src/share/vm/runtime/thread.cpp

Thu, 03 Apr 2014 17:49:31 +0400

author
vkempik
date
Thu, 03 Apr 2014 17:49:31 +0400
changeset 6552
8847586c9037
parent 6518
62c54fcc0a35
child 6619
9c3dc501b5eb
permissions
-rw-r--r--

8016302: Change type of the number of GC workers to unsigned int (2)
Reviewed-by: tschatzl, jwilhelm

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/osThread.hpp"
    62 #include "runtime/safepoint.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/statSampler.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/task.hpp"
    67 #include "runtime/thread.inline.hpp"
    68 #include "runtime/threadCritical.hpp"
    69 #include "runtime/threadLocalStorage.hpp"
    70 #include "runtime/vframe.hpp"
    71 #include "runtime/vframeArray.hpp"
    72 #include "runtime/vframe_hp.hpp"
    73 #include "runtime/vmThread.hpp"
    74 #include "runtime/vm_operations.hpp"
    75 #include "services/attachListener.hpp"
    76 #include "services/management.hpp"
    77 #include "services/memTracker.hpp"
    78 #include "services/threadService.hpp"
    79 #include "trace/tracing.hpp"
    80 #include "trace/traceMacros.hpp"
    81 #include "utilities/defaultStream.hpp"
    82 #include "utilities/dtrace.hpp"
    83 #include "utilities/events.hpp"
    84 #include "utilities/preserveException.hpp"
    85 #include "utilities/macros.hpp"
    86 #ifdef TARGET_OS_FAMILY_linux
    87 # include "os_linux.inline.hpp"
    88 #endif
    89 #ifdef TARGET_OS_FAMILY_solaris
    90 # include "os_solaris.inline.hpp"
    91 #endif
    92 #ifdef TARGET_OS_FAMILY_windows
    93 # include "os_windows.inline.hpp"
    94 #endif
    95 #ifdef TARGET_OS_FAMILY_bsd
    96 # include "os_bsd.inline.hpp"
    97 #endif
    98 #if INCLUDE_ALL_GCS
    99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   102 #endif // INCLUDE_ALL_GCS
   103 #ifdef COMPILER1
   104 #include "c1/c1_Compiler.hpp"
   105 #endif
   106 #ifdef COMPILER2
   107 #include "opto/c2compiler.hpp"
   108 #include "opto/idealGraphPrinter.hpp"
   109 #endif
   110 #if INCLUDE_RTM_OPT
   111 #include "runtime/rtmLocking.hpp"
   112 #endif
   114 #ifdef DTRACE_ENABLED
   116 // Only bother with this argument setup if dtrace is available
   118 #ifndef USDT2
   119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   120 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   121 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   122   intptr_t, intptr_t, bool);
   123 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   124   intptr_t, intptr_t, bool);
   126 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   127   {                                                                        \
   128     ResourceMark rm(this);                                                 \
   129     int len = 0;                                                           \
   130     const char* name = (javathread)->get_thread_name();                    \
   131     len = strlen(name);                                                    \
   132     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   133       name, len,                                                           \
   134       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   135       (javathread)->osthread()->thread_id(),                               \
   136       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   137   }
   139 #else /* USDT2 */
   141 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   142 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   144 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   145   {                                                                        \
   146     ResourceMark rm(this);                                                 \
   147     int len = 0;                                                           \
   148     const char* name = (javathread)->get_thread_name();                    \
   149     len = strlen(name);                                                    \
   150     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   151       (char *) name, len,                                                           \
   152       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   153       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   154       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   155   }
   157 #endif /* USDT2 */
   159 #else //  ndef DTRACE_ENABLED
   161 #define DTRACE_THREAD_PROBE(probe, javathread)
   163 #endif // ndef DTRACE_ENABLED
   166 // Class hierarchy
   167 // - Thread
   168 //   - VMThread
   169 //   - WatcherThread
   170 //   - ConcurrentMarkSweepThread
   171 //   - JavaThread
   172 //     - CompilerThread
   174 // ======= Thread ========
   175 // Support for forcing alignment of thread objects for biased locking
   176 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   177   if (UseBiasedLocking) {
   178     const int alignment = markOopDesc::biased_lock_alignment;
   179     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   180     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   181                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   182                                               AllocFailStrategy::RETURN_NULL);
   183     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   184     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   185            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   186            "JavaThread alignment code overflowed allocated storage");
   187     if (TraceBiasedLocking) {
   188       if (aligned_addr != real_malloc_addr)
   189         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   190                       real_malloc_addr, aligned_addr);
   191     }
   192     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   193     return aligned_addr;
   194   } else {
   195     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   196                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   197   }
   198 }
   200 void Thread::operator delete(void* p) {
   201   if (UseBiasedLocking) {
   202     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   203     FreeHeap(real_malloc_addr, mtThread);
   204   } else {
   205     FreeHeap(p, mtThread);
   206   }
   207 }
   210 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   211 // JavaThread
   214 Thread::Thread() {
   215   // stack and get_thread
   216   set_stack_base(NULL);
   217   set_stack_size(0);
   218   set_self_raw_id(0);
   219   set_lgrp_id(-1);
   221   // allocated data structures
   222   set_osthread(NULL);
   223   set_resource_area(new (mtThread)ResourceArea());
   224   DEBUG_ONLY(_current_resource_mark = NULL;)
   225   set_handle_area(new (mtThread) HandleArea(NULL));
   226   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
   227   set_active_handles(NULL);
   228   set_free_handle_block(NULL);
   229   set_last_handle_mark(NULL);
   231   // This initial value ==> never claimed.
   232   _oops_do_parity = 0;
   234   // the handle mark links itself to last_handle_mark
   235   new HandleMark(this);
   237   // plain initialization
   238   debug_only(_owned_locks = NULL;)
   239   debug_only(_allow_allocation_count = 0;)
   240   NOT_PRODUCT(_allow_safepoint_count = 0;)
   241   NOT_PRODUCT(_skip_gcalot = false;)
   242   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   243   _jvmti_env_iteration_count = 0;
   244   set_allocated_bytes(0);
   245   _vm_operation_started_count = 0;
   246   _vm_operation_completed_count = 0;
   247   _current_pending_monitor = NULL;
   248   _current_pending_monitor_is_from_java = true;
   249   _current_waiting_monitor = NULL;
   250   _num_nested_signal = 0;
   251   omFreeList = NULL ;
   252   omFreeCount = 0 ;
   253   omFreeProvision = 32 ;
   254   omInUseList = NULL ;
   255   omInUseCount = 0 ;
   257 #ifdef ASSERT
   258   _visited_for_critical_count = false;
   259 #endif
   261   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   262   _suspend_flags = 0;
   264   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   265   _hashStateX = os::random() ;
   266   _hashStateY = 842502087 ;
   267   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   268   _hashStateW = 273326509 ;
   270   _OnTrap   = 0 ;
   271   _schedctl = NULL ;
   272   _Stalled  = 0 ;
   273   _TypeTag  = 0x2BAD ;
   275   // Many of the following fields are effectively final - immutable
   276   // Note that nascent threads can't use the Native Monitor-Mutex
   277   // construct until the _MutexEvent is initialized ...
   278   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   279   // we might instead use a stack of ParkEvents that we could provision on-demand.
   280   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   281   // and ::Release()
   282   _ParkEvent   = ParkEvent::Allocate (this) ;
   283   _SleepEvent  = ParkEvent::Allocate (this) ;
   284   _MutexEvent  = ParkEvent::Allocate (this) ;
   285   _MuxEvent    = ParkEvent::Allocate (this) ;
   287 #ifdef CHECK_UNHANDLED_OOPS
   288   if (CheckUnhandledOops) {
   289     _unhandled_oops = new UnhandledOops(this);
   290   }
   291 #endif // CHECK_UNHANDLED_OOPS
   292 #ifdef ASSERT
   293   if (UseBiasedLocking) {
   294     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   295     assert(this == _real_malloc_address ||
   296            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   297            "bug in forced alignment of thread objects");
   298   }
   299 #endif /* ASSERT */
   300 }
   302 void Thread::initialize_thread_local_storage() {
   303   // Note: Make sure this method only calls
   304   // non-blocking operations. Otherwise, it might not work
   305   // with the thread-startup/safepoint interaction.
   307   // During Java thread startup, safepoint code should allow this
   308   // method to complete because it may need to allocate memory to
   309   // store information for the new thread.
   311   // initialize structure dependent on thread local storage
   312   ThreadLocalStorage::set_thread(this);
   313 }
   315 void Thread::record_stack_base_and_size() {
   316   set_stack_base(os::current_stack_base());
   317   set_stack_size(os::current_stack_size());
   318   if (is_Java_thread()) {
   319     ((JavaThread*) this)->set_stack_overflow_limit();
   320   }
   321   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   322   // in initialize_thread(). Without the adjustment, stack size is
   323   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   324   // So far, only Solaris has real implementation of initialize_thread().
   325   //
   326   // set up any platform-specific state.
   327   os::initialize_thread(this);
   329 #if INCLUDE_NMT
   330   // record thread's native stack, stack grows downward
   331   address stack_low_addr = stack_base() - stack_size();
   332   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
   333       CURRENT_PC);
   334 #endif // INCLUDE_NMT
   335 }
   338 Thread::~Thread() {
   339   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   340   ObjectSynchronizer::omFlush (this) ;
   342   EVENT_THREAD_DESTRUCT(this);
   344   // stack_base can be NULL if the thread is never started or exited before
   345   // record_stack_base_and_size called. Although, we would like to ensure
   346   // that all started threads do call record_stack_base_and_size(), there is
   347   // not proper way to enforce that.
   348 #if INCLUDE_NMT
   349   if (_stack_base != NULL) {
   350     address low_stack_addr = stack_base() - stack_size();
   351     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
   352 #ifdef ASSERT
   353     set_stack_base(NULL);
   354 #endif
   355   }
   356 #endif // INCLUDE_NMT
   358   // deallocate data structures
   359   delete resource_area();
   360   // since the handle marks are using the handle area, we have to deallocated the root
   361   // handle mark before deallocating the thread's handle area,
   362   assert(last_handle_mark() != NULL, "check we have an element");
   363   delete last_handle_mark();
   364   assert(last_handle_mark() == NULL, "check we have reached the end");
   366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   367   // We NULL out the fields for good hygiene.
   368   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   369   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   370   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   371   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   373   delete handle_area();
   374   delete metadata_handles();
   376   // osthread() can be NULL, if creation of thread failed.
   377   if (osthread() != NULL) os::free_thread(osthread());
   379   delete _SR_lock;
   381   // clear thread local storage if the Thread is deleting itself
   382   if (this == Thread::current()) {
   383     ThreadLocalStorage::set_thread(NULL);
   384   } else {
   385     // In the case where we're not the current thread, invalidate all the
   386     // caches in case some code tries to get the current thread or the
   387     // thread that was destroyed, and gets stale information.
   388     ThreadLocalStorage::invalidate_all();
   389   }
   390   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   391 }
   393 // NOTE: dummy function for assertion purpose.
   394 void Thread::run() {
   395   ShouldNotReachHere();
   396 }
   398 #ifdef ASSERT
   399 // Private method to check for dangling thread pointer
   400 void check_for_dangling_thread_pointer(Thread *thread) {
   401  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   402          "possibility of dangling Thread pointer");
   403 }
   404 #endif
   407 #ifndef PRODUCT
   408 // Tracing method for basic thread operations
   409 void Thread::trace(const char* msg, const Thread* const thread) {
   410   if (!TraceThreadEvents) return;
   411   ResourceMark rm;
   412   ThreadCritical tc;
   413   const char *name = "non-Java thread";
   414   int prio = -1;
   415   if (thread->is_Java_thread()
   416       && !thread->is_Compiler_thread()) {
   417     // The Threads_lock must be held to get information about
   418     // this thread but may not be in some situations when
   419     // tracing  thread events.
   420     bool release_Threads_lock = false;
   421     if (!Threads_lock->owned_by_self()) {
   422       Threads_lock->lock();
   423       release_Threads_lock = true;
   424     }
   425     JavaThread* jt = (JavaThread *)thread;
   426     name = (char *)jt->get_thread_name();
   427     oop thread_oop = jt->threadObj();
   428     if (thread_oop != NULL) {
   429       prio = java_lang_Thread::priority(thread_oop);
   430     }
   431     if (release_Threads_lock) {
   432       Threads_lock->unlock();
   433     }
   434   }
   435   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   436 }
   437 #endif
   440 ThreadPriority Thread::get_priority(const Thread* const thread) {
   441   trace("get priority", thread);
   442   ThreadPriority priority;
   443   // Can return an error!
   444   (void)os::get_priority(thread, priority);
   445   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   446   return priority;
   447 }
   449 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   450   trace("set priority", thread);
   451   debug_only(check_for_dangling_thread_pointer(thread);)
   452   // Can return an error!
   453   (void)os::set_priority(thread, priority);
   454 }
   457 void Thread::start(Thread* thread) {
   458   trace("start", thread);
   459   // Start is different from resume in that its safety is guaranteed by context or
   460   // being called from a Java method synchronized on the Thread object.
   461   if (!DisableStartThread) {
   462     if (thread->is_Java_thread()) {
   463       // Initialize the thread state to RUNNABLE before starting this thread.
   464       // Can not set it after the thread started because we do not know the
   465       // exact thread state at that time. It could be in MONITOR_WAIT or
   466       // in SLEEPING or some other state.
   467       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   468                                           java_lang_Thread::RUNNABLE);
   469     }
   470     os::start_thread(thread);
   471   }
   472 }
   474 // Enqueue a VM_Operation to do the job for us - sometime later
   475 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   476   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   477   VMThread::execute(vm_stop);
   478 }
   481 //
   482 // Check if an external suspend request has completed (or has been
   483 // cancelled). Returns true if the thread is externally suspended and
   484 // false otherwise.
   485 //
   486 // The bits parameter returns information about the code path through
   487 // the routine. Useful for debugging:
   488 //
   489 // set in is_ext_suspend_completed():
   490 // 0x00000001 - routine was entered
   491 // 0x00000010 - routine return false at end
   492 // 0x00000100 - thread exited (return false)
   493 // 0x00000200 - suspend request cancelled (return false)
   494 // 0x00000400 - thread suspended (return true)
   495 // 0x00001000 - thread is in a suspend equivalent state (return true)
   496 // 0x00002000 - thread is native and walkable (return true)
   497 // 0x00004000 - thread is native_trans and walkable (needed retry)
   498 //
   499 // set in wait_for_ext_suspend_completion():
   500 // 0x00010000 - routine was entered
   501 // 0x00020000 - suspend request cancelled before loop (return false)
   502 // 0x00040000 - thread suspended before loop (return true)
   503 // 0x00080000 - suspend request cancelled in loop (return false)
   504 // 0x00100000 - thread suspended in loop (return true)
   505 // 0x00200000 - suspend not completed during retry loop (return false)
   506 //
   508 // Helper class for tracing suspend wait debug bits.
   509 //
   510 // 0x00000100 indicates that the target thread exited before it could
   511 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   512 // 0x00080000 each indicate a cancelled suspend request so they don't
   513 // count as wait failures either.
   514 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   516 class TraceSuspendDebugBits : public StackObj {
   517  private:
   518   JavaThread * jt;
   519   bool         is_wait;
   520   bool         called_by_wait;  // meaningful when !is_wait
   521   uint32_t *   bits;
   523  public:
   524   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   525                         uint32_t *_bits) {
   526     jt             = _jt;
   527     is_wait        = _is_wait;
   528     called_by_wait = _called_by_wait;
   529     bits           = _bits;
   530   }
   532   ~TraceSuspendDebugBits() {
   533     if (!is_wait) {
   534 #if 1
   535       // By default, don't trace bits for is_ext_suspend_completed() calls.
   536       // That trace is very chatty.
   537       return;
   538 #else
   539       if (!called_by_wait) {
   540         // If tracing for is_ext_suspend_completed() is enabled, then only
   541         // trace calls to it from wait_for_ext_suspend_completion()
   542         return;
   543       }
   544 #endif
   545     }
   547     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   548       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   549         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   550         ResourceMark rm;
   552         tty->print_cr(
   553             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   554             jt->get_thread_name(), *bits);
   556         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   557       }
   558     }
   559   }
   560 };
   561 #undef DEBUG_FALSE_BITS
   564 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   565   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   567   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   568   bool do_trans_retry;           // flag to force the retry
   570   *bits |= 0x00000001;
   572   do {
   573     do_trans_retry = false;
   575     if (is_exiting()) {
   576       // Thread is in the process of exiting. This is always checked
   577       // first to reduce the risk of dereferencing a freed JavaThread.
   578       *bits |= 0x00000100;
   579       return false;
   580     }
   582     if (!is_external_suspend()) {
   583       // Suspend request is cancelled. This is always checked before
   584       // is_ext_suspended() to reduce the risk of a rogue resume
   585       // confusing the thread that made the suspend request.
   586       *bits |= 0x00000200;
   587       return false;
   588     }
   590     if (is_ext_suspended()) {
   591       // thread is suspended
   592       *bits |= 0x00000400;
   593       return true;
   594     }
   596     // Now that we no longer do hard suspends of threads running
   597     // native code, the target thread can be changing thread state
   598     // while we are in this routine:
   599     //
   600     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   601     //
   602     // We save a copy of the thread state as observed at this moment
   603     // and make our decision about suspend completeness based on the
   604     // copy. This closes the race where the thread state is seen as
   605     // _thread_in_native_trans in the if-thread_blocked check, but is
   606     // seen as _thread_blocked in if-thread_in_native_trans check.
