src/share/vm/gc_implementation/g1/concurrentG1Refine.cpp

Tue, 25 Sep 2012 14:58:12 +0200

author
brutisso
date
Tue, 25 Sep 2012 14:58:12 +0200
changeset 4098
8966c2d65d96
parent 3924
3a431b605145
child 5078
194f52aa2f23
permissions
-rw-r--r--

7200470: KeepAliveClosure not needed in CodeCache::do_unloading
Summary: Removed the unused keep_alive parameter
Reviewed-by: stefank, dholmes, kamg, coleenp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    30 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "runtime/atomic.hpp"
    35 #include "runtime/java.hpp"
    36 #include "utilities/copy.hpp"
    38 // Possible sizes for the card counts cache: odd primes that roughly double in size.
    39 // (See jvmtiTagMap.cpp).
    41 #define MAX_SIZE ((size_t) -1)
    43 size_t ConcurrentG1Refine::_cc_cache_sizes[] = {
    44           16381,    32771,    76831,    150001,   307261,
    45          614563,  1228891,  2457733,   4915219,  9830479,
    46        19660831, 39321619, 78643219, 157286461,  MAX_SIZE
    47   };
    49 ConcurrentG1Refine::ConcurrentG1Refine() :
    50   _card_counts(NULL), _card_epochs(NULL),
    51   _n_card_counts(0), _max_cards(0), _max_n_card_counts(0),
    52   _cache_size_index(0), _expand_card_counts(false),
    53   _hot_cache(NULL),
    54   _def_use_cache(false), _use_cache(false),
    55   // We initialize the epochs of the array to 0. By initializing
    56   // _n_periods to 1 and not 0 we automatically invalidate all the
    57   // entries on the array. Otherwise we might accidentally think that
    58   // we claimed a card that was in fact never set (see CR7033292).
    59   _n_periods(1),
    60   _threads(NULL), _n_threads(0)
    61 {
    63   // Ergomonically select initial concurrent refinement parameters
    64   if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
    65     FLAG_SET_DEFAULT(G1ConcRefinementGreenZone, MAX2<int>(ParallelGCThreads, 1));
    66   }
    67   set_green_zone(G1ConcRefinementGreenZone);
    69   if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
    70     FLAG_SET_DEFAULT(G1ConcRefinementYellowZone, green_zone() * 3);
    71   }
    72   set_yellow_zone(MAX2<int>(G1ConcRefinementYellowZone, green_zone()));
    74   if (FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
    75     FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2);
    76   }
    77   set_red_zone(MAX2<int>(G1ConcRefinementRedZone, yellow_zone()));
    78   _n_worker_threads = thread_num();
    79   // We need one extra thread to do the young gen rset size sampling.
    80   _n_threads = _n_worker_threads + 1;
    81   reset_threshold_step();
    83   _threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads, mtGC);
    84   int worker_id_offset = (int)DirtyCardQueueSet::num_par_ids();
    85   ConcurrentG1RefineThread *next = NULL;
    86   for (int i = _n_threads - 1; i >= 0; i--) {
    87     ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, worker_id_offset, i);
    88     assert(t != NULL, "Conc refine should have been created");
    89     assert(t->cg1r() == this, "Conc refine thread should refer to this");
    90     _threads[i] = t;
    91     next = t;
    92   }
    93 }
    95 void ConcurrentG1Refine::reset_threshold_step() {
    96   if (FLAG_IS_DEFAULT(G1ConcRefinementThresholdStep)) {
    97     _thread_threshold_step = (yellow_zone() - green_zone()) / (worker_thread_num() + 1);
    98   } else {
    99     _thread_threshold_step = G1ConcRefinementThresholdStep;
   100   }
   101 }
   103 int ConcurrentG1Refine::thread_num() {
   104   return MAX2<int>((G1ConcRefinementThreads > 0) ? G1ConcRefinementThreads : ParallelGCThreads, 1);
   105 }
   107 void ConcurrentG1Refine::init() {
   108   if (G1ConcRSLogCacheSize > 0) {
   109     _g1h = G1CollectedHeap::heap();
   111     _max_cards = _g1h->max_capacity() >> CardTableModRefBS::card_shift;
   112     _max_n_card_counts = _max_cards * G1MaxHotCardCountSizePercent / 100;
   114     size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
   115     guarantee(_max_cards < max_card_num, "card_num representation");
   117     // We need _n_card_counts to be less than _max_n_card_counts here
   118     // so that the expansion call (below) actually allocates the
   119     // _counts and _epochs arrays.
