src/share/vm/opto/matcher.cpp

Wed, 21 May 2008 10:45:07 -0700

author
kvn
date
Wed, 21 May 2008 10:45:07 -0700
changeset 598
885ed790ecf0
parent 548
ba764ed4b6f2
child 599
c436414a719e
permissions
-rw-r--r--

6695810: null oop passed to encode_heap_oop_not_null
Summary: fix several problems in C2 related to Escape Analysis and Compressed Oops.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_matcher.cpp.incl"
    28 OptoReg::Name OptoReg::c_frame_pointer;
    32 const int Matcher::base2reg[Type::lastype] = {
    33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
    34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
    35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
    36   0, 0/*abio*/,
    37   Op_RegP /* Return address */, 0, /* the memories */
    38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
    39   0  /*bottom*/
    40 };
    42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    44 RegMask Matcher::STACK_ONLY_mask;
    45 RegMask Matcher::c_frame_ptr_mask;
    46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    49 //---------------------------Matcher-------------------------------------------
    50 Matcher::Matcher( Node_List &proj_list ) :
    51   PhaseTransform( Phase::Ins_Select ),
    52 #ifdef ASSERT
    53   _old2new_map(C->comp_arena()),
    54 #endif
    55   _shared_constants(C->comp_arena()),
    56   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    57   _swallowed(swallowed),
    58   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    59   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    60   _must_clone(must_clone), _proj_list(proj_list),
    61   _register_save_policy(register_save_policy),
    62   _c_reg_save_policy(c_reg_save_policy),
    63   _register_save_type(register_save_type),
    64   _ruleName(ruleName),
    65   _allocation_started(false),
    66   _states_arena(Chunk::medium_size),
    67   _visited(&_states_arena),
    68   _shared(&_states_arena),
    69   _dontcare(&_states_arena) {
    70   C->set_matcher(this);
    72   idealreg2spillmask[Op_RegI] = NULL;
    73   idealreg2spillmask[Op_RegN] = NULL;
    74   idealreg2spillmask[Op_RegL] = NULL;
    75   idealreg2spillmask[Op_RegF] = NULL;
    76   idealreg2spillmask[Op_RegD] = NULL;
    77   idealreg2spillmask[Op_RegP] = NULL;
    79   idealreg2debugmask[Op_RegI] = NULL;
    80   idealreg2debugmask[Op_RegN] = NULL;
    81   idealreg2debugmask[Op_RegL] = NULL;
    82   idealreg2debugmask[Op_RegF] = NULL;
    83   idealreg2debugmask[Op_RegD] = NULL;
    84   idealreg2debugmask[Op_RegP] = NULL;
    85 }
    87 //------------------------------warp_incoming_stk_arg------------------------
    88 // This warps a VMReg into an OptoReg::Name
    89 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
    90   OptoReg::Name warped;
    91   if( reg->is_stack() ) {  // Stack slot argument?
    92     warped = OptoReg::add(_old_SP, reg->reg2stack() );
    93     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
    94     if( warped >= _in_arg_limit )
    95       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
    96     if (!RegMask::can_represent(warped)) {
    97       // the compiler cannot represent this method's calling sequence
    98       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
    99       return OptoReg::Bad;
   100     }
   101     return warped;
   102   }
   103   return OptoReg::as_OptoReg(reg);
   104 }
   106 //---------------------------compute_old_SP------------------------------------
   107 OptoReg::Name Compile::compute_old_SP() {
   108   int fixed    = fixed_slots();
   109   int preserve = in_preserve_stack_slots();
   110   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   111 }
   115 #ifdef ASSERT
   116 void Matcher::verify_new_nodes_only(Node* xroot) {
   117   // Make sure that the new graph only references new nodes
   118   ResourceMark rm;
   119   Unique_Node_List worklist;
   120   VectorSet visited(Thread::current()->resource_area());
   121   worklist.push(xroot);
   122   while (worklist.size() > 0) {
   123     Node* n = worklist.pop();
   124     visited <<= n->_idx;
   125     assert(C->node_arena()->contains(n), "dead node");
   126     for (uint j = 0; j < n->req(); j++) {
   127       Node* in = n->in(j);
   128       if (in != NULL) {
   129         assert(C->node_arena()->contains(in), "dead node");
   130         if (!visited.test(in->_idx)) {
   131           worklist.push(in);
   132         }
   133       }
   134     }
   135   }
   136 }
   137 #endif
   140 //---------------------------match---------------------------------------------
   141 void Matcher::match( ) {
   142   // One-time initialization of some register masks.
   143   init_spill_mask( C->root()->in(1) );
   144   _return_addr_mask = return_addr();
   145 #ifdef _LP64
   146   // Pointers take 2 slots in 64-bit land
   147   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   148 #endif
   150   // Map a Java-signature return type into return register-value
   151   // machine registers for 0, 1 and 2 returned values.
   152   const TypeTuple *range = C->tf()->range();
   153   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   154     // Get ideal-register return type
   155     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
   156     // Get machine return register
   157     uint sop = C->start()->Opcode();
   158     OptoRegPair regs = return_value(ireg, false);
   160     // And mask for same
   161     _return_value_mask = RegMask(regs.first());
   162     if( OptoReg::is_valid(regs.second()) )
   163       _return_value_mask.Insert(regs.second());
   164   }
   166   // ---------------
   167   // Frame Layout
   169   // Need the method signature to determine the incoming argument types,
   170   // because the types determine which registers the incoming arguments are
   171   // in, and this affects the matched code.
   172   const TypeTuple *domain = C->tf()->domain();
   173   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   174   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   175   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   176   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   177   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   178   uint i;
   179   for( i = 0; i<argcnt; i++ ) {
   180     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   181   }
   183   // Pass array of ideal registers and length to USER code (from the AD file)
   184   // that will convert this to an array of register numbers.
   185   const StartNode *start = C->start();
   186   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   187 #ifdef ASSERT
   188   // Sanity check users' calling convention.  Real handy while trying to
   189   // get the initial port correct.
   190   { for (uint i = 0; i<argcnt; i++) {
   191       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   192         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   193         _parm_regs[i].set_bad();
   194         continue;
   195       }
   196       VMReg parm_reg = vm_parm_regs[i].first();
   197       assert(parm_reg->is_valid(), "invalid arg?");
   198       if (parm_reg->is_reg()) {
   199         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   200         assert(can_be_java_arg(opto_parm_reg) ||
   201                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   202                opto_parm_reg == inline_cache_reg(),
   203                "parameters in register must be preserved by runtime stubs");
   204       }
   205       for (uint j = 0; j < i; j++) {
   206         assert(parm_reg != vm_parm_regs[j].first(),
   207                "calling conv. must produce distinct regs");
   208       }
   209     }
   210   }
   211 #endif
   213   // Do some initial frame layout.
   215   // Compute the old incoming SP (may be called FP) as
   216   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   217   _old_SP = C->compute_old_SP();
   218   assert( is_even(_old_SP), "must be even" );
   220   // Compute highest incoming stack argument as
   221   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   222   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   223   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   224   for( i = 0; i < argcnt; i++ ) {
   225     // Permit args to have no register
   226     _calling_convention_mask[i].Clear();
   227     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   228       continue;
   229     }
   230     // calling_convention returns stack arguments as a count of
   231     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   232     // the allocators point of view, taking into account all the
   233     // preserve area, locks & pad2.
   235     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   236     if( OptoReg::is_valid(reg1))
   237       _calling_convention_mask[i].Insert(reg1);
   239     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   240     if( OptoReg::is_valid(reg2))
   241       _calling_convention_mask[i].Insert(reg2);
   243     // Saved biased stack-slot register number
   244     _parm_regs[i].set_pair(reg2, reg1);
   245   }
   247   // Finally, make sure the incoming arguments take up an even number of
   248   // words, in case the arguments or locals need to contain doubleword stack
   249   // slots.  The rest of the system assumes that stack slot pairs (in
   250   // particular, in the spill area) which look aligned will in fact be
   251   // aligned relative to the stack pointer in the target machine.  Double
   252   // stack slots will always be allocated aligned.
   253   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   255   // Compute highest outgoing stack argument as
   256   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   257   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   258   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   260   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
   261     // the compiler cannot represent this method's calling sequence
   262     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   263   }
   265   if (C->failing())  return;  // bailed out on incoming arg failure
   267   // ---------------
   268   // Collect roots of matcher trees.  Every node for which
   269   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   270   // can be a valid interior of some tree.
   271   find_shared( C->root() );
   272   find_shared( C->top() );
   274   C->print_method("Before Matching", 2);
   276   // Swap out to old-space; emptying new-space
   277   Arena *old = C->node_arena()->move_contents(C->old_arena());
   279   // Save debug and profile information for nodes in old space:
   280   _old_node_note_array = C->node_note_array();
   281   if (_old_node_note_array != NULL) {
   282     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   283                            (C->comp_arena(), _old_node_note_array->length(),
   284                             0, NULL));
   285   }
   287   // Pre-size the new_node table to avoid the need for range checks.
   288   grow_new_node_array(C->unique());
   290   // Reset node counter so MachNodes start with _idx at 0
   291   int nodes = C->unique(); // save value
   292   C->set_unique(0);
   294   // Recursively match trees from old space into new space.
