src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Tue, 25 Sep 2012 14:58:12 +0200

author
brutisso
date
Tue, 25 Sep 2012 14:58:12 +0200
changeset 4098
8966c2d65d96
parent 4015
bb3f6194fedb
child 4385
37f7535e5f18
permissions
-rw-r--r--

7200470: KeepAliveClosure not needed in CodeCache::do_unloading
Summary: Removed the unused keep_alive parameter
Reviewed-by: stefank, dholmes, kamg, coleenp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/java.hpp"
    38 #include "runtime/mutexLocker.hpp"
    39 #include "utilities/debug.hpp"
    41 // Different defaults for different number of GC threads
    42 // They were chosen by running GCOld and SPECjbb on debris with different
    43 //   numbers of GC threads and choosing them based on the results
    45 // all the same
    46 static double rs_length_diff_defaults[] = {
    47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    48 };
    50 static double cost_per_card_ms_defaults[] = {
    51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    52 };
    54 // all the same
    55 static double young_cards_per_entry_ratio_defaults[] = {
    56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    57 };
    59 static double cost_per_entry_ms_defaults[] = {
    60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    61 };
    63 static double cost_per_byte_ms_defaults[] = {
    64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    65 };
    67 // these should be pretty consistent
    68 static double constant_other_time_ms_defaults[] = {
    69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    70 };
    73 static double young_other_cost_per_region_ms_defaults[] = {
    74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    75 };
    77 static double non_young_other_cost_per_region_ms_defaults[] = {
    78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    79 };
    81 G1CollectorPolicy::G1CollectorPolicy() :
    82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    83                         ? ParallelGCThreads : 1),
    85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _stop_world_start(0.0),
    88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    92   _prev_collection_pause_end_ms(0.0),
    93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _non_young_other_cost_per_region_ms_seq(
   104                                          new TruncatedSeq(TruncatedSeqLength)),
   106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   109   _pause_time_target_ms((double) MaxGCPauseMillis),
   111   _gcs_are_young(true),
   113   _during_marking(false),
   114   _in_marking_window(false),
   115   _in_marking_window_im(false),
   117   _recent_prev_end_times_for_all_gcs_sec(
   118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   120   _recent_avg_pause_time_ratio(0.0),
   122   _initiate_conc_mark_if_possible(false),
   123   _during_initial_mark_pause(false),
   124   _last_young_gc(false),
   125   _last_gc_was_young(false),
   127   _eden_bytes_before_gc(0),
   128   _survivor_bytes_before_gc(0),
   129   _capacity_before_gc(0),
   131   _eden_cset_region_length(0),
   132   _survivor_cset_region_length(0),
   133   _old_cset_region_length(0),
   135   _collection_set(NULL),
   136   _collection_set_bytes_used_before(0),
   138   // Incremental CSet attributes
   139   _inc_cset_build_state(Inactive),
   140   _inc_cset_head(NULL),
   141   _inc_cset_tail(NULL),
   142   _inc_cset_bytes_used_before(0),
   143   _inc_cset_max_finger(NULL),
   144   _inc_cset_recorded_rs_lengths(0),
   145   _inc_cset_recorded_rs_lengths_diffs(0),
   146   _inc_cset_predicted_elapsed_time_ms(0.0),
   147   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   149 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   150 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   151 #endif // _MSC_VER
   153   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   154                                                  G1YoungSurvRateNumRegionsSummary)),
   155   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   156                                               G1YoungSurvRateNumRegionsSummary)),
   157   // add here any more surv rate groups
   158   _recorded_survivor_regions(0),
   159   _recorded_survivor_head(NULL),
   160   _recorded_survivor_tail(NULL),
   161   _survivors_age_table(true),
   163   _gc_overhead_perc(0.0) {
   165   // Set up the region size and associated fields. Given that the
   166   // policy is created before the heap, we have to set this up here,
   167   // so it's done as soon as possible.
   168   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   169   HeapRegionRemSet::setup_remset_size();
   171   G1ErgoVerbose::initialize();
   172   if (PrintAdaptiveSizePolicy) {
   173     // Currently, we only use a single switch for all the heuristics.
   174     G1ErgoVerbose::set_enabled(true);
   175     // Given that we don't currently have a verboseness level
   176     // parameter, we'll hardcode this to high. This can be easily
   177     // changed in the future.
   178     G1ErgoVerbose::set_level(ErgoHigh);
   179   } else {
   180     G1ErgoVerbose::set_enabled(false);
   181   }
   183   // Verify PLAB sizes
   184   const size_t region_size = HeapRegion::GrainWords;
   185   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   186     char buffer[128];
   187     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   188                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   189     vm_exit_during_initialization(buffer);
   190   }
   192   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   193   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   195   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   197   int index = MIN2(_parallel_gc_threads - 1, 7);
   199   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   200   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   201   _young_cards_per_entry_ratio_seq->add(
   202                                   young_cards_per_entry_ratio_defaults[index]);
   203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   206   _young_other_cost_per_region_ms_seq->add(
   207                                young_other_cost_per_region_ms_defaults[index]);
   208   _non_young_other_cost_per_region_ms_seq->add(
   209                            non_young_other_cost_per_region_ms_defaults[index]);
   211   // Below, we might need to calculate the pause time target based on
   212   // the pause interval. When we do so we are going to give G1 maximum
   213   // flexibility and allow it to do pauses when it needs to. So, we'll
   214   // arrange that the pause interval to be pause time target + 1 to
   215   // ensure that a) the pause time target is maximized with respect to
   216   // the pause interval and b) we maintain the invariant that pause
   217   // time target < pause interval. If the user does not want this
   218   // maximum flexibility, they will have to set the pause interval
   219   // explicitly.
   221   // First make sure that, if either parameter is set, its value is
   222   // reasonable.
   223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   224     if (MaxGCPauseMillis < 1) {
   225       vm_exit_during_initialization("MaxGCPauseMillis should be "
   226                                     "greater than 0");
   227     }
   228   }
   229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   230     if (GCPauseIntervalMillis < 1) {
   231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   232                                     "greater than 0");
   233     }
   234   }
   236   // Then, if the pause time target parameter was not set, set it to
   237   // the default value.
   238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   240       // The default pause time target in G1 is 200ms
   241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   242     } else {
   243       // We do not allow the pause interval to be set without the
   244       // pause time target
   245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   246                                     "without setting MaxGCPauseMillis");
   247     }
   248   }
   250   // Then, if the interval parameter was not set, set it according to
   251   // the pause time target (this will also deal with the case when the
   252   // pause time target is the default value).
   253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   255   }
   257   // Finally, make sure that the two parameters are consistent.
   258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   259     char buffer[256];
   260     jio_snprintf(buffer, 256,
   261                  "MaxGCPauseMillis (%u) should be less than "
   262                  "GCPauseIntervalMillis (%u)",
   263                  MaxGCPauseMillis, GCPauseIntervalMillis);
   264     vm_exit_during_initialization(buffer);
   265   }
   267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   270   _sigma = (double) G1ConfidencePercent / 100.0;
   272   // start conservatively (around 50ms is about right)
   273   _concurrent_mark_remark_times_ms->add(0.05);
   274   _concurrent_mark_cleanup_times_ms->add(0.20);
   275   _tenuring_threshold = MaxTenuringThreshold;
   276   // _max_survivor_regions will be calculated by
   277   // update_young_list_target_length() during initialization.
   278   _max_survivor_regions = 0;
   280   assert(GCTimeRatio > 0,
   281          "we should have set it to a default value set_g1_gc_flags() "
   282          "if a user set it to 0");
   283   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   285   uintx reserve_perc = G1ReservePercent;
   286   // Put an artificial ceiling on this so that it's not set to a silly value.
   287   if (reserve_perc > 50) {
   288     reserve_perc = 50;
   289     warning("G1ReservePercent is set to a value that is too large, "
   290             "it's been updated to %u", reserve_perc);
   291   }
   292   _reserve_factor = (double) reserve_perc / 100.0;
   293   // This will be set when the heap is expanded
   294   // for the first time during initialization.