   120     assert(_n_card_counts == 0, "pre-condition");
   121     assert(_max_n_card_counts > 0, "pre-condition");
   123     // Find the index into cache size array that is of a size that's
   124     // large enough to hold desired_sz.
   125     size_t desired_sz = _max_cards / InitialCacheFraction;
   126     int desired_sz_index = 0;
   127     while (_cc_cache_sizes[desired_sz_index] < desired_sz) {
   128       desired_sz_index += 1;
   129       assert(desired_sz_index <  MAX_CC_CACHE_INDEX, "invariant");
   130     }
   131     assert(desired_sz_index <  MAX_CC_CACHE_INDEX, "invariant");
   133     // If the desired_sz value is between two sizes then
   134     // _cc_cache_sizes[desired_sz_index-1] < desired_sz <= _cc_cache_sizes[desired_sz_index]
   135     // we will start with the lower size in the optimistic expectation that
   136     // we will not need to expand up. Note desired_sz_index could also be 0.
   137     if (desired_sz_index > 0 &&
   138         _cc_cache_sizes[desired_sz_index] > desired_sz) {
   139       desired_sz_index -= 1;
   140     }
   142     if (!expand_card_count_cache(desired_sz_index)) {
   143       // Allocation was unsuccessful - exit
   144       vm_exit_during_initialization("Could not reserve enough space for card count cache");
   145     }
   146     assert(_n_card_counts > 0, "post-condition");
   147     assert(_cache_size_index == desired_sz_index, "post-condition");
   149     Copy::fill_to_bytes(&_card_counts[0],
   150                         _n_card_counts * sizeof(CardCountCacheEntry));
   151     Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
   153     ModRefBarrierSet* bs = _g1h->mr_bs();
   154     guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
   155     _ct_bs = (CardTableModRefBS*)bs;
   156     _ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());
   158     _def_use_cache = true;
   159     _use_cache = true;
   160     _hot_cache_size = (1 << G1ConcRSLogCacheSize);
   161     _hot_cache = NEW_C_HEAP_ARRAY(jbyte*, _hot_cache_size, mtGC);
   162     _n_hot = 0;
   163     _hot_cache_idx = 0;
   165     // For refining the cards in the hot cache in parallel
   166     int n_workers = (ParallelGCThreads > 0 ?
   167                         _g1h->workers()->total_workers() : 1);
   168     _hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
   169     _hot_cache_par_claimed_idx = 0;
   170   }
   171 }
   173 void ConcurrentG1Refine::stop() {
   174   if (_threads != NULL) {
   175     for (int i = 0; i < _n_threads; i++) {
   176       _threads[i]->stop();
   177     }
   178   }
   179 }
   181 void ConcurrentG1Refine::reinitialize_threads() {
   182   reset_threshold_step();
   183   if (_threads != NULL) {
   184     for (int i = 0; i < _n_threads; i++) {
   185       _threads[i]->initialize();
   186     }
   187   }
   188 }
   190 ConcurrentG1Refine::~ConcurrentG1Refine() {
   191   if (G1ConcRSLogCacheSize > 0) {
   192     // Please see the comment in allocate_card_count_cache
   193     // for why we call os::malloc() and os::free() directly.
   194     assert(_card_counts != NULL, "Logic");
   195     os::free(_card_counts, mtGC);
   196     assert(_card_epochs != NULL, "Logic");
   197     os::free(_card_epochs, mtGC);
   199     assert(_hot_cache != NULL, "Logic");
   200     FREE_C_HEAP_ARRAY(jbyte*, _hot_cache, mtGC);
   201   }
   202   if (_threads != NULL) {
   203     for (int i = 0; i < _n_threads; i++) {
   204       delete _threads[i];
   205     }
   206     FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads, mtGC);
   207   }
   208 }
   210 void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
   211   if (_threads != NULL) {
   212     for (int i = 0; i < _n_threads; i++) {
   213       tc->do_thread(_threads[i]);
   214     }
   215   }
   216 }
   218 bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) {
   219   HeapWord* start = _ct_bs->addr_for(card_ptr);
   220   HeapRegion* r = _g1h->heap_region_containing(start);
   221   if (r != NULL && r->is_young()) {
   222     return true;
   223   }
   224   // This card is not associated with a heap region
   225   // so can't be young.