   295   // Correct leaves of new-space Nodes; they point to old-space.
   296   _visited.Clear();             // Clear visit bits for xform call
   297   C->set_cached_top_node(xform( C->top(), nodes ));
   298   if (!C->failing()) {
   299     Node* xroot =        xform( C->root(), 1 );
   300     if (xroot == NULL) {
   301       Matcher::soft_match_failure();  // recursive matching process failed
   302       C->record_method_not_compilable("instruction match failed");
   303     } else {
   304       // During matching shared constants were attached to C->root()
   305       // because xroot wasn't available yet, so transfer the uses to
   306       // the xroot.
   307       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   308         Node* n = C->root()->fast_out(j);
   309         if (C->node_arena()->contains(n)) {
   310           assert(n->in(0) == C->root(), "should be control user");
   311           n->set_req(0, xroot);
   312           --j;
   313           --jmax;
   314         }
   315       }
   317       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   318 #ifdef ASSERT
   319       verify_new_nodes_only(xroot);
   320 #endif
   321     }
   322   }
   323   if (C->top() == NULL || C->root() == NULL) {
   324     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   325   }
   326   if (C->failing()) {
   327     // delete old;
   328     old->destruct_contents();
   329     return;
   330   }
   331   assert( C->top(), "" );
   332   assert( C->root(), "" );
   333   validate_null_checks();
   335   // Now smoke old-space
   336   NOT_DEBUG( old->destruct_contents() );
   338   // ------------------------
   339   // Set up save-on-entry registers
   340   Fixup_Save_On_Entry( );
   341 }
   344 //------------------------------Fixup_Save_On_Entry----------------------------
   345 // The stated purpose of this routine is to take care of save-on-entry
   346 // registers.  However, the overall goal of the Match phase is to convert into
   347 // machine-specific instructions which have RegMasks to guide allocation.
   348 // So what this procedure really does is put a valid RegMask on each input
   349 // to the machine-specific variations of all Return, TailCall and Halt
   350 // instructions.  It also adds edgs to define the save-on-entry values (and of
   351 // course gives them a mask).
   353 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   354   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   355   // Do all the pre-defined register masks
   356   rms[TypeFunc::Control  ] = RegMask::Empty;
   357   rms[TypeFunc::I_O      ] = RegMask::Empty;
   358   rms[TypeFunc::Memory   ] = RegMask::Empty;
   359   rms[TypeFunc::ReturnAdr] = ret_adr;
   360   rms[TypeFunc::FramePtr ] = fp;
   361   return rms;
   362 }
   364 //---------------------------init_first_stack_mask-----------------------------
   365 // Create the initial stack mask used by values spilling to the stack.
   366 // Disallow any debug info in outgoing argument areas by setting the
   367 // initial mask accordingly.
   368 void Matcher::init_first_stack_mask() {
   370   // Allocate storage for spill masks as masks for the appropriate load type.
   371   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
   372   idealreg2spillmask[Op_RegN] = &rms[0];
   373   idealreg2spillmask[Op_RegI] = &rms[1];
   374   idealreg2spillmask[Op_RegL] = &rms[2];
   375   idealreg2spillmask[Op_RegF] = &rms[3];
   376   idealreg2spillmask[Op_RegD] = &rms[4];
   377   idealreg2spillmask[Op_RegP] = &rms[5];
   378   idealreg2debugmask[Op_RegN] = &rms[6];
   379   idealreg2debugmask[Op_RegI] = &rms[7];
   380   idealreg2debugmask[Op_RegL] = &rms[8];
   381   idealreg2debugmask[Op_RegF] = &rms[9];
   382   idealreg2debugmask[Op_RegD] = &rms[10];
   383   idealreg2debugmask[Op_RegP] = &rms[11];
   385   OptoReg::Name i;
   387   // At first, start with the empty mask
   388   C->FIRST_STACK_mask().Clear();
   390   // Add in the incoming argument area
   391   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   392   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   393     C->FIRST_STACK_mask().Insert(i);
   395   // Add in all bits past the outgoing argument area
   396   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
   397             "must be able to represent all call arguments in reg mask");
   398   init = _out_arg_limit;
   399   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   400     C->FIRST_STACK_mask().Insert(i);
   402   // Finally, set the "infinite stack" bit.
   403   C->FIRST_STACK_mask().set_AllStack();
   405   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   406 #ifdef _LP64
   407   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   408    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   409 #endif
   410   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   411    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   412   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   413    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
   414   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   415    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   416   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   417    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
   418   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   419    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   421   // Make up debug masks.  Any spill slot plus callee-save registers.
   422   // Caller-save registers are assumed to be trashable by the various
   423   // inline-cache fixup routines.
   424   *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   425   *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   426   *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   427   *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   428   *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   429   *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   431   // Prevent stub compilations from attempting to reference
   432   // callee-saved registers from debug info
   433   bool exclude_soe = !Compile::current()->is_method_compilation();
   435   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   436     // registers the caller has to save do not work
   437     if( _register_save_policy[i] == 'C' ||
   438         _register_save_policy[i] == 'A' ||
   439         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   440       idealreg2debugmask[Op_RegN]->Remove(i);
   441       idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
   442       idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
   443       idealreg2debugmask[Op_RegF]->Remove(i); // masks
   444       idealreg2debugmask[Op_RegD]->Remove(i);
   445       idealreg2debugmask[Op_RegP]->Remove(i);
   446     }
   447   }
   448 }
   450 //---------------------------is_save_on_entry----------------------------------
   451 bool Matcher::is_save_on_entry( int reg ) {
   452   return
   453     _register_save_policy[reg] == 'E' ||
   454     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   455     // Also save argument registers in the trampolining stubs
   456     (C->save_argument_registers() && is_spillable_arg(reg));
   457 }
   459 //---------------------------Fixup_Save_On_Entry-------------------------------
   460 void Matcher::Fixup_Save_On_Entry( ) {
   461   init_first_stack_mask();
   463   Node *root = C->root();       // Short name for root
   464   // Count number of save-on-entry registers.
   465   uint soe_cnt = number_of_saved_registers();
   466   uint i;
   468   // Find the procedure Start Node
   469   StartNode *start = C->start();
   470   assert( start, "Expect a start node" );
   472   // Save argument registers in the trampolining stubs
   473   if( C->save_argument_registers() )
   474     for( i = 0; i < _last_Mach_Reg; i++ )
   475       if( is_spillable_arg(i) )
   476         soe_cnt++;
   478   // Input RegMask array shared by all Returns.
   479   // The type for doubles and longs has a count of 2, but
   480   // there is only 1 returned value
   481   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   482   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   483   // Returns have 0 or 1 returned values depending on call signature.
   484   // Return register is specified by return_value in the AD file.
   485   if (ret_edge_cnt > TypeFunc::Parms)
   486     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   488   // Input RegMask array shared by all Rethrows.
   489   uint reth_edge_cnt = TypeFunc::Parms+1;
   490   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   491   // Rethrow takes exception oop only, but in the argument 0 slot.
   492   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   493 #ifdef _LP64
   494   // Need two slots for ptrs in 64-bit land
   495   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   496 #endif
   498   // Input RegMask array shared by all TailCalls
   499   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   500   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   502   // Input RegMask array shared by all TailJumps
   503   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   504   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   506   // TailCalls have 2 returned values (target & moop), whose masks come
   507   // from the usual MachNode/MachOper mechanism.  Find a sample
   508   // TailCall to extract these masks and put the correct masks into
   509   // the tail_call_rms array.
   510   for( i=1; i < root->req(); i++ ) {
   511     MachReturnNode *m = root->in(i)->as_MachReturn();
   512     if( m->ideal_Opcode() == Op_TailCall ) {
   513       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   514       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   515       break;
   516     }
   517   }
   519   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   520   // from the usual MachNode/MachOper mechanism.  Find a sample
   521   // TailJump to extract these masks and put the correct masks into
   522   // the tail_jump_rms array.
   523   for( i=1; i < root->req(); i++ ) {
   524     MachReturnNode *m = root->in(i)->as_MachReturn();
   525     if( m->ideal_Opcode() == Op_TailJump ) {
   526       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   527       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   528       break;
   529     }
   530   }
   532   // Input RegMask array shared by all Halts
   533   uint halt_edge_cnt = TypeFunc::Parms;
   534   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   536   // Capture the return input masks into each exit flavor
   537   for( i=1; i < root->req(); i++ ) {
   538     MachReturnNode *exit = root->in(i)->as_MachReturn();
   539     switch( exit->ideal_Opcode() ) {
   540       case Op_Return   : exit->_in_rms = ret_rms;  break;
   541       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   542       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   543       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   544       case Op_Halt     : exit->_in_rms = halt_rms; break;
   545       default          : ShouldNotReachHere();
   546     }
   547   }
   549   // Next unused projection number from Start.
   550   int proj_cnt = C->tf()->domain()->cnt();
   552   // Do all the save-on-entry registers.  Make projections from Start for
   553   // them, and give them a use at the exit points.  To the allocator, they
   554   // look like incoming register arguments.