   607     JavaThreadState save_state = thread_state();
   609     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   610       // If the thread's state is _thread_blocked and this blocking
   611       // condition is known to be equivalent to a suspend, then we can
   612       // consider the thread to be externally suspended. This means that
   613       // the code that sets _thread_blocked has been modified to do
   614       // self-suspension if the blocking condition releases. We also
   615       // used to check for CONDVAR_WAIT here, but that is now covered by
   616       // the _thread_blocked with self-suspension check.
   617       //
   618       // Return true since we wouldn't be here unless there was still an
   619       // external suspend request.
   620       *bits |= 0x00001000;
   621       return true;
   622     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   623       // Threads running native code will self-suspend on native==>VM/Java
   624       // transitions. If its stack is walkable (should always be the case
   625       // unless this function is called before the actual java_suspend()
   626       // call), then the wait is done.
   627       *bits |= 0x00002000;
   628       return true;
   629     } else if (!called_by_wait && !did_trans_retry &&
   630                save_state == _thread_in_native_trans &&
   631                frame_anchor()->walkable()) {
   632       // The thread is transitioning from thread_in_native to another
   633       // thread state. check_safepoint_and_suspend_for_native_trans()
   634       // will force the thread to self-suspend. If it hasn't gotten
   635       // there yet we may have caught the thread in-between the native
   636       // code check above and the self-suspend. Lucky us. If we were
   637       // called by wait_for_ext_suspend_completion(), then it
   638       // will be doing the retries so we don't have to.
   639       //
   640       // Since we use the saved thread state in the if-statement above,
   641       // there is a chance that the thread has already transitioned to
   642       // _thread_blocked by the time we get here. In that case, we will
   643       // make a single unnecessary pass through the logic below. This
   644       // doesn't hurt anything since we still do the trans retry.
   646       *bits |= 0x00004000;
   648       // Once the thread leaves thread_in_native_trans for another
   649       // thread state, we break out of this retry loop. We shouldn't
   650       // need this flag to prevent us from getting back here, but
   651       // sometimes paranoia is good.
   652       did_trans_retry = true;
   654       // We wait for the thread to transition to a more usable state.
   655       for (int i = 1; i <= SuspendRetryCount; i++) {
   656         // We used to do an "os::yield_all(i)" call here with the intention
   657         // that yielding would increase on each retry. However, the parameter
   658         // is ignored on Linux which means the yield didn't scale up. Waiting
   659         // on the SR_lock below provides a much more predictable scale up for
   660         // the delay. It also provides a simple/direct point to check for any
   661         // safepoint requests from the VMThread
   663         // temporarily drops SR_lock while doing wait with safepoint check
   664         // (if we're a JavaThread - the WatcherThread can also call this)
   665         // and increase delay with each retry
   666         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   668         // check the actual thread state instead of what we saved above
   669         if (thread_state() != _thread_in_native_trans) {
   670           // the thread has transitioned to another thread state so
   671           // try all the checks (except this one) one more time.
   672           do_trans_retry = true;
   673           break;
   674         }
   675       } // end retry loop
   678     }
   679   } while (do_trans_retry);
   681   *bits |= 0x00000010;
   682   return false;
   683 }
   685 //
   686 // Wait for an external suspend request to complete (or be cancelled).
   687 // Returns true if the thread is externally suspended and false otherwise.
   688 //
   689 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   690        uint32_t *bits) {
   691   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   692                              false /* !called_by_wait */, bits);
   694   // local flag copies to minimize SR_lock hold time
   695   bool is_suspended;
   696   bool pending;
   697   uint32_t reset_bits;
   699   // set a marker so is_ext_suspend_completed() knows we are the caller
   700   *bits |= 0x00010000;
   702   // We use reset_bits to reinitialize the bits value at the top of
   703   // each retry loop. This allows the caller to make use of any
   704   // unused bits for their own marking purposes.
   705   reset_bits = *bits;
   707   {
   708     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   709     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   710                                             delay, bits);
   711     pending = is_external_suspend();
   712   }
   713   // must release SR_lock to allow suspension to complete
   715   if (!pending) {
   716     // A cancelled suspend request is the only false return from
   717     // is_ext_suspend_completed() that keeps us from entering the
   718     // retry loop.
   719     *bits |= 0x00020000;
   720     return false;
   721   }
   723   if (is_suspended) {
   724     *bits |= 0x00040000;
   725     return true;
   726   }
   728   for (int i = 1; i <= retries; i++) {
   729     *bits = reset_bits;  // reinit to only track last retry
   731     // We used to do an "os::yield_all(i)" call here with the intention
   732     // that yielding would increase on each retry. However, the parameter
   733     // is ignored on Linux which means the yield didn't scale up. Waiting
   734     // on the SR_lock below provides a much more predictable scale up for
   735     // the delay. It also provides a simple/direct point to check for any
   736     // safepoint requests from the VMThread
   738     {
   739       MutexLocker ml(SR_lock());
   740       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   741       // can also call this)  and increase delay with each retry
   742       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   744       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   745                                               delay, bits);
   747       // It is possible for the external suspend request to be cancelled
   748       // (by a resume) before the actual suspend operation is completed.
   749       // Refresh our local copy to see if we still need to wait.
   750       pending = is_external_suspend();
   751     }
   753     if (!pending) {
   754       // A cancelled suspend request is the only false return from
   755       // is_ext_suspend_completed() that keeps us from staying in the
   756       // retry loop.
   757       *bits |= 0x00080000;
   758       return false;
   759     }
   761     if (is_suspended) {
   762       *bits |= 0x00100000;
   763       return true;
   764     }
   765   } // end retry loop
   767   // thread did not suspend after all our retries
   768   *bits |= 0x00200000;
   769   return false;
   770 }
   772 #ifndef PRODUCT
   773 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   775   // This should not need to be atomic as the only way for simultaneous
   776   // updates is via interrupts. Even then this should be rare or non-existant
   777   // and we don't care that much anyway.
   779   int index = _jmp_ring_index;
   780   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   781   _jmp_ring[index]._target = (intptr_t) target;
   782   _jmp_ring[index]._instruction = (intptr_t) instr;
   783   _jmp_ring[index]._file = file;
   784   _jmp_ring[index]._line = line;
   785 }
   786 #endif /* PRODUCT */
   788 // Called by flat profiler
   789 // Callers have already called wait_for_ext_suspend_completion
   790 // The assertion for that is currently too complex to put here:
   791 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   792   bool gotframe = false;
   793   // self suspension saves needed state.
   794   if (has_last_Java_frame() && _anchor.walkable()) {
   795      *_fr = pd_last_frame();
   796      gotframe = true;
   797   }
   798   return gotframe;
   799 }
   801 void Thread::interrupt(Thread* thread) {
   802   trace("interrupt", thread);
   803   debug_only(check_for_dangling_thread_pointer(thread);)
   804   os::interrupt(thread);
   805 }
   807 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   808   trace("is_interrupted", thread);
   809   debug_only(check_for_dangling_thread_pointer(thread);)
   810   // Note:  If clear_interrupted==false, this simply fetches and
   811   // returns the value of the field osthread()->interrupted().
   812   return os::is_interrupted(thread, clear_interrupted);
   813 }
   816 // GC Support
   817 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   818   jint thread_parity = _oops_do_parity;
   819   if (thread_parity != strong_roots_parity) {
   820     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   821     if (res == thread_parity) {
   822       return true;
   823     } else {
   824       guarantee(res == strong_roots_parity, "Or else what?");
   825       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   826          "Should only fail when parallel.");
   827       return false;
   828     }
   829   }
   830   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   831          "Should only fail when parallel.");
   832   return false;
   833 }
   835 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
   836   active_handles()->oops_do(f);
   837   // Do oop for ThreadShadow
   838   f->do_oop((oop*)&_pending_exception);
   839   handle_area()->oops_do(f);
   840 }
   842 void Thread::nmethods_do(CodeBlobClosure* cf) {
   843   // no nmethods in a generic thread...
   844 }
   846 void Thread::metadata_do(void f(Metadata*)) {
   847   if (metadata_handles() != NULL) {
   848     for (int i = 0; i< metadata_handles()->length(); i++) {
   849       f(metadata_handles()->at(i));
   850     }
   851   }
   852 }
   854 void Thread::print_on(outputStream* st) const {
   855   // get_priority assumes osthread initialized
   856   if (osthread() != NULL) {
   857     int os_prio;
   858     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   859       st->print("os_prio=%d ", os_prio);
   860     }
   861     st->print("tid=" INTPTR_FORMAT " ", this);
   862     osthread()->print_on(st);
   863   }
   864   debug_only(if (WizardMode) print_owned_locks_on(st);)
   865 }
   867 // Thread::print_on_error() is called by fatal error handler. Don't use
   868 // any lock or allocate memory.
   869 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   870   if      (is_VM_thread())                  st->print("VMThread");
   871   else if (is_Compiler_thread())            st->print("CompilerThread");
   872   else if (is_Java_thread())                st->print("JavaThread");
   873   else if (is_GC_task_thread())             st->print("GCTaskThread");
   874   else if (is_Watcher_thread())             st->print("WatcherThread");
   875   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   876   else st->print("Thread");
   878   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   879             _stack_base - _stack_size, _stack_base);
   881   if (osthread()) {
   882     st->print(" [id=%d]", osthread()->thread_id());
   883   }
   884 }
   886 #ifdef ASSERT
   887 void Thread::print_owned_locks_on(outputStream* st) const {
   888   Monitor *cur = _owned_locks;
   889   if (cur == NULL) {
   890     st->print(" (no locks) ");
   891   } else {
   892     st->print_cr(" Locks owned:");
   893     while(cur) {
   894       cur->print_on(st);
   895       cur = cur->next();
   896     }
   897   }
   898 }
   900 static int ref_use_count  = 0;
   902 bool Thread::owns_locks_but_compiled_lock() const {
   903   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   904     if (cur != Compile_lock) return true;
   905   }
   906   return false;
   907 }
   910 #endif
   912 #ifndef PRODUCT
   914 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   915 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   916 // no threads which allow_vm_block's are held
   917 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   918     // Check if current thread is allowed to block at a safepoint
   919     if (!(_allow_safepoint_count == 0))
   920       fatal("Possible safepoint reached by thread that does not allow it");
   921     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   922       fatal("LEAF method calling lock?");
   923     }
   925 #ifdef ASSERT
   926     if (potential_vm_operation && is_Java_thread()
   927         && !Universe::is_bootstrapping()) {
   928       // Make sure we do not hold any locks that the VM thread also uses.
   929       // This could potentially lead to deadlocks
   930       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   931         // Threads_lock is special, since the safepoint synchronization will not start before this is
   932         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   933         // since it is used to transfer control between JavaThreads and the VMThread
   934         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   935         if ( (cur->allow_vm_block() &&
   936               cur != Threads_lock &&
   937               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   938               cur != VMOperationRequest_lock &&
   939               cur != VMOperationQueue_lock) ||
   940               cur->rank() == Mutex::special) {
   941           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   942         }
   943       }
   944     }
   946     if (GCALotAtAllSafepoints) {
   947       // We could enter a safepoint here and thus have a gc
   948       InterfaceSupport::check_gc_alot();
   949     }
   950 #endif
   951 }
   952 #endif
   954 bool Thread::is_in_stack(address adr) const {
   955   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   956   address end = os::current_stack_pointer();
   957   // Allow non Java threads to call this without stack_base
   958   if (_stack_base == NULL) return true;
   959   if (stack_base() >= adr && adr >= end) return true;
   961   return false;
   962 }
   965 bool Thread::is_in_usable_stack(address adr) const {
   966   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
   967   size_t usable_stack_size = _stack_size - stack_guard_size;
   969   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
   970 }
   973 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   974 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   975 // used for compilation in the future. If that change is made, the need for these methods
   976 // should be revisited, and they should be removed if possible.
   978 bool Thread::is_lock_owned(address adr) const {
   979   return on_local_stack(adr);
   980 }
   982 bool Thread::set_as_starting_thread() {
   983  // NOTE: this must be called inside the main thread.
   984   return os::create_main_thread((JavaThread*)this);
   985 }
   987 static void initialize_class(Symbol* class_name, TRAPS) {
   988   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   989   InstanceKlass::cast(klass)->initialize(CHECK);
   990 }
   993 // Creates the initial ThreadGroup
   994 static Handle create_initial_thread_group(TRAPS) {
   995   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   996   instanceKlassHandle klass (THREAD, k);
   998   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   999   {
  1000     JavaValue result(T_VOID);
  1001     JavaCalls::call_special(&result,
  1002                             system_instance,
  1003                             klass,
  1004                             vmSymbols::object_initializer_name(),
  1005                             vmSymbols::void_method_signature(),
  1006                             CHECK_NH);
  1008   Universe::set_system_thread_group(system_instance());
  1010   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
  1012     JavaValue result(T_VOID);
  1013     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
  1014     JavaCalls::call_special(&result,
  1015                             main_instance,
  1016                             klass,
  1017                             vmSymbols::object_initializer_name(),
  1018                             vmSymbols::threadgroup_string_void_signature(),
  1019                             system_instance,
  1020                             string,
  1021                             CHECK_NH);
  1023   return main_instance;
  1026 // Creates the initial Thread
  1027 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1028   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1029   instanceKlassHandle klass (THREAD, k);
  1030   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1032   java_lang_Thread::set_thread(thread_oop(), thread);
  1033   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1034   thread->set_threadObj(thread_oop());
  1036   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1038   JavaValue result(T_VOID);
  1039   JavaCalls::call_special(&result, thread_oop,
  1040                                    klass,
  1041                                    vmSymbols::object_initializer_name(),
  1042                                    vmSymbols::threadgroup_string_void_signature(),
  1043                                    thread_group,
  1044                                    string,
  1045                                    CHECK_NULL);
  1046   return thread_oop();
  1049 static void call_initializeSystemClass(TRAPS) {
  1050   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1051   instanceKlassHandle klass (THREAD, k);
  1053   JavaValue result(T_VOID);
  1054   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1055                                          vmSymbols::void_method_signature(), CHECK);
  1058 char java_runtime_name[128] = "";
  1059 char java_runtime_version[128] = "";
  1061 // extract the JRE name from sun.misc.Version.java_runtime_name
  1062 static const char* get_java_runtime_name(TRAPS) {
  1063   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1064                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1065   fieldDescriptor fd;
  1066   bool found = k != NULL &&
  1067                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1068                                                         vmSymbols::string_signature(), &fd);
  1069   if (found) {
  1070     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1071     if (name_oop == NULL)
  1072       return NULL;
  1073     const char* name = java_lang_String::as_utf8_string(name_oop,
  1074                                                         java_runtime_name,
  1075                                                         sizeof(java_runtime_name));
  1076     return name;
  1077   } else {
  1078     return NULL;
  1082 // extract the JRE version from sun.misc.Version.java_runtime_version
  1083 static const char* get_java_runtime_version(TRAPS) {
  1084   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1085                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1086   fieldDescriptor fd;
  1087   bool found = k != NULL &&
  1088                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1089                                                         vmSymbols::string_signature(), &fd);
  1090   if (found) {
  1091     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1092     if (name_oop == NULL)
  1093       return NULL;
  1094     const char* name = java_lang_String::as_utf8_string(name_oop,
  1095                                                         java_runtime_version,
  1096                                                         sizeof(java_runtime_version));
  1097     return name;
  1098   } else {
  1099     return NULL;
  1103 // General purpose hook into Java code, run once when the VM is initialized.
  1104 // The Java library method itself may be changed independently from the VM.
  1105 static void call_postVMInitHook(TRAPS) {
  1106   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
  1107   instanceKlassHandle klass (THREAD, k);
  1108   if (klass.not_null()) {
  1109     JavaValue result(T_VOID);
  1110     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1111                                            vmSymbols::void_method_signature(),
  1112                                            CHECK);
  1116 static void reset_vm_info_property(TRAPS) {
  1117   // the vm info string
  1118   ResourceMark rm(THREAD);
  1119   const char *vm_info = VM_Version::vm_info_string();
  1121   // java.lang.System class
  1122   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1123   instanceKlassHandle klass (THREAD, k);
  1125   // setProperty arguments
  1126   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1127   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1129   // return value
  1130   JavaValue r(T_OBJECT);
  1132   // public static String setProperty(String key, String value);
  1133   JavaCalls::call_static(&r,
  1134                          klass,
  1135                          vmSymbols::setProperty_name(),
  1136                          vmSymbols::string_string_string_signature(),
  1137                          key_str,
  1138                          value_str,
  1139                          CHECK);
  1143 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1144   assert(thread_group.not_null(), "thread group should be specified");
  1145   assert(threadObj() == NULL, "should only create Java thread object once");
  1147   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1148   instanceKlassHandle klass (THREAD, k);
  1149   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1151   java_lang_Thread::set_thread(thread_oop(), this);
  1152   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1153   set_threadObj(thread_oop());
  1155   JavaValue result(T_VOID);
  1156   if (thread_name != NULL) {
  1157     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1158     // Thread gets assigned specified name and null target
  1159     JavaCalls::call_special(&result,
  1160                             thread_oop,
  1161                             klass,
  1162                             vmSymbols::object_initializer_name(),
  1163                             vmSymbols::threadgroup_string_void_signature(),
  1164                             thread_group, // Argument 1
  1165                             name,         // Argument 2
  1166                             THREAD);
  1167   } else {
  1168     // Thread gets assigned name "Thread-nnn" and null target
  1169     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1170     JavaCalls::call_special(&result,
  1171                             thread_oop,
  1172                             klass,
  1173                             vmSymbols::object_initializer_name(),
  1174                             vmSymbols::threadgroup_runnable_void_signature(),
  1175                             thread_group, // Argument 1
  1176                             Handle(),     // Argument 2
  1177                             THREAD);
  1181   if (daemon) {
  1182       java_lang_Thread::set_daemon(thread_oop());
  1185   if (HAS_PENDING_EXCEPTION) {
  1186     return;
  1189   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1190   Handle threadObj(this, this->threadObj());
  1192   JavaCalls::call_special(&result,
  1193                          thread_group,
  1194                          group,
  1195                          vmSymbols::add_method_name(),
  1196                          vmSymbols::thread_void_signature(),
  1197                          threadObj,          // Arg 1
  1198                          THREAD);
  1203 // NamedThread --  non-JavaThread subclasses with multiple
  1204 // uniquely named instances should derive from this.