   226   return false;
   227 }
   229 jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
   230   unsigned new_card_num = ptr_2_card_num(card_ptr);
   231   unsigned bucket = hash(new_card_num);
   232   assert(0 <= bucket && bucket < _n_card_counts, "Bounds");
   234   CardCountCacheEntry* count_ptr = &_card_counts[bucket];
   235   CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];
   237   // We have to construct a new entry if we haven't updated the counts
   238   // during the current period, or if the count was updated for a
   239   // different card number.
   240   unsigned int new_epoch = (unsigned int) _n_periods;
   241   julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
   243   while (true) {
   244     // Fetch the previous epoch value
   245     julong prev_epoch_entry = epoch_ptr->_value;
   246     julong cas_res;
   248     if (extract_epoch(prev_epoch_entry) != new_epoch) {
   249       // This entry has not yet been updated during this period.
   250       // Note: we update the epoch value atomically to ensure
   251       // that there is only one winner that updates the cached
   252       // card_ptr value even though all the refine threads share
   253       // the same epoch value.
   255       cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
   256                                          (volatile jlong*)&epoch_ptr->_value,
   257                                          (jlong) prev_epoch_entry);
   259       if (cas_res == prev_epoch_entry) {
   260         // We have successfully won the race to update the
   261         // epoch and card_num value. Make it look like the
   262         // count and eviction count were previously cleared.
   263         count_ptr->_count = 1;
   264         count_ptr->_evict_count = 0;
   265         *count = 0;
   266         // We can defer the processing of card_ptr
   267         *defer = true;
   268         return card_ptr;
   269       }
   270       // We did not win the race to update the epoch field, so some other
   271       // thread must have done it. The value that gets returned by CAS
   272       // should be the new epoch value.
   273       assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
   274       // We could 'continue' here or just re-read the previous epoch value
   275       prev_epoch_entry = epoch_ptr->_value;
   276     }
   278     // The epoch entry for card_ptr has been updated during this period.
   279     unsigned old_card_num = extract_card_num(prev_epoch_entry);
   281     // The card count that will be returned to caller
   282     *count = count_ptr->_count;
   284     // Are we updating the count for the same card?
   285     if (new_card_num == old_card_num) {
   286       // Same card - just update the count. We could have more than one
   287       // thread racing to update count for the current card. It should be
   288       // OK not to use a CAS as the only penalty should be some missed
   289       // increments of the count which delays identifying the card as "hot".
   291       if (*count < max_jubyte) count_ptr->_count++;
   292       // We can defer the processing of card_ptr
   293       *defer = true;
   294       return card_ptr;
   295     }
   297     // Different card - evict old card info
   298     if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
   299     if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
   300       // Trigger a resize the next time we clear
   301       _expand_card_counts = true;
   302     }
   304     cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
   305                                        (volatile jlong*)&epoch_ptr->_value,
   306                                        (jlong) prev_epoch_entry);
   308     if (cas_res == prev_epoch_entry) {
   309       // We successfully updated the card num value in the epoch entry
   310       count_ptr->_count = 0; // initialize counter for new card num
   311       jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
   313       // Even though the region containg the card at old_card_num was not
   314       // in the young list when old_card_num was recorded in the epoch
   315       // cache it could have been added to the free list and subsequently
   316       // added to the young list in the intervening time. See CR 6817995.
   317       // We do not deal with this case here - it will be handled in
   318       // HeapRegion::oops_on_card_seq_iterate_careful after it has been
   319       // determined that the region containing the card has been allocated
   320       // to, and it's safe to check the young type of the region.
   322       // We do not want to defer processing of card_ptr in this case
   323       // (we need to refine old_card_ptr and card_ptr)
   324       *defer = false;
   325       return old_card_ptr;
   326     }
   327     // Someone else beat us - try again.