   295   _reserve_regions = 0;
   297   initialize_all();
   298   _collectionSetChooser = new CollectionSetChooser();
   299   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   300 }
   302 void G1CollectorPolicy::initialize_flags() {
   303   set_min_alignment(HeapRegion::GrainBytes);
   304   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   305   if (SurvivorRatio < 1) {
   306     vm_exit_during_initialization("Invalid survivor ratio specified");
   307   }
   308   CollectorPolicy::initialize_flags();
   309 }
   311 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   312   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
   313   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
   314   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
   316   if (FLAG_IS_CMDLINE(NewRatio)) {
   317     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   318       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   319     } else {
   320       _sizer_kind = SizerNewRatio;
   321       _adaptive_size = false;
   322       return;
   323     }
   324   }
   326   if (FLAG_IS_CMDLINE(NewSize)) {
   327     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   328                                      1U);
   329     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   330       _max_desired_young_length =
   331                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   332                                   1U);
   333       _sizer_kind = SizerMaxAndNewSize;
   334       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   335     } else {
   336       _sizer_kind = SizerNewSizeOnly;
   337     }
   338   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   339     _max_desired_young_length =
   340                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   341                                   1U);
   342     _sizer_kind = SizerMaxNewSizeOnly;
   343   }
   344 }
   346 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   347   uint default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
   348   return MAX2(1U, default_value);
   349 }
   351 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   352   uint default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
   353   return MAX2(1U, default_value);
   354 }
   356 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   357   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   359   switch (_sizer_kind) {
   360     case SizerDefaults:
   361       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   362       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   363       break;
   364     case SizerNewSizeOnly:
   365       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   366       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   367       break;
   368     case SizerMaxNewSizeOnly:
   369       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   370       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   371       break;
   372     case SizerMaxAndNewSize:
   373       // Do nothing. Values set on the command line, don't update them at runtime.
   374       break;
   375     case SizerNewRatio:
   376       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   377       _max_desired_young_length = _min_desired_young_length;
   378       break;
   379     default:
   380       ShouldNotReachHere();
   381   }
   383   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   384 }
   386 void G1CollectorPolicy::init() {
   387   // Set aside an initial future to_space.
   388   _g1 = G1CollectedHeap::heap();
   390   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   392   initialize_gc_policy_counters();
   394   if (adaptive_young_list_length()) {
   395     _young_list_fixed_length = 0;
   396   } else {
   397     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   398   }
   399   _free_regions_at_end_of_collection = _g1->free_regions();
   400   update_young_list_target_length();
   401   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   403   // We may immediately start allocating regions and placing them on the
   404   // collection set list. Initialize the per-collection set info
   405   start_incremental_cset_building();
   406 }
   408 // Create the jstat counters for the policy.
   409 void G1CollectorPolicy::initialize_gc_policy_counters() {
   410   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   411 }
   413 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   414                                          double base_time_ms,
   415                                          uint base_free_regions,
   416                                          double target_pause_time_ms) {
   417   if (young_length >= base_free_regions) {
   418     // end condition 1: not enough space for the young regions
   419     return false;
   420   }
   422   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   423   size_t bytes_to_copy =
   424                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   425   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   426   double young_other_time_ms = predict_young_other_time_ms(young_length);
   427   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   428   if (pause_time_ms > target_pause_time_ms) {
   429     // end condition 2: prediction is over the target pause time
   430     return false;
   431   }
   433   size_t free_bytes =
   434                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   435   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   436     // end condition 3: out-of-space (conservatively!)
   437     return false;
   438   }
   440   // success!
   441   return true;
   442 }
   444 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   445   // re-calculate the necessary reserve
   446   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   447   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   448   // smaller than 1.0) we'll get 1.
   449   _reserve_regions = (uint) ceil(reserve_regions_d);
   451   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   452 }
   454 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   455                                                        uint base_min_length) {
   456   uint desired_min_length = 0;
   457   if (adaptive_young_list_length()) {
   458     if (_alloc_rate_ms_seq->num() > 3) {
   459       double now_sec = os::elapsedTime();
   460       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   461       double alloc_rate_ms = predict_alloc_rate_ms();
   462       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   463     } else {
   464       // otherwise we don't have enough info to make the prediction
   465     }
   466   }
   467   desired_min_length += base_min_length;
   468   // make sure we don't go below any user-defined minimum bound
   469   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   470 }
   472 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   473   // Here, we might want to also take into account any additional
   474   // constraints (i.e., user-defined minimum bound). Currently, we
   475   // effectively don't set this bound.
   476   return _young_gen_sizer->max_desired_young_length();
   477 }
   479 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   480   if (rs_lengths == (size_t) -1) {
   481     // if it's set to the default value (-1), we should predict it;
   482     // otherwise, use the given value.
   483     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   484   }
   486   // Calculate the absolute and desired min bounds.
   488   // This is how many young regions we already have (currently: the survivors).
   489   uint base_min_length = recorded_survivor_regions();
   490   // This is the absolute minimum young length, which ensures that we
   491   // can allocate one eden region in the worst-case.
   492   uint absolute_min_length = base_min_length + 1;
   493   uint desired_min_length =
   494                      calculate_young_list_desired_min_length(base_min_length);
   495   if (desired_min_length < absolute_min_length) {
   496     desired_min_length = absolute_min_length;
   497   }
   499   // Calculate the absolute and desired max bounds.
   501   // We will try our best not to "eat" into the reserve.
   502   uint absolute_max_length = 0;
   503   if (_free_regions_at_end_of_collection > _reserve_regions) {
   504     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   505   }
   506   uint desired_max_length = calculate_young_list_desired_max_length();
   507   if (desired_max_length > absolute_max_length) {
   508     desired_max_length = absolute_max_length;
   509   }
   511   uint young_list_target_length = 0;
   512   if (adaptive_young_list_length()) {
   513     if (gcs_are_young()) {
   514       young_list_target_length =
   515                         calculate_young_list_target_length(rs_lengths,
   516                                                            base_min_length,
   517                                                            desired_min_length,
   518                                                            desired_max_length);
   519       _rs_lengths_prediction = rs_lengths;
   520     } else {
   521       // Don't calculate anything and let the code below bound it to
   522       // the desired_min_length, i.e., do the next GC as soon as
   523       // possible to maximize how many old regions we can add to it.
   524     }
   525   } else {
   526     // The user asked for a fixed young gen so we'll fix the young gen
   527     // whether the next GC is young or mixed.
   528     young_list_target_length = _young_list_fixed_length;
   529   }
   531   // Make sure we don't go over the desired max length, nor under the
   532   // desired min length. In case they clash, desired_min_length wins
   533   // which is why that test is second.
   534   if (young_list_target_length > desired_max_length) {
   535     young_list_target_length = desired_max_length;
   536   }
   537   if (young_list_target_length < desired_min_length) {
   538     young_list_target_length = desired_min_length;
   539   }
   541   assert(young_list_target_length > recorded_survivor_regions(),
   542          "we should be able to allocate at least one eden region");
   543   assert(young_list_target_length >= absolute_min_length, "post-condition");
   544   _young_list_target_length = young_list_target_length;
   546   update_max_gc_locker_expansion();
   547 }
   549 uint
   550 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   551                                                      uint base_min_length,
   552                                                      uint desired_min_length,
   553                                                      uint desired_max_length) {
   554   assert(adaptive_young_list_length(), "pre-condition");
   555   assert(gcs_are_young(), "only call this for young GCs");
   557   // In case some edge-condition makes the desired max length too small...
   558   if (desired_max_length <= desired_min_length) {
   559     return desired_min_length;
   560   }
   562   // We'll adjust min_young_length and max_young_length not to include
   563   // the already allocated young regions (i.e., so they reflect the
   564   // min and max eden regions we'll allocate). The base_min_length
   565   // will be reflected in the predictions by the
   566   // survivor_regions_evac_time prediction.
   567   assert(desired_min_length > base_min_length, "invariant");
   568   uint min_young_length = desired_min_length - base_min_length;
   569   assert(desired_max_length > base_min_length, "invariant");
   570   uint max_young_length = desired_max_length - base_min_length;
   572   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   573   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   574   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   575   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   576   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   577   double base_time_ms =
   578     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   579     survivor_regions_evac_time;
   580   uint available_free_regions = _free_regions_at_end_of_collection;
   581   uint base_free_regions = 0;
   582   if (available_free_regions > _reserve_regions) {
   583     base_free_regions = available_free_regions - _reserve_regions;
   584   }
   586   // Here, we will make sure that the shortest young length that
   587   // makes sense fits within the target pause time.
   589   if (predict_will_fit(min_young_length, base_time_ms,
   590                        base_free_regions, target_pause_time_ms)) {
   591     // The shortest young length will fit into the target pause time;
   592     // we'll now check whether the absolute maximum number of young
   593     // regions will fit in the target pause time. If not, we'll do
   594     // a binary search between min_young_length and max_young_length.