  1205 NamedThread::NamedThread() : Thread() {
  1206   _name = NULL;
  1207   _processed_thread = NULL;
  1210 NamedThread::~NamedThread() {
  1211   if (_name != NULL) {
  1212     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1213     _name = NULL;
  1217 void NamedThread::set_name(const char* format, ...) {
  1218   guarantee(_name == NULL, "Only get to set name once.");
  1219   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1220   guarantee(_name != NULL, "alloc failure");
  1221   va_list ap;
  1222   va_start(ap, format);
  1223   jio_vsnprintf(_name, max_name_len, format, ap);
  1224   va_end(ap);
  1227 // ======= WatcherThread ========
  1229 // The watcher thread exists to simulate timer interrupts.  It should
  1230 // be replaced by an abstraction over whatever native support for
  1231 // timer interrupts exists on the platform.
  1233 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1234 bool WatcherThread::_startable = false;
  1235 volatile bool  WatcherThread::_should_terminate = false;
  1237 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
  1238   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1239   if (os::create_thread(this, os::watcher_thread)) {
  1240     _watcher_thread = this;
  1242     // Set the watcher thread to the highest OS priority which should not be
  1243     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1244     // is created. The only normal thread using this priority is the reference
  1245     // handler thread, which runs for very short intervals only.
  1246     // If the VMThread's priority is not lower than the WatcherThread profiling
  1247     // will be inaccurate.
  1248     os::set_priority(this, MaxPriority);
  1249     if (!DisableStartThread) {
  1250       os::start_thread(this);
  1255 int WatcherThread::sleep() const {
  1256   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1258   // remaining will be zero if there are no tasks,
  1259   // causing the WatcherThread to sleep until a task is
  1260   // enrolled
  1261   int remaining = PeriodicTask::time_to_wait();
  1262   int time_slept = 0;
  1264   // we expect this to timeout - we only ever get unparked when
  1265   // we should terminate or when a new task has been enrolled
  1266   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1268   jlong time_before_loop = os::javaTimeNanos();
  1270   for (;;) {
  1271     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1272     jlong now = os::javaTimeNanos();
  1274     if (remaining == 0) {
  1275         // if we didn't have any tasks we could have waited for a long time
  1276         // consider the time_slept zero and reset time_before_loop
  1277         time_slept = 0;
  1278         time_before_loop = now;
  1279     } else {
  1280         // need to recalulate since we might have new tasks in _tasks
  1281         time_slept = (int) ((now - time_before_loop) / 1000000);
  1284     // Change to task list or spurious wakeup of some kind
  1285     if (timedout || _should_terminate) {
  1286         break;
  1289     remaining = PeriodicTask::time_to_wait();
  1290     if (remaining == 0) {
  1291         // Last task was just disenrolled so loop around and wait until
  1292         // another task gets enrolled
  1293         continue;
  1296     remaining -= time_slept;
  1297     if (remaining <= 0)
  1298       break;
  1301   return time_slept;
  1304 void WatcherThread::run() {
  1305   assert(this == watcher_thread(), "just checking");
  1307   this->record_stack_base_and_size();
  1308   this->initialize_thread_local_storage();
  1309   this->set_active_handles(JNIHandleBlock::allocate_block());
  1310   while(!_should_terminate) {
  1311     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1312     assert(watcher_thread() == this,  "thread consistency check");
  1314     // Calculate how long it'll be until the next PeriodicTask work
  1315     // should be done, and sleep that amount of time.
  1316     int time_waited = sleep();
  1318     if (is_error_reported()) {
  1319       // A fatal error has happened, the error handler(VMError::report_and_die)
  1320       // should abort JVM after creating an error log file. However in some
  1321       // rare cases, the error handler itself might deadlock. Here we try to
  1322       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1323       //
  1324       // This code is in WatcherThread because WatcherThread wakes up
  1325       // periodically so the fatal error handler doesn't need to do anything;
  1326       // also because the WatcherThread is less likely to crash than other
  1327       // threads.
  1329       for (;;) {
  1330         if (!ShowMessageBoxOnError
  1331          && (OnError == NULL || OnError[0] == '\0')
  1332          && Arguments::abort_hook() == NULL) {
  1333              os::sleep(this, 2 * 60 * 1000, false);
  1334              fdStream err(defaultStream::output_fd());
  1335              err.print_raw_cr("# [ timer expired, abort... ]");
  1336              // skip atexit/vm_exit/vm_abort hooks
  1337              os::die();
  1340         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1341         // ShowMessageBoxOnError when it is ready to abort.
  1342         os::sleep(this, 5 * 1000, false);
  1346     PeriodicTask::real_time_tick(time_waited);
  1349   // Signal that it is terminated
  1351     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1352     _watcher_thread = NULL;
  1353     Terminator_lock->notify();
  1356   // Thread destructor usually does this..
  1357   ThreadLocalStorage::set_thread(NULL);
  1360 void WatcherThread::start() {
  1361   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1363   if (watcher_thread() == NULL && _startable) {
  1364     _should_terminate = false;
  1365     // Create the single instance of WatcherThread
  1366     new WatcherThread();
  1370 void WatcherThread::make_startable() {
  1371   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1372   _startable = true;
  1375 void WatcherThread::stop() {
  1377     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1378     _should_terminate = true;
  1379     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1381     WatcherThread* watcher = watcher_thread();
  1382     if (watcher != NULL)
  1383       watcher->unpark();
  1386   // it is ok to take late safepoints here, if needed
  1387   MutexLocker mu(Terminator_lock);
  1389   while(watcher_thread() != NULL) {
  1390     // This wait should make safepoint checks, wait without a timeout,
  1391     // and wait as a suspend-equivalent condition.
  1392     //
  1393     // Note: If the FlatProfiler is running, then this thread is waiting
  1394     // for the WatcherThread to terminate and the WatcherThread, via the
  1395     // FlatProfiler task, is waiting for the external suspend request on
  1396     // this thread to complete. wait_for_ext_suspend_completion() will
  1397     // eventually timeout, but that takes time. Making this wait a
  1398     // suspend-equivalent condition solves that timeout problem.
  1399     //
  1400     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1401                           Mutex::_as_suspend_equivalent_flag);
  1405 void WatcherThread::unpark() {
  1406   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1407   PeriodicTask_lock->notify();
  1410 void WatcherThread::print_on(outputStream* st) const {
  1411   st->print("\"%s\" ", name());
  1412   Thread::print_on(st);
  1413   st->cr();
  1416 // ======= JavaThread ========
  1418 // A JavaThread is a normal Java thread
  1420 void JavaThread::initialize() {
  1421   // Initialize fields
  1423   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
  1424   set_claimed_par_id(UINT_MAX);
  1426   set_saved_exception_pc(NULL);
  1427   set_threadObj(NULL);
  1428   _anchor.clear();
  1429   set_entry_point(NULL);
  1430   set_jni_functions(jni_functions());
  1431   set_callee_target(NULL);
  1432   set_vm_result(NULL);
  1433   set_vm_result_2(NULL);
  1434   set_vframe_array_head(NULL);
  1435   set_vframe_array_last(NULL);
  1436   set_deferred_locals(NULL);
  1437   set_deopt_mark(NULL);
  1438   set_deopt_nmethod(NULL);
  1439   clear_must_deopt_id();
  1440   set_monitor_chunks(NULL);
  1441   set_next(NULL);
  1442   set_thread_state(_thread_new);
  1443 #if INCLUDE_NMT
  1444   set_recorder(NULL);
  1445 #endif
  1446   _terminated = _not_terminated;
  1447   _privileged_stack_top = NULL;
  1448   _array_for_gc = NULL;
  1449   _suspend_equivalent = false;
  1450   _in_deopt_handler = 0;
  1451   _doing_unsafe_access = false;
  1452   _stack_guard_state = stack_guard_unused;
  1453   (void)const_cast<oop&>(_exception_oop = NULL);
  1454   _exception_pc  = 0;
  1455   _exception_handler_pc = 0;
  1456   _is_method_handle_return = 0;
  1457   _jvmti_thread_state= NULL;
  1458   _should_post_on_exceptions_flag = JNI_FALSE;
  1459   _jvmti_get_loaded_classes_closure = NULL;
  1460   _interp_only_mode    = 0;
  1461   _special_runtime_exit_condition = _no_async_condition;
  1462   _pending_async_exception = NULL;
  1463   _thread_stat = NULL;
  1464   _thread_stat = new ThreadStatistics();
  1465   _blocked_on_compilation = false;
  1466   _jni_active_critical = 0;
  1467   _do_not_unlock_if_synchronized = false;
  1468   _cached_monitor_info = NULL;
  1469   _parker = Parker::Allocate(this) ;
  1471 #ifndef PRODUCT
  1472   _jmp_ring_index = 0;
  1473   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1474     record_jump(NULL, NULL, NULL, 0);
  1476 #endif /* PRODUCT */
  1478   set_thread_profiler(NULL);
  1479   if (FlatProfiler::is_active()) {
  1480     // This is where we would decide to either give each thread it's own profiler
  1481     // or use one global one from FlatProfiler,
  1482     // or up to some count of the number of profiled threads, etc.
  1483     ThreadProfiler* pp = new ThreadProfiler();
  1484     pp->engage();
  1485     set_thread_profiler(pp);
  1488   // Setup safepoint state info for this thread
  1489   ThreadSafepointState::create(this);
  1491   debug_only(_java_call_counter = 0);
  1493   // JVMTI PopFrame support
  1494   _popframe_condition = popframe_inactive;
  1495   _popframe_preserved_args = NULL;
  1496   _popframe_preserved_args_size = 0;
  1498   pd_initialize();
  1501 #if INCLUDE_ALL_GCS
  1502 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1503 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1504 #endif // INCLUDE_ALL_GCS
  1506 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1507   Thread()
  1508 #if INCLUDE_ALL_GCS
  1509   , _satb_mark_queue(&_satb_mark_queue_set),
  1510   _dirty_card_queue(&_dirty_card_queue_set)
  1511 #endif // INCLUDE_ALL_GCS
  1513   initialize();
  1514   if (is_attaching_via_jni) {
  1515     _jni_attach_state = _attaching_via_jni;
  1516   } else {
  1517     _jni_attach_state = _not_attaching_via_jni;
  1519   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  1520   _safepoint_visible = false;
  1523 bool JavaThread::reguard_stack(address cur_sp) {
  1524   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1525     return true; // Stack already guarded or guard pages not needed.
  1528   if (register_stack_overflow()) {
  1529     // For those architectures which have separate register and
  1530     // memory stacks, we must check the register stack to see if
  1531     // it has overflowed.
  1532     return false;
  1535   // Java code never executes within the yellow zone: the latter is only
  1536   // there to provoke an exception during stack banging.  If java code
  1537   // is executing there, either StackShadowPages should be larger, or
  1538   // some exception code in c1, c2 or the interpreter isn't unwinding
  1539   // when it should.
  1540   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1542   enable_stack_yellow_zone();
  1543   return true;
  1546 bool JavaThread::reguard_stack(void) {
  1547   return reguard_stack(os::current_stack_pointer());
  1551 void JavaThread::block_if_vm_exited() {
  1552   if (_terminated == _vm_exited) {
  1553     // _vm_exited is set at safepoint, and Threads_lock is never released
  1554     // we will block here forever
  1555     Threads_lock->lock_without_safepoint_check();
  1556     ShouldNotReachHere();
  1561 // Remove this ifdef when C1 is ported to the compiler interface.
  1562 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1564 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1565   Thread()
  1566 #if INCLUDE_ALL_GCS
  1567   , _satb_mark_queue(&_satb_mark_queue_set),
  1568   _dirty_card_queue(&_dirty_card_queue_set)
  1569 #endif // INCLUDE_ALL_GCS
  1571   if (TraceThreadEvents) {
  1572     tty->print_cr("creating thread %p", this);
  1574   initialize();
  1575   _jni_attach_state = _not_attaching_via_jni;
  1576   set_entry_point(entry_point);
  1577   // Create the native thread itself.
  1578   // %note runtime_23
  1579   os::ThreadType thr_type = os::java_thread;
  1580   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1581                                                      os::java_thread;
  1582   os::create_thread(this, thr_type, stack_sz);
  1583   _safepoint_visible = false;
  1584   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1585   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1586   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1587   // the exception consists of creating the exception object & initializing it, initialization
  1588   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1589   //
  1590   // The thread is still suspended when we reach here. Thread must be explicit started
  1591   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1592   // by calling Threads:add. The reason why this is not done here, is because the thread
  1593   // object must be fully initialized (take a look at JVM_Start)
  1596 JavaThread::~JavaThread() {
  1597   if (TraceThreadEvents) {
  1598       tty->print_cr("terminate thread %p", this);
  1601   // By now, this thread should already be invisible to safepoint,
  1602   // and its per-thread recorder also collected.
  1603   assert(!is_safepoint_visible(), "wrong state");
  1604 #if INCLUDE_NMT
  1605   assert(get_recorder() == NULL, "Already collected");
  1606 #endif // INCLUDE_NMT
  1608   // JSR166 -- return the parker to the free list
  1609   Parker::Release(_parker);
  1610   _parker = NULL ;
  1612   // Free any remaining  previous UnrollBlock
  1613   vframeArray* old_array = vframe_array_last();
  1615   if (old_array != NULL) {
  1616     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1617     old_array->set_unroll_block(NULL);
  1618     delete old_info;
  1619     delete old_array;
  1622   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1623   if (deferred != NULL) {
  1624     // This can only happen if thread is destroyed before deoptimization occurs.
  1625     assert(deferred->length() != 0, "empty array!");
  1626     do {
  1627       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1628       deferred->remove_at(0);
  1629       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1630       delete dlv;
  1631     } while (deferred->length() != 0);
  1632     delete deferred;
  1635   // All Java related clean up happens in exit
  1636   ThreadSafepointState::destroy(this);
  1637   if (_thread_profiler != NULL) delete _thread_profiler;
  1638   if (_thread_stat != NULL) delete _thread_stat;
  1642 // The first routine called by a new Java thread
  1643 void JavaThread::run() {
  1644   // initialize thread-local alloc buffer related fields
  1645   this->initialize_tlab();
  1647   // used to test validitity of stack trace backs
  1648   this->record_base_of_stack_pointer();
  1650   // Record real stack base and size.
  1651   this->record_stack_base_and_size();
  1653   // Initialize thread local storage; set before calling MutexLocker
  1654   this->initialize_thread_local_storage();
  1656   this->create_stack_guard_pages();
  1658   this->cache_global_variables();
  1660   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1661   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1662   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1664   assert(JavaThread::current() == this, "sanity check");
  1665   assert(!Thread::current()->owns_locks(), "sanity check");
  1667   DTRACE_THREAD_PROBE(start, this);
  1669   // This operation might block. We call that after all safepoint checks for a new thread has
  1670   // been completed.
  1671   this->set_active_handles(JNIHandleBlock::allocate_block());
  1673   if (JvmtiExport::should_post_thread_life()) {
  1674     JvmtiExport::post_thread_start(this);
  1677   EventThreadStart event;
  1678   if (event.should_commit()) {
  1679      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1680      event.commit();
  1683   // We call another function to do the rest so we are sure that the stack addresses used
  1684   // from there will be lower than the stack base just computed
  1685   thread_main_inner();
  1687   // Note, thread is no longer valid at this point!
  1691 void JavaThread::thread_main_inner() {
  1692   assert(JavaThread::current() == this, "sanity check");
  1693   assert(this->threadObj() != NULL, "just checking");
  1695   // Execute thread entry point unless this thread has a pending exception
  1696   // or has been stopped before starting.
  1697   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1698   if (!this->has_pending_exception() &&
  1699       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1701       ResourceMark rm(this);
  1702       this->set_native_thread_name(this->get_thread_name());
  1704     HandleMark hm(this);
  1705     this->entry_point()(this, this);
  1708   DTRACE_THREAD_PROBE(stop, this);
  1710   this->exit(false);
  1711   delete this;
  1715 static void ensure_join(JavaThread* thread) {
  1716   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1717   Handle threadObj(thread, thread->threadObj());
  1718   assert(threadObj.not_null(), "java thread object must exist");
  1719   ObjectLocker lock(threadObj, thread);
  1720   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1721   thread->clear_pending_exception();
  1722   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1723   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1724   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1725   // to complete once we've done the notify_all below
  1726   java_lang_Thread::set_thread(threadObj(), NULL);
  1727   lock.notify_all(thread);
  1728   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1729   thread->clear_pending_exception();
  1733 // For any new cleanup additions, please check to see if they need to be applied to
  1734 // cleanup_failed_attach_current_thread as well.
