src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 10 Mar 2009 00:47:05 -0700

author
apetrusenko
date
Tue, 10 Mar 2009 00:47:05 -0700
changeset 1061
87fa6e083d82
parent 1055
bcedf688d882
child 1063
7bb995fbd3c0
child 1071
6c4cea9bfa11
permissions
-rw-r--r--

6760309: G1: update remembered sets during Full GCs
Reviewed-by: iveresov, tonyp

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 // turn it on so that the contents of the young list (scan-only /
    29 // to-be-collected) are printed at "strategic" points before / during
    30 // / after the collection --- this is useful for debugging
    31 #define SCAN_ONLY_VERBOSE 0
    32 // CURRENT STATUS
    33 // This file is under construction.  Search for "FIXME".
    35 // INVARIANTS/NOTES
    36 //
    37 // All allocation activity covered by the G1CollectedHeap interface is
    38 //   serialized by acquiring the HeapLock.  This happens in
    39 //   mem_allocate_work, which all such allocation functions call.
    40 //   (Note that this does not apply to TLAB allocation, which is not part
    41 //   of this interface: it is done by clients of this interface.)
    43 // Local to this file.
    45 // Finds the first HeapRegion.
    46 // No longer used, but might be handy someday.
    48 class FindFirstRegionClosure: public HeapRegionClosure {
    49   HeapRegion* _a_region;
    50 public:
    51   FindFirstRegionClosure() : _a_region(NULL) {}
    52   bool doHeapRegion(HeapRegion* r) {
    53     _a_region = r;
    54     return true;
    55   }
    56   HeapRegion* result() { return _a_region; }
    57 };
    60 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    61   SuspendibleThreadSet* _sts;
    62   G1RemSet* _g1rs;
    63   ConcurrentG1Refine* _cg1r;
    64   bool _concurrent;
    65 public:
    66   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    67                               G1RemSet* g1rs,
    68                               ConcurrentG1Refine* cg1r) :
    69     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    70   {}
    71   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    72     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    73     if (_concurrent && _sts->should_yield()) {
    74       // Caller will actually yield.
    75       return false;
    76     }
    77     // Otherwise, we finished successfully; return true.
    78     return true;
    79   }
    80   void set_concurrent(bool b) { _concurrent = b; }
    81 };
    84 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    85   int _calls;
    86   G1CollectedHeap* _g1h;
    87   CardTableModRefBS* _ctbs;
    88   int _histo[256];
    89 public:
    90   ClearLoggedCardTableEntryClosure() :
    91     _calls(0)
    92   {
    93     _g1h = G1CollectedHeap::heap();
    94     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    95     for (int i = 0; i < 256; i++) _histo[i] = 0;
    96   }
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    99       _calls++;
   100       unsigned char* ujb = (unsigned char*)card_ptr;
   101       int ind = (int)(*ujb);
   102       _histo[ind]++;
   103       *card_ptr = -1;
   104     }
   105     return true;
   106   }
   107   int calls() { return _calls; }
   108   void print_histo() {
   109     gclog_or_tty->print_cr("Card table value histogram:");
   110     for (int i = 0; i < 256; i++) {
   111       if (_histo[i] != 0) {
   112         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   113       }
   114     }
   115   }
   116 };
   118 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   119   int _calls;
   120   G1CollectedHeap* _g1h;
   121   CardTableModRefBS* _ctbs;
   122 public:
   123   RedirtyLoggedCardTableEntryClosure() :
   124     _calls(0)
   125   {
   126     _g1h = G1CollectedHeap::heap();
   127     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       *card_ptr = 0;
   133     }
   134     return true;
   135   }
   136   int calls() { return _calls; }
   137 };
   139 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   140 public:
   141   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   142     *card_ptr = CardTableModRefBS::dirty_card_val();
   143     return true;
   144   }
   145 };
   147 YoungList::YoungList(G1CollectedHeap* g1h)
   148   : _g1h(g1h), _head(NULL),
   149     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   150     _length(0), _scan_only_length(0),
   151     _last_sampled_rs_lengths(0),
   152     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   153 {
   154   guarantee( check_list_empty(false), "just making sure..." );
   155 }
   157 void YoungList::push_region(HeapRegion *hr) {
   158   assert(!hr->is_young(), "should not already be young");
   159   assert(hr->get_next_young_region() == NULL, "cause it should!");
   161   hr->set_next_young_region(_head);
   162   _head = hr;
   164   hr->set_young();
   165   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   166   ++_length;
   167 }
   169 void YoungList::add_survivor_region(HeapRegion* hr) {
   170   assert(hr->is_survivor(), "should be flagged as survivor region");
   171   assert(hr->get_next_young_region() == NULL, "cause it should!");
   173   hr->set_next_young_region(_survivor_head);
   174   if (_survivor_head == NULL) {
   175     _survivor_tail = hr;
   176   }
   177   _survivor_head = hr;
   179   ++_survivor_length;
   180 }
   182 HeapRegion* YoungList::pop_region() {
   183   while (_head != NULL) {
   184     assert( length() > 0, "list should not be empty" );
   185     HeapRegion* ret = _head;
   186     _head = ret->get_next_young_region();
   187     ret->set_next_young_region(NULL);
   188     --_length;
   189     assert(ret->is_young(), "region should be very young");
   191     // Replace 'Survivor' region type with 'Young'. So the region will
   192     // be treated as a young region and will not be 'confused' with
   193     // newly created survivor regions.
   194     if (ret->is_survivor()) {
   195       ret->set_young();
   196     }
   198     if (!ret->is_scan_only()) {
   199       return ret;
   200     }
   202     // scan-only, we'll add it to the scan-only list
   203     if (_scan_only_tail == NULL) {
   204       guarantee( _scan_only_head == NULL, "invariant" );
   206       _scan_only_head = ret;
   207       _curr_scan_only = ret;
   208     } else {
   209       guarantee( _scan_only_head != NULL, "invariant" );
   210       _scan_only_tail->set_next_young_region(ret);
   211     }
   212     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   213     _scan_only_tail = ret;
   215     // no need to be tagged as scan-only any more
   216     ret->set_young();
   218     ++_scan_only_length;
   219   }
   220   assert( length() == 0, "list should be empty" );
   221   return NULL;
   222 }
   224 void YoungList::empty_list(HeapRegion* list) {
   225   while (list != NULL) {
   226     HeapRegion* next = list->get_next_young_region();
   227     list->set_next_young_region(NULL);
   228     list->uninstall_surv_rate_group();
   229     list->set_not_young();
   230     list = next;
   231   }
   232 }
   234 void YoungList::empty_list() {
   235   assert(check_list_well_formed(), "young list should be well formed");
   237   empty_list(_head);
   238   _head = NULL;
   239   _length = 0;
   241   empty_list(_scan_only_head);
   242   _scan_only_head = NULL;
   243   _scan_only_tail = NULL;
   244   _scan_only_length = 0;
   245   _curr_scan_only = NULL;
   247   empty_list(_survivor_head);
   248   _survivor_head = NULL;
   249   _survivor_tail = NULL;
   250   _survivor_length = 0;
   252   _last_sampled_rs_lengths = 0;
   254   assert(check_list_empty(false), "just making sure...");
   255 }
   257 bool YoungList::check_list_well_formed() {
   258   bool ret = true;
   260   size_t length = 0;
   261   HeapRegion* curr = _head;
   262   HeapRegion* last = NULL;
   263   while (curr != NULL) {
   264     if (!curr->is_young() || curr->is_scan_only()) {
   265       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   266                              "incorrectly tagged (%d, %d)",
   267                              curr->bottom(), curr->end(),
   268                              curr->is_young(), curr->is_scan_only());
   269       ret = false;
   270     }
   271     ++length;
   272     last = curr;
   273     curr = curr->get_next_young_region();
   274   }
   275   ret = ret && (length == _length);
   277   if (!ret) {
   278     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   279     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   280                            length, _length);
   281   }
   283   bool scan_only_ret = true;
   284   length = 0;
   285   curr = _scan_only_head;
   286   last = NULL;
   287   while (curr != NULL) {
   288     if (!curr->is_young() || curr->is_scan_only()) {
   289       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   290                              "incorrectly tagged (%d, %d)",
   291                              curr->bottom(), curr->end(),
   292                              curr->is_young(), curr->is_scan_only());
   293       scan_only_ret = false;
   294     }
   295     ++length;
   296     last = curr;
   297     curr = curr->get_next_young_region();
   298   }
   299   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   301   if ( (last != _scan_only_tail) ||
   302        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   303        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   304      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   305      scan_only_ret = false;
   306   }
   308   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   309     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   310     scan_only_ret = false;
   311    }
   313   if (!scan_only_ret) {
   314     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   315     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   316                   length, _scan_only_length);
   317   }
   319   return ret && scan_only_ret;
   320 }
   322 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   323                                  bool check_sample) {
   324   bool ret = true;
   326   if (_length != 0) {
   327     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   328                   _length);
   329     ret = false;
   330   }
   331   if (check_sample && _last_sampled_rs_lengths != 0) {
   332     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   333     ret = false;
   334   }
   335   if (_head != NULL) {
   336     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   337     ret = false;
   338   }
   339   if (!ret) {
   340     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   341   }
   343   if (ignore_scan_only_list)
   344     return ret;
   346   bool scan_only_ret = true;
   347   if (_scan_only_length != 0) {
   348     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   349                   _scan_only_length);
   350     scan_only_ret = false;
   351   }
   352   if (_scan_only_head != NULL) {
   353     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   354      scan_only_ret = false;
   355   }
   356   if (_scan_only_tail != NULL) {
   357     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   358     scan_only_ret = false;
   359   }
   360   if (!scan_only_ret) {
   361     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   362   }
   364   return ret && scan_only_ret;
   365 }
   367 void
   368 YoungList::rs_length_sampling_init() {
   369   _sampled_rs_lengths = 0;
   370   _curr               = _head;
   371 }
   373 bool
   374 YoungList::rs_length_sampling_more() {
   375   return _curr != NULL;
   376 }
   378 void
   379 YoungList::rs_length_sampling_next() {
   380   assert( _curr != NULL, "invariant" );
   381   _sampled_rs_lengths += _curr->rem_set()->occupied();
   382   _curr = _curr->get_next_young_region();
   383   if (_curr == NULL) {
   384     _last_sampled_rs_lengths = _sampled_rs_lengths;
   385     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   386   }
   387 }
   389 void
   390 YoungList::reset_auxilary_lists() {
   391   // We could have just "moved" the scan-only list to the young list.
