781     emit_typecheck_helper(op, &success, &failure, &failure);
  2782     __ bind(failure);
  2783     __ set(0, dst);
  2784     __ ba_short(done);
  2785     __ bind(success);
  2786     __ set(1, dst);
  2787     __ bind(done);
  2788   } else {
  2789     ShouldNotReachHere();
  2795 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2796   if (op->code() == lir_cas_long) {
  2797     assert(VM_Version::supports_cx8(), "wrong machine");
  2798     Register addr = op->addr()->as_pointer_register();
  2799     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2800     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2801     Register new_value_lo = op->new_value()->as_register_lo();
  2802     Register new_value_hi = op->new_value()->as_register_hi();
  2803     Register t1 = op->tmp1()->as_register();
  2804     Register t2 = op->tmp2()->as_register();
  2805 #ifdef _LP64
  2806     __ mov(cmp_value_lo, t1);
  2807     __ mov(new_value_lo, t2);
  2808     // perform the compare and swap operation
  2809     __ casx(addr, t1, t2);
  2810     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2811     // overwritten with the original value in "addr" and will be equal to t1.
  2812     __ cmp(t1, t2);
  2813 #else
  2814     // move high and low halves of long values into single registers
  2815     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2816     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2817     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2818     __ sllx(new_value_hi, 32, t2);
  2819     __ srl(new_value_lo, 0, new_value_lo);
  2820     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2821     // perform the compare and swap operation
  2822     __ casx(addr, t1, t2);
  2823     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2824     // overwritten with the original value in "addr" and will be equal to t1.
  2825     // Produce icc flag for 32bit.
  2826     __ sub(t1, t2, t2);
  2827     __ srlx(t2, 32, t1);
  2828     __ orcc(t2, t1, G0);
  2829 #endif
  2830   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2831     Register addr = op->addr()->as_pointer_register();
  2832     Register cmp_value = op->cmp_value()->as_register();
  2833     Register new_value = op->new_value()->as_register();
  2834     Register t1 = op->tmp1()->as_register();
  2835     Register t2 = op->tmp2()->as_register();
  2836     __ mov(cmp_value, t1);
  2837     __ mov(new_value, t2);
  2838     if (op->code() == lir_cas_obj) {
  2839       if (UseCompressedOops) {
  2840         __ encode_heap_oop(t1);
  2841         __ encode_heap_oop(t2);
  2842         __ cas(addr, t1, t2);
  2843       } else {
  2844         __ cas_ptr(addr, t1, t2);
  2846     } else {
  2847       __ cas(addr, t1, t2);
  2849     __ cmp(t1, t2);
  2850   } else {
  2851     Unimplemented();
  2855 void LIR_Assembler::set_24bit_FPU() {
  2856   Unimplemented();
  2860 void LIR_Assembler::reset_FPU() {
  2861   Unimplemented();
  2865 void LIR_Assembler::breakpoint() {
  2866   __ breakpoint_trap();
  2870 void LIR_Assembler::push(LIR_Opr opr) {
  2871   Unimplemented();
  2875 void LIR_Assembler::pop(LIR_Opr opr) {
  2876   Unimplemented();
  2880 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2881   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2882   Register dst = dst_opr->as_register();
  2883   Register reg = mon_addr.base();
  2884   int offset = mon_addr.disp();
  2885   // compute pointer to BasicLock
  2886   if (mon_addr.is_simm13()) {
  2887     __ add(reg, offset, dst);
  2888   } else {
  2889     __ set(offset, dst);
  2890     __ add(dst, reg, dst);
  2895 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2896   Register obj = op->obj_opr()->as_register();
  2897   Register hdr = op->hdr_opr()->as_register();
  2898   Register lock = op->lock_opr()->as_register();
  2900   // obj may not be an oop
  2901   if (op->code() == lir_lock) {
  2902     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2903     if (UseFastLocking) {
  2904       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2905       // add debug info for NullPointerException only if one is possible
  2906       if (op->info() != NULL) {
  2907         add_debug_info_for_null_check_here(op->info());
  2909       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2910     } else {
  2911       // always do slow locking
  2912       // note: the slow locking code could be inlined here, however if we use
  2913       //       slow locking, speed doesn't matter anyway and this solution is
  2914       //       simpler and requires less duplicated code - additionally, the
  2915       //       slow locking code is the same in either case which simplifies
  2916       //       debugging
  2917       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2918       __ delayed()->nop();
  2920   } else {
  2921     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2922     if (UseFastLocking) {
  2923       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2924       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2925     } else {
  2926       // always do slow unlocking
  2927       // note: the slow unlocking code could be inlined here, however if we use
  2928       //       slow unlocking, speed doesn't matter anyway and this solution is
  2929       //       simpler and requires less duplicated code - additionally, the
  2930       //       slow unlocking code is the same in either case which simplifies
  2931       //       debugging
  2932       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2933       __ delayed()->nop();