  1735 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1736   assert(this == JavaThread::current(),  "thread consistency check");
  1738   HandleMark hm(this);
  1739   Handle uncaught_exception(this, this->pending_exception());
  1740   this->clear_pending_exception();
  1741   Handle threadObj(this, this->threadObj());
  1742   assert(threadObj.not_null(), "Java thread object should be created");
  1744   if (get_thread_profiler() != NULL) {
  1745     get_thread_profiler()->disengage();
  1746     ResourceMark rm;
  1747     get_thread_profiler()->print(get_thread_name());
  1751   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1753     EXCEPTION_MARK;
  1755     CLEAR_PENDING_EXCEPTION;
  1757   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1758   // has to be fixed by a runtime query method
  1759   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1760     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1761     // java.lang.Thread.dispatchUncaughtException
  1762     if (uncaught_exception.not_null()) {
  1763       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1765         EXCEPTION_MARK;
  1766         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1767         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1768         // so call ThreadGroup.uncaughtException()
  1769         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1770         CallInfo callinfo;
  1771         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1772         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1773                                            vmSymbols::dispatchUncaughtException_name(),
  1774                                            vmSymbols::throwable_void_signature(),
  1775                                            KlassHandle(), false, false, THREAD);
  1776         CLEAR_PENDING_EXCEPTION;
  1777         methodHandle method = callinfo.selected_method();
  1778         if (method.not_null()) {
  1779           JavaValue result(T_VOID);
  1780           JavaCalls::call_virtual(&result,
  1781                                   threadObj, thread_klass,
  1782                                   vmSymbols::dispatchUncaughtException_name(),
  1783                                   vmSymbols::throwable_void_signature(),
  1784                                   uncaught_exception,
  1785                                   THREAD);
  1786         } else {
  1787           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1788           JavaValue result(T_VOID);
  1789           JavaCalls::call_virtual(&result,
  1790                                   group, thread_group,
  1791                                   vmSymbols::uncaughtException_name(),
  1792                                   vmSymbols::thread_throwable_void_signature(),
  1793                                   threadObj,           // Arg 1
  1794                                   uncaught_exception,  // Arg 2
  1795                                   THREAD);
  1797         if (HAS_PENDING_EXCEPTION) {
  1798           ResourceMark rm(this);
  1799           jio_fprintf(defaultStream::error_stream(),
  1800                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1801                 " in thread \"%s\"\n",
  1802                 pending_exception()->klass()->external_name(),
  1803                 get_thread_name());
  1804           CLEAR_PENDING_EXCEPTION;
  1809     // Called before the java thread exit since we want to read info
  1810     // from java_lang_Thread object
  1811     EventThreadEnd event;
  1812     if (event.should_commit()) {
  1813         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1814         event.commit();
  1817     // Call after last event on thread
  1818     EVENT_THREAD_EXIT(this);
  1820     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1821     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1822     // is deprecated anyhow.
  1823     if (!is_Compiler_thread()) {
  1824       int count = 3;
  1825       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1826         EXCEPTION_MARK;
  1827         JavaValue result(T_VOID);
  1828         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1829         JavaCalls::call_virtual(&result,
  1830                               threadObj, thread_klass,
  1831                               vmSymbols::exit_method_name(),
  1832                               vmSymbols::void_method_signature(),
  1833                               THREAD);
  1834         CLEAR_PENDING_EXCEPTION;
  1837     // notify JVMTI
  1838     if (JvmtiExport::should_post_thread_life()) {
  1839       JvmtiExport::post_thread_end(this);
  1842     // We have notified the agents that we are exiting, before we go on,
  1843     // we must check for a pending external suspend request and honor it
  1844     // in order to not surprise the thread that made the suspend request.
  1845     while (true) {
  1847         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1848         if (!is_external_suspend()) {
  1849           set_terminated(_thread_exiting);
  1850           ThreadService::current_thread_exiting(this);
  1851           break;
  1853         // Implied else:
  1854         // Things get a little tricky here. We have a pending external
  1855         // suspend request, but we are holding the SR_lock so we
  1856         // can't just self-suspend. So we temporarily drop the lock
  1857         // and then self-suspend.
  1860       ThreadBlockInVM tbivm(this);
  1861       java_suspend_self();
  1863       // We're done with this suspend request, but we have to loop around
  1864       // and check again. Eventually we will get SR_lock without a pending
  1865       // external suspend request and will be able to mark ourselves as
  1866       // exiting.
  1868     // no more external suspends are allowed at this point
  1869   } else {
  1870     // before_exit() has already posted JVMTI THREAD_END events
  1873   // Notify waiters on thread object. This has to be done after exit() is called
  1874   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1875   // group should have the destroyed bit set before waiters are notified).
  1876   ensure_join(this);
  1877   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1879   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1880   // held by this thread must be released.  A detach operation must only
  1881   // get here if there are no Java frames on the stack.  Therefore, any
  1882   // owned monitors at this point MUST be JNI-acquired monitors which are
  1883   // pre-inflated and in the monitor cache.
  1884   //
  1885   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1886   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1887     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1888     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1889     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1892   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1893   // is in a consistent state, in case GC happens
  1894   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1896   if (active_handles() != NULL) {
  1897     JNIHandleBlock* block = active_handles();
  1898     set_active_handles(NULL);
  1899     JNIHandleBlock::release_block(block);
  1902   if (free_handle_block() != NULL) {
  1903     JNIHandleBlock* block = free_handle_block();
  1904     set_free_handle_block(NULL);
  1905     JNIHandleBlock::release_block(block);
  1908   // These have to be removed while this is still a valid thread.
  1909   remove_stack_guard_pages();
  1911   if (UseTLAB) {
  1912     tlab().make_parsable(true);  // retire TLAB
  1915   if (JvmtiEnv::environments_might_exist()) {
  1916     JvmtiExport::cleanup_thread(this);
  1919   // We must flush any deferred card marks before removing a thread from
  1920   // the list of active threads.
  1921   Universe::heap()->flush_deferred_store_barrier(this);
  1922   assert(deferred_card_mark().is_empty(), "Should have been flushed");
  1924 #if INCLUDE_ALL_GCS
  1925   // We must flush the G1-related buffers before removing a thread
  1926   // from the list of active threads. We must do this after any deferred
  1927   // card marks have been flushed (above) so that any entries that are
  1928   // added to the thread's dirty card queue as a result are not lost.
  1929   if (UseG1GC) {
  1930     flush_barrier_queues();
  1932 #endif // INCLUDE_ALL_GCS
  1934   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1935   Threads::remove(this);
  1938 #if INCLUDE_ALL_GCS
  1939 // Flush G1-related queues.
  1940 void JavaThread::flush_barrier_queues() {
  1941   satb_mark_queue().flush();
  1942   dirty_card_queue().flush();
  1945 void JavaThread::initialize_queues() {
  1946   assert(!SafepointSynchronize::is_at_safepoint(),
  1947          "we should not be at a safepoint");
  1949   ObjPtrQueue& satb_queue = satb_mark_queue();
  1950   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1951   // The SATB queue should have been constructed with its active
  1952   // field set to false.
  1953   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1954   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1955   // If we are creating the thread during a marking cycle, we should
  1956   // set the active field of the SATB queue to true.
  1957   if (satb_queue_set.is_active()) {
  1958     satb_queue.set_active(true);
  1961   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1962   // The dirty card queue should have been constructed with its
  1963   // active field set to true.
  1964   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1966 #endif // INCLUDE_ALL_GCS
  1968 void JavaThread::cleanup_failed_attach_current_thread() {
  1969   if (get_thread_profiler() != NULL) {
  1970     get_thread_profiler()->disengage();
  1971     ResourceMark rm;
  1972     get_thread_profiler()->print(get_thread_name());
  1975   if (active_handles() != NULL) {
  1976     JNIHandleBlock* block = active_handles();
  1977     set_active_handles(NULL);
  1978     JNIHandleBlock::release_block(block);
  1981   if (free_handle_block() != NULL) {
  1982     JNIHandleBlock* block = free_handle_block();
  1983     set_free_handle_block(NULL);
  1984     JNIHandleBlock::release_block(block);
  1987   // These have to be removed while this is still a valid thread.
  1988   remove_stack_guard_pages();
  1990   if (UseTLAB) {
  1991     tlab().make_parsable(true);  // retire TLAB, if any
  1994 #if INCLUDE_ALL_GCS
  1995   if (UseG1GC) {
  1996     flush_barrier_queues();
  1998 #endif // INCLUDE_ALL_GCS
  2000   Threads::remove(this);
  2001   delete this;
  2007 JavaThread* JavaThread::active() {
  2008   Thread* thread = ThreadLocalStorage::thread();
  2009   assert(thread != NULL, "just checking");
  2010   if (thread->is_Java_thread()) {
  2011     return (JavaThread*) thread;
  2012   } else {
  2013     assert(thread->is_VM_thread(), "this must be a vm thread");
  2014     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  2015     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  2016     assert(ret->is_Java_thread(), "must be a Java thread");
  2017     return ret;
  2021 bool JavaThread::is_lock_owned(address adr) const {
  2022   if (Thread::is_lock_owned(adr)) return true;
  2024   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2025     if (chunk->contains(adr)) return true;
  2028   return false;
  2032 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2033   chunk->set_next(monitor_chunks());
  2034   set_monitor_chunks(chunk);
  2037 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2038   guarantee(monitor_chunks() != NULL, "must be non empty");
  2039   if (monitor_chunks() == chunk) {
  2040     set_monitor_chunks(chunk->next());
  2041   } else {
  2042     MonitorChunk* prev = monitor_chunks();
  2043     while (prev->next() != chunk) prev = prev->next();
  2044     prev->set_next(chunk->next());
  2048 // JVM support.
  2050 // Note: this function shouldn't block if it's called in
  2051 // _thread_in_native_trans state (such as from
  2052 // check_special_condition_for_native_trans()).
  2053 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2055   if (has_last_Java_frame() && has_async_condition()) {
  2056     // If we are at a polling page safepoint (not a poll return)
  2057     // then we must defer async exception because live registers
  2058     // will be clobbered by the exception path. Poll return is
  2059     // ok because the call we a returning from already collides
  2060     // with exception handling registers and so there is no issue.
  2061     // (The exception handling path kills call result registers but
  2062     //  this is ok since the exception kills the result anyway).
  2064     if (is_at_poll_safepoint()) {
  2065       // if the code we are returning to has deoptimized we must defer
  2066       // the exception otherwise live registers get clobbered on the
  2067       // exception path before deoptimization is able to retrieve them.
  2068       //
  2069       RegisterMap map(this, false);
  2070       frame caller_fr = last_frame().sender(&map);
  2071       assert(caller_fr.is_compiled_frame(), "what?");
  2072       if (caller_fr.is_deoptimized_frame()) {
  2073         if (TraceExceptions) {
  2074           ResourceMark rm;
  2075           tty->print_cr("deferred async exception at compiled safepoint");
  2077         return;
  2082   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2083   if (condition == _no_async_condition) {
  2084     // Conditions have changed since has_special_runtime_exit_condition()
  2085     // was called:
  2086     // - if we were here only because of an external suspend request,
  2087     //   then that was taken care of above (or cancelled) so we are done
  2088     // - if we were here because of another async request, then it has
  2089     //   been cleared between the has_special_runtime_exit_condition()
  2090     //   and now so again we are done
  2091     return;
  2094   // Check for pending async. exception
  2095   if (_pending_async_exception != NULL) {
  2096     // Only overwrite an already pending exception, if it is not a threadDeath.
  2097     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2099       // We cannot call Exceptions::_throw(...) here because we cannot block
  2100       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2102       if (TraceExceptions) {
  2103         ResourceMark rm;
  2104         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2105         if (has_last_Java_frame() ) {
  2106           frame f = last_frame();
  2107           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2109         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2111       _pending_async_exception = NULL;
  2112       clear_has_async_exception();
  2116   if (check_unsafe_error &&
  2117       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2118     condition = _no_async_condition;  // done
  2119     switch (thread_state()) {
  2120     case _thread_in_vm:
  2122         JavaThread* THREAD = this;
  2123         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2125     case _thread_in_native:
  2127         ThreadInVMfromNative tiv(this);
  2128         JavaThread* THREAD = this;
  2129         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2131     case _thread_in_Java:
  2133         ThreadInVMfromJava tiv(this);
  2134         JavaThread* THREAD = this;
  2135         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2137     default:
  2138       ShouldNotReachHere();
  2142   assert(condition == _no_async_condition || has_pending_exception() ||
  2143          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2144          "must have handled the async condition, if no exception");
  2147 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2148   //
  2149   // Check for pending external suspend. Internal suspend requests do
  2150   // not use handle_special_runtime_exit_condition().
  2151   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2152   // thread is not the current thread. In older versions of jdbx, jdbx
  2153   // threads could call into the VM with another thread's JNIEnv so we
  2154   // can be here operating on behalf of a suspended thread (4432884).
  2155   bool do_self_suspend = is_external_suspend_with_lock();
  2156   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2157     //
  2158     // Because thread is external suspended the safepoint code will count
  2159     // thread as at a safepoint. This can be odd because we can be here
  2160     // as _thread_in_Java which would normally transition to _thread_blocked
  2161     // at a safepoint. We would like to mark the thread as _thread_blocked
  2162     // before calling java_suspend_self like all other callers of it but
  2163     // we must then observe proper safepoint protocol. (We can't leave
  2164     // _thread_blocked with a safepoint in progress). However we can be
  2165     // here as _thread_in_native_trans so we can't use a normal transition
  2166     // constructor/destructor pair because they assert on that type of
  2167     // transition. We could do something like:
  2168     //
  2169     // JavaThreadState state = thread_state();
  2170     // set_thread_state(_thread_in_vm);
  2171     // {
  2172     //   ThreadBlockInVM tbivm(this);
  2173     //   java_suspend_self()
  2174     // }
  2175     // set_thread_state(_thread_in_vm_trans);
  2176     // if (safepoint) block;
  2177     // set_thread_state(state);
  2178     //
  2179     // but that is pretty messy. Instead we just go with the way the
  2180     // code has worked before and note that this is the only path to
  2181     // java_suspend_self that doesn't put the thread in _thread_blocked
  2182     // mode.
  2184     frame_anchor()->make_walkable(this);
  2185     java_suspend_self();
  2187     // We might be here for reasons in addition to the self-suspend request
  2188     // so check for other async requests.
  2191   if (check_asyncs) {
  2192     check_and_handle_async_exceptions();
  2196 void JavaThread::send_thread_stop(oop java_throwable)  {
  2197   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2198   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2199   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2201   // Do not throw asynchronous exceptions against the compiler thread
  2202   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2203   if (is_Compiler_thread()) return;
  2206     // Actually throw the Throwable against the target Thread - however
  2207     // only if there is no thread death exception installed already.
  2208     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2209       // If the topmost frame is a runtime stub, then we are calling into
  2210       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2211       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2212       // may not be valid
  2213       if (has_last_Java_frame()) {
  2214         frame f = last_frame();
  2215         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2216           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2217           RegisterMap reg_map(this, UseBiasedLocking);
  2218           frame compiled_frame = f.sender(&reg_map);
  2219           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
  2220             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2225       // Set async. pending exception in thread.
  2226       set_pending_async_exception(java_throwable);
  2228       if (TraceExceptions) {
  2229        ResourceMark rm;
  2230        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2232       // for AbortVMOnException flag
  2233       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2238   // Interrupt thread so it will wake up from a potential wait()
  2239   Thread::interrupt(this);
  2242 // External suspension mechanism.
  2243 //
  2244 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2245 // to any VM_locks and it is at a transition
  2246 // Self-suspension will happen on the transition out of the vm.
  2247 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2248 //
  2249 // Guarantees on return:
  2250 //   + Target thread will not execute any new bytecode (that's why we need to
  2251 //     force a safepoint)
  2252 //   + Target thread will not enter any new monitors
  2253 //
  2254 void JavaThread::java_suspend() {
  2255   { MutexLocker mu(Threads_lock);
  2256     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2257        return;
  2261   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2262     if (!is_external_suspend()) {
  2263       // a racing resume has cancelled us; bail out now
  2264       return;
  2267     // suspend is done
  2268     uint32_t debug_bits = 0;
  2269     // Warning: is_ext_suspend_completed() may temporarily drop the
  2270     // SR_lock to allow the thread to reach a stable thread state if
  2271     // it is currently in a transient thread state.
  2272     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2273                                  SuspendRetryDelay, &debug_bits) ) {
  2274       return;
  2278   VM_ForceSafepoint vm_suspend;
  2279   VMThread::execute(&vm_suspend);
  2282 // Part II of external suspension.
  2283 // A JavaThread self suspends when it detects a pending external suspend
  2284 // request. This is usually on transitions. It is also done in places
  2285 // where continuing to the next transition would surprise the caller,
  2286 // e.g., monitor entry.
  2287 //
  2288 // Returns the number of times that the thread self-suspended.
  2289 //
  2290 // Note: DO NOT call java_suspend_self() when you just want to block current
  2291 //       thread. java_suspend_self() is the second stage of cooperative
  2292 //       suspension for external suspend requests and should only be used
  2293 //       to complete an external suspend request.
  2294 //
  2295 int JavaThread::java_suspend_self() {
  2296   int ret = 0;
  2298   // we are in the process of exiting so don't suspend
  2299   if (is_exiting()) {
  2300      clear_external_suspend();
  2301      return ret;
  2304   assert(_anchor.walkable() ||
  2305     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2306     "must have walkable stack");
  2308   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2310   assert(!this->is_ext_suspended(),
  2311     "a thread trying to self-suspend should not already be suspended");
  2313   if (this->is_suspend_equivalent()) {
  2314     // If we are self-suspending as a result of the lifting of a
  2315     // suspend equivalent condition, then the suspend_equivalent
  2316     // flag is not cleared until we set the ext_suspended flag so
  2317     // that wait_for_ext_suspend_completion() returns consistent
  2318     // results.