   555   for( i = 0; i < _last_Mach_Reg; i++ ) {
   556     if( is_save_on_entry(i) ) {
   558       // Add the save-on-entry to the mask array
   559       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   560       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   561       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   562       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   563       // Halts need the SOE registers, but only in the stack as debug info.
   564       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   565       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   567       Node *mproj;
   569       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   570       // into a single RegD.
   571       if( (i&1) == 0 &&
   572           _register_save_type[i  ] == Op_RegF &&
   573           _register_save_type[i+1] == Op_RegF &&
   574           is_save_on_entry(i+1) ) {
   575         // Add other bit for double
   576         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   577         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   578         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   579         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   580         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   581         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   582         proj_cnt += 2;          // Skip 2 for doubles
   583       }
   584       else if( (i&1) == 1 &&    // Else check for high half of double
   585                _register_save_type[i-1] == Op_RegF &&
   586                _register_save_type[i  ] == Op_RegF &&
   587                is_save_on_entry(i-1) ) {
   588         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   589         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   590         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   591         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   592         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   593         mproj = C->top();
   594       }
   595       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   596       // into a single RegL.
   597       else if( (i&1) == 0 &&
   598           _register_save_type[i  ] == Op_RegI &&
   599           _register_save_type[i+1] == Op_RegI &&
   600         is_save_on_entry(i+1) ) {
   601         // Add other bit for long
   602         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   603         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   604         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   605         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   606         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   607         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   608         proj_cnt += 2;          // Skip 2 for longs
   609       }
   610       else if( (i&1) == 1 &&    // Else check for high half of long
   611                _register_save_type[i-1] == Op_RegI &&
   612                _register_save_type[i  ] == Op_RegI &&
   613                is_save_on_entry(i-1) ) {
   614         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   615         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   616         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   617         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   618         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   619         mproj = C->top();
   620       } else {
   621         // Make a projection for it off the Start
   622         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   623       }
   625       ret_edge_cnt ++;
   626       reth_edge_cnt ++;
   627       tail_call_edge_cnt ++;
   628       tail_jump_edge_cnt ++;
   629       halt_edge_cnt ++;
   631       // Add a use of the SOE register to all exit paths
   632       for( uint j=1; j < root->req(); j++ )
   633         root->in(j)->add_req(mproj);
   634     } // End of if a save-on-entry register
   635   } // End of for all machine registers
   636 }
   638 //------------------------------init_spill_mask--------------------------------
   639 void Matcher::init_spill_mask( Node *ret ) {
   640   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   642   OptoReg::c_frame_pointer = c_frame_pointer();
   643   c_frame_ptr_mask = c_frame_pointer();
   644 #ifdef _LP64
   645   // pointers are twice as big
   646   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   647 #endif
   649   // Start at OptoReg::stack0()
   650   STACK_ONLY_mask.Clear();
   651   OptoReg::Name init = OptoReg::stack2reg(0);
   652   // STACK_ONLY_mask is all stack bits
   653   OptoReg::Name i;
   654   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   655     STACK_ONLY_mask.Insert(i);
   656   // Also set the "infinite stack" bit.
   657   STACK_ONLY_mask.set_AllStack();
   659   // Copy the register names over into the shared world
   660   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   661     // SharedInfo::regName[i] = regName[i];
   662     // Handy RegMasks per machine register
   663     mreg2regmask[i].Insert(i);
   664   }
   666   // Grab the Frame Pointer
   667   Node *fp  = ret->in(TypeFunc::FramePtr);
   668   Node *mem = ret->in(TypeFunc::Memory);
   669   const TypePtr* atp = TypePtr::BOTTOM;
   670   // Share frame pointer while making spill ops
   671   set_shared(fp);
   673   // Compute generic short-offset Loads
   674 #ifdef _LP64
   675   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   676 #endif
   677   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   678   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   679   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   680   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   681   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   682   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   683          spillD != NULL && spillP != NULL, "");
   685   // Get the ADLC notion of the right regmask, for each basic type.
   686 #ifdef _LP64
   687   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   688 #endif
   689   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   690   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   691   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   692   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   693   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   694 }
   696 #ifdef ASSERT
   697 static void match_alias_type(Compile* C, Node* n, Node* m) {
   698   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   699   const TypePtr* nat = n->adr_type();
   700   const TypePtr* mat = m->adr_type();
   701   int nidx = C->get_alias_index(nat);
   702   int midx = C->get_alias_index(mat);
   703   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   704   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   705     for (uint i = 1; i < n->req(); i++) {
   706       Node* n1 = n->in(i);
   707       const TypePtr* n1at = n1->adr_type();
   708       if (n1at != NULL) {
   709         nat = n1at;
   710         nidx = C->get_alias_index(n1at);
   711       }
   712     }
   713   }
   714   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   715   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   716     switch (n->Opcode()) {
   717     case Op_PrefetchRead:
   718     case Op_PrefetchWrite:
   719       nidx = Compile::AliasIdxRaw;
   720       nat = TypeRawPtr::BOTTOM;
   721       break;
   722     }
   723   }
   724   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   725     switch (n->Opcode()) {
   726     case Op_ClearArray:
   727       midx = Compile::AliasIdxRaw;
   728       mat = TypeRawPtr::BOTTOM;
   729       break;
   730     }
   731   }
   732   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   733     switch (n->Opcode()) {
   734     case Op_Return:
   735     case Op_Rethrow:
   736     case Op_Halt:
   737     case Op_TailCall:
   738     case Op_TailJump:
   739       nidx = Compile::AliasIdxBot;
   740       nat = TypePtr::BOTTOM;
   741       break;
   742     }
   743   }
   744   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   745     switch (n->Opcode()) {
   746     case Op_StrComp:
   747     case Op_MemBarVolatile:
   748     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   749       nidx = Compile::AliasIdxTop;
   750       nat = NULL;
   751       break;
   752     }
   753   }
   754   if (nidx != midx) {
   755     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   756       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   757       n->dump();
   758       m->dump();
   759     }
   760     assert(C->subsume_loads() && C->must_alias(nat, midx),
   761            "must not lose alias info when matching");
   762   }
   763 }
   764 #endif
   767 //------------------------------MStack-----------------------------------------
   768 // State and MStack class used in xform() and find_shared() iterative methods.
   769 enum Node_State { Pre_Visit,  // node has to be pre-visited
   770                       Visit,  // visit node
   771                  Post_Visit,  // post-visit node
   772              Alt_Post_Visit   // alternative post-visit path
   773                 };
   775 class MStack: public Node_Stack {
   776   public:
   777     MStack(int size) : Node_Stack(size) { }
   779     void push(Node *n, Node_State ns) {
   780       Node_Stack::push(n, (uint)ns);
   781     }
   782     void push(Node *n, Node_State ns, Node *parent, int indx) {
   783       ++_inode_top;
   784       if ((_inode_top + 1) >= _inode_max) grow();
   785       _inode_top->node = parent;
   786       _inode_top->indx = (uint)indx;
   787       ++_inode_top;
   788       _inode_top->node = n;
   789       _inode_top->indx = (uint)ns;
   790     }
   791     Node *parent() {
   792       pop();
   793       return node();
   794     }
   795     Node_State state() const {
   796       return (Node_State)index();
   797     }
   798     void set_state(Node_State ns) {
   799       set_index((uint)ns);
   800     }
   801 };
   804 //------------------------------xform------------------------------------------
   805 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   806 // Node in new-space.  Given a new-space Node, recursively walk his children.
   807 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   808 Node *Matcher::xform( Node *n, int max_stack ) {
   809   // Use one stack to keep both: child's node/state and parent's node/index
   810   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   811   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   813   while (mstack.is_nonempty()) {
   814     n = mstack.node();          // Leave node on stack
   815     Node_State nstate = mstack.state();
   816     if (nstate == Visit) {
   817       mstack.set_state(Post_Visit);
   818       Node *oldn = n;
   819       // Old-space or new-space check
   820       if (!C->node_arena()->contains(n)) {
   821         // Old space!
   822         Node* m;
   823         if (has_new_node(n)) {  // Not yet Label/Reduced
   824           m = new_node(n);
   825         } else {
   826           if (!is_dontcare(n)) { // Matcher can match this guy
   827             // Calls match special.  They match alone with no children.
   828             // Their children, the incoming arguments, match normally.
   829             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
   830             if (C->failing())  return NULL;
   831             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
   832           } else {                  // Nothing the matcher cares about
   833             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
   834               // Convert to machine-dependent projection
   835               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
   836               if (m->in(0) != NULL) // m might be top
   837                 collect_null_checks(m);
   838             } else {                // Else just a regular 'ol guy
   839               m = n->clone();       // So just clone into new-space
   840               // Def-Use edges will be added incrementally as Uses
   841               // of this node are matched.
   842               assert(m->outcnt() == 0, "no Uses of this clone yet");
   843             }
   844           }
   846           set_new_node(n, m);       // Map old to new
   847           if (_old_node_note_array != NULL) {
   848             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
   849                                                   n->_idx);
   850             C->set_node_notes_at(m->_idx, nn);
   851           }
   852           debug_only(match_alias_type(C, n, m));
   853         }
   854         n = m;    // n is now a new-space node
   855         mstack.set_node(n);
   856       }
   858       // New space!