  2936   __ bind(*op->stub()->continuation());
  2940 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2941   ciMethod* method = op->profiled_method();
  2942   int bci          = op->profiled_bci();
  2944   // Update counter for all call types
  2945   ciMethodData* md = method->method_data_or_null();
  2946   assert(md != NULL, "Sanity");
  2947   ciProfileData* data = md->bci_to_data(bci);
  2948   assert(data->is_CounterData(), "need CounterData for calls");
  2949   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2950   Register mdo  = op->mdo()->as_register();
  2951 #ifdef _LP64
  2952   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  2953   Register tmp1 = op->tmp1()->as_register_lo();
  2954 #else
  2955   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2956   Register tmp1 = op->tmp1()->as_register();
  2957 #endif
  2958   jobject2reg(md->constant_encoding(), mdo);
  2959   int mdo_offset_bias = 0;
  2960   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2961                             data->size_in_bytes())) {
  2962     // The offset is large so bias the mdo by the base of the slot so
  2963     // that the ld can use simm13s to reference the slots of the data
  2964     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2965     __ set(mdo_offset_bias, O7);
  2966     __ add(mdo, O7, mdo);
  2969   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2970   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2971   // Perform additional virtual call profiling for invokevirtual and
  2972   // invokeinterface bytecodes
  2973   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2974       C1ProfileVirtualCalls) {
  2975     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2976     Register recv = op->recv()->as_register();
  2977     assert_different_registers(mdo, tmp1, recv);
  2978     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2979     ciKlass* known_klass = op->known_holder();
  2980     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2981       // We know the type that will be seen at this call site; we can
  2982       // statically update the methodDataOop rather than needing to do
  2983       // dynamic tests on the receiver type
  2985       // NOTE: we should probably put a lock around this search to
  2986       // avoid collisions by concurrent compilations
  2987       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2988       uint i;
  2989       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2990         ciKlass* receiver = vc_data->receiver(i);
  2991         if (known_klass->equals(receiver)) {
  2992           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2993                                                          VirtualCallData::receiver_count_offset(i)) -
  2994                             mdo_offset_bias);
  2995           __ ld_ptr(data_addr, tmp1);
  2996           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2997           __ st_ptr(tmp1, data_addr);
  2998           return;
  3002       // Receiver type not found in profile data; select an empty slot
  3004       // Note that this is less efficient than it should be because it
  3005       // always does a write to the receiver part of the
  3006       // VirtualCallData rather than just the first time
  3007       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3008         ciKlass* receiver = vc_data->receiver(i);
  3009         if (receiver == NULL) {
  3010           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3011                             mdo_offset_bias);
  3012           jobject2reg(known_klass->constant_encoding(), tmp1);
  3013           __ st_ptr(tmp1, recv_addr);
  3014           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3015                             mdo_offset_bias);
  3016           __ ld_ptr(data_addr, tmp1);
  3017           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3018           __ st_ptr(tmp1, data_addr);
  3019           return;
  3022     } else {
  3023       __ load_klass(recv, recv);
  3024       Label update_done;
  3025       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3026       // Receiver did not match any saved receiver and there is no empty row for it.
  3027       // Increment total counter to indicate polymorphic case.
  3028       __ ld_ptr(counter_addr, tmp1);
  3029       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3030       __ st_ptr(tmp1, counter_addr);
  3032       __ bind(update_done);
  3034   } else {
  3035     // Static call
  3036     __ ld_ptr(counter_addr, tmp1);
  3037     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3038     __ st_ptr(tmp1, counter_addr);
  3042 void LIR_Assembler::align_backward_branch_target() {
  3043   __ align(OptoLoopAlignment);
  3047 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3048   // make sure we are expecting a delay
  3049   // this has the side effect of clearing the delay state
  3050   // so we can use _masm instead of _masm->delayed() to do the
  3051   // code generation.
  3052   __ delayed();
  3054   // make sure we only emit one instruction
  3055   int offset = code_offset();
  3056   op->delay_op()->emit_code(this);
  3057 #ifdef ASSERT
  3058   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3059     op->delay_op()->print();
  3061   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3062          "only one instruction can go in a delay slot");
  3063 #endif
  3065   // we may also be emitting the call info for the instruction
  3066   // which we are the delay slot of.