   392   // However, the scan-only list is ordered according to the region
   393   // age in descending order, so, by moving one entry at a time, we
   394   // ensure that it is recreated in ascending order.
   396   guarantee( is_empty(), "young list should be empty" );
   397   assert(check_list_well_formed(), "young list should be well formed");
   399   // Add survivor regions to SurvRateGroup.
   400   _g1h->g1_policy()->note_start_adding_survivor_regions();
   401   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   402   for (HeapRegion* curr = _survivor_head;
   403        curr != NULL;
   404        curr = curr->get_next_young_region()) {
   405     _g1h->g1_policy()->set_region_survivors(curr);
   406   }
   407   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   409   if (_survivor_head != NULL) {
   410     _head           = _survivor_head;
   411     _length         = _survivor_length + _scan_only_length;
   412     _survivor_tail->set_next_young_region(_scan_only_head);
   413   } else {
   414     _head           = _scan_only_head;
   415     _length         = _scan_only_length;
   416   }
   418   for (HeapRegion* curr = _scan_only_head;
   419        curr != NULL;
   420        curr = curr->get_next_young_region()) {
   421     curr->recalculate_age_in_surv_rate_group();
   422   }
   423   _scan_only_head   = NULL;
   424   _scan_only_tail   = NULL;
   425   _scan_only_length = 0;
   426   _curr_scan_only   = NULL;
   428   _survivor_head    = NULL;
   429   _survivor_tail   = NULL;
   430   _survivor_length  = 0;
   431   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   433   assert(check_list_well_formed(), "young list should be well formed");
   434 }
   436 void YoungList::print() {
   437   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   438   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   440   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   441     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   442     HeapRegion *curr = lists[list];
   443     if (curr == NULL)
   444       gclog_or_tty->print_cr("  empty");
   445     while (curr != NULL) {
   446       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   447                              "age: %4d, y: %d, s-o: %d, surv: %d",
   448                              curr->bottom(), curr->end(),
   449                              curr->top(),
   450                              curr->prev_top_at_mark_start(),
   451                              curr->next_top_at_mark_start(),
   452                              curr->top_at_conc_mark_count(),
   453                              curr->age_in_surv_rate_group_cond(),
   454                              curr->is_young(),
   455                              curr->is_scan_only(),
   456                              curr->is_survivor());
   457       curr = curr->get_next_young_region();
   458     }
   459   }
   461   gclog_or_tty->print_cr("");
   462 }
   464 void G1CollectedHeap::stop_conc_gc_threads() {
   465   _cg1r->cg1rThread()->stop();
   466   _czft->stop();
   467   _cmThread->stop();
   468 }
   471 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   473   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   475   // Count the dirty cards at the start.
   476   CountNonCleanMemRegionClosure count1(this);
   477   ct_bs->mod_card_iterate(&count1);
   478   int orig_count = count1.n();
   480   // First clear the logged cards.
   481   ClearLoggedCardTableEntryClosure clear;
   482   dcqs.set_closure(&clear);
   483   dcqs.apply_closure_to_all_completed_buffers();
   484   dcqs.iterate_closure_all_threads(false);
   485   clear.print_histo();
   487   // Now ensure that there's no dirty cards.
   488   CountNonCleanMemRegionClosure count2(this);
   489   ct_bs->mod_card_iterate(&count2);
   490   if (count2.n() != 0) {
   491     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   492                            count2.n(), orig_count);
   493   }
   494   guarantee(count2.n() == 0, "Card table should be clean.");
   496   RedirtyLoggedCardTableEntryClosure redirty;
   497   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   498   dcqs.apply_closure_to_all_completed_buffers();
   499   dcqs.iterate_closure_all_threads(false);
   500   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   501                          clear.calls(), orig_count);
   502   guarantee(redirty.calls() == clear.calls(),
   503             "Or else mechanism is broken.");
   505   CountNonCleanMemRegionClosure count3(this);
   506   ct_bs->mod_card_iterate(&count3);
   507   if (count3.n() != orig_count) {
   508     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   509                            orig_count, count3.n());
   510     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   511   }
   513   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   514 }
   516 // Private class members.
   518 G1CollectedHeap* G1CollectedHeap::_g1h;
   520 // Private methods.
   522 // Finds a HeapRegion that can be used to allocate a given size of block.
   525 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   526                                                  bool do_expand,
   527                                                  bool zero_filled) {
   528   ConcurrentZFThread::note_region_alloc();
   529   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   530   if (res == NULL && do_expand) {
   531     expand(word_size * HeapWordSize);
   532     res = alloc_free_region_from_lists(zero_filled);
   533     assert(res == NULL ||
   534            (!res->isHumongous() &&
   535             (!zero_filled ||
   536              res->zero_fill_state() == HeapRegion::Allocated)),
   537            "Alloc Regions must be zero filled (and non-H)");
   538   }
   539   if (res != NULL && res->is_empty()) _free_regions--;
   540   assert(res == NULL ||
   541          (!res->isHumongous() &&
   542           (!zero_filled ||
   543            res->zero_fill_state() == HeapRegion::Allocated)),
   544          "Non-young alloc Regions must be zero filled (and non-H)");
   546   if (G1TraceRegions) {
   547     if (res != NULL) {
   548       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   549                              "top "PTR_FORMAT,
   550                              res->hrs_index(), res->bottom(), res->end(), res->top());
   551     }
   552   }
   554   return res;
   555 }
   557 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   558                                                          size_t word_size,
   559                                                          bool zero_filled) {
   560   HeapRegion* alloc_region = NULL;
   561   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   562     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   563     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   564       alloc_region->set_survivor();
   565     }
   566     ++_gc_alloc_region_counts[purpose];
   567   } else {
   568     g1_policy()->note_alloc_region_limit_reached(purpose);
   569   }
   570   return alloc_region;
   571 }
   573 // If could fit into free regions w/o expansion, try.
   574 // Otherwise, if can expand, do so.
   575 // Otherwise, if using ex regions might help, try with ex given back.
   576 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   577   assert(regions_accounted_for(), "Region leakage!");
   579   // We can't allocate H regions while cleanupComplete is running, since
   580   // some of the regions we find to be empty might not yet be added to the
   581   // unclean list.  (If we're already at a safepoint, this call is
   582   // unnecessary, not to mention wrong.)
   583   if (!SafepointSynchronize::is_at_safepoint())
   584     wait_for_cleanup_complete();
   586   size_t num_regions =
   587     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   589   // Special case if < one region???
   591   // Remember the ft size.
   592   size_t x_size = expansion_regions();
   594   HeapWord* res = NULL;
   595   bool eliminated_allocated_from_lists = false;
   597   // Can the allocation potentially fit in the free regions?
   598   if (free_regions() >= num_regions) {
   599     res = _hrs->obj_allocate(word_size);
   600   }
   601   if (res == NULL) {
   602     // Try expansion.
   603     size_t fs = _hrs->free_suffix();
   604     if (fs + x_size >= num_regions) {
   605       expand((num_regions - fs) * HeapRegion::GrainBytes);
   606       res = _hrs->obj_allocate(word_size);
   607       assert(res != NULL, "This should have worked.");
   608     } else {
   609       // Expansion won't help.  Are there enough free regions if we get rid
   610       // of reservations?
   611       size_t avail = free_regions();
   612       if (avail >= num_regions) {
   613         res = _hrs->obj_allocate(word_size);
   614         if (res != NULL) {
   615           remove_allocated_regions_from_lists();
   616           eliminated_allocated_from_lists = true;
   617         }
   618       }
   619     }
   620   }
   621   if (res != NULL) {
   622     // Increment by the number of regions allocated.
   623     // FIXME: Assumes regions all of size GrainBytes.
   624 #ifndef PRODUCT
   625     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   626                                            HeapRegion::GrainWords));
   627 #endif
   628     if (!eliminated_allocated_from_lists)
   629       remove_allocated_regions_from_lists();
   630     _summary_bytes_used += word_size * HeapWordSize;
   631     _free_regions -= num_regions;
   632     _num_humongous_regions += (int) num_regions;
   633   }
   634   assert(regions_accounted_for(), "Region Leakage");
   635   return res;
   636 }
   638 HeapWord*
   639 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   640                                          bool permit_collection_pause) {
   641   HeapWord* res = NULL;
   642   HeapRegion* allocated_young_region = NULL;
   644   assert( SafepointSynchronize::is_at_safepoint() ||
   645           Heap_lock->owned_by_self(), "pre condition of the call" );
   647   if (isHumongous(word_size)) {
   648     // Allocation of a humongous object can, in a sense, complete a
   649     // partial region, if the previous alloc was also humongous, and
   650     // caused the test below to succeed.
   651     if (permit_collection_pause)
   652       do_collection_pause_if_appropriate(word_size);
   653     res = humongousObjAllocate(word_size);
   654     assert(_cur_alloc_region == NULL
   655            || !_cur_alloc_region->isHumongous(),
   656            "Prevent a regression of this bug.");
   658   } else {
   659     // We may have concurrent cleanup working at the time. Wait for it
   660     // to complete. In the future we would probably want to make the
   661     // concurrent cleanup truly concurrent by decoupling it from the
   662     // allocation.
   663     if (!SafepointSynchronize::is_at_safepoint())
   664       wait_for_cleanup_complete();
   665     // If we do a collection pause, this will be reset to a non-NULL
   666     // value.  If we don't, nulling here ensures that we allocate a new
   667     // region below.
   668     if (_cur_alloc_region != NULL) {
   669       // We're finished with the _cur_alloc_region.
   670       _summary_bytes_used += _cur_alloc_region->used();
   671       _cur_alloc_region = NULL;
   672     }
   673     assert(_cur_alloc_region == NULL, "Invariant.");
   674     // Completion of a heap region is perhaps a good point at which to do
   675     // a collection pause.