  2319     this->clear_suspend_equivalent();
  2322   // A racing resume may have cancelled us before we grabbed SR_lock
  2323   // above. Or another external suspend request could be waiting for us
  2324   // by the time we return from SR_lock()->wait(). The thread
  2325   // that requested the suspension may already be trying to walk our
  2326   // stack and if we return now, we can change the stack out from under
  2327   // it. This would be a "bad thing (TM)" and cause the stack walker
  2328   // to crash. We stay self-suspended until there are no more pending
  2329   // external suspend requests.
  2330   while (is_external_suspend()) {
  2331     ret++;
  2332     this->set_ext_suspended();
  2334     // _ext_suspended flag is cleared by java_resume()
  2335     while (is_ext_suspended()) {
  2336       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2340   return ret;
  2343 #ifdef ASSERT
  2344 // verify the JavaThread has not yet been published in the Threads::list, and
  2345 // hence doesn't need protection from concurrent access at this stage
  2346 void JavaThread::verify_not_published() {
  2347   if (!Threads_lock->owned_by_self()) {
  2348    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2349    assert( !Threads::includes(this),
  2350            "java thread shouldn't have been published yet!");
  2352   else {
  2353    assert( !Threads::includes(this),
  2354            "java thread shouldn't have been published yet!");
  2357 #endif
  2359 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2360 // progress or when _suspend_flags is non-zero.
  2361 // Current thread needs to self-suspend if there is a suspend request and/or
  2362 // block if a safepoint is in progress.
  2363 // Async exception ISN'T checked.
  2364 // Note only the ThreadInVMfromNative transition can call this function
  2365 // directly and when thread state is _thread_in_native_trans
  2366 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2367   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2369   JavaThread *curJT = JavaThread::current();
  2370   bool do_self_suspend = thread->is_external_suspend();
  2372   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2374   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2375   // thread is not the current thread. In older versions of jdbx, jdbx
  2376   // threads could call into the VM with another thread's JNIEnv so we
  2377   // can be here operating on behalf of a suspended thread (4432884).
  2378   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2379     JavaThreadState state = thread->thread_state();
  2381     // We mark this thread_blocked state as a suspend-equivalent so
  2382     // that a caller to is_ext_suspend_completed() won't be confused.
  2383     // The suspend-equivalent state is cleared by java_suspend_self().
  2384     thread->set_suspend_equivalent();
  2386     // If the safepoint code sees the _thread_in_native_trans state, it will
  2387     // wait until the thread changes to other thread state. There is no
  2388     // guarantee on how soon we can obtain the SR_lock and complete the
  2389     // self-suspend request. It would be a bad idea to let safepoint wait for
  2390     // too long. Temporarily change the state to _thread_blocked to
  2391     // let the VM thread know that this thread is ready for GC. The problem
  2392     // of changing thread state is that safepoint could happen just after
  2393     // java_suspend_self() returns after being resumed, and VM thread will
  2394     // see the _thread_blocked state. We must check for safepoint
  2395     // after restoring the state and make sure we won't leave while a safepoint
  2396     // is in progress.
  2397     thread->set_thread_state(_thread_blocked);
  2398     thread->java_suspend_self();
  2399     thread->set_thread_state(state);
  2400     // Make sure new state is seen by VM thread
  2401     if (os::is_MP()) {
  2402       if (UseMembar) {
  2403         // Force a fence between the write above and read below
  2404         OrderAccess::fence();
  2405       } else {
  2406         // Must use this rather than serialization page in particular on Windows
  2407         InterfaceSupport::serialize_memory(thread);
  2412   if (SafepointSynchronize::do_call_back()) {
  2413     // If we are safepointing, then block the caller which may not be
  2414     // the same as the target thread (see above).
  2415     SafepointSynchronize::block(curJT);
  2418   if (thread->is_deopt_suspend()) {
  2419     thread->clear_deopt_suspend();
  2420     RegisterMap map(thread, false);
  2421     frame f = thread->last_frame();
  2422     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2423       f = f.sender(&map);
  2425     if (f.id() == thread->must_deopt_id()) {
  2426       thread->clear_must_deopt_id();
  2427       f.deoptimize(thread);
  2428     } else {
  2429       fatal("missed deoptimization!");
  2434 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2435 // progress or when _suspend_flags is non-zero.
  2436 // Current thread needs to self-suspend if there is a suspend request and/or
  2437 // block if a safepoint is in progress.
  2438 // Also check for pending async exception (not including unsafe access error).
  2439 // Note only the native==>VM/Java barriers can call this function and when
  2440 // thread state is _thread_in_native_trans.
  2441 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2442   check_safepoint_and_suspend_for_native_trans(thread);
  2444   if (thread->has_async_exception()) {
  2445     // We are in _thread_in_native_trans state, don't handle unsafe
  2446     // access error since that may block.
  2447     thread->check_and_handle_async_exceptions(false);
  2451 // This is a variant of the normal
  2452 // check_special_condition_for_native_trans with slightly different
  2453 // semantics for use by critical native wrappers.  It does all the
  2454 // normal checks but also performs the transition back into
  2455 // thread_in_Java state.  This is required so that critical natives
  2456 // can potentially block and perform a GC if they are the last thread
  2457 // exiting the GC_locker.
  2458 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2459   check_special_condition_for_native_trans(thread);
  2461   // Finish the transition
  2462   thread->set_thread_state(_thread_in_Java);
  2464   if (thread->do_critical_native_unlock()) {
  2465     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2466     GC_locker::unlock_critical(thread);
  2467     thread->clear_critical_native_unlock();
  2471 // We need to guarantee the Threads_lock here, since resumes are not
  2472 // allowed during safepoint synchronization
  2473 // Can only resume from an external suspension
  2474 void JavaThread::java_resume() {
  2475   assert_locked_or_safepoint(Threads_lock);
  2477   // Sanity check: thread is gone, has started exiting or the thread
  2478   // was not externally suspended.
  2479   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2480     return;
  2483   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2485   clear_external_suspend();
  2487   if (is_ext_suspended()) {
  2488     clear_ext_suspended();
  2489     SR_lock()->notify_all();
  2493 void JavaThread::create_stack_guard_pages() {
  2494   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2495   address low_addr = stack_base() - stack_size();
  2496   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2498   int allocate = os::allocate_stack_guard_pages();
  2499   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2501   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2502     warning("Attempt to allocate stack guard pages failed.");
  2503     return;
  2506   if (os::guard_memory((char *) low_addr, len)) {
  2507     _stack_guard_state = stack_guard_enabled;
  2508   } else {
  2509     warning("Attempt to protect stack guard pages failed.");
  2510     if (os::uncommit_memory((char *) low_addr, len)) {
  2511       warning("Attempt to deallocate stack guard pages failed.");
  2516 void JavaThread::remove_stack_guard_pages() {
  2517   assert(Thread::current() == this, "from different thread");
  2518   if (_stack_guard_state == stack_guard_unused) return;
  2519   address low_addr = stack_base() - stack_size();
  2520   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2522   if (os::allocate_stack_guard_pages()) {
  2523     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2524       _stack_guard_state = stack_guard_unused;
  2525     } else {
  2526       warning("Attempt to deallocate stack guard pages failed.");
  2528   } else {
  2529     if (_stack_guard_state == stack_guard_unused) return;
  2530     if (os::unguard_memory((char *) low_addr, len)) {
  2531       _stack_guard_state = stack_guard_unused;
  2532     } else {
  2533         warning("Attempt to unprotect stack guard pages failed.");
  2538 void JavaThread::enable_stack_yellow_zone() {
  2539   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2540   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2542   // The base notation is from the stacks point of view, growing downward.
  2543   // We need to adjust it to work correctly with guard_memory()
  2544   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2546   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2547   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2549   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2550     _stack_guard_state = stack_guard_enabled;
  2551   } else {
  2552     warning("Attempt to guard stack yellow zone failed.");
  2554   enable_register_stack_guard();
  2557 void JavaThread::disable_stack_yellow_zone() {
  2558   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2559   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2561   // Simply return if called for a thread that does not use guard pages.
  2562   if (_stack_guard_state == stack_guard_unused) return;
  2564   // The base notation is from the stacks point of view, growing downward.
  2565   // We need to adjust it to work correctly with guard_memory()
  2566   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2568   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2569     _stack_guard_state = stack_guard_yellow_disabled;
  2570   } else {
  2571     warning("Attempt to unguard stack yellow zone failed.");
  2573   disable_register_stack_guard();
  2576 void JavaThread::enable_stack_red_zone() {
  2577   // The base notation is from the stacks point of view, growing downward.
  2578   // We need to adjust it to work correctly with guard_memory()
  2579   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2580   address base = stack_red_zone_base() - stack_red_zone_size();
  2582   guarantee(base < stack_base(),"Error calculating stack red zone");
  2583   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2585   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2586     warning("Attempt to guard stack red zone failed.");
  2590 void JavaThread::disable_stack_red_zone() {
  2591   // The base notation is from the stacks point of view, growing downward.
  2592   // We need to adjust it to work correctly with guard_memory()
  2593   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2594   address base = stack_red_zone_base() - stack_red_zone_size();
  2595   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2596     warning("Attempt to unguard stack red zone failed.");
  2600 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2601   // ignore is there is no stack
  2602   if (!has_last_Java_frame()) return;
  2603   // traverse the stack frames. Starts from top frame.
  2604   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2605     frame* fr = fst.current();
  2606     f(fr, fst.register_map());
  2611 #ifndef PRODUCT
  2612 // Deoptimization
  2613 // Function for testing deoptimization
  2614 void JavaThread::deoptimize() {
  2615   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2616   StackFrameStream fst(this, UseBiasedLocking);
  2617   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2618   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2619   // Iterate over all frames in the thread and deoptimize
  2620   for(; !fst.is_done(); fst.next()) {
  2621     if(fst.current()->can_be_deoptimized()) {
  2623       if (only_at) {
  2624         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2625         // consists of comma or carriage return separated numbers so
  2626         // search for the current bci in that string.
  2627         address pc = fst.current()->pc();
  2628         nmethod* nm =  (nmethod*) fst.current()->cb();
  2629         ScopeDesc* sd = nm->scope_desc_at( pc);
  2630         char buffer[8];
  2631         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2632         size_t len = strlen(buffer);
  2633         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2634         while (found != NULL) {
  2635           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2636               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2637             // Check that the bci found is bracketed by terminators.
  2638             break;
  2640           found = strstr(found + 1, buffer);
  2642         if (!found) {
  2643           continue;
  2647       if (DebugDeoptimization && !deopt) {
  2648         deopt = true; // One-time only print before deopt
  2649         tty->print_cr("[BEFORE Deoptimization]");
  2650         trace_frames();
  2651         trace_stack();
  2653       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2657   if (DebugDeoptimization && deopt) {
  2658     tty->print_cr("[AFTER Deoptimization]");
  2659     trace_frames();
  2664 // Make zombies
  2665 void JavaThread::make_zombies() {
  2666   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2667     if (fst.current()->can_be_deoptimized()) {
  2668       // it is a Java nmethod
  2669       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2670       nm->make_not_entrant();
  2674 #endif // PRODUCT
  2677 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2678   if (!has_last_Java_frame()) return;
  2679   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2680   StackFrameStream fst(this, UseBiasedLocking);
  2681   for(; !fst.is_done(); fst.next()) {
  2682     if (fst.current()->should_be_deoptimized()) {
  2683       if (LogCompilation && xtty != NULL) {
  2684         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2685         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2686                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2689       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2695 // GC support
  2696 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2698 void JavaThread::gc_epilogue() {
  2699   frames_do(frame_gc_epilogue);
  2703 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2705 void JavaThread::gc_prologue() {
  2706   frames_do(frame_gc_prologue);
  2709 // If the caller is a NamedThread, then remember, in the current scope,
  2710 // the given JavaThread in its _processed_thread field.
  2711 class RememberProcessedThread: public StackObj {
  2712   NamedThread* _cur_thr;
  2713 public:
  2714   RememberProcessedThread(JavaThread* jthr) {
  2715     Thread* thread = Thread::current();
  2716     if (thread->is_Named_thread()) {
  2717       _cur_thr = (NamedThread *)thread;
  2718       _cur_thr->set_processed_thread(jthr);
  2719     } else {
  2720       _cur_thr = NULL;
  2724   ~RememberProcessedThread() {
  2725     if (_cur_thr) {
  2726       _cur_thr->set_processed_thread(NULL);
  2729 };
  2731 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  2732   // Verify that the deferred card marks have been flushed.
  2733   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2735   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2736   // since there may be more than one thread using each ThreadProfiler.
  2738   // Traverse the GCHandles
  2739   Thread::oops_do(f, cld_f, cf);
  2741   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2742           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2744   if (has_last_Java_frame()) {
  2745     // Record JavaThread to GC thread
  2746     RememberProcessedThread rpt(this);
  2748     // Traverse the privileged stack
  2749     if (_privileged_stack_top != NULL) {
  2750       _privileged_stack_top->oops_do(f);
  2753     // traverse the registered growable array
  2754     if (_array_for_gc != NULL) {
  2755       for (int index = 0; index < _array_for_gc->length(); index++) {
  2756         f->do_oop(_array_for_gc->adr_at(index));
  2760     // Traverse the monitor chunks
  2761     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2762       chunk->oops_do(f);
  2765     // Traverse the execution stack
  2766     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2767       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
  2771   // callee_target is never live across a gc point so NULL it here should
  2772   // it still contain a methdOop.
  2774   set_callee_target(NULL);
  2776   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2777   // If we have deferred set_locals there might be oops waiting to be
  2778   // written
  2779   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2780   if (list != NULL) {
  2781     for (int i = 0; i < list->length(); i++) {
  2782       list->at(i)->oops_do(f);
  2786   // Traverse instance variables at the end since the GC may be moving things
  2787   // around using this function
  2788   f->do_oop((oop*) &_threadObj);
  2789   f->do_oop((oop*) &_vm_result);
  2790   f->do_oop((oop*) &_exception_oop);
  2791   f->do_oop((oop*) &_pending_async_exception);
  2793   if (jvmti_thread_state() != NULL) {
  2794     jvmti_thread_state()->oops_do(f);
  2798 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2799   Thread::nmethods_do(cf);  // (super method is a no-op)
  2801   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2802           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2804   if (has_last_Java_frame()) {
  2805     // Traverse the execution stack
  2806     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2807       fst.current()->nmethods_do(cf);
  2812 void JavaThread::metadata_do(void f(Metadata*)) {
  2813   Thread::metadata_do(f);
  2814   if (has_last_Java_frame()) {
  2815     // Traverse the execution stack to call f() on the methods in the stack
  2816     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2817       fst.current()->metadata_do(f);
  2819   } else if (is_Compiler_thread()) {
  2820     // need to walk ciMetadata in current compile tasks to keep alive.
  2821     CompilerThread* ct = (CompilerThread*)this;
  2822     if (ct->env() != NULL) {
  2823       ct->env()->metadata_do(f);
  2828 // Printing
  2829 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2830   switch (_thread_state) {
  2831   case _thread_uninitialized:     return "_thread_uninitialized";
  2832   case _thread_new:               return "_thread_new";
  2833   case _thread_new_trans:         return "_thread_new_trans";
  2834   case _thread_in_native:         return "_thread_in_native";
  2835   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2836   case _thread_in_vm:             return "_thread_in_vm";
  2837   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2838   case _thread_in_Java:           return "_thread_in_Java";
  2839   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2840   case _thread_blocked:           return "_thread_blocked";
  2841   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2842   default:                        return "unknown thread state";
  2846 #ifndef PRODUCT
  2847 void JavaThread::print_thread_state_on(outputStream *st) const {
  2848   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2849 };
  2850 void JavaThread::print_thread_state() const {
  2851   print_thread_state_on(tty);
  2852 };
  2853 #endif // PRODUCT
  2855 // Called by Threads::print() for VM_PrintThreads operation
  2856 void JavaThread::print_on(outputStream *st) const {
  2857   st->print("\"%s\" ", get_thread_name());
  2858   oop thread_oop = threadObj();
  2859   if (thread_oop != NULL) {
  2860     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2861     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2862     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2864   Thread::print_on(st);
  2865   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2866   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2867   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2868     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2870 #ifndef PRODUCT
  2871   print_thread_state_on(st);
  2872   _safepoint_state->print_on(st);
  2873 #endif // PRODUCT
  2876 // Called by fatal error handler. The difference between this and
  2877 // JavaThread::print() is that we can't grab lock or allocate memory.
  2878 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2879   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2880   oop thread_obj = threadObj();
  2881   if (thread_obj != NULL) {
  2882      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2884   st->print(" [");
  2885   st->print("%s", _get_thread_state_name(_thread_state));
  2886   if (osthread()) {
  2887     st->print(", id=%d", osthread()->thread_id());
  2889   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2890             _stack_base - _stack_size, _stack_base);
  2891   st->print("]");
  2892   return;
  2895 // Verification
  2897 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2899 void JavaThread::verify() {
  2900   // Verify oops in the thread.
  2901   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
  2903   // Verify the stack frames.
  2904   frames_do(frame_verify);
  2907 // CR 6300358 (sub-CR 2137150)
  2908 // Most callers of this method assume that it can't return NULL but a
  2909 // thread may not have a name whilst it is in the process of attaching to
  2910 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2911 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2912 // if vm exit occurs during initialization). These cases can all be accounted
  2913 // for such that this method never returns NULL.