   328   }
   329 }
   331 jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
   332   int count;
   333   jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
   334   assert(cached_ptr != NULL, "bad cached card ptr");
   336   // We've just inserted a card pointer into the card count cache
   337   // and got back the card that we just inserted or (evicted) the
   338   // previous contents of that count slot.
   340   // The card we got back could be in a young region. When the
   341   // returned card (if evicted) was originally inserted, we had
   342   // determined that its containing region was not young. However
   343   // it is possible for the region to be freed during a cleanup
   344   // pause, then reallocated and tagged as young which will result
   345   // in the returned card residing in a young region.
   346   //
   347   // We do not deal with this case here - the change from non-young
   348   // to young could be observed at any time - it will be handled in
   349   // HeapRegion::oops_on_card_seq_iterate_careful after it has been
   350   // determined that the region containing the card has been allocated
   351   // to.
   353   // The card pointer we obtained from card count cache is not hot
   354   // so do not store it in the cache; return it for immediate
   355   // refining.
   356   if (count < G1ConcRSHotCardLimit) {
   357     return cached_ptr;
   358   }
   360   // Otherwise, the pointer we got from the _card_counts cache is hot.
   361   jbyte* res = NULL;
   362   MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
   363   if (_n_hot == _hot_cache_size) {
   364     res = _hot_cache[_hot_cache_idx];
   365     _n_hot--;
   366   }
   367   // Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
   368   _hot_cache[_hot_cache_idx] = cached_ptr;
   369   _hot_cache_idx++;
   370   if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
   371   _n_hot++;
   373   // The card obtained from the hot card cache could be in a young
   374   // region. See above on how this can happen.
   376   return res;
   377 }
   379 void ConcurrentG1Refine::clean_up_cache(int worker_i,
   380                                         G1RemSet* g1rs,
   381                                         DirtyCardQueue* into_cset_dcq) {
   382   assert(!use_cache(), "cache should be disabled");
   383   int start_idx;
   385   while ((start_idx = _hot_cache_par_claimed_idx) < _n_hot) { // read once
   386     int end_idx = start_idx + _hot_cache_par_chunk_size;
   388     if (start_idx ==
   389         Atomic::cmpxchg(end_idx, &_hot_cache_par_claimed_idx, start_idx)) {
   390       // The current worker has successfully claimed the chunk [start_idx..end_idx)
   391       end_idx = MIN2(end_idx, _n_hot);
   392       for (int i = start_idx; i < end_idx; i++) {
   393         jbyte* entry = _hot_cache[i];
   394         if (entry != NULL) {
   395           if (g1rs->concurrentRefineOneCard(entry, worker_i, true)) {
   396             // 'entry' contains references that point into the current
   397             // collection set. We need to record 'entry' in the DCQS
   398             // that's used for that purpose.
   399             //
   400             // The only time we care about recording cards that contain
   401             // references that point into the collection set is during
   402             // RSet updating while within an evacuation pause.
   403             // In this case worker_i should be the id of a GC worker thread
   404             assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
   405             assert(worker_i < (int) (ParallelGCThreads == 0 ? 1 : ParallelGCThreads), "incorrect worker id");
   406             into_cset_dcq->enqueue(entry);
   407           }
   408         }
   409       }
   410     }
   411   }
   412 }
   414 // The arrays used to hold the card counts and the epochs must have
   415 // a 1:1 correspondence. Hence they are allocated and freed together
   416 // Returns true if the allocations of both the counts and epochs
   417 // were successful; false otherwise.
   418 bool ConcurrentG1Refine::allocate_card_count_cache(size_t n,
   419                                                    CardCountCacheEntry** counts,
   420                                                    CardEpochCacheEntry** epochs) {
   421   // We call the allocation/free routines directly for the counts
   422   // and epochs arrays. The NEW_C_HEAP_ARRAY/FREE_C_HEAP_ARRAY
   423   // macros call AllocateHeap and FreeHeap respectively.
   424   // AllocateHeap will call vm_exit_out_of_memory in the event
   425   // of an allocation failure and abort the JVM. With the
   426   // _counts/epochs arrays we only need to abort the JVM if the
   427   // initial allocation of these arrays fails.