   676     if (permit_collection_pause)
   677       do_collection_pause_if_appropriate(word_size);
   678     // Make sure we have an allocation region available.
   679     if (_cur_alloc_region == NULL) {
   680       if (!SafepointSynchronize::is_at_safepoint())
   681         wait_for_cleanup_complete();
   682       bool next_is_young = should_set_young_locked();
   683       // If the next region is not young, make sure it's zero-filled.
   684       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   685       if (_cur_alloc_region != NULL) {
   686         _summary_bytes_used -= _cur_alloc_region->used();
   687         if (next_is_young) {
   688           set_region_short_lived_locked(_cur_alloc_region);
   689           allocated_young_region = _cur_alloc_region;
   690         }
   691       }
   692     }
   693     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   694            "Prevent a regression of this bug.");
   696     // Now retry the allocation.
   697     if (_cur_alloc_region != NULL) {
   698       res = _cur_alloc_region->allocate(word_size);
   699     }
   700   }
   702   // NOTE: fails frequently in PRT
   703   assert(regions_accounted_for(), "Region leakage!");
   705   if (res != NULL) {
   706     if (!SafepointSynchronize::is_at_safepoint()) {
   707       assert( permit_collection_pause, "invariant" );
   708       assert( Heap_lock->owned_by_self(), "invariant" );
   709       Heap_lock->unlock();
   710     }
   712     if (allocated_young_region != NULL) {
   713       HeapRegion* hr = allocated_young_region;
   714       HeapWord* bottom = hr->bottom();
   715       HeapWord* end = hr->end();
   716       MemRegion mr(bottom, end);
   717       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   718     }
   719   }
   721   assert( SafepointSynchronize::is_at_safepoint() ||
   722           (res == NULL && Heap_lock->owned_by_self()) ||
   723           (res != NULL && !Heap_lock->owned_by_self()),
   724           "post condition of the call" );
   726   return res;
   727 }
   729 HeapWord*
   730 G1CollectedHeap::mem_allocate(size_t word_size,
   731                               bool   is_noref,
   732                               bool   is_tlab,
   733                               bool* gc_overhead_limit_was_exceeded) {
   734   debug_only(check_for_valid_allocation_state());
   735   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   736   HeapWord* result = NULL;
   738   // Loop until the allocation is satisified,
   739   // or unsatisfied after GC.
   740   for (int try_count = 1; /* return or throw */; try_count += 1) {
   741     int gc_count_before;
   742     {
   743       Heap_lock->lock();
   744       result = attempt_allocation(word_size);
   745       if (result != NULL) {
   746         // attempt_allocation should have unlocked the heap lock
   747         assert(is_in(result), "result not in heap");
   748         return result;
   749       }
   750       // Read the gc count while the heap lock is held.
   751       gc_count_before = SharedHeap::heap()->total_collections();
   752       Heap_lock->unlock();
   753     }
   755     // Create the garbage collection operation...
   756     VM_G1CollectForAllocation op(word_size,
   757                                  gc_count_before);
   759     // ...and get the VM thread to execute it.
   760     VMThread::execute(&op);
   761     if (op.prologue_succeeded()) {
   762       result = op.result();
   763       assert(result == NULL || is_in(result), "result not in heap");
   764       return result;
   765     }
   767     // Give a warning if we seem to be looping forever.
   768     if ((QueuedAllocationWarningCount > 0) &&
   769         (try_count % QueuedAllocationWarningCount == 0)) {
   770       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   771               try_count);
   772     }
   773   }
   774 }
   776 void G1CollectedHeap::abandon_cur_alloc_region() {
   777   if (_cur_alloc_region != NULL) {
   778     // We're finished with the _cur_alloc_region.
   779     if (_cur_alloc_region->is_empty()) {
   780       _free_regions++;
   781       free_region(_cur_alloc_region);
   782     } else {
   783       _summary_bytes_used += _cur_alloc_region->used();
   784     }
   785     _cur_alloc_region = NULL;
   786   }
   787 }
   789 class PostMCRemSetClearClosure: public HeapRegionClosure {
   790   ModRefBarrierSet* _mr_bs;
   791 public:
   792   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   793   bool doHeapRegion(HeapRegion* r) {
   794     r->reset_gc_time_stamp();
   795     if (r->continuesHumongous())
   796       return false;
   797     HeapRegionRemSet* hrrs = r->rem_set();
   798     if (hrrs != NULL) hrrs->clear();
   799     // You might think here that we could clear just the cards
   800     // corresponding to the used region.  But no: if we leave a dirty card
   801     // in a region we might allocate into, then it would prevent that card
   802     // from being enqueued, and cause it to be missed.
   803     // Re: the performance cost: we shouldn't be doing full GC anyway!
   804     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   805     return false;
   806   }
   807 };
   810 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   811   ModRefBarrierSet* _mr_bs;
   812 public:
   813   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   814   bool doHeapRegion(HeapRegion* r) {
   815     if (r->continuesHumongous()) return false;
   816     if (r->used_region().word_size() != 0) {
   817       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   818     }
   819     return false;
   820   }
   821 };
   823 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   824   G1CollectedHeap*   _g1h;
   825   UpdateRSOopClosure _cl;
   826   int                _worker_i;
   827 public:
   828   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   829     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   830     _worker_i(worker_i),
   831     _g1h(g1)
   832   { }
   833   bool doHeapRegion(HeapRegion* r) {
   834     if (!r->continuesHumongous()) {
   835       _cl.set_from(r);
   836       r->oop_iterate(&_cl);
   837     }
   838     return false;
   839   }
   840 };
   842 class ParRebuildRSTask: public AbstractGangTask {
   843   G1CollectedHeap* _g1;
   844 public:
   845   ParRebuildRSTask(G1CollectedHeap* g1)
   846     : AbstractGangTask("ParRebuildRSTask"),
   847       _g1(g1)
   848   { }
   850   void work(int i) {
   851     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   852     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   853                                          HeapRegion::RebuildRSClaimValue);
   854   }
   855 };
   857 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   858                                     size_t word_size) {
   859   ResourceMark rm;
   861   if (full && DisableExplicitGC) {
   862     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   863     return;
   864   }
   866   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   867   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   869   if (GC_locker::is_active()) {
   870     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   871   }
   873   {
   874     IsGCActiveMark x;
   876     // Timing
   877     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   878     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   879     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   881     double start = os::elapsedTime();
   882     GCOverheadReporter::recordSTWStart(start);
   883     g1_policy()->record_full_collection_start();
   885     gc_prologue(true);
   886     increment_total_collections();
   888     size_t g1h_prev_used = used();
   889     assert(used() == recalculate_used(), "Should be equal");
   891     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   892       HandleMark hm;  // Discard invalid handles created during verification
   893       prepare_for_verify();
   894       gclog_or_tty->print(" VerifyBeforeGC:");
   895       Universe::verify(true);
   896     }
   897     assert(regions_accounted_for(), "Region leakage!");
   899     COMPILER2_PRESENT(DerivedPointerTable::clear());
   901     // We want to discover references, but not process them yet.
   902     // This mode is disabled in
   903     // instanceRefKlass::process_discovered_references if the
   904     // generation does some collection work, or
   905     // instanceRefKlass::enqueue_discovered_references if the
   906     // generation returns without doing any work.
   907     ref_processor()->disable_discovery();
   908     ref_processor()->abandon_partial_discovery();
   909     ref_processor()->verify_no_references_recorded();
   911     // Abandon current iterations of concurrent marking and concurrent
   912     // refinement, if any are in progress.
   913     concurrent_mark()->abort();
   915     // Make sure we'll choose a new allocation region afterwards.
   916     abandon_cur_alloc_region();
   917     assert(_cur_alloc_region == NULL, "Invariant.");
   918     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   919     tear_down_region_lists();
   920     set_used_regions_to_need_zero_fill();
   921     if (g1_policy()->in_young_gc_mode()) {
   922       empty_young_list();
   923       g1_policy()->set_full_young_gcs(true);
   924     }
   926     // Temporarily make reference _discovery_ single threaded (non-MT).
   927     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   929     // Temporarily make refs discovery atomic
   930     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   932     // Temporarily clear _is_alive_non_header
   933     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   935     ref_processor()->enable_discovery();
   936     ref_processor()->setup_policy(clear_all_soft_refs);
   938     // Do collection work
   939     {
   940       HandleMark hm;  // Discard invalid handles created during gc
   941       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   942     }
   943     // Because freeing humongous regions may have added some unclean
   944     // regions, it is necessary to tear down again before rebuilding.
   945     tear_down_region_lists();
   946     rebuild_region_lists();
   948     _summary_bytes_used = recalculate_used();
   950     ref_processor()->enqueue_discovered_references();
   952     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   954     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
   955       HandleMark hm;  // Discard invalid handles created during verification
   956       gclog_or_tty->print(" VerifyAfterGC:");
   957       Universe::verify(false);
   958     }
   959     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   961     reset_gc_time_stamp();
   962     // Since everything potentially moved, we will clear all remembered
   963     // sets, and clear all cards.  Later we will rebuild remebered
   964     // sets. We will also reset the GC time stamps of the regions.
   965     PostMCRemSetClearClosure rs_clear(mr_bs());
   966     heap_region_iterate(&rs_clear);
   968     // Resize the heap if necessary.
   969     resize_if_necessary_after_full_collection(full ? 0 : word_size);
   971     if (_cg1r->use_cache()) {
   972       _cg1r->clear_and_record_card_counts();
   973       _cg1r->clear_hot_cache();
   974     }
   976     // Rebuild remembered sets of all regions.