   859       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
   861       int i;
   862       // Put precedence edges on stack first (match them last).
   863       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
   864         Node *m = oldn->in(i);
   865         if (m == NULL) break;
   866         // set -1 to call add_prec() instead of set_req() during Step1
   867         mstack.push(m, Visit, n, -1);
   868       }
   870       // For constant debug info, I'd rather have unmatched constants.
   871       int cnt = n->req();
   872       JVMState* jvms = n->jvms();
   873       int debug_cnt = jvms ? jvms->debug_start() : cnt;
   875       // Now do only debug info.  Clone constants rather than matching.
   876       // Constants are represented directly in the debug info without
   877       // the need for executable machine instructions.
   878       // Monitor boxes are also represented directly.
   879       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
   880         Node *m = n->in(i);          // Get input
   881         int op = m->Opcode();
   882         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
   883         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
   884             op == Op_ConF || op == Op_ConD || op == Op_ConL
   885             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
   886             ) {
   887           m = m->clone();
   888           mstack.push(m, Post_Visit, n, i); // Don't neet to visit
   889           mstack.push(m->in(0), Visit, m, 0);
   890         } else {
   891           mstack.push(m, Visit, n, i);
   892         }
   893       }
   895       // And now walk his children, and convert his inputs to new-space.
   896       for( ; i >= 0; --i ) { // For all normal inputs do
   897         Node *m = n->in(i);  // Get input
   898         if(m != NULL)
   899           mstack.push(m, Visit, n, i);
   900       }
   902     }
   903     else if (nstate == Post_Visit) {
   904       // Set xformed input
   905       Node *p = mstack.parent();
   906       if (p != NULL) { // root doesn't have parent
   907         int i = (int)mstack.index();
   908         if (i >= 0)
   909           p->set_req(i, n); // required input
   910         else if (i == -1)
   911           p->add_prec(n);   // precedence input
   912         else
   913           ShouldNotReachHere();
   914       }
   915       mstack.pop(); // remove processed node from stack
   916     }
   917     else {
   918       ShouldNotReachHere();
   919     }
   920   } // while (mstack.is_nonempty())
   921   return n; // Return new-space Node
   922 }
   924 //------------------------------warp_outgoing_stk_arg------------------------
   925 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
   926   // Convert outgoing argument location to a pre-biased stack offset
   927   if (reg->is_stack()) {
   928     OptoReg::Name warped = reg->reg2stack();
   929     // Adjust the stack slot offset to be the register number used
   930     // by the allocator.
   931     warped = OptoReg::add(begin_out_arg_area, warped);
   932     // Keep track of the largest numbered stack slot used for an arg.
   933     // Largest used slot per call-site indicates the amount of stack
   934     // that is killed by the call.
   935     if( warped >= out_arg_limit_per_call )
   936       out_arg_limit_per_call = OptoReg::add(warped,1);
   937     if (!RegMask::can_represent(warped)) {
   938       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
   939       return OptoReg::Bad;
   940     }
   941     return warped;
   942   }
   943   return OptoReg::as_OptoReg(reg);
   944 }
   947 //------------------------------match_sfpt-------------------------------------
   948 // Helper function to match call instructions.  Calls match special.
   949 // They match alone with no children.  Their children, the incoming
   950 // arguments, match normally.
   951 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
   952   MachSafePointNode *msfpt = NULL;
   953   MachCallNode      *mcall = NULL;
   954   uint               cnt;
   955   // Split out case for SafePoint vs Call
   956   CallNode *call;
   957   const TypeTuple *domain;
   958   ciMethod*        method = NULL;
   959   if( sfpt->is_Call() ) {
   960     call = sfpt->as_Call();
   961     domain = call->tf()->domain();
   962     cnt = domain->cnt();
   964     // Match just the call, nothing else
   965     MachNode *m = match_tree(call);
   966     if (C->failing())  return NULL;
   967     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
   969     // Copy data from the Ideal SafePoint to the machine version
   970     mcall = m->as_MachCall();
   972     mcall->set_tf(         call->tf());
   973     mcall->set_entry_point(call->entry_point());
   974     mcall->set_cnt(        call->cnt());
   976     if( mcall->is_MachCallJava() ) {
   977       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
   978       const CallJavaNode *call_java =  call->as_CallJava();
   979       method = call_java->method();
   980       mcall_java->_method = method;
   981       mcall_java->_bci = call_java->_bci;
   982       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
   983       if( mcall_java->is_MachCallStaticJava() )
   984         mcall_java->as_MachCallStaticJava()->_name =
   985          call_java->as_CallStaticJava()->_name;
   986       if( mcall_java->is_MachCallDynamicJava() )
   987         mcall_java->as_MachCallDynamicJava()->_vtable_index =
   988          call_java->as_CallDynamicJava()->_vtable_index;
   989     }
   990     else if( mcall->is_MachCallRuntime() ) {
   991       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
   992     }
   993     msfpt = mcall;
   994   }
   995   // This is a non-call safepoint
   996   else {
   997     call = NULL;
   998     domain = NULL;
   999     MachNode *mn = match_tree(sfpt);
  1000     if (C->failing())  return NULL;
  1001     msfpt = mn->as_MachSafePoint();
  1002     cnt = TypeFunc::Parms;
  1005   // Advertise the correct memory effects (for anti-dependence computation).
  1006   msfpt->set_adr_type(sfpt->adr_type());
  1008   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1009   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1010   // Empty them all.
  1011   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1013   // Do all the pre-defined non-Empty register masks
  1014   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1015   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1017   // Place first outgoing argument can possibly be put.
  1018   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1019   assert( is_even(begin_out_arg_area), "" );
  1020   // Compute max outgoing register number per call site.
  1021   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1022   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1023   // These are usually backing store for register arguments for varargs.
  1024   if( call != NULL && call->is_CallRuntime() )
  1025     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1028   // Do the normal argument list (parameters) register masks
  1029   int argcnt = cnt - TypeFunc::Parms;
  1030   if( argcnt > 0 ) {          // Skip it all if we have no args
  1031     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1032     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1033     int i;
  1034     for( i = 0; i < argcnt; i++ ) {
  1035       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1037     // V-call to pick proper calling convention
  1038     call->calling_convention( sig_bt, parm_regs, argcnt );
  1040 #ifdef ASSERT
  1041     // Sanity check users' calling convention.  Really handy during
  1042     // the initial porting effort.  Fairly expensive otherwise.
  1043     { for (int i = 0; i<argcnt; i++) {
  1044       if( !parm_regs[i].first()->is_valid() &&
  1045           !parm_regs[i].second()->is_valid() ) continue;
  1046       VMReg reg1 = parm_regs[i].first();
  1047       VMReg reg2 = parm_regs[i].second();
  1048       for (int j = 0; j < i; j++) {
  1049         if( !parm_regs[j].first()->is_valid() &&
  1050             !parm_regs[j].second()->is_valid() ) continue;
  1051         VMReg reg3 = parm_regs[j].first();
  1052         VMReg reg4 = parm_regs[j].second();
  1053         if( !reg1->is_valid() ) {
  1054           assert( !reg2->is_valid(), "valid halvsies" );
  1055         } else if( !reg3->is_valid() ) {
  1056           assert( !reg4->is_valid(), "valid halvsies" );
  1057         } else {
  1058           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1059           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1060           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1061           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1062           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1063           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1068 #endif
  1070     // Visit each argument.  Compute its outgoing register mask.
  1071     // Return results now can have 2 bits returned.
  1072     // Compute max over all outgoing arguments both per call-site
  1073     // and over the entire method.
  1074     for( i = 0; i < argcnt; i++ ) {
  1075       // Address of incoming argument mask to fill in
  1076       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1077       if( !parm_regs[i].first()->is_valid() &&
  1078           !parm_regs[i].second()->is_valid() ) {
  1079         continue;               // Avoid Halves
  1081       // Grab first register, adjust stack slots and insert in mask.
  1082       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1083       if (OptoReg::is_valid(reg1))
  1084         rm->Insert( reg1 );
  1085       // Grab second register (if any), adjust stack slots and insert in mask.
  1086       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1087       if (OptoReg::is_valid(reg2))
  1088         rm->Insert( reg2 );
  1089     } // End of for all arguments
  1091     // Compute number of stack slots needed to restore stack in case of
  1092     // Pascal-style argument popping.
  1093     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1096   // Compute the max stack slot killed by any call.  These will not be
  1097   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1098   // after all call sites have been visited.
  1099   if( _out_arg_limit < out_arg_limit_per_call)
  1100     _out_arg_limit = out_arg_limit_per_call;
  1102   if (mcall) {
  1103     // Kill the outgoing argument area, including any non-argument holes and
  1104     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1105     // Since the max-per-method covers the max-per-call-site and debug info
  1106     // is excluded on the max-per-method basis, debug info cannot land in
  1107     // this killed area.