   595     if (predict_will_fit(max_young_length, base_time_ms,
   596                          base_free_regions, target_pause_time_ms)) {
   597       // The maximum young length will fit into the target pause time.
   598       // We are done so set min young length to the maximum length (as
   599       // the result is assumed to be returned in min_young_length).
   600       min_young_length = max_young_length;
   601     } else {
   602       // The maximum possible number of young regions will not fit within
   603       // the target pause time so we'll search for the optimal
   604       // length. The loop invariants are:
   605       //
   606       // min_young_length < max_young_length
   607       // min_young_length is known to fit into the target pause time
   608       // max_young_length is known not to fit into the target pause time
   609       //
   610       // Going into the loop we know the above hold as we've just
   611       // checked them. Every time around the loop we check whether
   612       // the middle value between min_young_length and
   613       // max_young_length fits into the target pause time. If it
   614       // does, it becomes the new min. If it doesn't, it becomes
   615       // the new max. This way we maintain the loop invariants.
   617       assert(min_young_length < max_young_length, "invariant");
   618       uint diff = (max_young_length - min_young_length) / 2;
   619       while (diff > 0) {
   620         uint young_length = min_young_length + diff;
   621         if (predict_will_fit(young_length, base_time_ms,
   622                              base_free_regions, target_pause_time_ms)) {
   623           min_young_length = young_length;
   624         } else {
   625           max_young_length = young_length;
   626         }
   627         assert(min_young_length <  max_young_length, "invariant");
   628         diff = (max_young_length - min_young_length) / 2;
   629       }
   630       // The results is min_young_length which, according to the
   631       // loop invariants, should fit within the target pause time.
   633       // These are the post-conditions of the binary search above:
   634       assert(min_young_length < max_young_length,
   635              "otherwise we should have discovered that max_young_length "
   636              "fits into the pause target and not done the binary search");
   637       assert(predict_will_fit(min_young_length, base_time_ms,
   638                               base_free_regions, target_pause_time_ms),
   639              "min_young_length, the result of the binary search, should "
   640              "fit into the pause target");
   641       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   642                                base_free_regions, target_pause_time_ms),
   643              "min_young_length, the result of the binary search, should be "
   644              "optimal, so no larger length should fit into the pause target");
   645     }
   646   } else {
   647     // Even the minimum length doesn't fit into the pause time
   648     // target, return it as the result nevertheless.
   649   }
   650   return base_min_length + min_young_length;
   651 }
   653 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   654   double survivor_regions_evac_time = 0.0;
   655   for (HeapRegion * r = _recorded_survivor_head;
   656        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   657        r = r->get_next_young_region()) {
   658     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   659   }
   660   return survivor_regions_evac_time;
   661 }
   663 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   664   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   666   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   667   if (rs_lengths > _rs_lengths_prediction) {
   668     // add 10% to avoid having to recalculate often
   669     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   670     update_young_list_target_length(rs_lengths_prediction);
   671   }
   672 }
   676 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   677                                                bool is_tlab,
   678                                                bool* gc_overhead_limit_was_exceeded) {
   679   guarantee(false, "Not using this policy feature yet.");
   680   return NULL;
   681 }
   683 // This method controls how a collector handles one or more
   684 // of its generations being fully allocated.
   685 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   686                                                        bool is_tlab) {
   687   guarantee(false, "Not using this policy feature yet.");
   688   return NULL;
   689 }
   692 #ifndef PRODUCT
   693 bool G1CollectorPolicy::verify_young_ages() {
   694   HeapRegion* head = _g1->young_list()->first_region();
   695   return
   696     verify_young_ages(head, _short_lived_surv_rate_group);
   697   // also call verify_young_ages on any additional surv rate groups
   698 }
   700 bool
   701 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   702                                      SurvRateGroup *surv_rate_group) {
   703   guarantee( surv_rate_group != NULL, "pre-condition" );
   705   const char* name = surv_rate_group->name();
   706   bool ret = true;
   707   int prev_age = -1;
   709   for (HeapRegion* curr = head;
   710        curr != NULL;
   711        curr = curr->get_next_young_region()) {
   712     SurvRateGroup* group = curr->surv_rate_group();
   713     if (group == NULL && !curr->is_survivor()) {
   714       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   715       ret = false;
   716     }
   718     if (surv_rate_group == group) {
   719       int age = curr->age_in_surv_rate_group();
   721       if (age < 0) {
   722         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   723         ret = false;
   724       }
   726       if (age <= prev_age) {
   727         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   728                                "(%d, %d)", name, age, prev_age);
   729         ret = false;
   730       }
   731       prev_age = age;
   732     }
   733   }
   735   return ret;
   736 }
   737 #endif // PRODUCT
   739 void G1CollectorPolicy::record_full_collection_start() {
   740   _full_collection_start_sec = os::elapsedTime();
   741   // Release the future to-space so that it is available for compaction into.
   742   _g1->set_full_collection();
   743 }
   745 void G1CollectorPolicy::record_full_collection_end() {
   746   // Consider this like a collection pause for the purposes of allocation
   747   // since last pause.
   748   double end_sec = os::elapsedTime();
   749   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   750   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   752   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   754   update_recent_gc_times(end_sec, full_gc_time_ms);
   756   _g1->clear_full_collection();
   758   // "Nuke" the heuristics that control the young/mixed GC
   759   // transitions and make sure we start with young GCs after the Full GC.
   760   set_gcs_are_young(true);
   761   _last_young_gc = false;
   762   clear_initiate_conc_mark_if_possible();
   763   clear_during_initial_mark_pause();
   764   _in_marking_window = false;
   765   _in_marking_window_im = false;
   767   _short_lived_surv_rate_group->start_adding_regions();
   768   // also call this on any additional surv rate groups
   770   record_survivor_regions(0, NULL, NULL);
   772   _free_regions_at_end_of_collection = _g1->free_regions();
   773   // Reset survivors SurvRateGroup.
   774   _survivor_surv_rate_group->reset();
   775   update_young_list_target_length();
   776   _collectionSetChooser->clear();
   777 }
   779 void G1CollectorPolicy::record_stop_world_start() {
   780   _stop_world_start = os::elapsedTime();
   781 }
   783 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   784                                                       size_t start_used) {
   785   // We only need to do this here as the policy will only be applied
   786   // to the GC we're about to start. so, no point is calculating this
   787   // every time we calculate / recalculate the target young length.