  3067   CodeEmitInfo* call_info = op->call_info();
  3068   if (call_info) {
  3069     add_call_info(code_offset(), call_info);
  3072   if (VerifyStackAtCalls) {
  3073     _masm->sub(FP, SP, O7);
  3074     _masm->cmp(O7, initial_frame_size_in_bytes());
  3075     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3080 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3081   assert(left->is_register(), "can only handle registers");
  3083   if (left->is_single_cpu()) {
  3084     __ neg(left->as_register(), dest->as_register());
  3085   } else if (left->is_single_fpu()) {
  3086     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3087   } else if (left->is_double_fpu()) {
  3088     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3089   } else {
  3090     assert (left->is_double_cpu(), "Must be a long");
  3091     Register Rlow = left->as_register_lo();
  3092     Register Rhi = left->as_register_hi();
  3093 #ifdef _LP64
  3094     __ sub(G0, Rlow, dest->as_register_lo());
  3095 #else
  3096     __ subcc(G0, Rlow, dest->as_register_lo());
  3097     __ subc (G0, Rhi,  dest->as_register_hi());
  3098 #endif
  3103 void LIR_Assembler::fxch(int i) {
  3104   Unimplemented();
  3107 void LIR_Assembler::fld(int i) {
  3108   Unimplemented();
  3111 void LIR_Assembler::ffree(int i) {
  3112   Unimplemented();
  3115 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3116                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3118   // if tmp is invalid, then the function being called doesn't destroy the thread
  3119   if (tmp->is_valid()) {
  3120     __ save_thread(tmp->as_register());
  3122   __ call(dest, relocInfo::runtime_call_type);
  3123   __ delayed()->nop();
  3124   if (info != NULL) {
  3125     add_call_info_here(info);
  3127   if (tmp->is_valid()) {
  3128     __ restore_thread(tmp->as_register());
  3131 #ifdef ASSERT
  3132   __ verify_thread();
  3133 #endif // ASSERT
  3137 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3138 #ifdef _LP64
  3139   ShouldNotReachHere();
  3140 #endif
  3142   NEEDS_CLEANUP;
  3143   if (type == T_LONG) {
  3144     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3146     // (extended to allow indexed as well as constant displaced for JSR-166)
  3147     Register idx = noreg; // contains either constant offset or index
  3149     int disp = mem_addr->disp();
  3150     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3151       if (!Assembler::is_simm13(disp)) {
  3152         idx = O7;
  3153         __ set(disp, idx);
  3155     } else {
  3156       assert(disp == 0, "not both indexed and disp");
  3157       idx = mem_addr->index()->as_register();
  3160     int null_check_offset = -1;
  3162     Register base = mem_addr->base()->as_register();
  3163     if (src->is_register() && dest->is_address()) {
  3164       // G4 is high half, G5 is low half
  3165       if (VM_Version::v9_instructions_work()) {
  3166         // clear the top bits of G5, and scale up G4
  3167         __ srl (src->as_register_lo(),  0, G5);
  3168         __ sllx(src->as_register_hi(), 32, G4);
  3169         // combine the two halves into the 64 bits of G4
  3170         __ or3(G4, G5, G4);
  3171         null_check_offset = __ offset();
  3172         if (idx == noreg) {
  3173           __ stx(G4, base, disp);
  3174         } else {
  3175           __ stx(G4, base, idx);
  3177       } else {
  3178         __ mov (src->as_register_hi(), G4);
  3179         __ mov (src->as_register_lo(), G5);
  3180         null_check_offset = __ offset();
  3181         if (idx == noreg) {
  3182           __ std(G4, base, disp);
  3183         } else {
  3184           __ std(G4, base, idx);
  3187     } else if (src->is_address() && dest->is_register()) {
  3188       null_check_offset = __ offset();
  3189       if (VM_Version::v9_instructions_work()) {
  3190         if (idx == noreg) {
  3191           __ ldx(base, disp, G5);
  3192         } else {
  3193           __ ldx(base, idx, G5);
  3195         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3196         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3197       } else {
  3198         if (idx == noreg) {
  3199           __ ldd(base, disp, G4);
  3200         } else {
  3201           __ ldd(base, idx, G4);
  3203         // G4 is high half, G5 is low half
  3204         __ mov (G4, dest->as_register_hi());
  3205         __ mov (G5, dest->as_register_lo());
  3207     } else {
  3208       Unimplemented();
  3210     if (info != NULL) {
  3211       add_debug_info_for_null_check(null_check_offset, info);
  3214   } else {
  3215     // use normal move for all other volatiles since they don't need
  3216     // special handling to remain atomic.