  1108     uint r_cnt = mcall->tf()->range()->cnt();
  1109     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1110     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
  1111       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1112     } else {
  1113       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1114         proj->_rout.Insert(OptoReg::Name(i));
  1116     if( proj->_rout.is_NotEmpty() )
  1117       _proj_list.push(proj);
  1119   // Transfer the safepoint information from the call to the mcall
  1120   // Move the JVMState list
  1121   msfpt->set_jvms(sfpt->jvms());
  1122   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1123     jvms->set_map(sfpt);
  1126   // Debug inputs begin just after the last incoming parameter
  1127   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1128           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1130   // Move the OopMap
  1131   msfpt->_oop_map = sfpt->_oop_map;
  1133   // Registers killed by the call are set in the local scheduling pass
  1134   // of Global Code Motion.
  1135   return msfpt;
  1138 //---------------------------match_tree----------------------------------------
  1139 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1140 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1141 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1142 // a Load's result RegMask for memoization in idealreg2regmask[]
  1143 MachNode *Matcher::match_tree( const Node *n ) {
  1144   assert( n->Opcode() != Op_Phi, "cannot match" );
  1145   assert( !n->is_block_start(), "cannot match" );
  1146   // Set the mark for all locally allocated State objects.
  1147   // When this call returns, the _states_arena arena will be reset
  1148   // freeing all State objects.
  1149   ResourceMark rm( &_states_arena );
  1151   LabelRootDepth = 0;
  1153   // StoreNodes require their Memory input to match any LoadNodes
  1154   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1156   // State object for root node of match tree
  1157   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1158   State *s = new (&_states_arena) State;
  1159   s->_kids[0] = NULL;
  1160   s->_kids[1] = NULL;
  1161   s->_leaf = (Node*)n;
  1162   // Label the input tree, allocating labels from top-level arena
  1163   Label_Root( n, s, n->in(0), mem );
  1164   if (C->failing())  return NULL;
  1166   // The minimum cost match for the whole tree is found at the root State
  1167   uint mincost = max_juint;
  1168   uint cost = max_juint;
  1169   uint i;
  1170   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1171     if( s->valid(i) &&                // valid entry and
  1172         s->_cost[i] < cost &&         // low cost and
  1173         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1174       cost = s->_cost[mincost=i];
  1176   if (mincost == max_juint) {
  1177 #ifndef PRODUCT
  1178     tty->print("No matching rule for:");
  1179     s->dump();
  1180 #endif
  1181     Matcher::soft_match_failure();
  1182     return NULL;
  1184   // Reduce input tree based upon the state labels to machine Nodes
  1185   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1186 #ifdef ASSERT
  1187   _old2new_map.map(n->_idx, m);
  1188 #endif
  1190   // Add any Matcher-ignored edges
  1191   uint cnt = n->req();
  1192   uint start = 1;
  1193   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1194   if( n->Opcode() == Op_AddP ) {
  1195     assert( mem == (Node*)1, "" );
  1196     start = AddPNode::Base+1;
  1198   for( i = start; i < cnt; i++ ) {
  1199     if( !n->match_edge(i) ) {
  1200       if( i < m->req() )
  1201         m->ins_req( i, n->in(i) );
  1202       else
  1203         m->add_req( n->in(i) );
  1207   return m;
  1211 //------------------------------match_into_reg---------------------------------
  1212 // Choose to either match this Node in a register or part of the current
  1213 // match tree.  Return true for requiring a register and false for matching
  1214 // as part of the current match tree.
  1215 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1217   const Type *t = m->bottom_type();
  1219   if( t->singleton() ) {
  1220     // Never force constants into registers.  Allow them to match as
  1221     // constants or registers.  Copies of the same value will share
  1222     // the same register.  See find_shared_constant.
  1223     return false;
  1224   } else {                      // Not a constant
  1225     // Stop recursion if they have different Controls.
  1226     // Slot 0 of constants is not really a Control.
  1227     if( control && m->in(0) && control != m->in(0) ) {
  1229       // Actually, we can live with the most conservative control we
  1230       // find, if it post-dominates the others.  This allows us to
  1231       // pick up load/op/store trees where the load can float a little
  1232       // above the store.
  1233       Node *x = control;
  1234       const uint max_scan = 6;   // Arbitrary scan cutoff
  1235       uint j;
  1236       for( j=0; j<max_scan; j++ ) {
  1237         if( x->is_Region() )    // Bail out at merge points
  1238           return true;
  1239         x = x->in(0);
  1240         if( x == m->in(0) )     // Does 'control' post-dominate
  1241           break;                // m->in(0)?  If so, we can use it
  1243       if( j == max_scan )       // No post-domination before scan end?
  1244         return true;            // Then break the match tree up
  1247     if (m->Opcode() == Op_DecodeN && m->outcnt() == 2) {
  1248       // These are commonly used in address expressions and can
  1249       // efficiently fold into them in some cases but because they are
  1250       // consumed by AddP they commonly have two users.
  1251       if (m->raw_out(0) == m->raw_out(1) && m->raw_out(0)->Opcode() == Op_AddP) return false;
  1255   // Not forceably cloning.  If shared, put it into a register.
  1256   return shared;
  1260 //------------------------------Instruction Selection--------------------------
  1261 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1262 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1263 // things the Matcher does not match (e.g., Memory), and things with different
  1264 // Controls (hence forced into different blocks).  We pass in the Control
  1265 // selected for this entire State tree.
  1267 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1268 // Store and the Load must have identical Memories (as well as identical
  1269 // pointers).  Since the Matcher does not have anything for Memory (and
  1270 // does not handle DAGs), I have to match the Memory input myself.  If the
  1271 // Tree root is a Store, I require all Loads to have the identical memory.
  1272 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1273   // Since Label_Root is a recursive function, its possible that we might run
  1274   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1275   LabelRootDepth++;
  1276   if (LabelRootDepth > MaxLabelRootDepth) {
  1277     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1278     return NULL;
  1280   uint care = 0;                // Edges matcher cares about
  1281   uint cnt = n->req();
  1282   uint i = 0;
  1284   // Examine children for memory state
  1285   // Can only subsume a child into your match-tree if that child's memory state
  1286   // is not modified along the path to another input.
  1287   // It is unsafe even if the other inputs are separate roots.
  1288   Node *input_mem = NULL;
  1289   for( i = 1; i < cnt; i++ ) {
  1290     if( !n->match_edge(i) ) continue;
  1291     Node *m = n->in(i);         // Get ith input
  1292     assert( m, "expect non-null children" );
  1293     if( m->is_Load() ) {
  1294       if( input_mem == NULL ) {
  1295         input_mem = m->in(MemNode::Memory);
  1296       } else if( input_mem != m->in(MemNode::Memory) ) {
  1297         input_mem = NodeSentinel;
  1302   for( i = 1; i < cnt; i++ ){// For my children
  1303     if( !n->match_edge(i) ) continue;
  1304     Node *m = n->in(i);         // Get ith input
  1305     // Allocate states out of a private arena
  1306     State *s = new (&_states_arena) State;
  1307     svec->_kids[care++] = s;
  1308     assert( care <= 2, "binary only for now" );
  1310     // Recursively label the State tree.
  1311     s->_kids[0] = NULL;
  1312     s->_kids[1] = NULL;
  1313     s->_leaf = m;
  1315     // Check for leaves of the State Tree; things that cannot be a part of
  1316     // the current tree.  If it finds any, that value is matched as a
  1317     // register operand.  If not, then the normal matching is used.
  1318     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1319         //
  1320         // Stop recursion if this is LoadNode and the root of this tree is a
  1321         // StoreNode and the load & store have different memories.
  1322         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1323         // Can NOT include the match of a subtree when its memory state
  1324         // is used by any of the other subtrees
  1325         (input_mem == NodeSentinel) ) {
  1326 #ifndef PRODUCT
  1327       // Print when we exclude matching due to different memory states at input-loads
  1328       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1329         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1330         tty->print_cr("invalid input_mem");
  1332 #endif
  1333       // Switch to a register-only opcode; this value must be in a register
  1334       // and cannot be subsumed as part of a larger instruction.
  1335       s->DFA( m->ideal_reg(), m );
  1337     } else {
  1338       // If match tree has no control and we do, adopt it for entire tree
  1339       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1340         control = m->in(0);         // Pick up control
  1341       // Else match as a normal part of the match tree.
  1342       control = Label_Root(m,s,control,mem);
  1343       if (C->failing()) return NULL;
  1348   // Call DFA to match this node, and return
  1349   svec->DFA( n->Opcode(), n );
  1351 #ifdef ASSERT
  1352   uint x;
  1353   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1354     if( svec->valid(x) )
  1355       break;
  1357   if (x >= _LAST_MACH_OPER) {
  1358     n->dump();
  1359     svec->dump();
  1360     assert( false, "bad AD file" );
  1362 #endif
  1363   return control;
  1367 // Con nodes reduced using the same rule can share their MachNode
  1368 // which reduces the number of copies of a constant in the final
  1369 // program.  The register allocator is free to split uses later to
  1370 // split live ranges.
  1371 MachNode* Matcher::find_shared_constant(Node* leaf, uint rule) {
  1372   if (!leaf->is_Con()) return NULL;
  1374   // See if this Con has already been reduced using this rule.
  1375   if (_shared_constants.Size() <= leaf->_idx) return NULL;
  1376   MachNode* last = (MachNode*)_shared_constants.at(leaf->_idx);
  1377   if (last != NULL && rule == last->rule()) {
  1378     // Get the new space root.