   977     if (ParallelGCThreads > 0) {
   978       ParRebuildRSTask rebuild_rs_task(this);
   979       assert(check_heap_region_claim_values(
   980              HeapRegion::InitialClaimValue), "sanity check");
   981       set_par_threads(workers()->total_workers());
   982       workers()->run_task(&rebuild_rs_task);
   983       set_par_threads(0);
   984       assert(check_heap_region_claim_values(
   985              HeapRegion::RebuildRSClaimValue), "sanity check");
   986       reset_heap_region_claim_values();
   987     } else {
   988       RebuildRSOutOfRegionClosure rebuild_rs(this);
   989       heap_region_iterate(&rebuild_rs);
   990     }
   992     if (PrintGC) {
   993       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
   994     }
   996     if (true) { // FIXME
   997       // Ask the permanent generation to adjust size for full collections
   998       perm()->compute_new_size();
   999     }
  1001     double end = os::elapsedTime();
  1002     GCOverheadReporter::recordSTWEnd(end);
  1003     g1_policy()->record_full_collection_end();
  1005 #ifdef TRACESPINNING
  1006     ParallelTaskTerminator::print_termination_counts();
  1007 #endif
  1009     gc_epilogue(true);
  1011     // Abandon concurrent refinement.  This must happen last: in the
  1012     // dirty-card logging system, some cards may be dirty by weak-ref
  1013     // processing, and may be enqueued.  But the whole card table is
  1014     // dirtied, so this should abandon those logs, and set "do_traversal"
  1015     // to true.
  1016     concurrent_g1_refine()->set_pya_restart();
  1017     assert(!G1DeferredRSUpdate
  1018            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1019     assert(regions_accounted_for(), "Region leakage!");
  1022   if (g1_policy()->in_young_gc_mode()) {
  1023     _young_list->reset_sampled_info();
  1024     assert( check_young_list_empty(false, false),
  1025             "young list should be empty at this point");
  1029 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1030   do_collection(true, clear_all_soft_refs, 0);
  1033 // This code is mostly copied from TenuredGeneration.
  1034 void
  1035 G1CollectedHeap::
  1036 resize_if_necessary_after_full_collection(size_t word_size) {
  1037   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1039   // Include the current allocation, if any, and bytes that will be
  1040   // pre-allocated to support collections, as "used".
  1041   const size_t used_after_gc = used();
  1042   const size_t capacity_after_gc = capacity();
  1043   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1045   // We don't have floating point command-line arguments
  1046   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1047   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1048   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1049   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1051   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1052   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1054   // Don't shrink less than the initial size.
  1055   minimum_desired_capacity =
  1056     MAX2(minimum_desired_capacity,
  1057          collector_policy()->initial_heap_byte_size());
  1058   maximum_desired_capacity =
  1059     MAX2(maximum_desired_capacity,
  1060          collector_policy()->initial_heap_byte_size());
  1062   // We are failing here because minimum_desired_capacity is
  1063   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1064   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1066   if (PrintGC && Verbose) {
  1067     const double free_percentage = ((double)free_after_gc) / capacity();
  1068     gclog_or_tty->print_cr("Computing new size after full GC ");
  1069     gclog_or_tty->print_cr("  "
  1070                            "  minimum_free_percentage: %6.2f",
  1071                            minimum_free_percentage);
  1072     gclog_or_tty->print_cr("  "
  1073                            "  maximum_free_percentage: %6.2f",
  1074                            maximum_free_percentage);
  1075     gclog_or_tty->print_cr("  "
  1076                            "  capacity: %6.1fK"
  1077                            "  minimum_desired_capacity: %6.1fK"
  1078                            "  maximum_desired_capacity: %6.1fK",
  1079                            capacity() / (double) K,
  1080                            minimum_desired_capacity / (double) K,
  1081                            maximum_desired_capacity / (double) K);
  1082     gclog_or_tty->print_cr("  "
  1083                            "   free_after_gc   : %6.1fK"
  1084                            "   used_after_gc   : %6.1fK",
  1085                            free_after_gc / (double) K,
  1086                            used_after_gc / (double) K);
  1087     gclog_or_tty->print_cr("  "
  1088                            "   free_percentage: %6.2f",
  1089                            free_percentage);
  1091   if (capacity() < minimum_desired_capacity) {
  1092     // Don't expand unless it's significant
  1093     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1094     expand(expand_bytes);
  1095     if (PrintGC && Verbose) {
  1096       gclog_or_tty->print_cr("    expanding:"
  1097                              "  minimum_desired_capacity: %6.1fK"
  1098                              "  expand_bytes: %6.1fK",
  1099                              minimum_desired_capacity / (double) K,
  1100                              expand_bytes / (double) K);
  1103     // No expansion, now see if we want to shrink
  1104   } else if (capacity() > maximum_desired_capacity) {
  1105     // Capacity too large, compute shrinking size
  1106     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1107     shrink(shrink_bytes);
  1108     if (PrintGC && Verbose) {
  1109       gclog_or_tty->print_cr("  "
  1110                              "  shrinking:"
  1111                              "  initSize: %.1fK"
  1112                              "  maximum_desired_capacity: %.1fK",
  1113                              collector_policy()->initial_heap_byte_size() / (double) K,
  1114                              maximum_desired_capacity / (double) K);
  1115       gclog_or_tty->print_cr("  "
  1116                              "  shrink_bytes: %.1fK",
  1117                              shrink_bytes / (double) K);
  1123 HeapWord*
  1124 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1125   HeapWord* result = NULL;
  1127   // In a G1 heap, we're supposed to keep allocation from failing by
  1128   // incremental pauses.  Therefore, at least for now, we'll favor
  1129   // expansion over collection.  (This might change in the future if we can
  1130   // do something smarter than full collection to satisfy a failed alloc.)
  1132   result = expand_and_allocate(word_size);
  1133   if (result != NULL) {
  1134     assert(is_in(result), "result not in heap");
  1135     return result;
  1138   // OK, I guess we have to try collection.
  1140   do_collection(false, false, word_size);
  1142   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1144   if (result != NULL) {
  1145     assert(is_in(result), "result not in heap");
  1146     return result;
  1149   // Try collecting soft references.
  1150   do_collection(false, true, word_size);
  1151   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1152   if (result != NULL) {
  1153     assert(is_in(result), "result not in heap");
  1154     return result;
  1157   // What else?  We might try synchronous finalization later.  If the total
  1158   // space available is large enough for the allocation, then a more
  1159   // complete compaction phase than we've tried so far might be
  1160   // appropriate.
  1161   return NULL;
  1164 // Attempting to expand the heap sufficiently
  1165 // to support an allocation of the given "word_size".  If
  1166 // successful, perform the allocation and return the address of the
  1167 // allocated block, or else "NULL".
  1169 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1170   size_t expand_bytes = word_size * HeapWordSize;
  1171   if (expand_bytes < MinHeapDeltaBytes) {
  1172     expand_bytes = MinHeapDeltaBytes;
  1174   expand(expand_bytes);
  1175   assert(regions_accounted_for(), "Region leakage!");
  1176   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1177   return result;
  1180 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1181   size_t pre_used = 0;
  1182   size_t cleared_h_regions = 0;
  1183   size_t freed_regions = 0;
  1184   UncleanRegionList local_list;
  1185   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1186                                     freed_regions, &local_list);
  1188   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1189                           &local_list);
  1190   return pre_used;
  1193 void
  1194 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1195                                                    size_t& pre_used,
  1196                                                    size_t& cleared_h,
  1197                                                    size_t& freed_regions,
  1198                                                    UncleanRegionList* list,
  1199                                                    bool par) {
  1200   assert(!hr->continuesHumongous(), "should have filtered these out");
  1201   size_t res = 0;
  1202   if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) {
  1203     if (!hr->is_young()) {
  1204       if (G1PolicyVerbose > 0)
  1205         gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1206                                " during cleanup", hr, hr->used());
  1207       free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1212 // FIXME: both this and shrink could probably be more efficient by
  1213 // doing one "VirtualSpace::expand_by" call rather than several.
  1214 void G1CollectedHeap::expand(size_t expand_bytes) {
  1215   size_t old_mem_size = _g1_storage.committed_size();
  1216   // We expand by a minimum of 1K.
  1217   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1218   size_t aligned_expand_bytes =
  1219     ReservedSpace::page_align_size_up(expand_bytes);
  1220   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1221                                        HeapRegion::GrainBytes);
  1222   expand_bytes = aligned_expand_bytes;
  1223   while (expand_bytes > 0) {
  1224     HeapWord* base = (HeapWord*)_g1_storage.high();
  1225     // Commit more storage.
  1226     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1227     if (!successful) {
  1228         expand_bytes = 0;
  1229     } else {
  1230       expand_bytes -= HeapRegion::GrainBytes;
  1231       // Expand the committed region.
  1232       HeapWord* high = (HeapWord*) _g1_storage.high();
  1233       _g1_committed.set_end(high);
  1234       // Create a new HeapRegion.
  1235       MemRegion mr(base, high);
  1236       bool is_zeroed = !_g1_max_committed.contains(base);
  1237       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1239       // Now update max_committed if necessary.
  1240       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1242       // Add it to the HeapRegionSeq.
  1243       _hrs->insert(hr);
  1244       // Set the zero-fill state, according to whether it's already
  1245       // zeroed.
  1247         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1248         if (is_zeroed) {
  1249           hr->set_zero_fill_complete();
  1250           put_free_region_on_list_locked(hr);
  1251         } else {
  1252           hr->set_zero_fill_needed();
  1253           put_region_on_unclean_list_locked(hr);
  1256       _free_regions++;
  1257       // And we used up an expansion region to create it.
  1258       _expansion_regions--;
  1259       // Tell the cardtable about it.
  1260       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1261       // And the offset table as well.
  1262       _bot_shared->resize(_g1_committed.word_size());
  1265   if (Verbose && PrintGC) {
  1266     size_t new_mem_size = _g1_storage.committed_size();
  1267     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1268                            old_mem_size/K, aligned_expand_bytes/K,
  1269                            new_mem_size/K);
  1273 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1275   size_t old_mem_size = _g1_storage.committed_size();
  1276   size_t aligned_shrink_bytes =
  1277     ReservedSpace::page_align_size_down(shrink_bytes);
  1278   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1279                                          HeapRegion::GrainBytes);
  1280   size_t num_regions_deleted = 0;
  1281   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1283   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1284   if (mr.byte_size() > 0)
  1285     _g1_storage.shrink_by(mr.byte_size());
  1286   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1288   _g1_committed.set_end(mr.start());
  1289   _free_regions -= num_regions_deleted;
  1290   _expansion_regions += num_regions_deleted;
  1292   // Tell the cardtable about it.
  1293   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1295   // And the offset table as well.