   788   update_survivors_policy();
   790   assert(_g1->used() == _g1->recalculate_used(),
   791          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   792                  _g1->used(), _g1->recalculate_used()));
   794   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   795   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   796   _stop_world_start = 0.0;
   798   phase_times()->record_cur_collection_start_sec(start_time_sec);
   799   _cur_collection_pause_used_at_start_bytes = start_used;
   800   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   801   _pending_cards = _g1->pending_card_num();
   803   _collection_set_bytes_used_before = 0;
   804   _bytes_copied_during_gc = 0;
   806   YoungList* young_list = _g1->young_list();
   807   _eden_bytes_before_gc = young_list->eden_used_bytes();
   808   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   809   _capacity_before_gc = _g1->capacity();
   811   _last_gc_was_young = false;
   813   // do that for any other surv rate groups
   814   _short_lived_surv_rate_group->stop_adding_regions();
   815   _survivors_age_table.clear();
   817   assert( verify_young_ages(), "region age verification" );
   818 }
   820 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   821                                                    mark_init_elapsed_time_ms) {
   822   _during_marking = true;
   823   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   824   clear_during_initial_mark_pause();
   825   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   826 }
   828 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   829   _mark_remark_start_sec = os::elapsedTime();
   830   _during_marking = false;
   831 }
   833 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   834   double end_time_sec = os::elapsedTime();
   835   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   836   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   837   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   838   _prev_collection_pause_end_ms += elapsed_time_ms;
   840   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   841 }
   843 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   844   _mark_cleanup_start_sec = os::elapsedTime();
   845 }
   847 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   848   _last_young_gc = true;
   849   _in_marking_window = false;
   850 }
   852 void G1CollectorPolicy::record_concurrent_pause() {
   853   if (_stop_world_start > 0.0) {
   854     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   855     _trace_gen0_time_data.record_yield_time(yield_ms);
   856   }
   857 }
   859 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   860   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   861     return false;
   862   }
   864   size_t marking_initiating_used_threshold =
   865     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   866   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   867   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   869   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   870     if (gcs_are_young()) {
   871       ergo_verbose5(ErgoConcCycles,
   872         "request concurrent cycle initiation",
   873         ergo_format_reason("occupancy higher than threshold")
   874         ergo_format_byte("occupancy")
   875         ergo_format_byte("allocation request")
   876         ergo_format_byte_perc("threshold")
   877         ergo_format_str("source"),
   878         cur_used_bytes,
   879         alloc_byte_size,
   880         marking_initiating_used_threshold,
   881         (double) InitiatingHeapOccupancyPercent,
   882         source);
   883       return true;
   884     } else {
   885       ergo_verbose5(ErgoConcCycles,
   886         "do not request concurrent cycle initiation",
   887         ergo_format_reason("still doing mixed collections")
   888         ergo_format_byte("occupancy")
   889         ergo_format_byte("allocation request")
   890         ergo_format_byte_perc("threshold")
   891         ergo_format_str("source"),
   892         cur_used_bytes,
   893         alloc_byte_size,
   894         marking_initiating_used_threshold,
   895         (double) InitiatingHeapOccupancyPercent,
   896         source);
   897     }
   898   }
   900   return false;
   901 }
   903 // Anything below that is considered to be zero
   904 #define MIN_TIMER_GRANULARITY 0.0000001
   906 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
   907   double end_time_sec = os::elapsedTime();
   908   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   909          "otherwise, the subtraction below does not make sense");
   910   size_t rs_size =
   911             _cur_collection_pause_used_regions_at_start - cset_region_length();
   912   size_t cur_used_bytes = _g1->used();
   913   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   914   bool last_pause_included_initial_mark = false;
   915   bool update_stats = !_g1->evacuation_failed();
   917 #ifndef PRODUCT
   918   if (G1YoungSurvRateVerbose) {
   919     gclog_or_tty->print_cr("");
   920     _short_lived_surv_rate_group->print();
   921     // do that for any other surv rate groups too
   922   }
   923 #endif // PRODUCT
   925   last_pause_included_initial_mark = during_initial_mark_pause();
   926   if (last_pause_included_initial_mark) {
   927     record_concurrent_mark_init_end(0.0);
   928   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
   929     // Note: this might have already been set, if during the last
   930     // pause we decided to start a cycle but at the beginning of
   931     // this pause we decided to postpone it. That's OK.
   932     set_initiate_conc_mark_if_possible();
   933   }
   935   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   936                           end_time_sec, false);
   938   size_t freed_bytes =
   939     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
   940   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
   942   double survival_fraction =
   943     (double)surviving_bytes/
   944     (double)_collection_set_bytes_used_before;
   946   if (update_stats) {
   947     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   948     // this is where we update the allocation rate of the application
   949     double app_time_ms =
   950       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   951     if (app_time_ms < MIN_TIMER_GRANULARITY) {
   952       // This usually happens due to the timer not having the required
   953       // granularity. Some Linuxes are the usual culprits.
   954       // We'll just set it to something (arbitrarily) small.
   955       app_time_ms = 1.0;
   956     }
   957     // We maintain the invariant that all objects allocated by mutator
   958     // threads will be allocated out of eden regions. So, we can use
   959     // the eden region number allocated since the previous GC to
   960     // calculate the application's allocate rate. The only exception
   961     // to that is humongous objects that are allocated separately. But
   962     // given that humongous object allocations do not really affect
   963     // either the pause's duration nor when the next pause will take
   964     // place we can safely ignore them here.
   965     uint regions_allocated = eden_cset_region_length();
   966     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
   967     _alloc_rate_ms_seq->add(alloc_rate_ms);
   969     double interval_ms =
   970       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
   971     update_recent_gc_times(end_time_sec, pause_time_ms);
   972     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
   973     if (recent_avg_pause_time_ratio() < 0.0 ||
   974         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
   975 #ifndef PRODUCT
   976       // Dump info to allow post-facto debugging
   977       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
   978       gclog_or_tty->print_cr("-------------------------------------------");
   979       gclog_or_tty->print_cr("Recent GC Times (ms):");
   980       _recent_gc_times_ms->dump();
   981       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
   982       _recent_prev_end_times_for_all_gcs_sec->dump();
   983       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
   984                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
   985       // In debug mode, terminate the JVM if the user wants to debug at this point.
   986       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
   987 #endif  // !PRODUCT
   988       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
   989       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
   990       if (_recent_avg_pause_time_ratio < 0.0) {
   991         _recent_avg_pause_time_ratio = 0.0;
   992       } else {
   993         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
   994         _recent_avg_pause_time_ratio = 1.0;
   995       }
   996     }
   997   }
   998   bool new_in_marking_window = _in_marking_window;
   999   bool new_in_marking_window_im = false;
  1000   if (during_initial_mark_pause()) {
  1001     new_in_marking_window = true;
  1002     new_in_marking_window_im = true;
  1005   if (_last_young_gc) {
  1006     // This is supposed to to be the "last young GC" before we start
  1007     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1009     if (!last_pause_included_initial_mark) {
  1010       if (next_gc_should_be_mixed("start mixed GCs",
  1011                                   "do not start mixed GCs")) {
  1012         set_gcs_are_young(false);
  1014     } else {
  1015       ergo_verbose0(ErgoMixedGCs,
  1016                     "do not start mixed GCs",
  1017                     ergo_format_reason("concurrent cycle is about to start"));
  1019     _last_young_gc = false;
  1022   if (!_last_gc_was_young) {
  1023     // This is a mixed GC. Here we decide whether to continue doing
  1024     // mixed GCs or not.
  1026     if (!next_gc_should_be_mixed("continue mixed GCs",
  1027                                  "do not continue mixed GCs")) {
  1028       set_gcs_are_young(true);
  1032   _short_lived_surv_rate_group->start_adding_regions();
  1033   // do that for any other surv rate groupsx
  1035   if (update_stats) {
  1036     double cost_per_card_ms = 0.0;
  1037     if (_pending_cards > 0) {
  1038       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
  1039       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1042     size_t cards_scanned = _g1->cards_scanned();
  1044     double cost_per_entry_ms = 0.0;
  1045     if (cards_scanned > 10) {
  1046       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
  1047       if (_last_gc_was_young) {
  1048         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1049       } else {
  1050         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1054     if (_max_rs_lengths > 0) {
  1055       double cards_per_entry_ratio =
  1056         (double) cards_scanned / (double) _max_rs_lengths;
  1057       if (_last_gc_was_young) {
  1058         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1059       } else {
  1060         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1064     // This is defensive. For a while _max_rs_lengths could get
  1065     // smaller than _recorded_rs_lengths which was causing
  1066     // rs_length_diff to get very large and mess up the RSet length
  1067     // predictions. The reason was unsafe concurrent updates to the
  1068     // _inc_cset_recorded_rs_lengths field which the code below guards
  1069     // against (see CR 7118202). This bug has now been fixed (see CR
  1070     // 7119027). However, I'm still worried that
  1071     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1072     // inaccurate. The concurrent refinement thread calculates an
  1073     // RSet's length concurrently with other CR threads updating it
  1074     // which might cause it to calculate the length incorrectly (if,
  1075     // say, it's in mid-coarsening). So I'll leave in the defensive
  1076     // conditional below just in case.