  2914 const char* JavaThread::get_thread_name() const {
  2915 #ifdef ASSERT
  2916   // early safepoints can hit while current thread does not yet have TLS
  2917   if (!SafepointSynchronize::is_at_safepoint()) {
  2918     Thread *cur = Thread::current();
  2919     if (!(cur->is_Java_thread() && cur == this)) {
  2920       // Current JavaThreads are allowed to get their own name without
  2921       // the Threads_lock.
  2922       assert_locked_or_safepoint(Threads_lock);
  2925 #endif // ASSERT
  2926     return get_thread_name_string();
  2929 // Returns a non-NULL representation of this thread's name, or a suitable
  2930 // descriptive string if there is no set name
  2931 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2932   const char* name_str;
  2933   oop thread_obj = threadObj();
  2934   if (thread_obj != NULL) {
  2935     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2936     if (name != NULL) {
  2937       if (buf == NULL) {
  2938         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2940       else {
  2941         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2944     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2945       name_str = "<no-name - thread is attaching>";
  2947     else {
  2948       name_str = Thread::name();
  2951   else {
  2952     name_str = Thread::name();
  2954   assert(name_str != NULL, "unexpected NULL thread name");
  2955   return name_str;
  2959 const char* JavaThread::get_threadgroup_name() const {
  2960   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2961   oop thread_obj = threadObj();
  2962   if (thread_obj != NULL) {
  2963     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2964     if (thread_group != NULL) {
  2965       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2966       // ThreadGroup.name can be null
  2967       if (name != NULL) {
  2968         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2969         return str;
  2973   return NULL;
  2976 const char* JavaThread::get_parent_name() const {
  2977   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2978   oop thread_obj = threadObj();
  2979   if (thread_obj != NULL) {
  2980     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2981     if (thread_group != NULL) {
  2982       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2983       if (parent != NULL) {
  2984         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2985         // ThreadGroup.name can be null
  2986         if (name != NULL) {
  2987           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2988           return str;
  2993   return NULL;
  2996 ThreadPriority JavaThread::java_priority() const {
  2997   oop thr_oop = threadObj();
  2998   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2999   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  3000   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  3001   return priority;
  3004 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  3006   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  3007   // Link Java Thread object <-> C++ Thread
  3009   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  3010   // and put it into a new Handle.  The Handle "thread_oop" can then
  3011   // be used to pass the C++ thread object to other methods.
  3013   // Set the Java level thread object (jthread) field of the
  3014   // new thread (a JavaThread *) to C++ thread object using the
  3015   // "thread_oop" handle.
  3017   // Set the thread field (a JavaThread *) of the
  3018   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  3020   Handle thread_oop(Thread::current(),
  3021                     JNIHandles::resolve_non_null(jni_thread));
  3022   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3023     "must be initialized");
  3024   set_threadObj(thread_oop());
  3025   java_lang_Thread::set_thread(thread_oop(), this);
  3027   if (prio == NoPriority) {
  3028     prio = java_lang_Thread::priority(thread_oop());
  3029     assert(prio != NoPriority, "A valid priority should be present");
  3032   // Push the Java priority down to the native thread; needs Threads_lock
  3033   Thread::set_priority(this, prio);
  3035   // Add the new thread to the Threads list and set it in motion.
  3036   // We must have threads lock in order to call Threads::add.
  3037   // It is crucial that we do not block before the thread is
  3038   // added to the Threads list for if a GC happens, then the java_thread oop
  3039   // will not be visited by GC.
  3040   Threads::add(this);
  3043 oop JavaThread::current_park_blocker() {
  3044   // Support for JSR-166 locks
  3045   oop thread_oop = threadObj();
  3046   if (thread_oop != NULL &&
  3047       JDK_Version::current().supports_thread_park_blocker()) {
  3048     return java_lang_Thread::park_blocker(thread_oop);
  3050   return NULL;
  3054 void JavaThread::print_stack_on(outputStream* st) {
  3055   if (!has_last_Java_frame()) return;
  3056   ResourceMark rm;
  3057   HandleMark   hm;
  3059   RegisterMap reg_map(this);
  3060   vframe* start_vf = last_java_vframe(&reg_map);
  3061   int count = 0;
  3062   for (vframe* f = start_vf; f; f = f->sender() ) {
  3063     if (f->is_java_frame()) {
  3064       javaVFrame* jvf = javaVFrame::cast(f);
  3065       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3067       // Print out lock information
  3068       if (JavaMonitorsInStackTrace) {
  3069         jvf->print_lock_info_on(st, count);
  3071     } else {
  3072       // Ignore non-Java frames
  3075     // Bail-out case for too deep stacks
  3076     count++;
  3077     if (MaxJavaStackTraceDepth == count) return;
  3082 // JVMTI PopFrame support
  3083 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3084   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3085   if (in_bytes(size_in_bytes) != 0) {
  3086     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3087     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3088     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3092 void* JavaThread::popframe_preserved_args() {
  3093   return _popframe_preserved_args;
  3096 ByteSize JavaThread::popframe_preserved_args_size() {
  3097   return in_ByteSize(_popframe_preserved_args_size);
  3100 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3101   int sz = in_bytes(popframe_preserved_args_size());
  3102   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3103   return in_WordSize(sz / wordSize);
  3106 void JavaThread::popframe_free_preserved_args() {
  3107   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3108   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3109   _popframe_preserved_args = NULL;
  3110   _popframe_preserved_args_size = 0;
  3113 #ifndef PRODUCT
  3115 void JavaThread::trace_frames() {
  3116   tty->print_cr("[Describe stack]");
  3117   int frame_no = 1;
  3118   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3119     tty->print("  %d. ", frame_no++);
  3120     fst.current()->print_value_on(tty,this);
  3121     tty->cr();
  3125 class PrintAndVerifyOopClosure: public OopClosure {
  3126  protected:
  3127   template <class T> inline void do_oop_work(T* p) {
  3128     oop obj = oopDesc::load_decode_heap_oop(p);
  3129     if (obj == NULL) return;
  3130     tty->print(INTPTR_FORMAT ": ", p);
  3131     if (obj->is_oop_or_null()) {
  3132       if (obj->is_objArray()) {
  3133         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3134       } else {
  3135         obj->print();
  3137     } else {
  3138       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3140     tty->cr();
  3142  public:
  3143   virtual void do_oop(oop* p) { do_oop_work(p); }
  3144   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3145 };
  3148 static void oops_print(frame* f, const RegisterMap *map) {
  3149   PrintAndVerifyOopClosure print;
  3150   f->print_value();
  3151   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
  3154 // Print our all the locations that contain oops and whether they are
  3155 // valid or not.  This useful when trying to find the oldest frame
  3156 // where an oop has gone bad since the frame walk is from youngest to
  3157 // oldest.
  3158 void JavaThread::trace_oops() {
  3159   tty->print_cr("[Trace oops]");
  3160   frames_do(oops_print);
  3164 #ifdef ASSERT
  3165 // Print or validate the layout of stack frames
  3166 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3167   ResourceMark rm;
  3168   PRESERVE_EXCEPTION_MARK;
  3169   FrameValues values;
  3170   int frame_no = 0;
  3171   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3172     fst.current()->describe(values, ++frame_no);
  3173     if (depth == frame_no) break;
  3175   if (validate_only) {
  3176     values.validate();
  3177   } else {
  3178     tty->print_cr("[Describe stack layout]");
  3179     values.print(this);
  3182 #endif
  3184 void JavaThread::trace_stack_from(vframe* start_vf) {
  3185   ResourceMark rm;
  3186   int vframe_no = 1;
  3187   for (vframe* f = start_vf; f; f = f->sender() ) {
  3188     if (f->is_java_frame()) {
  3189       javaVFrame::cast(f)->print_activation(vframe_no++);
  3190     } else {
  3191       f->print();
  3193     if (vframe_no > StackPrintLimit) {
  3194       tty->print_cr("...<more frames>...");
  3195       return;
  3201 void JavaThread::trace_stack() {
  3202   if (!has_last_Java_frame()) return;
  3203   ResourceMark rm;
  3204   HandleMark   hm;
  3205   RegisterMap reg_map(this);
  3206   trace_stack_from(last_java_vframe(&reg_map));
  3210 #endif // PRODUCT
  3213 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3214   assert(reg_map != NULL, "a map must be given");
  3215   frame f = last_frame();
  3216   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3217     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3219   return NULL;
  3223 Klass* JavaThread::security_get_caller_class(int depth) {
  3224   vframeStream vfst(this);
  3225   vfst.security_get_caller_frame(depth);
  3226   if (!vfst.at_end()) {
  3227     return vfst.method()->method_holder();
  3229   return NULL;
  3232 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3233   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3234   CompileBroker::compiler_thread_loop();
  3237 // Create a CompilerThread
  3238 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3239 : JavaThread(&compiler_thread_entry) {
  3240   _env   = NULL;
  3241   _log   = NULL;
  3242   _task  = NULL;
  3243   _queue = queue;
  3244   _counters = counters;
  3245   _buffer_blob = NULL;
  3246   _scanned_nmethod = NULL;
  3247   _compiler = NULL;
  3249 #ifndef PRODUCT
  3250   _ideal_graph_printer = NULL;
  3251 #endif
  3254 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  3255   JavaThread::oops_do(f, cld_f, cf);
  3256   if (_scanned_nmethod != NULL && cf != NULL) {
  3257     // Safepoints can occur when the sweeper is scanning an nmethod so
  3258     // process it here to make sure it isn't unloaded in the middle of
  3259     // a scan.
  3260     cf->do_code_blob(_scanned_nmethod);
  3265 // ======= Threads ========
  3267 // The Threads class links together all active threads, and provides
  3268 // operations over all threads.  It is protected by its own Mutex
  3269 // lock, which is also used in other contexts to protect thread
  3270 // operations from having the thread being operated on from exiting
  3271 // and going away unexpectedly (e.g., safepoint synchronization)
  3273 JavaThread* Threads::_thread_list = NULL;
  3274 int         Threads::_number_of_threads = 0;
  3275 int         Threads::_number_of_non_daemon_threads = 0;
  3276 int         Threads::_return_code = 0;
  3277 size_t      JavaThread::_stack_size_at_create = 0;
  3278 #ifdef ASSERT
  3279 bool        Threads::_vm_complete = false;
  3280 #endif
  3282 // All JavaThreads
  3283 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3285 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3286 void Threads::threads_do(ThreadClosure* tc) {
  3287   assert_locked_or_safepoint(Threads_lock);
  3288   // ALL_JAVA_THREADS iterates through all JavaThreads
  3289   ALL_JAVA_THREADS(p) {
  3290     tc->do_thread(p);
  3292   // Someday we could have a table or list of all non-JavaThreads.
  3293   // For now, just manually iterate through them.
  3294   tc->do_thread(VMThread::vm_thread());
  3295   Universe::heap()->gc_threads_do(tc);
  3296   WatcherThread *wt = WatcherThread::watcher_thread();
  3297   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3298   // the data for WatcherThread is still valid upon being examined. However,
  3299   // considering that WatchThread terminates when the VM is on the way to
  3300   // exit at safepoint, the chance of the above is extremely small. The right
  3301   // way to prevent termination of WatcherThread would be to acquire
  3302   // Terminator_lock, but we can't do that without violating the lock rank
  3303   // checking in some cases.
  3304   if (wt != NULL)
  3305     tc->do_thread(wt);
  3307   // If CompilerThreads ever become non-JavaThreads, add them here
  3310 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3312   extern void JDK_Version_init();
  3314   // Check version
  3315   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3317   // Initialize the output stream module
  3318   ostream_init();
  3320   // Process java launcher properties.
  3321   Arguments::process_sun_java_launcher_properties(args);
  3323   // Initialize the os module before using TLS
  3324   os::init();
  3326   // Initialize system properties.
  3327   Arguments::init_system_properties();
  3329   // So that JDK version can be used as a discrimintor when parsing arguments
  3330   JDK_Version_init();
  3332   // Update/Initialize System properties after JDK version number is known
  3333   Arguments::init_version_specific_system_properties();
  3335   // Parse arguments
  3336   jint parse_result = Arguments::parse(args);
  3337   if (parse_result != JNI_OK) return parse_result;
  3339   os::init_before_ergo();
  3341   jint ergo_result = Arguments::apply_ergo();
  3342   if (ergo_result != JNI_OK) return ergo_result;
  3344   if (PauseAtStartup) {
  3345     os::pause();
  3348 #ifndef USDT2
  3349   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3350 #else /* USDT2 */
  3351   HOTSPOT_VM_INIT_BEGIN();
  3352 #endif /* USDT2 */
  3354   // Record VM creation timing statistics
  3355   TraceVmCreationTime create_vm_timer;
  3356   create_vm_timer.start();
  3358   // Timing (must come after argument parsing)
  3359   TraceTime timer("Create VM", TraceStartupTime);
  3361   // Initialize the os module after parsing the args
  3362   jint os_init_2_result = os::init_2();
  3363   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3365   jint adjust_after_os_result = Arguments::adjust_after_os();
  3366   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
  3368   // intialize TLS
  3369   ThreadLocalStorage::init();
  3371   // Bootstrap native memory tracking, so it can start recording memory
  3372   // activities before worker thread is started. This is the first phase
  3373   // of bootstrapping, VM is currently running in single-thread mode.
  3374   MemTracker::bootstrap_single_thread();
  3376   // Initialize output stream logging
  3377   ostream_init_log();
  3379   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3380   // Must be before create_vm_init_agents()
  3381   if (Arguments::init_libraries_at_startup()) {
  3382     convert_vm_init_libraries_to_agents();
  3385   // Launch -agentlib/-agentpath and converted -Xrun agents
  3386   if (Arguments::init_agents_at_startup()) {
  3387     create_vm_init_agents();
  3390   // Initialize Threads state
  3391   _thread_list = NULL;
  3392   _number_of_threads = 0;
  3393   _number_of_non_daemon_threads = 0;
  3395   // Initialize global data structures and create system classes in heap
  3396   vm_init_globals();
  3398   // Attach the main thread to this os thread
  3399   JavaThread* main_thread = new JavaThread();
  3400   main_thread->set_thread_state(_thread_in_vm);
  3401   // must do this before set_active_handles and initialize_thread_local_storage
  3402   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3403   // change the stack size recorded here to one based on the java thread
  3404   // stacksize. This adjusted size is what is used to figure the placement
  3405   // of the guard pages.
  3406   main_thread->record_stack_base_and_size();
  3407   main_thread->initialize_thread_local_storage();
  3409   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3411   if (!main_thread->set_as_starting_thread()) {
  3412     vm_shutdown_during_initialization(
  3413       "Failed necessary internal allocation. Out of swap space");
  3414     delete main_thread;
  3415     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3416     return JNI_ENOMEM;
  3419   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3420   // crash Linux VM, see notes in os_linux.cpp.
  3421   main_thread->create_stack_guard_pages();
  3423   // Initialize Java-Level synchronization subsystem
  3424   ObjectMonitor::Initialize() ;
  3426   // Second phase of bootstrapping, VM is about entering multi-thread mode
  3427   MemTracker::bootstrap_multi_thread();
  3429   // Initialize global modules
  3430   jint status = init_globals();
  3431   if (status != JNI_OK) {
  3432     delete main_thread;
  3433     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3434     return status;
  3437   // Should be done after the heap is fully created
  3438   main_thread->cache_global_variables();
  3440   HandleMark hm;
  3442   { MutexLocker mu(Threads_lock);
  3443     Threads::add(main_thread);
  3446   // Any JVMTI raw monitors entered in onload will transition into
  3447   // real raw monitor. VM is setup enough here for raw monitor enter.
  3448   JvmtiExport::transition_pending_onload_raw_monitors();
  3450   // Fully start NMT
  3451   MemTracker::start();
  3453   // Create the VMThread
  3454   { TraceTime timer("Start VMThread", TraceStartupTime);
  3455     VMThread::create();
  3456     Thread* vmthread = VMThread::vm_thread();
  3458     if (!os::create_thread(vmthread, os::vm_thread))
  3459       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3461     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3462     // Monitors can have spurious returns, must always check another state flag
  3464       MutexLocker ml(Notify_lock);
  3465       os::start_thread(vmthread);
  3466       while (vmthread->active_handles() == NULL) {
  3467         Notify_lock->wait();
  3472   assert (Universe::is_fully_initialized(), "not initialized");
  3473   if (VerifyDuringStartup) {
  3474     // Make sure we're starting with a clean slate.
  3475     VM_Verify verify_op;
  3476     VMThread::execute(&verify_op);
  3479   EXCEPTION_MARK;
  3481   // At this point, the Universe is initialized, but we have not executed
  3482   // any byte code.  Now is a good time (the only time) to dump out the
  3483   // internal state of the JVM for sharing.
  3484   if (DumpSharedSpaces) {
  3485     MetaspaceShared::preload_and_dump(CHECK_0);
  3486     ShouldNotReachHere();
  3489   // Always call even when there are not JVMTI environments yet, since environments
  3490   // may be attached late and JVMTI must track phases of VM execution
  3491   JvmtiExport::enter_start_phase();
  3493   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3494   JvmtiExport::post_vm_start();
  3497     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3499     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3500       create_vm_init_libraries();
  3503     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3505     // Initialize java_lang.System (needed before creating the thread)
  3506     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3507     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3508     Handle thread_group = create_initial_thread_group(CHECK_0);
  3509     Universe::set_main_thread_group(thread_group());
  3510     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3511     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3512     main_thread->set_threadObj(thread_object);
  3513     // Set thread status to running since main thread has
  3514     // been started and running.
  3515     java_lang_Thread::set_thread_status(thread_object,
  3516                                         java_lang_Thread::RUNNABLE);
  3518     // The VM creates & returns objects of this class. Make sure it's initialized.