   428   //
   429   // Additionally AllocateHeap/FreeHeap do some tracing of
   430   // allocate/free calls so calling one without calling the
   431   // other can cause inconsistencies in the tracing. So we
   432   // call neither.
   434   assert(*counts == NULL, "out param");
   435   assert(*epochs == NULL, "out param");
   437   size_t counts_size = n * sizeof(CardCountCacheEntry);
   438   size_t epochs_size = n * sizeof(CardEpochCacheEntry);
   440   *counts = (CardCountCacheEntry*) os::malloc(counts_size, mtGC);
   441   if (*counts == NULL) {
   442     // allocation was unsuccessful
   443     return false;
   444   }
   446   *epochs = (CardEpochCacheEntry*) os::malloc(epochs_size, mtGC);
   447   if (*epochs == NULL) {
   448     // allocation was unsuccessful - free counts array
   449     assert(*counts != NULL, "must be");
   450     os::free(*counts, mtGC);
   451     *counts = NULL;
   452     return false;
   453   }
   455   // We successfully allocated both counts and epochs
   456   return true;
   457 }
   459 // Returns true if the card counts/epochs cache was
   460 // successfully expanded; false otherwise.
   461 bool ConcurrentG1Refine::expand_card_count_cache(int cache_size_idx) {
   462   // Can we expand the card count and epoch tables?
   463   if (_n_card_counts < _max_n_card_counts) {
   464     assert(cache_size_idx >= 0 && cache_size_idx  < MAX_CC_CACHE_INDEX, "oob");
   466     size_t cache_size = _cc_cache_sizes[cache_size_idx];
   467     // Make sure we don't go bigger than we will ever need
   468     cache_size = MIN2(cache_size, _max_n_card_counts);
   470     // Should we expand the card count and card epoch tables?
   471     if (cache_size > _n_card_counts) {
   472       // We have been asked to allocate new, larger, arrays for
   473       // the card counts and the epochs. Attempt the allocation
   474       // of both before we free the existing arrays in case
   475       // the allocation is unsuccessful...
   476       CardCountCacheEntry* counts = NULL;
   477       CardEpochCacheEntry* epochs = NULL;
   479       if (allocate_card_count_cache(cache_size, &counts, &epochs)) {
   480         // Allocation was successful.
   481         // We can just free the old arrays; we're
   482         // not interested in preserving the contents
   483         if (_card_counts != NULL) os::free(_card_counts, mtGC);
   484         if (_card_epochs != NULL) os::free(_card_epochs, mtGC);
   486         // Cache the size of the arrays and the index that got us there.
   487         _n_card_counts = cache_size;
   488         _cache_size_index = cache_size_idx;
   490         _card_counts = counts;
   491         _card_epochs = epochs;
   493         // We successfully allocated/expanded the caches.
   494         return true;
   495       }
   496     }
   497   }
   499   // We did not successfully expand the caches.
   500   return false;
   501 }
   503 void ConcurrentG1Refine::clear_and_record_card_counts() {
   504   if (G1ConcRSLogCacheSize == 0) {
   505     return;
   506   }
   508   double start = os::elapsedTime();
   510   if (_expand_card_counts) {
   511     int new_idx = _cache_size_index + 1;
   513     if (expand_card_count_cache(new_idx)) {
   514       // Allocation was successful and  _n_card_counts has
   515       // been updated to the new size. We only need to clear
   516       // the epochs so we don't read a bogus epoch value
   517       // when inserting a card into the hot card cache.
   518       Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
   519     }
   520     _expand_card_counts = false;
   521   }
   523   int this_epoch = (int) _n_periods;
   524   assert((this_epoch+1) <= max_jint, "to many periods");
   525   // Update epoch
   526   _n_periods++;
   527   double cc_clear_time_ms = (os::elapsedTime() - start) * 1000;
   528   _g1h->g1_policy()->phase_times()->record_cc_clear_time_ms(cc_clear_time_ms);
   529 }
   531 void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
   532   for (int i = 0; i < _n_threads; ++i) {
   533     _threads[i]->print_on(st);
   534     st->cr();
   535   }
   536 }

mercurial