  1077     size_t rs_length_diff = 0;
  1078     if (_max_rs_lengths > _recorded_rs_lengths) {
  1079       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1081     _rs_length_diff_seq->add((double) rs_length_diff);
  1083     size_t copied_bytes = surviving_bytes;
  1084     double cost_per_byte_ms = 0.0;
  1085     if (copied_bytes > 0) {
  1086       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
  1087       if (_in_marking_window) {
  1088         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1089       } else {
  1090         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1094     double all_other_time_ms = pause_time_ms -
  1095       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
  1096       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
  1098     double young_other_time_ms = 0.0;
  1099     if (young_cset_region_length() > 0) {
  1100       young_other_time_ms =
  1101         phase_times()->young_cset_choice_time_ms() +
  1102         phase_times()->young_free_cset_time_ms();
  1103       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1104                                           (double) young_cset_region_length());
  1106     double non_young_other_time_ms = 0.0;
  1107     if (old_cset_region_length() > 0) {
  1108       non_young_other_time_ms =
  1109         phase_times()->non_young_cset_choice_time_ms() +
  1110         phase_times()->non_young_free_cset_time_ms();
  1112       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1113                                             (double) old_cset_region_length());
  1116     double constant_other_time_ms = all_other_time_ms -
  1117       (young_other_time_ms + non_young_other_time_ms);
  1118     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1120     double survival_ratio = 0.0;
  1121     if (_collection_set_bytes_used_before > 0) {
  1122       survival_ratio = (double) _bytes_copied_during_gc /
  1123                                    (double) _collection_set_bytes_used_before;
  1126     _pending_cards_seq->add((double) _pending_cards);
  1127     _rs_lengths_seq->add((double) _max_rs_lengths);
  1130   _in_marking_window = new_in_marking_window;
  1131   _in_marking_window_im = new_in_marking_window_im;
  1132   _free_regions_at_end_of_collection = _g1->free_regions();
  1133   update_young_list_target_length();
  1135   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1136   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1137   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
  1138                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
  1140   _collectionSetChooser->verify();
  1143 #define EXT_SIZE_FORMAT "%.1f%s"
  1144 #define EXT_SIZE_PARAMS(bytes)                                  \
  1145   byte_size_in_proper_unit((double)(bytes)),                    \
  1146   proper_unit_for_byte_size((bytes))
  1148 void G1CollectorPolicy::print_heap_transition() {
  1149   _g1->print_size_transition(gclog_or_tty,
  1150     _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
  1153 void G1CollectorPolicy::print_detailed_heap_transition() {
  1154     YoungList* young_list = _g1->young_list();
  1155     size_t eden_bytes = young_list->eden_used_bytes();
  1156     size_t survivor_bytes = young_list->survivor_used_bytes();
  1157     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1158     size_t used = _g1->used();
  1159     size_t capacity = _g1->capacity();
  1160     size_t eden_capacity =
  1161       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1163     gclog_or_tty->print_cr(
  1164       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1165       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1166       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1167       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1168       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1169       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1170       EXT_SIZE_PARAMS(eden_bytes),
  1171       EXT_SIZE_PARAMS(eden_capacity),
  1172       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1173       EXT_SIZE_PARAMS(survivor_bytes),
  1174       EXT_SIZE_PARAMS(used_before_gc),
  1175       EXT_SIZE_PARAMS(_capacity_before_gc),
  1176       EXT_SIZE_PARAMS(used),
  1177       EXT_SIZE_PARAMS(capacity));
  1179     _prev_eden_capacity = eden_capacity;
  1182 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1183                                                      double update_rs_processed_buffers,
  1184                                                      double goal_ms) {
  1185   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1186   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1188   if (G1UseAdaptiveConcRefinement) {
  1189     const int k_gy = 3, k_gr = 6;
  1190     const double inc_k = 1.1, dec_k = 0.9;
  1192     int g = cg1r->green_zone();
  1193     if (update_rs_time > goal_ms) {
  1194       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1195     } else {
  1196       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1197         g = (int)MAX2(g * inc_k, g + 1.0);
  1200     // Change the refinement threads params
  1201     cg1r->set_green_zone(g);
  1202     cg1r->set_yellow_zone(g * k_gy);
  1203     cg1r->set_red_zone(g * k_gr);
  1204     cg1r->reinitialize_threads();
  1206     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1207     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1208                                     cg1r->yellow_zone());
  1209     // Change the barrier params
  1210     dcqs.set_process_completed_threshold(processing_threshold);
  1211     dcqs.set_max_completed_queue(cg1r->red_zone());
  1214   int curr_queue_size = dcqs.completed_buffers_num();
  1215   if (curr_queue_size >= cg1r->yellow_zone()) {
  1216     dcqs.set_completed_queue_padding(curr_queue_size);
  1217   } else {
  1218     dcqs.set_completed_queue_padding(0);
  1220   dcqs.notify_if_necessary();
  1223 double
  1224 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1225                                                 size_t scanned_cards) {
  1226   return
  1227     predict_rs_update_time_ms(pending_cards) +
  1228     predict_rs_scan_time_ms(scanned_cards) +
  1229     predict_constant_other_time_ms();
  1232 double
  1233 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1234   size_t rs_length = predict_rs_length_diff();
  1235   size_t card_num;
  1236   if (gcs_are_young()) {
  1237     card_num = predict_young_card_num(rs_length);
  1238   } else {
  1239     card_num = predict_non_young_card_num(rs_length);
  1241   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1244 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1245   size_t bytes_to_copy;
  1246   if (hr->is_marked())
  1247     bytes_to_copy = hr->max_live_bytes();
  1248   else {
  1249     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1250     int age = hr->age_in_surv_rate_group();
  1251     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1252     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1254   return bytes_to_copy;
  1257 double
  1258 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1259                                                   bool for_young_gc) {
  1260   size_t rs_length = hr->rem_set()->occupied();
  1261   size_t card_num;
  1263   // Predicting the number of cards is based on which type of GC
  1264   // we're predicting for.
  1265   if (for_young_gc) {
  1266     card_num = predict_young_card_num(rs_length);
  1267   } else {
  1268     card_num = predict_non_young_card_num(rs_length);
  1270   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1272   double region_elapsed_time_ms =
  1273     predict_rs_scan_time_ms(card_num) +
  1274     predict_object_copy_time_ms(bytes_to_copy);
  1276   // The prediction of the "other" time for this region is based
  1277   // upon the region type and NOT the GC type.
  1278   if (hr->is_young()) {
  1279     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1280   } else {
  1281     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1283   return region_elapsed_time_ms;
  1286 void
  1287 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1288                                             uint survivor_cset_region_length) {
  1289   _eden_cset_region_length     = eden_cset_region_length;
  1290   _survivor_cset_region_length = survivor_cset_region_length;
  1291   _old_cset_region_length      = 0;
  1294 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1295   _recorded_rs_lengths = rs_lengths;
  1298 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1299                                                double elapsed_ms) {
  1300   _recent_gc_times_ms->add(elapsed_ms);
  1301   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1302   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1305 size_t G1CollectorPolicy::expansion_amount() {
  1306   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1307   double threshold = _gc_overhead_perc;
  1308   if (recent_gc_overhead > threshold) {
  1309     // We will double the existing space, or take
  1310     // G1ExpandByPercentOfAvailable % of the available expansion
  1311     // space, whichever is smaller, bounded below by a minimum
  1312     // expansion (unless that's all that's left.)
  1313     const size_t min_expand_bytes = 1*M;
  1314     size_t reserved_bytes = _g1->max_capacity();
  1315     size_t committed_bytes = _g1->capacity();
  1316     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1317     size_t expand_bytes;
  1318     size_t expand_bytes_via_pct =
  1319       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1320     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1321     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1322     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1324     ergo_verbose5(ErgoHeapSizing,
  1325                   "attempt heap expansion",
  1326                   ergo_format_reason("recent GC overhead higher than "
  1327                                      "threshold after GC")
  1328                   ergo_format_perc("recent GC overhead")
  1329                   ergo_format_perc("threshold")
  1330                   ergo_format_byte("uncommitted")
  1331                   ergo_format_byte_perc("calculated expansion amount"),
  1332                   recent_gc_overhead, threshold,
  1333                   uncommitted_bytes,
  1334                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1336     return expand_bytes;
  1337   } else {
  1338     return 0;
  1342 void G1CollectorPolicy::print_tracing_info() const {
  1343   _trace_gen0_time_data.print();
  1344   _trace_gen1_time_data.print();
  1347 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1348 #ifndef PRODUCT
  1349   _short_lived_surv_rate_group->print_surv_rate_summary();
  1350   // add this call for any other surv rate groups
  1351 #endif // PRODUCT
  1354 #ifndef PRODUCT
  1355 // for debugging, bit of a hack...
  1356 static char*
  1357 region_num_to_mbs(int length) {
  1358   static char buffer[64];
  1359   double bytes = (double) (length * HeapRegion::GrainBytes);
  1360   double mbs = bytes / (double) (1024 * 1024);
  1361   sprintf(buffer, "%7.2lfMB", mbs);
  1362   return buffer;
  1364 #endif // PRODUCT
  1366 uint G1CollectorPolicy::max_regions(int purpose) {
  1367   switch (purpose) {
  1368     case GCAllocForSurvived:
  1369       return _max_survivor_regions;
  1370     case GCAllocForTenured:
  1371       return REGIONS_UNLIMITED;
  1372     default:
  1373       ShouldNotReachHere();
  1374       return REGIONS_UNLIMITED;
  1375   };
  1378 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1379   uint expansion_region_num = 0;
  1380   if (GCLockerEdenExpansionPercent > 0) {
  1381     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1382     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1383     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1384     // less than 1.0) we'll get 1.