  3519     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3521     // The VM preresolves methods to these classes. Make sure that they get initialized
  3522     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3523     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3524     call_initializeSystemClass(CHECK_0);
  3526     // get the Java runtime name after java.lang.System is initialized
  3527     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3528     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3530     // an instance of OutOfMemory exception has been allocated earlier
  3531     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3532     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3533     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3534     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3535     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3536     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3537     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3538     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3541   // See        : bugid 4211085.
  3542   // Background : the static initializer of java.lang.Compiler tries to read
  3543   //              property"java.compiler" and read & write property "java.vm.info".
  3544   //              When a security manager is installed through the command line
  3545   //              option "-Djava.security.manager", the above properties are not
  3546   //              readable and the static initializer for java.lang.Compiler fails
  3547   //              resulting in a NoClassDefFoundError.  This can happen in any
  3548   //              user code which calls methods in java.lang.Compiler.
  3549   // Hack :       the hack is to pre-load and initialize this class, so that only
  3550   //              system domains are on the stack when the properties are read.
  3551   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3552   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3553   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3554   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3555   //              Once that is done, we should remove this hack.
  3556   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3558   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3559   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3560   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3561   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3562   // This should also be taken out as soon as 4211383 gets fixed.
  3563   reset_vm_info_property(CHECK_0);
  3565   quicken_jni_functions();
  3567   // Must be run after init_ft which initializes ft_enabled
  3568   if (TRACE_INITIALIZE() != JNI_OK) {
  3569     vm_exit_during_initialization("Failed to initialize tracing backend");
  3572   // Set flag that basic initialization has completed. Used by exceptions and various
  3573   // debug stuff, that does not work until all basic classes have been initialized.
  3574   set_init_completed();
  3576 #ifndef USDT2
  3577   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3578 #else /* USDT2 */
  3579   HOTSPOT_VM_INIT_END();
  3580 #endif /* USDT2 */
  3582   // record VM initialization completion time
  3583 #if INCLUDE_MANAGEMENT
  3584   Management::record_vm_init_completed();
  3585 #endif // INCLUDE_MANAGEMENT
  3587   // Compute system loader. Note that this has to occur after set_init_completed, since
  3588   // valid exceptions may be thrown in the process.
  3589   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3590   // set_init_completed has just been called, causing exceptions not to be shortcut
  3591   // anymore. We call vm_exit_during_initialization directly instead.
  3592   SystemDictionary::compute_java_system_loader(THREAD);
  3593   if (HAS_PENDING_EXCEPTION) {
  3594     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3597 #if INCLUDE_ALL_GCS
  3598   // Support for ConcurrentMarkSweep. This should be cleaned up
  3599   // and better encapsulated. The ugly nested if test would go away
  3600   // once things are properly refactored. XXX YSR
  3601   if (UseConcMarkSweepGC || UseG1GC) {
  3602     if (UseConcMarkSweepGC) {
  3603       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3604     } else {
  3605       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3607     if (HAS_PENDING_EXCEPTION) {
  3608       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3611 #endif // INCLUDE_ALL_GCS
  3613   // Always call even when there are not JVMTI environments yet, since environments
  3614   // may be attached late and JVMTI must track phases of VM execution
  3615   JvmtiExport::enter_live_phase();
  3617   // Signal Dispatcher needs to be started before VMInit event is posted
  3618   os::signal_init();
  3620   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3621   if (!DisableAttachMechanism) {
  3622     AttachListener::vm_start();
  3623     if (StartAttachListener || AttachListener::init_at_startup()) {
  3624       AttachListener::init();
  3628   // Launch -Xrun agents
  3629   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3630   // back-end can launch with -Xdebug -Xrunjdwp.
  3631   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3632     create_vm_init_libraries();
  3635   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3636   JvmtiExport::post_vm_initialized();
  3638   if (TRACE_START() != JNI_OK) {
  3639     vm_exit_during_initialization("Failed to start tracing backend.");
  3642   if (CleanChunkPoolAsync) {
  3643     Chunk::start_chunk_pool_cleaner_task();
  3646   // initialize compiler(s)
  3647 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  3648   CompileBroker::compilation_init();
  3649 #endif
  3651   if (EnableInvokeDynamic) {
  3652     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
  3653     // It is done after compilers are initialized, because otherwise compilations of
  3654     // signature polymorphic MH intrinsics can be missed
  3655     // (see SystemDictionary::find_method_handle_intrinsic).
  3656     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
  3657     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
  3658     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
  3661 #if INCLUDE_MANAGEMENT
  3662   Management::initialize(THREAD);
  3663 #endif // INCLUDE_MANAGEMENT
  3665   if (HAS_PENDING_EXCEPTION) {
  3666     // management agent fails to start possibly due to
  3667     // configuration problem and is responsible for printing
  3668     // stack trace if appropriate. Simply exit VM.
  3669     vm_exit(1);
  3672   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3673   if (MemProfiling)                   MemProfiler::engage();
  3674   StatSampler::engage();
  3675   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3677   BiasedLocking::init();
  3679 #if INCLUDE_RTM_OPT
  3680   RTMLockingCounters::init();
  3681 #endif
  3683   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3684     call_postVMInitHook(THREAD);
  3685     // The Java side of PostVMInitHook.run must deal with all
  3686     // exceptions and provide means of diagnosis.
  3687     if (HAS_PENDING_EXCEPTION) {
  3688       CLEAR_PENDING_EXCEPTION;
  3693       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3694       // Make sure the watcher thread can be started by WatcherThread::start()
  3695       // or by dynamic enrollment.
  3696       WatcherThread::make_startable();
  3697       // Start up the WatcherThread if there are any periodic tasks
  3698       // NOTE:  All PeriodicTasks should be registered by now. If they
  3699       //   aren't, late joiners might appear to start slowly (we might
  3700       //   take a while to process their first tick).
  3701       if (PeriodicTask::num_tasks() > 0) {
  3702           WatcherThread::start();
  3706   // Give os specific code one last chance to start
  3707   os::init_3();
  3709   create_vm_timer.end();
  3710 #ifdef ASSERT
  3711   _vm_complete = true;
  3712 #endif
  3713   return JNI_OK;
  3716 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3717 extern "C" {
  3718   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3720 // Find a command line agent library and return its entry point for
  3721 //         -agentlib:  -agentpath:   -Xrun
  3722 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3723 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3724   OnLoadEntry_t on_load_entry = NULL;
  3725   void *library = NULL;
  3727   if (!agent->valid()) {
  3728     char buffer[JVM_MAXPATHLEN];
  3729     char ebuf[1024];
  3730     const char *name = agent->name();
  3731     const char *msg = "Could not find agent library ";
  3733     // First check to see if agent is statically linked into executable
  3734     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
  3735       library = agent->os_lib();
  3736     } else if (agent->is_absolute_path()) {
  3737       library = os::dll_load(name, ebuf, sizeof ebuf);
  3738       if (library == NULL) {
  3739         const char *sub_msg = " in absolute path, with error: ";
  3740         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3741         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3742         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3743         // If we can't find the agent, exit.
  3744         vm_exit_during_initialization(buf, NULL);
  3745         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3747     } else {
  3748       // Try to load the agent from the standard dll directory
  3749       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
  3750                              name)) {
  3751         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3753       if (library == NULL) { // Try the local directory
  3754         char ns[1] = {0};
  3755         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
  3756           library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3758         if (library == NULL) {
  3759           const char *sub_msg = " on the library path, with error: ";
  3760           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3761           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3762           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3763           // If we can't find the agent, exit.
  3764           vm_exit_during_initialization(buf, NULL);
  3765           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3769     agent->set_os_lib(library);
  3770     agent->set_valid();
  3773   // Find the OnLoad function.
  3774   on_load_entry =
  3775     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
  3776                                                           false,
  3777                                                           on_load_symbols,
  3778                                                           num_symbol_entries));
  3779   return on_load_entry;
  3782 // Find the JVM_OnLoad entry point
  3783 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3784   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3785   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3788 // Find the Agent_OnLoad entry point
  3789 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3790   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3791   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3794 // For backwards compatibility with -Xrun
  3795 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3796 // treated like -agentpath:
  3797 // Must be called before agent libraries are created
  3798 void Threads::convert_vm_init_libraries_to_agents() {
  3799   AgentLibrary* agent;
  3800   AgentLibrary* next;
  3802   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3803     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3804     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3806     // If there is an JVM_OnLoad function it will get called later,
  3807     // otherwise see if there is an Agent_OnLoad
  3808     if (on_load_entry == NULL) {
  3809       on_load_entry = lookup_agent_on_load(agent);
  3810       if (on_load_entry != NULL) {
  3811         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3812         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3813         Arguments::convert_library_to_agent(agent);
  3814       } else {
  3815         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3821 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3822 // Invokes Agent_OnLoad
  3823 // Called very early -- before JavaThreads exist
  3824 void Threads::create_vm_init_agents() {
  3825   extern struct JavaVM_ main_vm;
  3826   AgentLibrary* agent;
  3828   JvmtiExport::enter_onload_phase();
  3830   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3831     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3833     if (on_load_entry != NULL) {
  3834       // Invoke the Agent_OnLoad function
  3835       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3836       if (err != JNI_OK) {
  3837         vm_exit_during_initialization("agent library failed to init", agent->name());
  3839     } else {
  3840       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3843   JvmtiExport::enter_primordial_phase();
  3846 extern "C" {
  3847   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3850 void Threads::shutdown_vm_agents() {
  3851   // Send any Agent_OnUnload notifications
  3852   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3853   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
  3854   extern struct JavaVM_ main_vm;
  3855   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3857     // Find the Agent_OnUnload function.
  3858     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3859       os::find_agent_function(agent,
  3860       false,
  3861       on_unload_symbols,
  3862       num_symbol_entries));
  3864     // Invoke the Agent_OnUnload function
  3865     if (unload_entry != NULL) {
  3866       JavaThread* thread = JavaThread::current();
  3867       ThreadToNativeFromVM ttn(thread);
  3868       HandleMark hm(thread);
  3869       (*unload_entry)(&main_vm);
  3874 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3875 // Invokes JVM_OnLoad
  3876 void Threads::create_vm_init_libraries() {
  3877   extern struct JavaVM_ main_vm;
  3878   AgentLibrary* agent;
  3880   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3881     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3883     if (on_load_entry != NULL) {
  3884       // Invoke the JVM_OnLoad function
  3885       JavaThread* thread = JavaThread::current();
  3886       ThreadToNativeFromVM ttn(thread);
  3887       HandleMark hm(thread);
  3888       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3889       if (err != JNI_OK) {
  3890         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3892     } else {
  3893       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3898 // Last thread running calls java.lang.Shutdown.shutdown()
  3899 void JavaThread::invoke_shutdown_hooks() {
  3900   HandleMark hm(this);
  3902   // We could get here with a pending exception, if so clear it now.
  3903   if (this->has_pending_exception()) {
  3904     this->clear_pending_exception();
  3907   EXCEPTION_MARK;
  3908   Klass* k =
  3909     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3910                                       THREAD);
  3911   if (k != NULL) {
  3912     // SystemDictionary::resolve_or_null will return null if there was
  3913     // an exception.  If we cannot load the Shutdown class, just don't
  3914     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3915     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3916     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3917     // was called, the Shutdown class would have already been loaded
  3918     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3919     instanceKlassHandle shutdown_klass (THREAD, k);
  3920     JavaValue result(T_VOID);
  3921     JavaCalls::call_static(&result,
  3922                            shutdown_klass,
  3923                            vmSymbols::shutdown_method_name(),
  3924                            vmSymbols::void_method_signature(),
  3925                            THREAD);
  3927   CLEAR_PENDING_EXCEPTION;
  3930 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3931 // the program falls off the end of main(). Another VM exit path is through
  3932 // vm_exit() when the program calls System.exit() to return a value or when
  3933 // there is a serious error in VM. The two shutdown paths are not exactly
  3934 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3935 // and VM_Exit op at VM level.
  3936 //
  3937 // Shutdown sequence:
  3938 //   + Shutdown native memory tracking if it is on
  3939 //   + Wait until we are the last non-daemon thread to execute
  3940 //     <-- every thing is still working at this moment -->
  3941 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3942 //        shutdown hooks, run finalizers if finalization-on-exit
  3943 //   + Call before_exit(), prepare for VM exit
  3944 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3945 //        currently the only user of this mechanism is File.deleteOnExit())
  3946 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3947 //        post thread end and vm death events to JVMTI,
  3948 //        stop signal thread
  3949 //   + Call JavaThread::exit(), it will:
  3950 //      > release JNI handle blocks, remove stack guard pages
  3951 //      > remove this thread from Threads list
  3952 //     <-- no more Java code from this thread after this point -->
  3953 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3954 //     the compiler threads at safepoint
  3955 //     <-- do not use anything that could get blocked by Safepoint -->
  3956 //   + Disable tracing at JNI/JVM barriers
  3957 //   + Set _vm_exited flag for threads that are still running native code
  3958 //   + Delete this thread
  3959 //   + Call exit_globals()
  3960 //      > deletes tty
  3961 //      > deletes PerfMemory resources
  3962 //   + Return to caller
  3964 bool Threads::destroy_vm() {
  3965   JavaThread* thread = JavaThread::current();
  3967 #ifdef ASSERT
  3968   _vm_complete = false;
  3969 #endif
  3970   // Wait until we are the last non-daemon thread to execute
  3971   { MutexLocker nu(Threads_lock);
  3972     while (Threads::number_of_non_daemon_threads() > 1 )
  3973       // This wait should make safepoint checks, wait without a timeout,
  3974       // and wait as a suspend-equivalent condition.
  3975       //
  3976       // Note: If the FlatProfiler is running and this thread is waiting
  3977       // for another non-daemon thread to finish, then the FlatProfiler
  3978       // is waiting for the external suspend request on this thread to
  3979       // complete. wait_for_ext_suspend_completion() will eventually
  3980       // timeout, but that takes time. Making this wait a suspend-
  3981       // equivalent condition solves that timeout problem.
  3982       //
  3983       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3984                          Mutex::_as_suspend_equivalent_flag);
  3987   // Hang forever on exit if we are reporting an error.
  3988   if (ShowMessageBoxOnError && is_error_reported()) {
  3989     os::infinite_sleep();
  3991   os::wait_for_keypress_at_exit();
  3993   if (JDK_Version::is_jdk12x_version()) {
  3994     // We are the last thread running, so check if finalizers should be run.
  3995     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3996     HandleMark rm(thread);
  3997     Universe::run_finalizers_on_exit();
  3998   } else {
  3999     // run Java level shutdown hooks
  4000     thread->invoke_shutdown_hooks();
  4003   before_exit(thread);
  4005   thread->exit(true);
  4007   // Stop VM thread.
  4009     // 4945125 The vm thread comes to a safepoint during exit.
  4010     // GC vm_operations can get caught at the safepoint, and the
  4011     // heap is unparseable if they are caught. Grab the Heap_lock
  4012     // to prevent this. The GC vm_operations will not be able to
  4013     // queue until after the vm thread is dead.
  4014     // After this point, we'll never emerge out of the safepoint before
  4015     // the VM exits, so concurrent GC threads do not need to be explicitly
  4016     // stopped; they remain inactive until the process exits.
  4017     // Note: some concurrent G1 threads may be running during a safepoint,
  4018     // but these will not be accessing the heap, just some G1-specific side
  4019     // data structures that are not accessed by any other threads but them
  4020     // after this point in a terminal safepoint.
  4022     MutexLocker ml(Heap_lock);
  4024     VMThread::wait_for_vm_thread_exit();
  4025     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4026     VMThread::destroy();
  4029   // clean up ideal graph printers
  4030 #if defined(COMPILER2) && !defined(PRODUCT)
  4031   IdealGraphPrinter::clean_up();
  4032 #endif
  4034   // Now, all Java threads are gone except daemon threads. Daemon threads
  4035   // running Java code or in VM are stopped by the Safepoint. However,
  4036   // daemon threads executing native code are still running.  But they
  4037   // will be stopped at native=>Java/VM barriers. Note that we can't
  4038   // simply kill or suspend them, as it is inherently deadlock-prone.
  4040 #ifndef PRODUCT
  4041   // disable function tracing at JNI/JVM barriers
  4042   TraceJNICalls = false;
  4043   TraceJVMCalls = false;
  4044   TraceRuntimeCalls = false;
  4045 #endif
  4047   VM_Exit::set_vm_exited();
  4049   notify_vm_shutdown();
  4051   delete thread;
  4053   // exit_globals() will delete tty
  4054   exit_globals();
  4056   return true;
  4060 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4061   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4062   return is_supported_jni_version(version);
  4066 jboolean Threads::is_supported_jni_version(jint version) {
  4067   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4068   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4069   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4070   if (version == JNI_VERSION_1_8) return JNI_TRUE;
  4071   return JNI_FALSE;
  4075 void Threads::add(JavaThread* p, bool force_daemon) {
  4076   // The threads lock must be owned at this point
  4077   assert_locked_or_safepoint(Threads_lock);
  4079   // See the comment for this method in thread.hpp for its purpose and
  4080   // why it is called here.
  4081   p->initialize_queues();
  4082   p->set_next(_thread_list);
  4083   _thread_list = p;
  4084   _number_of_threads++;
  4085   oop threadObj = p->threadObj();
  4086   bool daemon = true;
  4087   // Bootstrapping problem: threadObj can be null for initial
  4088   // JavaThread (or for threads attached via JNI)
  4089   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4090     _number_of_non_daemon_threads++;
  4091     daemon = false;
  4094   p->set_safepoint_visible(true);
  4096   ThreadService::add_thread(p, daemon);
  4098   // Possible GC point.