  1296   _bot_shared->resize(_g1_committed.word_size());
  1298   HeapRegionRemSet::shrink_heap(n_regions());
  1300   if (Verbose && PrintGC) {
  1301     size_t new_mem_size = _g1_storage.committed_size();
  1302     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1303                            old_mem_size/K, aligned_shrink_bytes/K,
  1304                            new_mem_size/K);
  1308 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1309   release_gc_alloc_regions();
  1310   tear_down_region_lists();  // We will rebuild them in a moment.
  1311   shrink_helper(shrink_bytes);
  1312   rebuild_region_lists();
  1315 // Public methods.
  1317 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1318 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1319 #endif // _MSC_VER
  1322 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1323   SharedHeap(policy_),
  1324   _g1_policy(policy_),
  1325   _ref_processor(NULL),
  1326   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1327   _bot_shared(NULL),
  1328   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1329   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1330   _evac_failure_scan_stack(NULL) ,
  1331   _mark_in_progress(false),
  1332   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1333   _cur_alloc_region(NULL),
  1334   _refine_cte_cl(NULL),
  1335   _free_region_list(NULL), _free_region_list_size(0),
  1336   _free_regions(0),
  1337   _popular_object_boundary(NULL),
  1338   _cur_pop_hr_index(0),
  1339   _popular_regions_to_be_evacuated(NULL),
  1340   _pop_obj_rc_at_copy(),
  1341   _full_collection(false),
  1342   _unclean_region_list(),
  1343   _unclean_regions_coming(false),
  1344   _young_list(new YoungList(this)),
  1345   _gc_time_stamp(0),
  1346   _surviving_young_words(NULL),
  1347   _in_cset_fast_test(NULL),
  1348   _in_cset_fast_test_base(NULL)
  1350   _g1h = this; // To catch bugs.
  1351   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1352     vm_exit_during_initialization("Failed necessary allocation.");
  1354   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1355   _task_queues = new RefToScanQueueSet(n_queues);
  1357   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1358   assert(n_rem_sets > 0, "Invariant.");
  1360   HeapRegionRemSetIterator** iter_arr =
  1361     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1362   for (int i = 0; i < n_queues; i++) {
  1363     iter_arr[i] = new HeapRegionRemSetIterator();
  1365   _rem_set_iterator = iter_arr;
  1367   for (int i = 0; i < n_queues; i++) {
  1368     RefToScanQueue* q = new RefToScanQueue();
  1369     q->initialize();
  1370     _task_queues->register_queue(i, q);
  1373   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1374     _gc_alloc_regions[ap]       = NULL;
  1375     _gc_alloc_region_counts[ap] = 0;
  1377   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1380 jint G1CollectedHeap::initialize() {
  1381   os::enable_vtime();
  1383   // Necessary to satisfy locking discipline assertions.
  1385   MutexLocker x(Heap_lock);
  1387   // While there are no constraints in the GC code that HeapWordSize
  1388   // be any particular value, there are multiple other areas in the
  1389   // system which believe this to be true (e.g. oop->object_size in some
  1390   // cases incorrectly returns the size in wordSize units rather than
  1391   // HeapWordSize).
  1392   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1394   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1395   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1397   // Ensure that the sizes are properly aligned.
  1398   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1399   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1401   // We allocate this in any case, but only do no work if the command line
  1402   // param is off.
  1403   _cg1r = new ConcurrentG1Refine();
  1405   // Reserve the maximum.
  1406   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1407   // Includes the perm-gen.
  1408   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1409                         HeapRegion::GrainBytes,
  1410                         false /*ism*/);
  1412   if (!heap_rs.is_reserved()) {
  1413     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1414     return JNI_ENOMEM;
  1417   // It is important to do this in a way such that concurrent readers can't
  1418   // temporarily think somethings in the heap.  (I've actually seen this
  1419   // happen in asserts: DLD.)
  1420   _reserved.set_word_size(0);
  1421   _reserved.set_start((HeapWord*)heap_rs.base());
  1422   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1424   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1426   _num_humongous_regions = 0;
  1428   // Create the gen rem set (and barrier set) for the entire reserved region.
  1429   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1430   set_barrier_set(rem_set()->bs());
  1431   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1432     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1433   } else {
  1434     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1435     return JNI_ENOMEM;
  1438   // Also create a G1 rem set.
  1439   if (G1UseHRIntoRS) {
  1440     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1441       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1442     } else {
  1443       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1444       return JNI_ENOMEM;
  1446   } else {
  1447     _g1_rem_set = new StupidG1RemSet(this);
  1450   // Carve out the G1 part of the heap.
  1452   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1453   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1454                            g1_rs.size()/HeapWordSize);
  1455   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1457   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1459   _g1_storage.initialize(g1_rs, 0);
  1460   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1461   _g1_max_committed = _g1_committed;
  1462   _hrs = new HeapRegionSeq(_expansion_regions);
  1463   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1464   guarantee(_cur_alloc_region == NULL, "from constructor");
  1466   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1467                                              heap_word_size(init_byte_size));
  1469   _g1h = this;
  1471   // Create the ConcurrentMark data structure and thread.
  1472   // (Must do this late, so that "max_regions" is defined.)
  1473   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1474   _cmThread = _cm->cmThread();
  1476   // ...and the concurrent zero-fill thread, if necessary.
  1477   if (G1ConcZeroFill) {
  1478     _czft = new ConcurrentZFThread();
  1483   // Allocate the popular regions; take them off free lists.
  1484   size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes;
  1485   expand(pop_byte_size);
  1486   _popular_object_boundary =
  1487     _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords);
  1488   for (int i = 0; i < G1NumPopularRegions; i++) {
  1489     HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords);
  1490     //    assert(hr != NULL && hr->bottom() < _popular_object_boundary,
  1491     //     "Should be enough, and all should be below boundary.");
  1492     hr->set_popular(true);
  1494   assert(_cur_pop_hr_index == 0, "Start allocating at the first region.");
  1496   // Initialize the from_card cache structure of HeapRegionRemSet.
  1497   HeapRegionRemSet::init_heap(max_regions());
  1499   // Now expand into the rest of the initial heap size.
  1500   expand(init_byte_size - pop_byte_size);
  1502   // Perform any initialization actions delegated to the policy.
  1503   g1_policy()->init();
  1505   g1_policy()->note_start_of_mark_thread();
  1507   _refine_cte_cl =
  1508     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1509                                     g1_rem_set(),
  1510                                     concurrent_g1_refine());
  1511   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1513   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1514                                                SATB_Q_FL_lock,
  1515                                                0,
  1516                                                Shared_SATB_Q_lock);
  1517   if (G1RSBarrierUseQueue) {
  1518     JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1519                                                   DirtyCardQ_FL_lock,
  1520                                                   G1DirtyCardQueueMax,
  1521                                                   Shared_DirtyCardQ_lock);
  1523   if (G1DeferredRSUpdate) {
  1524     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1525                                       DirtyCardQ_FL_lock,
  1526                                       0,
  1527                                       Shared_DirtyCardQ_lock,
  1528                                       &JavaThread::dirty_card_queue_set());
  1530   // In case we're keeping closure specialization stats, initialize those
  1531   // counts and that mechanism.
  1532   SpecializationStats::clear();
  1534   _gc_alloc_region_list = NULL;
  1536   // Do later initialization work for concurrent refinement.
  1537   _cg1r->init();
  1539   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
  1540   GCOverheadReporter::initGCOverheadReporter(4, group_names);
  1542   return JNI_OK;
  1545 void G1CollectedHeap::ref_processing_init() {
  1546   SharedHeap::ref_processing_init();
  1547   MemRegion mr = reserved_region();
  1548   _ref_processor = ReferenceProcessor::create_ref_processor(
  1549                                          mr,    // span
  1550                                          false, // Reference discovery is not atomic
  1551                                                 // (though it shouldn't matter here.)
  1552                                          true,  // mt_discovery
  1553                                          NULL,  // is alive closure: need to fill this in for efficiency
  1554                                          ParallelGCThreads,
  1555                                          ParallelRefProcEnabled,
  1556                                          true); // Setting next fields of discovered
  1557                                                 // lists requires a barrier.
  1560 size_t G1CollectedHeap::capacity() const {
  1561   return _g1_committed.byte_size();
  1564 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1565                                                  int worker_i) {
  1566   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1567   int n_completed_buffers = 0;
  1568   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1569     n_completed_buffers++;
  1571   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1572                                                   (double) n_completed_buffers);
  1573   dcqs.clear_n_completed_buffers();
  1574   // Finish up the queue...
  1575   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
  1576                                                             g1_rem_set());
  1577   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1581 // Computes the sum of the storage used by the various regions.
  1583 size_t G1CollectedHeap::used() const {
  1584   assert(Heap_lock->owner() != NULL,
  1585          "Should be owned on this thread's behalf.");
  1586   size_t result = _summary_bytes_used;
  1587   if (_cur_alloc_region != NULL)
  1588     result += _cur_alloc_region->used();
  1589   return result;
  1592 class SumUsedClosure: public HeapRegionClosure {
  1593   size_t _used;
  1594 public:
  1595   SumUsedClosure() : _used(0) {}
  1596   bool doHeapRegion(HeapRegion* r) {
  1597     if (!r->continuesHumongous()) {
  1598       _used += r->used();
  1600     return false;
  1602   size_t result() { return _used; }
  1603 };
  1605 size_t G1CollectedHeap::recalculate_used() const {
  1606   SumUsedClosure blk;
  1607   _hrs->iterate(&blk);
  1608   return blk.result();
  1611 #ifndef PRODUCT
  1612 class SumUsedRegionsClosure: public HeapRegionClosure {
  1613   size_t _num;
  1614 public:
  1615   // _num is set to 1 to account for the popular region
  1616   SumUsedRegionsClosure() : _num(G1NumPopularRegions) {}
  1617   bool doHeapRegion(HeapRegion* r) {
  1618     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1619       _num += 1;
  1621     return false;
  1623   size_t result() { return _num; }
  1624 };
  1626 size_t G1CollectedHeap::recalculate_used_regions() const {
  1627   SumUsedRegionsClosure blk;
  1628   _hrs->iterate(&blk);
  1629   return blk.result();
  1631 #endif // PRODUCT
  1633 size_t G1CollectedHeap::unsafe_max_alloc() {
  1634   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1635   // otherwise, is there space in the current allocation region?