  1385     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1386   } else {
  1387     assert(expansion_region_num == 0, "sanity");
  1389   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1390   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1393 // Calculates survivor space parameters.
  1394 void G1CollectorPolicy::update_survivors_policy() {
  1395   double max_survivor_regions_d =
  1396                  (double) _young_list_target_length / (double) SurvivorRatio;
  1397   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1398   // smaller than 1.0) we'll get 1.
  1399   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1401   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1402         HeapRegion::GrainWords * _max_survivor_regions);
  1405 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1406                                                      GCCause::Cause gc_cause) {
  1407   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1408   if (!during_cycle) {
  1409     ergo_verbose1(ErgoConcCycles,
  1410                   "request concurrent cycle initiation",
  1411                   ergo_format_reason("requested by GC cause")
  1412                   ergo_format_str("GC cause"),
  1413                   GCCause::to_string(gc_cause));
  1414     set_initiate_conc_mark_if_possible();
  1415     return true;
  1416   } else {
  1417     ergo_verbose1(ErgoConcCycles,
  1418                   "do not request concurrent cycle initiation",
  1419                   ergo_format_reason("concurrent cycle already in progress")
  1420                   ergo_format_str("GC cause"),
  1421                   GCCause::to_string(gc_cause));
  1422     return false;
  1426 void
  1427 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1428   // We are about to decide on whether this pause will be an
  1429   // initial-mark pause.
  1431   // First, during_initial_mark_pause() should not be already set. We
  1432   // will set it here if we have to. However, it should be cleared by
  1433   // the end of the pause (it's only set for the duration of an
  1434   // initial-mark pause).
  1435   assert(!during_initial_mark_pause(), "pre-condition");
  1437   if (initiate_conc_mark_if_possible()) {
  1438     // We had noticed on a previous pause that the heap occupancy has
  1439     // gone over the initiating threshold and we should start a
  1440     // concurrent marking cycle. So we might initiate one.
  1442     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1443     if (!during_cycle) {
  1444       // The concurrent marking thread is not "during a cycle", i.e.,
  1445       // it has completed the last one. So we can go ahead and
  1446       // initiate a new cycle.
  1448       set_during_initial_mark_pause();
  1449       // We do not allow mixed GCs during marking.
  1450       if (!gcs_are_young()) {
  1451         set_gcs_are_young(true);
  1452         ergo_verbose0(ErgoMixedGCs,
  1453                       "end mixed GCs",
  1454                       ergo_format_reason("concurrent cycle is about to start"));
  1457       // And we can now clear initiate_conc_mark_if_possible() as
  1458       // we've already acted on it.
  1459       clear_initiate_conc_mark_if_possible();
  1461       ergo_verbose0(ErgoConcCycles,
  1462                   "initiate concurrent cycle",
  1463                   ergo_format_reason("concurrent cycle initiation requested"));
  1464     } else {
  1465       // The concurrent marking thread is still finishing up the
  1466       // previous cycle. If we start one right now the two cycles
  1467       // overlap. In particular, the concurrent marking thread might
  1468       // be in the process of clearing the next marking bitmap (which
  1469       // we will use for the next cycle if we start one). Starting a
  1470       // cycle now will be bad given that parts of the marking
  1471       // information might get cleared by the marking thread. And we
  1472       // cannot wait for the marking thread to finish the cycle as it
  1473       // periodically yields while clearing the next marking bitmap
  1474       // and, if it's in a yield point, it's waiting for us to
  1475       // finish. So, at this point we will not start a cycle and we'll
  1476       // let the concurrent marking thread complete the last one.
  1477       ergo_verbose0(ErgoConcCycles,
  1478                     "do not initiate concurrent cycle",
  1479                     ergo_format_reason("concurrent cycle already in progress"));
  1484 class KnownGarbageClosure: public HeapRegionClosure {
  1485   G1CollectedHeap* _g1h;
  1486   CollectionSetChooser* _hrSorted;
  1488 public:
  1489   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1490     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1492   bool doHeapRegion(HeapRegion* r) {
  1493     // We only include humongous regions in collection
  1494     // sets when concurrent mark shows that their contained object is
  1495     // unreachable.
  1497     // Do we have any marking information for this region?
  1498     if (r->is_marked()) {
  1499       // We will skip any region that's currently used as an old GC
  1500       // alloc region (we should not consider those for collection
  1501       // before we fill them up).
  1502       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1503         _hrSorted->add_region(r);
  1506     return false;
  1508 };
  1510 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1511   G1CollectedHeap* _g1h;
  1512   CSetChooserParUpdater _cset_updater;
  1514 public:
  1515   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1516                            uint chunk_size) :
  1517     _g1h(G1CollectedHeap::heap()),
  1518     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1520   bool doHeapRegion(HeapRegion* r) {
  1521     // Do we have any marking information for this region?
  1522     if (r->is_marked()) {
  1523       // We will skip any region that's currently used as an old GC
  1524       // alloc region (we should not consider those for collection
  1525       // before we fill them up).
  1526       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1527         _cset_updater.add_region(r);
  1530     return false;
  1532 };
  1534 class ParKnownGarbageTask: public AbstractGangTask {
  1535   CollectionSetChooser* _hrSorted;
  1536   uint _chunk_size;
  1537   G1CollectedHeap* _g1;
  1538 public:
  1539   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1540     AbstractGangTask("ParKnownGarbageTask"),
  1541     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1542     _g1(G1CollectedHeap::heap()) { }
  1544   void work(uint worker_id) {
  1545     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1547     // Back to zero for the claim value.
  1548     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1549                                          _g1->workers()->active_workers(),
  1550                                          HeapRegion::InitialClaimValue);
  1552 };
  1554 void
  1555 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1556   _collectionSetChooser->clear();
  1558   uint region_num = _g1->n_regions();
  1559   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1560     const uint OverpartitionFactor = 4;
  1561     uint WorkUnit;
  1562     // The use of MinChunkSize = 8 in the original code
  1563     // causes some assertion failures when the total number of
  1564     // region is less than 8.  The code here tries to fix that.
  1565     // Should the original code also be fixed?
  1566     if (no_of_gc_threads > 0) {
  1567       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1568       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1569                       MinWorkUnit);
  1570     } else {
  1571       assert(no_of_gc_threads > 0,
  1572         "The active gc workers should be greater than 0");
  1573       // In a product build do something reasonable to avoid a crash.
  1574       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1575       WorkUnit =
  1576         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1577              MinWorkUnit);
  1579     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  1580                                                            WorkUnit);
  1581     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1582                                             (int) WorkUnit);
  1583     _g1->workers()->run_task(&parKnownGarbageTask);
  1585     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1586            "sanity check");
  1587   } else {
  1588     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1589     _g1->heap_region_iterate(&knownGarbagecl);
  1592   _collectionSetChooser->sort_regions();
  1594   double end_sec = os::elapsedTime();
  1595   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1596   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1597   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1598   _prev_collection_pause_end_ms += elapsed_time_ms;
  1599   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1602 // Add the heap region at the head of the non-incremental collection set
  1603 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1604   assert(_inc_cset_build_state == Active, "Precondition");
  1605   assert(!hr->is_young(), "non-incremental add of young region");
  1607   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1608   hr->set_in_collection_set(true);
  1609   hr->set_next_in_collection_set(_collection_set);
  1610   _collection_set = hr;
  1611   _collection_set_bytes_used_before += hr->used();
  1612   _g1->register_region_with_in_cset_fast_test(hr);
  1613   size_t rs_length = hr->rem_set()->occupied();
  1614   _recorded_rs_lengths += rs_length;
  1615   _old_cset_region_length += 1;
  1618 // Initialize the per-collection-set information
  1619 void G1CollectorPolicy::start_incremental_cset_building() {
  1620   assert(_inc_cset_build_state == Inactive, "Precondition");
  1622   _inc_cset_head = NULL;
  1623   _inc_cset_tail = NULL;
  1624   _inc_cset_bytes_used_before = 0;
  1626   _inc_cset_max_finger = 0;
  1627   _inc_cset_recorded_rs_lengths = 0;
  1628   _inc_cset_recorded_rs_lengths_diffs = 0;
  1629   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1630   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1631   _inc_cset_build_state = Active;
  1634 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1635   assert(_inc_cset_build_state == Active, "Precondition");
  1636   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1638   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1639   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1640   // that adds a new region to the CSet. Further updates by the
  1641   // concurrent refinement thread that samples the young RSet lengths
  1642   // are accumulated in the *_diffs fields. Here we add the diffs to
  1643   // the "main" fields.