  1379     Node* xroot = new_node(C->root());
  1380     if (xroot == NULL) {
  1381       // This shouldn't happen give the order of matching.
  1382       return NULL;
  1385     // Shared constants need to have their control be root so they
  1386     // can be scheduled properly.
  1387     Node* control = last->in(0);
  1388     if (control != xroot) {
  1389       if (control == NULL || control == C->root()) {
  1390         last->set_req(0, xroot);
  1391       } else {
  1392         assert(false, "unexpected control");
  1393         return NULL;
  1396     return last;
  1398   return NULL;
  1402 //------------------------------ReduceInst-------------------------------------
  1403 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1404 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1405 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1406 // Each MachNode has a number of complicated MachOper operands; each
  1407 // MachOper also covers a further tree of Ideal Nodes.
  1409 // The root of the Ideal match tree is always an instruction, so we enter
  1410 // the recursion here.  After building the MachNode, we need to recurse
  1411 // the tree checking for these cases:
  1412 // (1) Child is an instruction -
  1413 //     Build the instruction (recursively), add it as an edge.
  1414 //     Build a simple operand (register) to hold the result of the instruction.
  1415 // (2) Child is an interior part of an instruction -
  1416 //     Skip over it (do nothing)
  1417 // (3) Child is the start of a operand -
  1418 //     Build the operand, place it inside the instruction
  1419 //     Call ReduceOper.
  1420 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1421   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1423   MachNode* shared_con = find_shared_constant(s->_leaf, rule);
  1424   if (shared_con != NULL) {
  1425     return shared_con;
  1428   // Build the object to represent this state & prepare for recursive calls
  1429   MachNode *mach = s->MachNodeGenerator( rule, C );
  1430   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1431   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1432   Node *leaf = s->_leaf;
  1433   // Check for instruction or instruction chain rule
  1434   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1435     // Instruction
  1436     mach->add_req( leaf->in(0) ); // Set initial control
  1437     // Reduce interior of complex instruction
  1438     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1439   } else {
  1440     // Instruction chain rules are data-dependent on their inputs
  1441     mach->add_req(0);             // Set initial control to none
  1442     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1445   // If a Memory was used, insert a Memory edge
  1446   if( mem != (Node*)1 )
  1447     mach->ins_req(MemNode::Memory,mem);
  1449   // If the _leaf is an AddP, insert the base edge
  1450   if( leaf->Opcode() == Op_AddP )
  1451     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1453   uint num_proj = _proj_list.size();
  1455   // Perform any 1-to-many expansions required
  1456   MachNode *ex = mach->Expand(s,_proj_list);
  1457   if( ex != mach ) {
  1458     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1459     if( ex->in(1)->is_Con() )
  1460       ex->in(1)->set_req(0, C->root());
  1461     // Remove old node from the graph
  1462     for( uint i=0; i<mach->req(); i++ ) {
  1463       mach->set_req(i,NULL);
  1467   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1468   // via the matcher.  By the time, nodes have been wired into the CFG,
  1469   // and any further nodes generated by expand rules will be left hanging
  1470   // in space, and will not get emitted as output code.  Catch this.
  1471   // Also, catch any new register allocation constraints ("projections")
  1472   // generated belatedly during spill code generation.
  1473   if (_allocation_started) {
  1474     guarantee(ex == mach, "no expand rules during spill generation");
  1475     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1478   if (leaf->is_Con()) {
  1479     // Record the con for sharing
  1480     _shared_constants.map(leaf->_idx, ex);
  1483   return ex;
  1486 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1487   // 'op' is what I am expecting to receive
  1488   int op = _leftOp[rule];
  1489   // Operand type to catch childs result
  1490   // This is what my child will give me.
  1491   int opnd_class_instance = s->_rule[op];
  1492   // Choose between operand class or not.
  1493   // This is what I will recieve.
  1494   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1495   // New rule for child.  Chase operand classes to get the actual rule.
  1496   int newrule = s->_rule[catch_op];
  1498   if( newrule < NUM_OPERANDS ) {
  1499     // Chain from operand or operand class, may be output of shared node
  1500     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1501             "Bad AD file: Instruction chain rule must chain from operand");
  1502     // Insert operand into array of operands for this instruction
  1503     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1505     ReduceOper( s, newrule, mem, mach );
  1506   } else {
  1507     // Chain from the result of an instruction
  1508     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1509     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1510     Node *mem1 = (Node*)1;
  1511     mach->add_req( ReduceInst(s, newrule, mem1) );
  1513   return;
  1517 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1518   if( s->_leaf->is_Load() ) {
  1519     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1520     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1521     mem = mem2;
  1523   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1524     if( mach->in(0) == NULL )
  1525       mach->set_req(0, s->_leaf->in(0));
  1528   // Now recursively walk the state tree & add operand list.
  1529   for( uint i=0; i<2; i++ ) {   // binary tree
  1530     State *newstate = s->_kids[i];
  1531     if( newstate == NULL ) break;      // Might only have 1 child
  1532     // 'op' is what I am expecting to receive
  1533     int op;
  1534     if( i == 0 ) {
  1535       op = _leftOp[rule];
  1536     } else {
  1537       op = _rightOp[rule];
  1539     // Operand type to catch childs result
  1540     // This is what my child will give me.
  1541     int opnd_class_instance = newstate->_rule[op];
  1542     // Choose between operand class or not.
  1543     // This is what I will receive.
  1544     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1545     // New rule for child.  Chase operand classes to get the actual rule.
  1546     int newrule = newstate->_rule[catch_op];
  1548     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1549       // Operand/operandClass
  1550       // Insert operand into array of operands for this instruction
  1551       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1552       ReduceOper( newstate, newrule, mem, mach );
  1554     } else {                    // Child is internal operand or new instruction
  1555       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1556         // internal operand --> call ReduceInst_Interior
  1557         // Interior of complex instruction.  Do nothing but recurse.
  1558         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1559       } else {
  1560         // instruction --> call build operand(  ) to catch result
  1561         //             --> ReduceInst( newrule )
  1562         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1563         Node *mem1 = (Node*)1;
  1564         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1567     assert( mach->_opnds[num_opnds-1], "" );
  1569   return num_opnds;
  1572 // This routine walks the interior of possible complex operands.
  1573 // At each point we check our children in the match tree:
  1574 // (1) No children -
  1575 //     We are a leaf; add _leaf field as an input to the MachNode
  1576 // (2) Child is an internal operand -
  1577 //     Skip over it ( do nothing )
  1578 // (3) Child is an instruction -
  1579 //     Call ReduceInst recursively and
  1580 //     and instruction as an input to the MachNode
  1581 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1582   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1583   State *kid = s->_kids[0];
  1584   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1586   // Leaf?  And not subsumed?
  1587   if( kid == NULL && !_swallowed[rule] ) {
  1588     mach->add_req( s->_leaf );  // Add leaf pointer
  1589     return;                     // Bail out
  1592   if( s->_leaf->is_Load() ) {
  1593     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1594     mem = s->_leaf->in(MemNode::Memory);
  1596   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1597     if( !mach->in(0) )
  1598       mach->set_req(0,s->_leaf->in(0));
  1599     else {
  1600       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1604   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1605     int newrule;
  1606     if( i == 0 )
  1607       newrule = kid->_rule[_leftOp[rule]];
  1608     else
  1609       newrule = kid->_rule[_rightOp[rule]];
  1611     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1612       // Internal operand; recurse but do nothing else
  1613       ReduceOper( kid, newrule, mem, mach );
  1615     } else {                    // Child is a new instruction
  1616       // Reduce the instruction, and add a direct pointer from this
  1617       // machine instruction to the newly reduced one.
  1618       Node *mem1 = (Node*)1;
  1619       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1625 // -------------------------------------------------------------------------
  1626 // Java-Java calling convention
  1627 // (what you use when Java calls Java)
  1629 //------------------------------find_receiver----------------------------------
  1630 // For a given signature, return the OptoReg for parameter 0.
  1631 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1632   VMRegPair regs;
  1633   BasicType sig_bt = T_OBJECT;
  1634   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1635   // Return argument 0 register.  In the LP64 build pointers
  1636   // take 2 registers, but the VM wants only the 'main' name.
  1637   return OptoReg::as_OptoReg(regs.first());
  1640 // A method-klass-holder may be passed in the inline_cache_reg
  1641 // and then expanded into the inline_cache_reg and a method_oop register
  1642 //   defined in ad_<arch>.cpp
  1645 //------------------------------find_shared------------------------------------
  1646 // Set bits if Node is shared or otherwise a root
  1647 void Matcher::find_shared( Node *n ) {
  1648   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1649   MStack mstack(C->unique() * 2);
  1650   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1651   while (mstack.is_nonempty()) {
  1652     n = mstack.node();       // Leave node on stack
  1653     Node_State nstate = mstack.state();
  1654     if (nstate == Pre_Visit) {
  1655       if (is_visited(n)) {   // Visited already?
  1656         // Node is shared and has no reason to clone.  Flag it as shared.
  1657         // This causes it to match into a register for the sharing.