  1637   // We need to store the current allocation region in a local variable
  1638   // here. The problem is that this method doesn't take any locks and
  1639   // there may be other threads which overwrite the current allocation
  1640   // region field. attempt_allocation(), for example, sets it to NULL
  1641   // and this can happen *after* the NULL check here but before the call
  1642   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1643   // to be a problem in the optimized build, since the two loads of the
  1644   // current allocation region field are optimized away.
  1645   HeapRegion* car = _cur_alloc_region;
  1647   // FIXME: should iterate over all regions?
  1648   if (car == NULL) {
  1649     return 0;
  1651   return car->free();
  1654 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1655   // The caller doesn't have the Heap_lock
  1656   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1657   MutexLocker ml(Heap_lock);
  1658   collect_locked(cause);
  1661 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1662   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1663   assert(Heap_lock->is_locked(), "Precondition#2");
  1664   GCCauseSetter gcs(this, cause);
  1665   switch (cause) {
  1666     case GCCause::_heap_inspection:
  1667     case GCCause::_heap_dump: {
  1668       HandleMark hm;
  1669       do_full_collection(false);         // don't clear all soft refs
  1670       break;
  1672     default: // XXX FIX ME
  1673       ShouldNotReachHere(); // Unexpected use of this function
  1678 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1679   // Don't want to do a GC until cleanup is completed.
  1680   wait_for_cleanup_complete();
  1682   // Read the GC count while holding the Heap_lock
  1683   int gc_count_before = SharedHeap::heap()->total_collections();
  1685     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1686     VM_G1CollectFull op(gc_count_before, cause);
  1687     VMThread::execute(&op);
  1691 bool G1CollectedHeap::is_in(const void* p) const {
  1692   if (_g1_committed.contains(p)) {
  1693     HeapRegion* hr = _hrs->addr_to_region(p);
  1694     return hr->is_in(p);
  1695   } else {
  1696     return _perm_gen->as_gen()->is_in(p);
  1700 // Iteration functions.
  1702 // Iterates an OopClosure over all ref-containing fields of objects
  1703 // within a HeapRegion.
  1705 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1706   MemRegion _mr;
  1707   OopClosure* _cl;
  1708 public:
  1709   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1710     : _mr(mr), _cl(cl) {}
  1711   bool doHeapRegion(HeapRegion* r) {
  1712     if (! r->continuesHumongous()) {
  1713       r->oop_iterate(_cl);
  1715     return false;
  1717 };
  1719 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
  1720   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1721   _hrs->iterate(&blk);
  1724 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
  1725   IterateOopClosureRegionClosure blk(mr, cl);
  1726   _hrs->iterate(&blk);
  1729 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1731 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1732   ObjectClosure* _cl;
  1733 public:
  1734   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1735   bool doHeapRegion(HeapRegion* r) {
  1736     if (! r->continuesHumongous()) {
  1737       r->object_iterate(_cl);
  1739     return false;
  1741 };
  1743 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  1744   IterateObjectClosureRegionClosure blk(cl);
  1745   _hrs->iterate(&blk);
  1748 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1749   // FIXME: is this right?
  1750   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1753 // Calls a SpaceClosure on a HeapRegion.
  1755 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1756   SpaceClosure* _cl;
  1757 public:
  1758   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1759   bool doHeapRegion(HeapRegion* r) {
  1760     _cl->do_space(r);
  1761     return false;
  1763 };
  1765 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1766   SpaceClosureRegionClosure blk(cl);
  1767   _hrs->iterate(&blk);
  1770 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1771   _hrs->iterate(cl);
  1774 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1775                                                HeapRegionClosure* cl) {
  1776   _hrs->iterate_from(r, cl);
  1779 void
  1780 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1781   _hrs->iterate_from(idx, cl);
  1784 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1786 void
  1787 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1788                                                  int worker,
  1789                                                  jint claim_value) {
  1790   const size_t regions = n_regions();
  1791   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1792   // try to spread out the starting points of the workers
  1793   const size_t start_index = regions / worker_num * (size_t) worker;
  1795   // each worker will actually look at all regions
  1796   for (size_t count = 0; count < regions; ++count) {
  1797     const size_t index = (start_index + count) % regions;
  1798     assert(0 <= index && index < regions, "sanity");
  1799     HeapRegion* r = region_at(index);
  1800     // we'll ignore "continues humongous" regions (we'll process them
  1801     // when we come across their corresponding "start humongous"
  1802     // region) and regions already claimed
  1803     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1804       continue;
  1806     // OK, try to claim it
  1807     if (r->claimHeapRegion(claim_value)) {
  1808       // success!
  1809       assert(!r->continuesHumongous(), "sanity");
  1810       if (r->startsHumongous()) {
  1811         // If the region is "starts humongous" we'll iterate over its
  1812         // "continues humongous" first; in fact we'll do them
  1813         // first. The order is important. In on case, calling the
  1814         // closure on the "starts humongous" region might de-allocate
  1815         // and clear all its "continues humongous" regions and, as a
  1816         // result, we might end up processing them twice. So, we'll do
  1817         // them first (notice: most closures will ignore them anyway) and
  1818         // then we'll do the "starts humongous" region.
  1819         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1820           HeapRegion* chr = region_at(ch_index);
  1822           // if the region has already been claimed or it's not
  1823           // "continues humongous" we're done
  1824           if (chr->claim_value() == claim_value ||
  1825               !chr->continuesHumongous()) {
  1826             break;
  1829           // Noone should have claimed it directly. We can given
  1830           // that we claimed its "starts humongous" region.
  1831           assert(chr->claim_value() != claim_value, "sanity");
  1832           assert(chr->humongous_start_region() == r, "sanity");
  1834           if (chr->claimHeapRegion(claim_value)) {
  1835             // we should always be able to claim it; noone else should
  1836             // be trying to claim this region
  1838             bool res2 = cl->doHeapRegion(chr);
  1839             assert(!res2, "Should not abort");
  1841             // Right now, this holds (i.e., no closure that actually
  1842             // does something with "continues humongous" regions
  1843             // clears them). We might have to weaken it in the future,
  1844             // but let's leave these two asserts here for extra safety.
  1845             assert(chr->continuesHumongous(), "should still be the case");
  1846             assert(chr->humongous_start_region() == r, "sanity");
  1847           } else {
  1848             guarantee(false, "we should not reach here");
  1853       assert(!r->continuesHumongous(), "sanity");
  1854       bool res = cl->doHeapRegion(r);
  1855       assert(!res, "Should not abort");
  1860 class ResetClaimValuesClosure: public HeapRegionClosure {
  1861 public:
  1862   bool doHeapRegion(HeapRegion* r) {
  1863     r->set_claim_value(HeapRegion::InitialClaimValue);
  1864     return false;
  1866 };
  1868 void
  1869 G1CollectedHeap::reset_heap_region_claim_values() {
  1870   ResetClaimValuesClosure blk;
  1871   heap_region_iterate(&blk);
  1874 #ifdef ASSERT
  1875 // This checks whether all regions in the heap have the correct claim
  1876 // value. I also piggy-backed on this a check to ensure that the
  1877 // humongous_start_region() information on "continues humongous"
  1878 // regions is correct.
  1880 class CheckClaimValuesClosure : public HeapRegionClosure {
  1881 private:
  1882   jint _claim_value;
  1883   size_t _failures;
  1884   HeapRegion* _sh_region;
  1885 public:
  1886   CheckClaimValuesClosure(jint claim_value) :
  1887     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1888   bool doHeapRegion(HeapRegion* r) {
  1889     if (r->claim_value() != _claim_value) {
  1890       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1891                              "claim value = %d, should be %d",
  1892                              r->bottom(), r->end(), r->claim_value(),
  1893                              _claim_value);
  1894       ++_failures;
  1896     if (!r->isHumongous()) {
  1897       _sh_region = NULL;
  1898     } else if (r->startsHumongous()) {
  1899       _sh_region = r;
  1900     } else if (r->continuesHumongous()) {
  1901       if (r->humongous_start_region() != _sh_region) {
  1902         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1903                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1904                                r->bottom(), r->end(),
  1905                                r->humongous_start_region(),
  1906                                _sh_region);
  1907         ++_failures;
  1910     return false;
  1912   size_t failures() {
  1913     return _failures;
  1915 };
  1917 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  1918   CheckClaimValuesClosure cl(claim_value);
  1919   heap_region_iterate(&cl);
  1920   return cl.failures() == 0;
  1922 #endif // ASSERT
  1924 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  1925   HeapRegion* r = g1_policy()->collection_set();
  1926   while (r != NULL) {
  1927     HeapRegion* next = r->next_in_collection_set();
  1928     if (cl->doHeapRegion(r)) {
  1929       cl->incomplete();
  1930       return;
  1932     r = next;
  1936 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  1937                                                   HeapRegionClosure *cl) {
  1938   assert(r->in_collection_set(),
  1939          "Start region must be a member of the collection set.");
  1940   HeapRegion* cur = r;
  1941   while (cur != NULL) {
  1942     HeapRegion* next = cur->next_in_collection_set();
  1943     if (cl->doHeapRegion(cur) && false) {
  1944       cl->incomplete();
  1945       return;
  1947     cur = next;
  1949   cur = g1_policy()->collection_set();
  1950   while (cur != r) {
  1951     HeapRegion* next = cur->next_in_collection_set();
  1952     if (cl->doHeapRegion(cur) && false) {
  1953       cl->incomplete();
  1954       return;
  1956     cur = next;
  1960 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  1961   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  1965 Space* G1CollectedHeap::space_containing(const void* addr) const {
  1966   Space* res = heap_region_containing(addr);
  1967   if (res == NULL)
  1968     res = perm_gen()->space_containing(addr);
  1969   return res;
  1972 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  1973   Space* sp = space_containing(addr);
  1974   if (sp != NULL) {
  1975     return sp->block_start(addr);
  1977   return NULL;
  1980 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  1981   Space* sp = space_containing(addr);
  1982   assert(sp != NULL, "block_size of address outside of heap");
  1983   return sp->block_size(addr);
  1986 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  1987   Space* sp = space_containing(addr);
  1988   return sp->block_is_obj(addr);
  1991 bool G1CollectedHeap::supports_tlab_allocation() const {
  1992   return true;
  1995 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  1996   return HeapRegion::GrainBytes;
  1999 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2000   // Return the remaining space in the cur alloc region, but not less than
  2001   // the min TLAB size.