  1645   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1646     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1647   } else {
  1648     // This is defensive. The diff should in theory be always positive
  1649     // as RSets can only grow between GCs. However, given that we
  1650     // sample their size concurrently with other threads updating them
  1651     // it's possible that we might get the wrong size back, which
  1652     // could make the calculations somewhat inaccurate.
  1653     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1654     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1655       _inc_cset_recorded_rs_lengths -= diffs;
  1656     } else {
  1657       _inc_cset_recorded_rs_lengths = 0;
  1660   _inc_cset_predicted_elapsed_time_ms +=
  1661                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1663   _inc_cset_recorded_rs_lengths_diffs = 0;
  1664   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1667 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1668   // This routine is used when:
  1669   // * adding survivor regions to the incremental cset at the end of an
  1670   //   evacuation pause,
  1671   // * adding the current allocation region to the incremental cset
  1672   //   when it is retired, and
  1673   // * updating existing policy information for a region in the
  1674   //   incremental cset via young list RSet sampling.
  1675   // Therefore this routine may be called at a safepoint by the
  1676   // VM thread, or in-between safepoints by mutator threads (when
  1677   // retiring the current allocation region) or a concurrent
  1678   // refine thread (RSet sampling).
  1680   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1681   size_t used_bytes = hr->used();
  1682   _inc_cset_recorded_rs_lengths += rs_length;
  1683   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1684   _inc_cset_bytes_used_before += used_bytes;
  1686   // Cache the values we have added to the aggregated informtion
  1687   // in the heap region in case we have to remove this region from
  1688   // the incremental collection set, or it is updated by the
  1689   // rset sampling code
  1690   hr->set_recorded_rs_length(rs_length);
  1691   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1694 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1695                                                      size_t new_rs_length) {
  1696   // Update the CSet information that is dependent on the new RS length
  1697   assert(hr->is_young(), "Precondition");
  1698   assert(!SafepointSynchronize::is_at_safepoint(),
  1699                                                "should not be at a safepoint");
  1701   // We could have updated _inc_cset_recorded_rs_lengths and
  1702   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1703   // that atomically, as this code is executed by a concurrent
  1704   // refinement thread, potentially concurrently with a mutator thread
  1705   // allocating a new region and also updating the same fields. To
  1706   // avoid the atomic operations we accumulate these updates on two
  1707   // separate fields (*_diffs) and we'll just add them to the "main"
  1708   // fields at the start of a GC.
  1710   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1711   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1712   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1714   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1715   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1716   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1717   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1719   hr->set_recorded_rs_length(new_rs_length);
  1720   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1723 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1724   assert(hr->is_young(), "invariant");
  1725   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1726   assert(_inc_cset_build_state == Active, "Precondition");
  1728   // We need to clear and set the cached recorded/cached collection set
  1729   // information in the heap region here (before the region gets added
  1730   // to the collection set). An individual heap region's cached values
  1731   // are calculated, aggregated with the policy collection set info,
  1732   // and cached in the heap region here (initially) and (subsequently)
  1733   // by the Young List sampling code.
  1735   size_t rs_length = hr->rem_set()->occupied();
  1736   add_to_incremental_cset_info(hr, rs_length);
  1738   HeapWord* hr_end = hr->end();
  1739   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1741   assert(!hr->in_collection_set(), "invariant");
  1742   hr->set_in_collection_set(true);
  1743   assert( hr->next_in_collection_set() == NULL, "invariant");
  1745   _g1->register_region_with_in_cset_fast_test(hr);
  1748 // Add the region at the RHS of the incremental cset
  1749 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1750   // We should only ever be appending survivors at the end of a pause
  1751   assert( hr->is_survivor(), "Logic");
  1753   // Do the 'common' stuff
  1754   add_region_to_incremental_cset_common(hr);
  1756   // Now add the region at the right hand side
  1757   if (_inc_cset_tail == NULL) {
  1758     assert(_inc_cset_head == NULL, "invariant");
  1759     _inc_cset_head = hr;
  1760   } else {
  1761     _inc_cset_tail->set_next_in_collection_set(hr);
  1763   _inc_cset_tail = hr;
  1766 // Add the region to the LHS of the incremental cset
  1767 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1768   // Survivors should be added to the RHS at the end of a pause
  1769   assert(!hr->is_survivor(), "Logic");
  1771   // Do the 'common' stuff
  1772   add_region_to_incremental_cset_common(hr);
  1774   // Add the region at the left hand side
  1775   hr->set_next_in_collection_set(_inc_cset_head);
  1776   if (_inc_cset_head == NULL) {
  1777     assert(_inc_cset_tail == NULL, "Invariant");
  1778     _inc_cset_tail = hr;
  1780   _inc_cset_head = hr;
  1783 #ifndef PRODUCT
  1784 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1785   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1787   st->print_cr("\nCollection_set:");
  1788   HeapRegion* csr = list_head;
  1789   while (csr != NULL) {
  1790     HeapRegion* next = csr->next_in_collection_set();
  1791     assert(csr->in_collection_set(), "bad CS");
  1792     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  1793                  HR_FORMAT_PARAMS(csr),
  1794                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1795                  csr->age_in_surv_rate_group_cond());
  1796     csr = next;
  1799 #endif // !PRODUCT
  1801 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1802                                                 const char* false_action_str) {
  1803   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1804   if (cset_chooser->is_empty()) {
  1805     ergo_verbose0(ErgoMixedGCs,
  1806                   false_action_str,
  1807                   ergo_format_reason("candidate old regions not available"));
  1808     return false;
  1810   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1811   size_t capacity_bytes = _g1->capacity();
  1812   double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1813   double threshold = (double) G1HeapWastePercent;
  1814   if (perc < threshold) {
  1815     ergo_verbose4(ErgoMixedGCs,
  1816               false_action_str,
  1817               ergo_format_reason("reclaimable percentage lower than threshold")
  1818               ergo_format_region("candidate old regions")
  1819               ergo_format_byte_perc("reclaimable")
  1820               ergo_format_perc("threshold"),
  1821               cset_chooser->remaining_regions(),
  1822               reclaimable_bytes, perc, threshold);
  1823     return false;
  1826   ergo_verbose4(ErgoMixedGCs,
  1827                 true_action_str,
  1828                 ergo_format_reason("candidate old regions available")
  1829                 ergo_format_region("candidate old regions")
  1830                 ergo_format_byte_perc("reclaimable")
  1831                 ergo_format_perc("threshold"),
  1832                 cset_chooser->remaining_regions(),
  1833                 reclaimable_bytes, perc, threshold);
  1834   return true;
  1837 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  1838   double young_start_time_sec = os::elapsedTime();
  1840   YoungList* young_list = _g1->young_list();
  1841   finalize_incremental_cset_building();
  1843   guarantee(target_pause_time_ms > 0.0,
  1844             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1845                     target_pause_time_ms));
  1846   guarantee(_collection_set == NULL, "Precondition");
  1848   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1849   double predicted_pause_time_ms = base_time_ms;
  1850   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  1852   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1853                 "start choosing CSet",
  1854                 ergo_format_size("_pending_cards")
  1855                 ergo_format_ms("predicted base time")
  1856                 ergo_format_ms("remaining time")
  1857                 ergo_format_ms("target pause time"),
  1858                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1860   _last_gc_was_young = gcs_are_young() ? true : false;
  1862   if (_last_gc_was_young) {
  1863     _trace_gen0_time_data.increment_young_collection_count();
  1864   } else {
  1865     _trace_gen0_time_data.increment_mixed_collection_count();
  1868   // The young list is laid with the survivor regions from the previous
  1869   // pause are appended to the RHS of the young list, i.e.
  1870   //   [Newly Young Regions ++ Survivors from last pause].
  1872   uint survivor_region_length = young_list->survivor_length();
  1873   uint eden_region_length = young_list->length() - survivor_region_length;
  1874   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1876   HeapRegion* hr = young_list->first_survivor_region();
  1877   while (hr != NULL) {
  1878     assert(hr->is_survivor(), "badly formed young list");
  1879     hr->set_young();
  1880     hr = hr->get_next_young_region();
  1883   // Clear the fields that point to the survivor list - they are all young now.