  1658         set_shared(n);       // Flag as shared and
  1659         mstack.pop();        // remove node from stack
  1660         continue;
  1662       nstate = Visit; // Not already visited; so visit now
  1664     if (nstate == Visit) {
  1665       mstack.set_state(Post_Visit);
  1666       set_visited(n);   // Flag as visited now
  1667       bool mem_op = false;
  1669       switch( n->Opcode() ) {  // Handle some opcodes special
  1670       case Op_Phi:             // Treat Phis as shared roots
  1671       case Op_Parm:
  1672       case Op_Proj:            // All handled specially during matching
  1673       case Op_SafePointScalarObject:
  1674         set_shared(n);
  1675         set_dontcare(n);
  1676         break;
  1677       case Op_If:
  1678       case Op_CountedLoopEnd:
  1679         mstack.set_state(Alt_Post_Visit); // Alternative way
  1680         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1681         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1682         // Bool and CmpX side-by-side, because it can only get at constants
  1683         // that are at the leaves of Match trees, and the Bool's condition acts
  1684         // as a constant here.
  1685         mstack.push(n->in(1), Visit);         // Clone the Bool
  1686         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1687         continue; // while (mstack.is_nonempty())
  1688       case Op_ConvI2D:         // These forms efficiently match with a prior
  1689       case Op_ConvI2F:         //   Load but not a following Store
  1690         if( n->in(1)->is_Load() &&        // Prior load
  1691             n->outcnt() == 1 &&           // Not already shared
  1692             n->unique_out()->is_Store() ) // Following store
  1693           set_shared(n);       // Force it to be a root
  1694         break;
  1695       case Op_ReverseBytesI:
  1696       case Op_ReverseBytesL:
  1697         if( n->in(1)->is_Load() &&        // Prior load
  1698             n->outcnt() == 1 )            // Not already shared
  1699           set_shared(n);                  // Force it to be a root
  1700         break;
  1701       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1702       case Op_IfFalse:
  1703       case Op_IfTrue:
  1704       case Op_MachProj:
  1705       case Op_MergeMem:
  1706       case Op_Catch:
  1707       case Op_CatchProj:
  1708       case Op_CProj:
  1709       case Op_JumpProj:
  1710       case Op_JProj:
  1711       case Op_NeverBranch:
  1712         set_dontcare(n);
  1713         break;
  1714       case Op_Jump:
  1715         mstack.push(n->in(1), Visit);         // Switch Value
  1716         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1717         continue;                             // while (mstack.is_nonempty())
  1718       case Op_StrComp:
  1719         set_shared(n); // Force result into register (it will be anyways)
  1720         break;
  1721       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1722         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1723         const TypePtr* tp = tn->type()->is_ptr();
  1724         if (tp->_ptr == TypePtr::AnyNull) {
  1725           tn->set_type(TypePtr::NULL_PTR);
  1727         break;
  1729       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1730         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1731         const TypePtr* tp = tn->type()->is_narrowoop()->make_oopptr();
  1732         if (tp->_ptr == TypePtr::AnyNull) {
  1733           tn->set_type(TypeNarrowOop::NULL_PTR);
  1735         break;
  1737       case Op_Binary:         // These are introduced in the Post_Visit state.
  1738         ShouldNotReachHere();
  1739         break;
  1740       case Op_StoreB:         // Do match these, despite no ideal reg
  1741       case Op_StoreC:
  1742       case Op_StoreCM:
  1743       case Op_StoreD:
  1744       case Op_StoreF:
  1745       case Op_StoreI:
  1746       case Op_StoreL:
  1747       case Op_StoreP:
  1748       case Op_StoreN:
  1749       case Op_Store16B:
  1750       case Op_Store8B:
  1751       case Op_Store4B:
  1752       case Op_Store8C:
  1753       case Op_Store4C:
  1754       case Op_Store2C:
  1755       case Op_Store4I:
  1756       case Op_Store2I:
  1757       case Op_Store2L:
  1758       case Op_Store4F:
  1759       case Op_Store2F:
  1760       case Op_Store2D:
  1761       case Op_ClearArray:
  1762       case Op_SafePoint:
  1763         mem_op = true;
  1764         break;
  1765       case Op_LoadB:
  1766       case Op_LoadC:
  1767       case Op_LoadD:
  1768       case Op_LoadF:
  1769       case Op_LoadI:
  1770       case Op_LoadKlass:
  1771       case Op_LoadL:
  1772       case Op_LoadS:
  1773       case Op_LoadP:
  1774       case Op_LoadN:
  1775       case Op_LoadRange:
  1776       case Op_LoadD_unaligned:
  1777       case Op_LoadL_unaligned:
  1778       case Op_Load16B:
  1779       case Op_Load8B:
  1780       case Op_Load4B:
  1781       case Op_Load4C:
  1782       case Op_Load2C:
  1783       case Op_Load8C:
  1784       case Op_Load8S:
  1785       case Op_Load4S:
  1786       case Op_Load2S:
  1787       case Op_Load4I:
  1788       case Op_Load2I:
  1789       case Op_Load2L:
  1790       case Op_Load4F:
  1791       case Op_Load2F:
  1792       case Op_Load2D:
  1793         mem_op = true;
  1794         // Must be root of match tree due to prior load conflict
  1795         if( C->subsume_loads() == false ) {
  1796           set_shared(n);
  1798         // Fall into default case
  1799       default:
  1800         if( !n->ideal_reg() )
  1801           set_dontcare(n);  // Unmatchable Nodes
  1802       } // end_switch
  1804       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  1805         Node *m = n->in(i); // Get ith input
  1806         if (m == NULL) continue;  // Ignore NULLs
  1807         uint mop = m->Opcode();
  1809         // Must clone all producers of flags, or we will not match correctly.
  1810         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  1811         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  1812         // are also there, so we may match a float-branch to int-flags and
  1813         // expect the allocator to haul the flags from the int-side to the
  1814         // fp-side.  No can do.
  1815         if( _must_clone[mop] ) {
  1816           mstack.push(m, Visit);
  1817           continue; // for(int i = ...)
  1820         // Clone addressing expressions as they are "free" in most instructions
  1821         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  1822           Node *off = m->in(AddPNode::Offset);
  1823           if( off->is_Con() ) {
  1824             set_visited(m);  // Flag as visited now
  1825             Node *adr = m->in(AddPNode::Address);
  1827             // Intel, ARM and friends can handle 2 adds in addressing mode
  1828             if( clone_shift_expressions && adr->Opcode() == Op_AddP &&
  1829                 // AtomicAdd is not an addressing expression.
  1830                 // Cheap to find it by looking for screwy base.
  1831                 !adr->in(AddPNode::Base)->is_top() ) {
  1832               set_visited(adr);  // Flag as visited now
  1833               Node *shift = adr->in(AddPNode::Offset);
  1834               // Check for shift by small constant as well
  1835               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  1836                   shift->in(2)->get_int() <= 3 ) {
  1837                 set_visited(shift);  // Flag as visited now
  1838                 mstack.push(shift->in(2), Visit);
  1839 #ifdef _LP64
  1840                 // Allow Matcher to match the rule which bypass
  1841                 // ConvI2L operation for an array index on LP64
  1842                 // if the index value is positive.
  1843                 if( shift->in(1)->Opcode() == Op_ConvI2L &&
  1844                     shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
  1845                   set_visited(shift->in(1));  // Flag as visited now
  1846                   mstack.push(shift->in(1)->in(1), Pre_Visit);
  1847                 } else
  1848 #endif
  1849                 mstack.push(shift->in(1), Pre_Visit);
  1850               } else {
  1851                 mstack.push(shift, Pre_Visit);
  1853               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  1854               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  1855             } else {  // Sparc, Alpha, PPC and friends
  1856               mstack.push(adr, Pre_Visit);
  1859             // Clone X+offset as it also folds into most addressing expressions
  1860             mstack.push(off, Visit);
  1861             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  1862             continue; // for(int i = ...)
  1863           } // if( off->is_Con() )
  1864         }   // if( mem_op &&
  1865         mstack.push(m, Pre_Visit);
  1866       }     // for(int i = ...)
  1868     else if (nstate == Alt_Post_Visit) {
  1869       mstack.pop(); // Remove node from stack
  1870       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  1871       // shared and all users of the Bool need to move the Cmp in parallel.
  1872       // This leaves both the Bool and the If pointing at the Cmp.  To
  1873       // prevent the Matcher from trying to Match the Cmp along both paths
  1874       // BoolNode::match_edge always returns a zero.
  1876       // We reorder the Op_If in a pre-order manner, so we can visit without
  1877       // accidently sharing the Cmp (the Bool and the If make 2 users).