  2002   // Also, no more than half the region size, since we can't allow tlabs to
  2003   // grow big enough to accomodate humongous objects.
  2005   // We need to story it locally, since it might change between when we
  2006   // test for NULL and when we use it later.
  2007   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2008   if (cur_alloc_space == NULL) {
  2009     return HeapRegion::GrainBytes/2;
  2010   } else {
  2011     return MAX2(MIN2(cur_alloc_space->free(),
  2012                      (size_t)(HeapRegion::GrainBytes/2)),
  2013                 (size_t)MinTLABSize);
  2017 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2018   bool dummy;
  2019   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2022 bool G1CollectedHeap::allocs_are_zero_filled() {
  2023   return false;
  2026 size_t G1CollectedHeap::large_typearray_limit() {
  2027   // FIXME
  2028   return HeapRegion::GrainBytes/HeapWordSize;
  2031 size_t G1CollectedHeap::max_capacity() const {
  2032   return _g1_committed.byte_size();
  2035 jlong G1CollectedHeap::millis_since_last_gc() {
  2036   // assert(false, "NYI");
  2037   return 0;
  2041 void G1CollectedHeap::prepare_for_verify() {
  2042   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2043     ensure_parsability(false);
  2045   g1_rem_set()->prepare_for_verify();
  2048 class VerifyLivenessOopClosure: public OopClosure {
  2049   G1CollectedHeap* g1h;
  2050 public:
  2051   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2052     g1h = _g1h;
  2054   void do_oop(narrowOop *p) {
  2055     guarantee(false, "NYI");
  2057   void do_oop(oop *p) {
  2058     oop obj = *p;
  2059     assert(obj == NULL || !g1h->is_obj_dead(obj),
  2060            "Dead object referenced by a not dead object");
  2062 };
  2064 class VerifyObjsInRegionClosure: public ObjectClosure {
  2065   G1CollectedHeap* _g1h;
  2066   size_t _live_bytes;
  2067   HeapRegion *_hr;
  2068 public:
  2069   VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
  2070     _g1h = G1CollectedHeap::heap();
  2072   void do_object(oop o) {
  2073     VerifyLivenessOopClosure isLive(_g1h);
  2074     assert(o != NULL, "Huh?");
  2075     if (!_g1h->is_obj_dead(o)) {
  2076       o->oop_iterate(&isLive);
  2077       if (!_hr->obj_allocated_since_prev_marking(o))
  2078         _live_bytes += (o->size() * HeapWordSize);
  2081   size_t live_bytes() { return _live_bytes; }
  2082 };
  2084 class PrintObjsInRegionClosure : public ObjectClosure {
  2085   HeapRegion *_hr;
  2086   G1CollectedHeap *_g1;
  2087 public:
  2088   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2089     _g1 = G1CollectedHeap::heap();
  2090   };
  2092   void do_object(oop o) {
  2093     if (o != NULL) {
  2094       HeapWord *start = (HeapWord *) o;
  2095       size_t word_sz = o->size();
  2096       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2097                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2098                           (void*) o, word_sz,
  2099                           _g1->isMarkedPrev(o),
  2100                           _g1->isMarkedNext(o),
  2101                           _hr->obj_allocated_since_prev_marking(o));
  2102       HeapWord *end = start + word_sz;
  2103       HeapWord *cur;
  2104       int *val;
  2105       for (cur = start; cur < end; cur++) {
  2106         val = (int *) cur;
  2107         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2111 };
  2113 class VerifyRegionClosure: public HeapRegionClosure {
  2114 public:
  2115   bool _allow_dirty;
  2116   bool _par;
  2117   VerifyRegionClosure(bool allow_dirty, bool par = false)
  2118     : _allow_dirty(allow_dirty), _par(par) {}
  2119   bool doHeapRegion(HeapRegion* r) {
  2120     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2121               "Should be unclaimed at verify points.");
  2122     if (r->isHumongous()) {
  2123       if (r->startsHumongous()) {
  2124         // Verify the single H object.
  2125         oop(r->bottom())->verify();
  2126         size_t word_sz = oop(r->bottom())->size();
  2127         guarantee(r->top() == r->bottom() + word_sz,
  2128                   "Only one object in a humongous region");
  2130     } else {
  2131       VerifyObjsInRegionClosure not_dead_yet_cl(r);
  2132       r->verify(_allow_dirty);
  2133       r->object_iterate(&not_dead_yet_cl);
  2134       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2135                 "More live objects than counted in last complete marking.");
  2137     return false;
  2139 };
  2141 class VerifyRootsClosure: public OopsInGenClosure {
  2142 private:
  2143   G1CollectedHeap* _g1h;
  2144   bool             _failures;
  2146 public:
  2147   VerifyRootsClosure() :
  2148     _g1h(G1CollectedHeap::heap()), _failures(false) { }
  2150   bool failures() { return _failures; }
  2152   void do_oop(narrowOop* p) {
  2153     guarantee(false, "NYI");
  2156   void do_oop(oop* p) {
  2157     oop obj = *p;
  2158     if (obj != NULL) {
  2159       if (_g1h->is_obj_dead(obj)) {
  2160         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2161                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2162         obj->print_on(gclog_or_tty);
  2163         _failures = true;
  2167 };
  2169 // This is the task used for parallel heap verification.
  2171 class G1ParVerifyTask: public AbstractGangTask {
  2172 private:
  2173   G1CollectedHeap* _g1h;
  2174   bool _allow_dirty;
  2176 public:
  2177   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
  2178     AbstractGangTask("Parallel verify task"),
  2179     _g1h(g1h), _allow_dirty(allow_dirty) { }
  2181   void work(int worker_i) {
  2182     VerifyRegionClosure blk(_allow_dirty, true);
  2183     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2184                                           HeapRegion::ParVerifyClaimValue);
  2186 };
  2188 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2189   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2190     if (!silent) { gclog_or_tty->print("roots "); }
  2191     VerifyRootsClosure rootsCl;
  2192     process_strong_roots(false,
  2193                          SharedHeap::SO_AllClasses,
  2194                          &rootsCl,
  2195                          &rootsCl);
  2196     rem_set()->invalidate(perm_gen()->used_region(), false);
  2197     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2198     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2199       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2200              "sanity check");
  2202       G1ParVerifyTask task(this, allow_dirty);
  2203       int n_workers = workers()->total_workers();
  2204       set_par_threads(n_workers);
  2205       workers()->run_task(&task);
  2206       set_par_threads(0);
  2208       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2209              "sanity check");
  2211       reset_heap_region_claim_values();
  2213       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2214              "sanity check");
  2215     } else {
  2216       VerifyRegionClosure blk(allow_dirty);
  2217       _hrs->iterate(&blk);
  2219     if (!silent) gclog_or_tty->print("remset ");
  2220     rem_set()->verify();
  2221     guarantee(!rootsCl.failures(), "should not have had failures");
  2222   } else {
  2223     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2227 class PrintRegionClosure: public HeapRegionClosure {
  2228   outputStream* _st;
  2229 public:
  2230   PrintRegionClosure(outputStream* st) : _st(st) {}
  2231   bool doHeapRegion(HeapRegion* r) {
  2232     r->print_on(_st);
  2233     return false;
  2235 };
  2237 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
  2239 void G1CollectedHeap::print_on(outputStream* st) const {
  2240   PrintRegionClosure blk(st);
  2241   _hrs->iterate(&blk);
  2244 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2245   if (ParallelGCThreads > 0) {
  2246     workers()->print_worker_threads();
  2248   st->print("\"G1 concurrent mark GC Thread\" ");
  2249   _cmThread->print();
  2250   st->cr();
  2251   st->print("\"G1 concurrent refinement GC Thread\" ");
  2252   _cg1r->cg1rThread()->print_on(st);
  2253   st->cr();
  2254   st->print("\"G1 zero-fill GC Thread\" ");
  2255   _czft->print_on(st);
  2256   st->cr();
  2259 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2260   if (ParallelGCThreads > 0) {
  2261     workers()->threads_do(tc);
  2263   tc->do_thread(_cmThread);
  2264   tc->do_thread(_cg1r->cg1rThread());
  2265   tc->do_thread(_czft);
  2268 void G1CollectedHeap::print_tracing_info() const {
  2269   concurrent_g1_refine()->print_final_card_counts();
  2271   // We'll overload this to mean "trace GC pause statistics."
  2272   if (TraceGen0Time || TraceGen1Time) {
  2273     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2274     // to that.
  2275     g1_policy()->print_tracing_info();
  2277   if (SummarizeG1RSStats) {
  2278     g1_rem_set()->print_summary_info();
  2280   if (SummarizeG1ConcMark) {
  2281     concurrent_mark()->print_summary_info();
  2283   if (SummarizeG1ZFStats) {
  2284     ConcurrentZFThread::print_summary_info();
  2286   if (G1SummarizePopularity) {
  2287     print_popularity_summary_info();
  2289   g1_policy()->print_yg_surv_rate_info();
  2291   GCOverheadReporter::printGCOverhead();
  2293   SpecializationStats::print();
  2297 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2298   HeapRegion* hr = heap_region_containing(addr);
  2299   if (hr == NULL) {
  2300     return 0;
  2301   } else {
  2302     return 1;
  2306 G1CollectedHeap* G1CollectedHeap::heap() {
  2307   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2308          "not a garbage-first heap");
  2309   return _g1h;
  2312 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2313   if (PrintHeapAtGC){
  2314     gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
  2315     Universe::print();
  2317   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2318   // Call allocation profiler
  2319   AllocationProfiler::iterate_since_last_gc();
  2320   // Fill TLAB's and such
  2321   ensure_parsability(true);
  2324 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2325   // FIXME: what is this about?
  2326   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2327   // is set.