  3217     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3221 void LIR_Assembler::membar() {
  3222   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3223   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3226 void LIR_Assembler::membar_acquire() {
  3227   // no-op on TSO
  3230 void LIR_Assembler::membar_release() {
  3231   // no-op on TSO
  3234 // Pack two sequential registers containing 32 bit values
  3235 // into a single 64 bit register.
  3236 // src and src->successor() are packed into dst
  3237 // src and dst may be the same register.
  3238 // Note: src is destroyed
  3239 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3240   Register rs = src->as_register();
  3241   Register rd = dst->as_register_lo();
  3242   __ sllx(rs, 32, rs);
  3243   __ srl(rs->successor(), 0, rs->successor());
  3244   __ or3(rs, rs->successor(), rd);
  3247 // Unpack a 64 bit value in a register into
  3248 // two sequential registers.
  3249 // src is unpacked into dst and dst->successor()
  3250 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3251   Register rs = src->as_register_lo();
  3252   Register rd = dst->as_register_hi();
  3253   assert_different_registers(rs, rd, rd->successor());
  3254   __ srlx(rs, 32, rd);
  3255   __ srl (rs,  0, rd->successor());
  3259 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3260   LIR_Address* addr = addr_opr->as_address_ptr();
  3261   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3263   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3267 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3268   assert(result_reg->is_register(), "check");
  3269   __ mov(G2_thread, result_reg->as_register());
  3273 void LIR_Assembler::peephole(LIR_List* lir) {
  3274   LIR_OpList* inst = lir->instructions_list();
  3275   for (int i = 0; i < inst->length(); i++) {
  3276     LIR_Op* op = inst->at(i);
  3277     switch (op->code()) {
  3278       case lir_cond_float_branch:
  3279       case lir_branch: {
  3280         LIR_OpBranch* branch = op->as_OpBranch();
  3281         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3282         LIR_Op* delay_op = NULL;
  3283         // we'd like to be able to pull following instructions into
  3284         // this slot but we don't know enough to do it safely yet so
  3285         // only optimize block to block control flow.
  3286         if (LIRFillDelaySlots && branch->block()) {
  3287           LIR_Op* prev = inst->at(i - 1);
  3288           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3289             // swap previous instruction into delay slot
  3290             inst->at_put(i - 1, op);
  3291             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3292 #ifndef PRODUCT
  3293             if (LIRTracePeephole) {
  3294               tty->print_cr("delayed");
  3295               inst->at(i - 1)->print();
  3296               inst->at(i)->print();
  3297               tty->cr();
  3299 #endif
  3300             continue;
  3304         if (!delay_op) {
  3305           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3307         inst->insert_before(i + 1, delay_op);
  3308         break;
  3310       case lir_static_call:
  3311       case lir_virtual_call:
  3312       case lir_icvirtual_call:
  3313       case lir_optvirtual_call:
  3314       case lir_dynamic_call: {
  3315         LIR_Op* prev = inst->at(i - 1);
  3316         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3317             (op->code() != lir_virtual_call ||
  3318              !prev->result_opr()->is_single_cpu() ||
  3319              prev->result_opr()->as_register() != O0) &&
  3320             LIR_Assembler::is_single_instruction(prev)) {
  3321           // Only moves without info can be put into the delay slot.
  3322           // Also don't allow the setup of the receiver in the delay
  3323           // slot for vtable calls.
  3324           inst->at_put(i - 1, op);
  3325           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3326 #ifndef PRODUCT
  3327           if (LIRTracePeephole) {
  3328             tty->print_cr("delayed");
  3329             inst->at(i - 1)->print();
  3330             inst->at(i)->print();
  3331             tty->cr();
  3333 #endif
  3334         } else {
  3335           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3336           inst->insert_before(i + 1, delay_op);
  3337           i++;
  3340 #if defined(TIERED) && !defined(_LP64)
  3341         // fixup the return value from G1 to O0/O1 for long returns.
  3342         // It's done here instead of in LIRGenerator because there's
  3343         // such a mismatch between the single reg and double reg
  3344         // calling convention.
  3345         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3346         if (callop->result_opr() == FrameMap::out_long_opr) {
  3347           LIR_OpJavaCall* call;
  3348           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3349           for (int a = 0; a < arguments->length(); a++) {
  3350             arguments[a] = callop->arguments()[a];
  3352           if (op->code() == lir_virtual_call) {
  3353             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3354                                       callop->vtable_offset(), arguments, callop->info());
  3355           } else {
  3356             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3357                                       callop->addr(), arguments, callop->info());
  3359           inst->at_put(i - 1, call);
  3360           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3361                                                  T_LONG, lir_patch_none, NULL));
  3363 #endif
  3364         break;
  3373 #undef __

mercurial