  1878       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  1880     else if (nstate == Post_Visit) {
  1881       mstack.pop(); // Remove node from stack
  1883       // Now hack a few special opcodes
  1884       switch( n->Opcode() ) {       // Handle some opcodes special
  1885       case Op_StorePConditional:
  1886       case Op_StoreLConditional:
  1887       case Op_CompareAndSwapI:
  1888       case Op_CompareAndSwapL:
  1889       case Op_CompareAndSwapP:
  1890       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  1891         Node *newval = n->in(MemNode::ValueIn );
  1892         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  1893         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  1894         n->set_req(MemNode::ValueIn,pair);
  1895         n->del_req(LoadStoreNode::ExpectedIn);
  1896         break;
  1898       case Op_CMoveD:              // Convert trinary to binary-tree
  1899       case Op_CMoveF:
  1900       case Op_CMoveI:
  1901       case Op_CMoveL:
  1902       case Op_CMoveP: {
  1903         // Restructure into a binary tree for Matching.  It's possible that
  1904         // we could move this code up next to the graph reshaping for IfNodes
  1905         // or vice-versa, but I do not want to debug this for Ladybird.
  1906         // 10/2/2000 CNC.
  1907         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  1908         n->set_req(1,pair1);
  1909         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  1910         n->set_req(2,pair2);
  1911         n->del_req(3);
  1912         break;
  1914       default:
  1915         break;
  1918     else {
  1919       ShouldNotReachHere();
  1921   } // end of while (mstack.is_nonempty())
  1924 #ifdef ASSERT
  1925 // machine-independent root to machine-dependent root
  1926 void Matcher::dump_old2new_map() {
  1927   _old2new_map.dump();
  1929 #endif
  1931 //---------------------------collect_null_checks-------------------------------
  1932 // Find null checks in the ideal graph; write a machine-specific node for
  1933 // it.  Used by later implicit-null-check handling.  Actually collects
  1934 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  1935 // value being tested.
  1936 void Matcher::collect_null_checks( Node *proj ) {
  1937   Node *iff = proj->in(0);
  1938   if( iff->Opcode() == Op_If ) {
  1939     // During matching If's have Bool & Cmp side-by-side
  1940     BoolNode *b = iff->in(1)->as_Bool();
  1941     Node *cmp = iff->in(2);
  1942     int opc = cmp->Opcode();
  1943     if (opc != Op_CmpP && opc != Op_CmpN) return;
  1945     const Type* ct = cmp->in(2)->bottom_type();
  1946     if (ct == TypePtr::NULL_PTR ||
  1947         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  1949       if( proj->Opcode() == Op_IfTrue ) {
  1950         extern int all_null_checks_found;
  1951         all_null_checks_found++;
  1952         if( b->_test._test == BoolTest::ne ) {
  1953           _null_check_tests.push(proj);
  1954           _null_check_tests.push(cmp->in(1));
  1956       } else {
  1957         assert( proj->Opcode() == Op_IfFalse, "" );
  1958         if( b->_test._test == BoolTest::eq ) {
  1959           _null_check_tests.push(proj);
  1960           _null_check_tests.push(cmp->in(1));
  1967 //---------------------------validate_null_checks------------------------------
  1968 // Its possible that the value being NULL checked is not the root of a match
  1969 // tree.  If so, I cannot use the value in an implicit null check.
  1970 void Matcher::validate_null_checks( ) {
  1971   uint cnt = _null_check_tests.size();
  1972   for( uint i=0; i < cnt; i+=2 ) {
  1973     Node *test = _null_check_tests[i];
  1974     Node *val = _null_check_tests[i+1];
  1975     if (has_new_node(val)) {
  1976       // Is a match-tree root, so replace with the matched value
  1977       _null_check_tests.map(i+1, new_node(val));
  1978     } else {
  1979       // Yank from candidate list
  1980       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  1981       _null_check_tests.map(i,_null_check_tests[--cnt]);
  1982       _null_check_tests.pop();
  1983       _null_check_tests.pop();
  1984       i-=2;
  1990 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
  1991 // acting as an Acquire and thus we don't need an Acquire here.  We
  1992 // retain the Node to act as a compiler ordering barrier.
  1993 bool Matcher::prior_fast_lock( const Node *acq ) {
  1994   Node *r = acq->in(0);
  1995   if( !r->is_Region() || r->req() <= 1 ) return false;
  1996   Node *proj = r->in(1);
  1997   if( !proj->is_Proj() ) return false;
  1998   Node *call = proj->in(0);
  1999   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
  2000     return false;
  2002   return true;
  2005 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
  2006 // acting as a Release and thus we don't need a Release here.  We
  2007 // retain the Node to act as a compiler ordering barrier.
  2008 bool Matcher::post_fast_unlock( const Node *rel ) {
  2009   Compile *C = Compile::current();
  2010   assert( rel->Opcode() == Op_MemBarRelease, "" );
  2011   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
  2012   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2013   Node *ctrl = NULL;
  2014   while( true ) {
  2015     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2016     assert( ctrl->is_Proj(), "only projections here" );
  2017     ProjNode *proj = (ProjNode*)ctrl;
  2018     if( proj->_con == TypeFunc::Control &&
  2019         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2020       break;
  2021     i++;
  2023   Node *iff = NULL;
  2024   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2025     Node *x = ctrl->fast_out(j);
  2026     if( x->is_If() && x->req() > 1 &&
  2027         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2028       iff = x;
  2029       break;
  2032   if( !iff ) return false;
  2033   Node *bol = iff->in(1);
  2034   // The iff might be some random subclass of If or bol might be Con-Top
  2035   if (!bol->is_Bool())  return false;
  2036   assert( bol->req() > 1, "" );
  2037   return (bol->in(1)->Opcode() == Op_FastUnlock);
  2040 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2041 // atomic instruction acting as a store_load barrier without any
  2042 // intervening volatile load, and thus we don't need a barrier here.
  2043 // We retain the Node to act as a compiler ordering barrier.
  2044 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2045   Compile *C = Compile::current();
  2046   assert( vmb->is_MemBar(), "" );
  2047   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2048   const MemBarNode *mem = (const MemBarNode*)vmb;
  2050   // Get the Proj node, ctrl, that can be used to iterate forward
  2051   Node *ctrl = NULL;
  2052   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2053   while( true ) {
  2054     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2055     assert( ctrl->is_Proj(), "only projections here" );
  2056     ProjNode *proj = (ProjNode*)ctrl;
  2057     if( proj->_con == TypeFunc::Control &&
  2058         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2059       break;
  2060     i++;
  2063   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2064     Node *x = ctrl->fast_out(j);
  2065     int xop = x->Opcode();
  2067     // We don't need current barrier if we see another or a lock
  2068     // before seeing volatile load.
  2069     //
  2070     // Op_Fastunlock previously appeared in the Op_* list below.
  2071     // With the advent of 1-0 lock operations we're no longer guaranteed
  2072     // that a monitor exit operation contains a serializing instruction.
  2074     if (xop == Op_MemBarVolatile ||
  2075         xop == Op_FastLock ||
  2076         xop == Op_CompareAndSwapL ||
  2077         xop == Op_CompareAndSwapP ||
  2078         xop == Op_CompareAndSwapN ||
  2079         xop == Op_CompareAndSwapI)
  2080       return true;
  2082     if (x->is_MemBar()) {
  2083       // We must retain this membar if there is an upcoming volatile
  2084       // load, which will be preceded by acquire membar.
  2085       if (xop == Op_MemBarAcquire)
  2086         return false;
  2087       // For other kinds of barriers, check by pretending we
  2088       // are them, and seeing if we can be removed.
  2089       else
  2090         return post_store_load_barrier((const MemBarNode*)x);
  2093     // Delicate code to detect case of an upcoming fastlock block
  2094     if( x->is_If() && x->req() > 1 &&
  2095         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2096       Node *iff = x;
  2097       Node *bol = iff->in(1);
  2098       // The iff might be some random subclass of If or bol might be Con-Top
  2099       if (!bol->is_Bool())  return false;
  2100       assert( bol->req() > 1, "" );
  2101       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2103     // probably not necessary to check for these
  2104     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2105       return false;
  2107   return false;
  2110 //=============================================================================
  2111 //---------------------------State---------------------------------------------
  2112 State::State(void) {
  2113 #ifdef ASSERT
  2114   _id = 0;
  2115   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2116   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2117   //memset(_cost, -1, sizeof(_cost));
  2118   //memset(_rule, -1, sizeof(_rule));
  2119 #endif
  2120   memset(_valid, 0, sizeof(_valid));
  2123 #ifdef ASSERT
  2124 State::~State() {
  2125   _id = 99;
  2126   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2127   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2128   memset(_cost, -3, sizeof(_cost));
  2129   memset(_rule, -3, sizeof(_rule));
  2131 #endif
  2133 #ifndef PRODUCT
  2134 //---------------------------dump----------------------------------------------
  2135 void State::dump() {
  2136   tty->print("\n");
  2137   dump(0);
  2140 void State::dump(int depth) {
  2141   for( int j = 0; j < depth; j++ )
  2142     tty->print("   ");
  2143   tty->print("--N: ");
  2144   _leaf->dump();
  2145   uint i;
  2146   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2147     // Check for valid entry
  2148     if( valid(i) ) {
  2149       for( int j = 0; j < depth; j++ )
  2150         tty->print("   ");
  2151         assert(_cost[i] != max_juint, "cost must be a valid value");
  2152         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2153         tty->print_cr("%s  %d  %s",
  2154                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2156   tty->print_cr("");
  2158   for( i=0; i<2; i++ )
  2159     if( _kids[i] )
  2160       _kids[i]->dump(depth+1);
  2162 #endif

mercurial