  1884   young_list->clear_survivors();
  1886   _collection_set = _inc_cset_head;
  1887   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  1888   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  1889   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  1891   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  1892                 "add young regions to CSet",
  1893                 ergo_format_region("eden")
  1894                 ergo_format_region("survivors")
  1895                 ergo_format_ms("predicted young region time"),
  1896                 eden_region_length, survivor_region_length,
  1897                 _inc_cset_predicted_elapsed_time_ms);
  1899   // The number of recorded young regions is the incremental
  1900   // collection set's current size
  1901   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  1903   double young_end_time_sec = os::elapsedTime();
  1904   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  1906   // Set the start of the non-young choice time.
  1907   double non_young_start_time_sec = young_end_time_sec;
  1909   if (!gcs_are_young()) {
  1910     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1911     cset_chooser->verify();
  1912     const uint min_old_cset_length = cset_chooser->calc_min_old_cset_length();
  1913     const uint max_old_cset_length = cset_chooser->calc_max_old_cset_length();
  1915     uint expensive_region_num = 0;
  1916     bool check_time_remaining = adaptive_young_list_length();
  1918     HeapRegion* hr = cset_chooser->peek();
  1919     while (hr != NULL) {
  1920       if (old_cset_region_length() >= max_old_cset_length) {
  1921         // Added maximum number of old regions to the CSet.
  1922         ergo_verbose2(ErgoCSetConstruction,
  1923                       "finish adding old regions to CSet",
  1924                       ergo_format_reason("old CSet region num reached max")
  1925                       ergo_format_region("old")
  1926                       ergo_format_region("max"),
  1927                       old_cset_region_length(), max_old_cset_length);
  1928         break;
  1931       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1932       if (check_time_remaining) {
  1933         if (predicted_time_ms > time_remaining_ms) {
  1934           // Too expensive for the current CSet.
  1936           if (old_cset_region_length() >= min_old_cset_length) {
  1937             // We have added the minimum number of old regions to the CSet,
  1938             // we are done with this CSet.
  1939             ergo_verbose4(ErgoCSetConstruction,
  1940                           "finish adding old regions to CSet",
  1941                           ergo_format_reason("predicted time is too high")
  1942                           ergo_format_ms("predicted time")
  1943                           ergo_format_ms("remaining time")
  1944                           ergo_format_region("old")
  1945                           ergo_format_region("min"),
  1946                           predicted_time_ms, time_remaining_ms,
  1947                           old_cset_region_length(), min_old_cset_length);
  1948             break;
  1951           // We'll add it anyway given that we haven't reached the
  1952           // minimum number of old regions.
  1953           expensive_region_num += 1;
  1955       } else {
  1956         if (old_cset_region_length() >= min_old_cset_length) {
  1957           // In the non-auto-tuning case, we'll finish adding regions
  1958           // to the CSet if we reach the minimum.
  1959           ergo_verbose2(ErgoCSetConstruction,
  1960                         "finish adding old regions to CSet",
  1961                         ergo_format_reason("old CSet region num reached min")
  1962                         ergo_format_region("old")
  1963                         ergo_format_region("min"),
  1964                         old_cset_region_length(), min_old_cset_length);
  1965           break;
  1969       // We will add this region to the CSet.
  1970       time_remaining_ms -= predicted_time_ms;
  1971       predicted_pause_time_ms += predicted_time_ms;
  1972       cset_chooser->remove_and_move_to_next(hr);
  1973       _g1->old_set_remove(hr);
  1974       add_old_region_to_cset(hr);
  1976       hr = cset_chooser->peek();
  1978     if (hr == NULL) {
  1979       ergo_verbose0(ErgoCSetConstruction,
  1980                     "finish adding old regions to CSet",
  1981                     ergo_format_reason("candidate old regions not available"));
  1984     if (expensive_region_num > 0) {
  1985       // We print the information once here at the end, predicated on
  1986       // whether we added any apparently expensive regions or not, to
  1987       // avoid generating output per region.
  1988       ergo_verbose4(ErgoCSetConstruction,
  1989                     "added expensive regions to CSet",
  1990                     ergo_format_reason("old CSet region num not reached min")
  1991                     ergo_format_region("old")
  1992                     ergo_format_region("expensive")
  1993                     ergo_format_region("min")
  1994                     ergo_format_ms("remaining time"),
  1995                     old_cset_region_length(),
  1996                     expensive_region_num,
  1997                     min_old_cset_length,
  1998                     time_remaining_ms);
  2001     cset_chooser->verify();
  2004   stop_incremental_cset_building();
  2006   ergo_verbose5(ErgoCSetConstruction,
  2007                 "finish choosing CSet",
  2008                 ergo_format_region("eden")
  2009                 ergo_format_region("survivors")
  2010                 ergo_format_region("old")
  2011                 ergo_format_ms("predicted pause time")
  2012                 ergo_format_ms("target pause time"),
  2013                 eden_region_length, survivor_region_length,
  2014                 old_cset_region_length(),
  2015                 predicted_pause_time_ms, target_pause_time_ms);
  2017   double non_young_end_time_sec = os::elapsedTime();
  2018   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2021 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2022   if(TraceGen0Time) {
  2023     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2027 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2028   if(TraceGen0Time) {
  2029     _all_yield_times_ms.add(yield_time_ms);
  2033 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2034   if(TraceGen0Time) {
  2035     _total.add(pause_time_ms);
  2036     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2037     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2038     _parallel.add(phase_times->cur_collection_par_time_ms());
  2039     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
  2040     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
  2041     _update_rs.add(phase_times->average_last_update_rs_time());
  2042     _scan_rs.add(phase_times->average_last_scan_rs_time());
  2043     _obj_copy.add(phase_times->average_last_obj_copy_time());
  2044     _termination.add(phase_times->average_last_termination_time());
  2046     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
  2047       phase_times->average_last_satb_filtering_times_ms() +
  2048       phase_times->average_last_update_rs_time() +
  2049       phase_times->average_last_scan_rs_time() +
  2050       phase_times->average_last_obj_copy_time() +
  2051       + phase_times->average_last_termination_time();
  2053     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2054     _parallel_other.add(parallel_other_time);
  2055     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2059 void TraceGen0TimeData::increment_young_collection_count() {
  2060   if(TraceGen0Time) {
  2061     ++_young_pause_num;
  2065 void TraceGen0TimeData::increment_mixed_collection_count() {
  2066   if(TraceGen0Time) {
  2067     ++_mixed_pause_num;
  2071 void TraceGen0TimeData::print_summary(const char* str,
  2072                                       const NumberSeq* seq) const {
  2073   double sum = seq->sum();
  2074   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2075                 str, sum / 1000.0, seq->avg());
  2078 void TraceGen0TimeData::print_summary_sd(const char* str,
  2079                                          const NumberSeq* seq) const {
  2080   print_summary(str, seq);
  2081   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2082                 "(num", seq->num(), seq->sd(), seq->maximum());
  2085 void TraceGen0TimeData::print() const {
  2086   if (!TraceGen0Time) {
  2087     return;
  2090   gclog_or_tty->print_cr("ALL PAUSES");
  2091   print_summary_sd("   Total", &_total);
  2092   gclog_or_tty->print_cr("");
  2093   gclog_or_tty->print_cr("");
  2094   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2095   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2096   gclog_or_tty->print_cr("");
  2098   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2100   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2101     gclog_or_tty->print_cr("none");
  2102   } else {
  2103     print_summary_sd("   Evacuation Pauses", &_total);
  2104     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2105     print_summary("      Parallel Time", &_parallel);
  2106     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2107     print_summary("         SATB Filtering", &_satb_filtering);
  2108     print_summary("         Update RS", &_update_rs);
  2109     print_summary("         Scan RS", &_scan_rs);
  2110     print_summary("         Object Copy", &_obj_copy);
  2111     print_summary("         Termination", &_termination);
  2112     print_summary("         Parallel Other", &_parallel_other);
  2113     print_summary("      Clear CT", &_clear_ct);
  2114     print_summary("      Other", &_other);
  2116   gclog_or_tty->print_cr("");
  2118   gclog_or_tty->print_cr("MISC");
  2119   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2120   print_summary_sd("   Yields", &_all_yield_times_ms);
  2123 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2124   if (TraceGen1Time) {
  2125     _all_full_gc_times.add(full_gc_time_ms);
  2129 void TraceGen1TimeData::print() const {
  2130   if (!TraceGen1Time) {
  2131     return;
  2134   if (_all_full_gc_times.num() > 0) {
  2135     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2136       _all_full_gc_times.num(),
  2137       _all_full_gc_times.sum() / 1000.0);
  2138     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2139     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2140       _all_full_gc_times.sd(),
  2141       _all_full_gc_times.maximum());

mercurial