  4099   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4102 void Threads::remove(JavaThread* p) {
  4103   // Extra scope needed for Thread_lock, so we can check
  4104   // that we do not remove thread without safepoint code notice
  4105   { MutexLocker ml(Threads_lock);
  4107     assert(includes(p), "p must be present");
  4109     JavaThread* current = _thread_list;
  4110     JavaThread* prev    = NULL;
  4112     while (current != p) {
  4113       prev    = current;
  4114       current = current->next();
  4117     if (prev) {
  4118       prev->set_next(current->next());
  4119     } else {
  4120       _thread_list = p->next();
  4122     _number_of_threads--;
  4123     oop threadObj = p->threadObj();
  4124     bool daemon = true;
  4125     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4126       _number_of_non_daemon_threads--;
  4127       daemon = false;
  4129       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4130       // on destroy_vm will wake up.
  4131       if (number_of_non_daemon_threads() == 1)
  4132         Threads_lock->notify_all();
  4134     ThreadService::remove_thread(p, daemon);
  4136     // Make sure that safepoint code disregard this thread. This is needed since
  4137     // the thread might mess around with locks after this point. This can cause it
  4138     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4139     // of this thread since it is removed from the queue.
  4140     p->set_terminated_value();
  4142     // Now, this thread is not visible to safepoint
  4143     p->set_safepoint_visible(false);
  4144     // once the thread becomes safepoint invisible, we can not use its per-thread
  4145     // recorder. And Threads::do_threads() no longer walks this thread, so we have
  4146     // to release its per-thread recorder here.
  4147     MemTracker::thread_exiting(p);
  4148   } // unlock Threads_lock
  4150   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4151   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4154 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4155 bool Threads::includes(JavaThread* p) {
  4156   assert(Threads_lock->is_locked(), "sanity check");
  4157   ALL_JAVA_THREADS(q) {
  4158     if (q == p ) {
  4159       return true;
  4162   return false;
  4165 // Operations on the Threads list for GC.  These are not explicitly locked,
  4166 // but the garbage collector must provide a safe context for them to run.
  4167 // In particular, these things should never be called when the Threads_lock
  4168 // is held by some other thread. (Note: the Safepoint abstraction also
  4169 // uses the Threads_lock to gurantee this property. It also makes sure that
  4170 // all threads gets blocked when exiting or starting).
  4172 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  4173   ALL_JAVA_THREADS(p) {
  4174     p->oops_do(f, cld_f, cf);
  4176   VMThread::vm_thread()->oops_do(f, cld_f, cf);
  4179 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  4180   // Introduce a mechanism allowing parallel threads to claim threads as
  4181   // root groups.  Overhead should be small enough to use all the time,
  4182   // even in sequential code.
  4183   SharedHeap* sh = SharedHeap::heap();
  4184   // Cannot yet substitute active_workers for n_par_threads
  4185   // because of G1CollectedHeap::verify() use of
  4186   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  4187   // turn off parallelism in process_strong_roots while active_workers
  4188   // is being used for parallelism elsewhere.
  4189   bool is_par = sh->n_par_threads() > 0;
  4190   assert(!is_par ||
  4191          (SharedHeap::heap()->n_par_threads() ==
  4192           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4193   int cp = SharedHeap::heap()->strong_roots_parity();
  4194   ALL_JAVA_THREADS(p) {
  4195     if (p->claim_oops_do(is_par, cp)) {
  4196       p->oops_do(f, cld_f, cf);
  4199   VMThread* vmt = VMThread::vm_thread();
  4200   if (vmt->claim_oops_do(is_par, cp)) {
  4201     vmt->oops_do(f, cld_f, cf);
  4205 #if INCLUDE_ALL_GCS
  4206 // Used by ParallelScavenge
  4207 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4208   ALL_JAVA_THREADS(p) {
  4209     q->enqueue(new ThreadRootsTask(p));
  4211   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4214 // Used by Parallel Old
  4215 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4216   ALL_JAVA_THREADS(p) {
  4217     q->enqueue(new ThreadRootsMarkingTask(p));
  4219   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4221 #endif // INCLUDE_ALL_GCS
  4223 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4224   ALL_JAVA_THREADS(p) {
  4225     p->nmethods_do(cf);
  4227   VMThread::vm_thread()->nmethods_do(cf);
  4230 void Threads::metadata_do(void f(Metadata*)) {
  4231   ALL_JAVA_THREADS(p) {
  4232     p->metadata_do(f);
  4236 void Threads::gc_epilogue() {
  4237   ALL_JAVA_THREADS(p) {
  4238     p->gc_epilogue();
  4242 void Threads::gc_prologue() {
  4243   ALL_JAVA_THREADS(p) {
  4244     p->gc_prologue();
  4248 void Threads::deoptimized_wrt_marked_nmethods() {
  4249   ALL_JAVA_THREADS(p) {
  4250     p->deoptimized_wrt_marked_nmethods();
  4255 // Get count Java threads that are waiting to enter the specified monitor.
  4256 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4257   address monitor, bool doLock) {
  4258   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4259     "must grab Threads_lock or be at safepoint");
  4260   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4262   int i = 0;
  4264     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4265     ALL_JAVA_THREADS(p) {
  4266       if (p->is_Compiler_thread()) continue;
  4268       address pending = (address)p->current_pending_monitor();
  4269       if (pending == monitor) {             // found a match
  4270         if (i < count) result->append(p);   // save the first count matches
  4271         i++;
  4275   return result;
  4279 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4280   assert(doLock ||
  4281          Threads_lock->owned_by_self() ||
  4282          SafepointSynchronize::is_at_safepoint(),
  4283          "must grab Threads_lock or be at safepoint");
  4285   // NULL owner means not locked so we can skip the search
  4286   if (owner == NULL) return NULL;
  4289     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4290     ALL_JAVA_THREADS(p) {
  4291       // first, see if owner is the address of a Java thread
  4292       if (owner == (address)p) return p;
  4295   // Cannot assert on lack of success here since this function may be
  4296   // used by code that is trying to report useful problem information
  4297   // like deadlock detection.
  4298   if (UseHeavyMonitors) return NULL;
  4300   //
  4301   // If we didn't find a matching Java thread and we didn't force use of
  4302   // heavyweight monitors, then the owner is the stack address of the
  4303   // Lock Word in the owning Java thread's stack.
  4304   //
  4305   JavaThread* the_owner = NULL;
  4307     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4308     ALL_JAVA_THREADS(q) {
  4309       if (q->is_lock_owned(owner)) {
  4310         the_owner = q;
  4311         break;
  4315   // cannot assert on lack of success here; see above comment
  4316   return the_owner;
  4319 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4320 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4321   char buf[32];
  4322   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4324   st->print_cr("Full thread dump %s (%s %s):",
  4325                 Abstract_VM_Version::vm_name(),
  4326                 Abstract_VM_Version::vm_release(),
  4327                 Abstract_VM_Version::vm_info_string()
  4328                );
  4329   st->cr();
  4331 #if INCLUDE_ALL_GCS
  4332   // Dump concurrent locks
  4333   ConcurrentLocksDump concurrent_locks;
  4334   if (print_concurrent_locks) {
  4335     concurrent_locks.dump_at_safepoint();
  4337 #endif // INCLUDE_ALL_GCS
  4339   ALL_JAVA_THREADS(p) {
  4340     ResourceMark rm;
  4341     p->print_on(st);
  4342     if (print_stacks) {
  4343       if (internal_format) {
  4344         p->trace_stack();
  4345       } else {
  4346         p->print_stack_on(st);
  4349     st->cr();
  4350 #if INCLUDE_ALL_GCS
  4351     if (print_concurrent_locks) {
  4352       concurrent_locks.print_locks_on(p, st);
  4354 #endif // INCLUDE_ALL_GCS
  4357   VMThread::vm_thread()->print_on(st);
  4358   st->cr();
  4359   Universe::heap()->print_gc_threads_on(st);
  4360   WatcherThread* wt = WatcherThread::watcher_thread();
  4361   if (wt != NULL) {
  4362     wt->print_on(st);
  4363     st->cr();
  4365   CompileBroker::print_compiler_threads_on(st);
  4366   st->flush();
  4369 // Threads::print_on_error() is called by fatal error handler. It's possible
  4370 // that VM is not at safepoint and/or current thread is inside signal handler.
  4371 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4372 // memory (even in resource area), it might deadlock the error handler.
  4373 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4374   bool found_current = false;
  4375   st->print_cr("Java Threads: ( => current thread )");
  4376   ALL_JAVA_THREADS(thread) {
  4377     bool is_current = (current == thread);
  4378     found_current = found_current || is_current;
  4380     st->print("%s", is_current ? "=>" : "  ");
  4382     st->print(PTR_FORMAT, thread);
  4383     st->print(" ");
  4384     thread->print_on_error(st, buf, buflen);
  4385     st->cr();
  4387   st->cr();
  4389   st->print_cr("Other Threads:");
  4390   if (VMThread::vm_thread()) {
  4391     bool is_current = (current == VMThread::vm_thread());
  4392     found_current = found_current || is_current;
  4393     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4395     st->print(PTR_FORMAT, VMThread::vm_thread());
  4396     st->print(" ");
  4397     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4398     st->cr();
  4400   WatcherThread* wt = WatcherThread::watcher_thread();
  4401   if (wt != NULL) {
  4402     bool is_current = (current == wt);
  4403     found_current = found_current || is_current;
  4404     st->print("%s", is_current ? "=>" : "  ");
  4406     st->print(PTR_FORMAT, wt);
  4407     st->print(" ");
  4408     wt->print_on_error(st, buf, buflen);
  4409     st->cr();
  4411   if (!found_current) {
  4412     st->cr();
  4413     st->print("=>" PTR_FORMAT " (exited) ", current);
  4414     current->print_on_error(st, buf, buflen);
  4415     st->cr();
  4419 // Internal SpinLock and Mutex
  4420 // Based on ParkEvent
  4422 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4423 //
  4424 // We employ SpinLocks _only for low-contention, fixed-length
  4425 // short-duration critical sections where we're concerned
  4426 // about native mutex_t or HotSpot Mutex:: latency.
  4427 // The mux construct provides a spin-then-block mutual exclusion
  4428 // mechanism.
  4429 //
  4430 // Testing has shown that contention on the ListLock guarding gFreeList
  4431 // is common.  If we implement ListLock as a simple SpinLock it's common
  4432 // for the JVM to devolve to yielding with little progress.  This is true
  4433 // despite the fact that the critical sections protected by ListLock are
  4434 // extremely short.
  4435 //
  4436 // TODO-FIXME: ListLock should be of type SpinLock.
  4437 // We should make this a 1st-class type, integrated into the lock
  4438 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4439 // should have sufficient padding to avoid false-sharing and excessive
  4440 // cache-coherency traffic.
  4443 typedef volatile int SpinLockT ;
  4445 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4446   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4447      return ;   // normal fast-path return
  4450   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4451   TEVENT (SpinAcquire - ctx) ;
  4452   int ctr = 0 ;
  4453   int Yields = 0 ;
  4454   for (;;) {
  4455      while (*adr != 0) {
  4456         ++ctr ;
  4457         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4458            if (Yields > 5) {
  4459              os::naked_short_sleep(1);
  4460            } else {
  4461              os::NakedYield() ;
  4462              ++Yields ;
  4464         } else {
  4465            SpinPause() ;
  4468      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4472 void Thread::SpinRelease (volatile int * adr) {
  4473   assert (*adr != 0, "invariant") ;
  4474   OrderAccess::fence() ;      // guarantee at least release consistency.
  4475   // Roach-motel semantics.
  4476   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4477   // but prior LDs and STs within the critical section can't be allowed
  4478   // to reorder or float past the ST that releases the lock.
  4479   *adr = 0 ;
  4482 // muxAcquire and muxRelease:
  4483 //
  4484 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4485 //    The LSB of the word is set IFF the lock is held.
  4486 //    The remainder of the word points to the head of a singly-linked list
  4487 //    of threads blocked on the lock.
  4488 //
  4489 // *  The current implementation of muxAcquire-muxRelease uses its own
  4490 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4491 //    minimizing the peak number of extant ParkEvent instances then
  4492 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4493 //    as certain invariants were satisfied.  Specifically, care would need
  4494 //    to be taken with regards to consuming unpark() "permits".
  4495 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4496 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4497 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4498 //    consume an unpark() permit intended for monitorenter, for instance.
  4499 //    One way around this would be to widen the restricted-range semaphore
  4500 //    implemented in park().  Another alternative would be to provide
  4501 //    multiple instances of the PlatformEvent() for each thread.  One
  4502 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4503 //
  4504 // *  Usage:
  4505 //    -- Only as leaf locks
  4506 //    -- for short-term locking only as muxAcquire does not perform
  4507 //       thread state transitions.
  4508 //
  4509 // Alternatives:
  4510 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4511 //    but with parking or spin-then-park instead of pure spinning.
  4512 // *  Use Taura-Oyama-Yonenzawa locks.
  4513 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4514 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4515 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4516 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4517 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4518 //    boundaries by using placement-new.
  4519 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4520 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4521 //    The validity of the backlinks must be ratified before we trust the value.
  4522 //    If the backlinks are invalid the exiting thread must back-track through the
  4523 //    the forward links, which are always trustworthy.
  4524 // *  Add a successor indication.  The LockWord is currently encoded as
  4525 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4526 //    to provide the usual futile-wakeup optimization.
  4527 //    See RTStt for details.
  4528 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4529 //
  4532 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4533 enum MuxBits { LOCKBIT = 1 } ;
  4535 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4536   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4537   if (w == 0) return ;
  4538   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4539      return ;
  4542   TEVENT (muxAcquire - Contention) ;
  4543   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4544   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4545   for (;;) {
  4546      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4548      // Optional spin phase: spin-then-park strategy
  4549      while (--its >= 0) {
  4550        w = *Lock ;
  4551        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4552           return ;
  4556      Self->reset() ;
  4557      Self->OnList = intptr_t(Lock) ;
  4558      // The following fence() isn't _strictly necessary as the subsequent
  4559      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4560      OrderAccess::fence();
  4561      for (;;) {
  4562         w = *Lock ;
  4563         if ((w & LOCKBIT) == 0) {
  4564             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4565                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4566                 return ;
  4568             continue ;      // Interference -- *Lock changed -- Just retry
  4570         assert (w & LOCKBIT, "invariant") ;
  4571         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4572         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4575      while (Self->OnList != 0) {
  4576         Self->park() ;
  4581 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4582   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4583   if (w == 0) return ;
  4584   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4585     return ;
  4588   TEVENT (muxAcquire - Contention) ;
  4589   ParkEvent * ReleaseAfter = NULL ;
  4590   if (ev == NULL) {
  4591     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4593   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4594   for (;;) {
  4595     guarantee (ev->OnList == 0, "invariant") ;
  4596     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4598     // Optional spin phase: spin-then-park strategy
  4599     while (--its >= 0) {
  4600       w = *Lock ;
  4601       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4602         if (ReleaseAfter != NULL) {
  4603           ParkEvent::Release (ReleaseAfter) ;
  4605         return ;
  4609     ev->reset() ;
  4610     ev->OnList = intptr_t(Lock) ;
  4611     // The following fence() isn't _strictly necessary as the subsequent
  4612     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4613     OrderAccess::fence();
  4614     for (;;) {
  4615       w = *Lock ;
  4616       if ((w & LOCKBIT) == 0) {
  4617         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4618           ev->OnList = 0 ;
  4619           // We call ::Release while holding the outer lock, thus
  4620           // artificially lengthening the critical section.
  4621           // Consider deferring the ::Release() until the subsequent unlock(),
  4622           // after we've dropped the outer lock.
  4623           if (ReleaseAfter != NULL) {
  4624             ParkEvent::Release (ReleaseAfter) ;
  4626           return ;
  4628         continue ;      // Interference -- *Lock changed -- Just retry
  4630       assert (w & LOCKBIT, "invariant") ;
  4631       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4632       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4635     while (ev->OnList != 0) {
  4636       ev->park() ;
  4641 // Release() must extract a successor from the list and then wake that thread.
  4642 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4643 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4644 // Release() would :
  4645 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4646 // (B) Extract a successor from the private list "in-hand"
  4647 // (C) attempt to CAS() the residual back into *Lock over null.
  4648 //     If there were any newly arrived threads and the CAS() would fail.
  4649 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4650 //     with the RATs and repeat as needed.  Alternately, Release() might
  4651 //     detach and extract a successor, but then pass the residual list to the wakee.
  4652 //     The wakee would be responsible for reattaching and remerging before it
  4653 //     competed for the lock.
  4654 //
  4655 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4656 // multiple concurrent pushers, but only one popper or detacher.
  4657 // This implementation pops from the head of the list.  This is unfair,
  4658 // but tends to provide excellent throughput as hot threads remain hot.
  4659 // (We wake recently run threads first).
  4661 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4662   for (;;) {
  4663     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4664     assert (w & LOCKBIT, "invariant") ;
  4665     if (w == LOCKBIT) return ;
  4666     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4667     assert (List != NULL, "invariant") ;
  4668     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4669     ParkEvent * nxt = List->ListNext ;
  4671     // The following CAS() releases the lock and pops the head element.
  4672     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4673       continue ;
  4675     List->OnList = 0 ;
  4676     OrderAccess::fence() ;
  4677     List->unpark () ;
  4678     return ;
  4683 void Threads::verify() {
  4684   ALL_JAVA_THREADS(p) {
  4685     p->verify();
  4687   VMThread* thread = VMThread::vm_thread();
  4688   if (thread != NULL) thread->verify();

mercurial