  2328   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2329                         "derived pointer present"));
  2331   if (PrintHeapAtGC){
  2332     gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
  2333     Universe::print();
  2334     gclog_or_tty->print("} ");
  2338 void G1CollectedHeap::do_collection_pause() {
  2339   // Read the GC count while holding the Heap_lock
  2340   // we need to do this _before_ wait_for_cleanup_complete(), to
  2341   // ensure that we do not give up the heap lock and potentially
  2342   // pick up the wrong count
  2343   int gc_count_before = SharedHeap::heap()->total_collections();
  2345   // Don't want to do a GC pause while cleanup is being completed!
  2346   wait_for_cleanup_complete();
  2348   g1_policy()->record_stop_world_start();
  2350     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2351     VM_G1IncCollectionPause op(gc_count_before);
  2352     VMThread::execute(&op);
  2356 void
  2357 G1CollectedHeap::doConcurrentMark() {
  2358   if (G1ConcMark) {
  2359     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2360     if (!_cmThread->in_progress()) {
  2361       _cmThread->set_started();
  2362       CGC_lock->notify();
  2367 class VerifyMarkedObjsClosure: public ObjectClosure {
  2368     G1CollectedHeap* _g1h;
  2369     public:
  2370     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2371     void do_object(oop obj) {
  2372       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2373              "markandsweep mark should agree with concurrent deadness");
  2375 };
  2377 void
  2378 G1CollectedHeap::checkConcurrentMark() {
  2379     VerifyMarkedObjsClosure verifycl(this);
  2380     //    MutexLockerEx x(getMarkBitMapLock(),
  2381     //              Mutex::_no_safepoint_check_flag);
  2382     object_iterate(&verifycl);
  2385 void G1CollectedHeap::do_sync_mark() {
  2386   _cm->checkpointRootsInitial();
  2387   _cm->markFromRoots();
  2388   _cm->checkpointRootsFinal(false);
  2391 // <NEW PREDICTION>
  2393 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2394                                                        bool young) {
  2395   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2398 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2399                                                            predicted_time_ms) {
  2400   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2403 size_t G1CollectedHeap::pending_card_num() {
  2404   size_t extra_cards = 0;
  2405   JavaThread *curr = Threads::first();
  2406   while (curr != NULL) {
  2407     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2408     extra_cards += dcq.size();
  2409     curr = curr->next();
  2411   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2412   size_t buffer_size = dcqs.buffer_size();
  2413   size_t buffer_num = dcqs.completed_buffers_num();
  2414   return buffer_size * buffer_num + extra_cards;
  2417 size_t G1CollectedHeap::max_pending_card_num() {
  2418   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2419   size_t buffer_size = dcqs.buffer_size();
  2420   size_t buffer_num  = dcqs.completed_buffers_num();
  2421   int thread_num  = Threads::number_of_threads();
  2422   return (buffer_num + thread_num) * buffer_size;
  2425 size_t G1CollectedHeap::cards_scanned() {
  2426   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2427   return g1_rset->cardsScanned();
  2430 void
  2431 G1CollectedHeap::setup_surviving_young_words() {
  2432   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2433   size_t array_length = g1_policy()->young_cset_length();
  2434   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2435   if (_surviving_young_words == NULL) {
  2436     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2437                           "Not enough space for young surv words summary.");
  2439   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2440   for (size_t i = 0;  i < array_length; ++i) {
  2441     guarantee( _surviving_young_words[i] == 0, "invariant" );
  2445 void
  2446 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2447   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2448   size_t array_length = g1_policy()->young_cset_length();
  2449   for (size_t i = 0; i < array_length; ++i)
  2450     _surviving_young_words[i] += surv_young_words[i];
  2453 void
  2454 G1CollectedHeap::cleanup_surviving_young_words() {
  2455   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2456   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2457   _surviving_young_words = NULL;
  2460 // </NEW PREDICTION>
  2462 void
  2463 G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
  2464   char verbose_str[128];
  2465   sprintf(verbose_str, "GC pause ");
  2466   if (popular_region != NULL)
  2467     strcat(verbose_str, "(popular)");
  2468   else if (g1_policy()->in_young_gc_mode()) {
  2469     if (g1_policy()->full_young_gcs())
  2470       strcat(verbose_str, "(young)");
  2471     else
  2472       strcat(verbose_str, "(partial)");
  2474   bool reset_should_initiate_conc_mark = false;
  2475   if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) {
  2476     // we currently do not allow an initial mark phase to be piggy-backed
  2477     // on a popular pause
  2478     reset_should_initiate_conc_mark = true;
  2479     g1_policy()->unset_should_initiate_conc_mark();
  2481   if (g1_policy()->should_initiate_conc_mark())
  2482     strcat(verbose_str, " (initial-mark)");
  2484   GCCauseSetter x(this, (popular_region == NULL ?
  2485                          GCCause::_g1_inc_collection_pause :
  2486                          GCCause::_g1_pop_region_collection_pause));
  2488   // if PrintGCDetails is on, we'll print long statistics information
  2489   // in the collector policy code, so let's not print this as the output
  2490   // is messy if we do.
  2491   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2492   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2493   TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2495   ResourceMark rm;
  2496   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2497   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2498   guarantee(!is_gc_active(), "collection is not reentrant");
  2499   assert(regions_accounted_for(), "Region leakage!");
  2501   increment_gc_time_stamp();
  2503   if (g1_policy()->in_young_gc_mode()) {
  2504     assert(check_young_list_well_formed(),
  2505                 "young list should be well formed");
  2508   if (GC_locker::is_active()) {
  2509     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2512   bool abandoned = false;
  2513   { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2514     IsGCActiveMark x;
  2516     gc_prologue(false);
  2517     increment_total_collections();
  2519 #if G1_REM_SET_LOGGING
  2520     gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2521     print();
  2522 #endif
  2524     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2525       HandleMark hm;  // Discard invalid handles created during verification
  2526       prepare_for_verify();
  2527       gclog_or_tty->print(" VerifyBeforeGC:");
  2528       Universe::verify(false);
  2531     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2533     // We want to turn off ref discovery, if necessary, and turn it back on
  2534     // on again later if we do.
  2535     bool was_enabled = ref_processor()->discovery_enabled();
  2536     if (was_enabled) ref_processor()->disable_discovery();
  2538     // Forget the current alloc region (we might even choose it to be part
  2539     // of the collection set!).
  2540     abandon_cur_alloc_region();
  2542     // The elapsed time induced by the start time below deliberately elides
  2543     // the possible verification above.
  2544     double start_time_sec = os::elapsedTime();
  2545     GCOverheadReporter::recordSTWStart(start_time_sec);
  2546     size_t start_used_bytes = used();
  2547     if (!G1ConcMark) {
  2548       do_sync_mark();
  2551     g1_policy()->record_collection_pause_start(start_time_sec,
  2552                                                start_used_bytes);
  2554     guarantee(_in_cset_fast_test == NULL, "invariant");
  2555     guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2556     _in_cset_fast_test_length = max_regions();
  2557     _in_cset_fast_test_base =
  2558                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2559     memset(_in_cset_fast_test_base, false,
  2560                                      _in_cset_fast_test_length * sizeof(bool));
  2561     // We're biasing _in_cset_fast_test to avoid subtracting the
  2562     // beginning of the heap every time we want to index; basically
  2563     // it's the same with what we do with the card table.
  2564     _in_cset_fast_test = _in_cset_fast_test_base -
  2565               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2567 #if SCAN_ONLY_VERBOSE
  2568     _young_list->print();
  2569 #endif // SCAN_ONLY_VERBOSE
  2571     if (g1_policy()->should_initiate_conc_mark()) {
  2572       concurrent_mark()->checkpointRootsInitialPre();
  2574     save_marks();
  2576     // We must do this before any possible evacuation that should propagate
  2577     // marks, including evacuation of popular objects in a popular pause.
  2578     if (mark_in_progress()) {
  2579       double start_time_sec = os::elapsedTime();
  2581       _cm->drainAllSATBBuffers();
  2582       double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2583       g1_policy()->record_satb_drain_time(finish_mark_ms);
  2586     // Record the number of elements currently on the mark stack, so we
  2587     // only iterate over these.  (Since evacuation may add to the mark
  2588     // stack, doing more exposes race conditions.)  If no mark is in
  2589     // progress, this will be zero.
  2590     _cm->set_oops_do_bound();
  2592     assert(regions_accounted_for(), "Region leakage.");
  2594     bool abandoned = false;
  2596     if (mark_in_progress())
  2597       concurrent_mark()->newCSet();
  2599     // Now choose the CS.
  2600     if (popular_region == NULL) {
  2601       g1_policy()->choose_collection_set();
  2602     } else {
  2603       // We may be evacuating a single region (for popularity).
  2604       g1_policy()->record_popular_pause_preamble_start();
  2605       popularity_pause_preamble(popular_region);
  2606       g1_policy()->record_popular_pause_preamble_end();
  2607       abandoned = (g1_policy()->collection_set() == NULL);
  2608       // Now we allow more regions to be added (we have to collect
  2609       // all popular regions).
  2610       if (!abandoned) {
  2611         g1_policy()->choose_collection_set(popular_region);
  2614     // We may abandon a pause if we find no region that will fit in the MMU
  2615     // pause.
  2616     abandoned = (g1_policy()->collection_set() == NULL);
  2618     // Nothing to do if we were unable to choose a collection set.
  2619     if (!abandoned) {
  2620 #if G1_REM_SET_LOGGING
  2621       gclog_or_tty->print_cr("\nAfter pause, heap:");
  2622       print();
  2623 #endif
  2625       setup_surviving_young_words();
  2627       // Set up the gc allocation regions.
  2628       get_gc_alloc_regions();
  2630       // Actually do the work...
  2631       evacuate_collection_set();
  2632       free_collection_set(g1_policy()->collection_set());
  2633       g1_policy()->clear_collection_set();
  2635       FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2636       // this is more for peace of mind; we're nulling them here and
  2637       // we're expecting them to be null at the beginning of the next GC
  2638       _in_cset_fast_test = NULL;
  2639       _in_cset_fast_test_base = NULL;
  2641       if (popular_region != NULL) {
  2642         // We have to wait until now, because we don't want the region to
  2643         // be rescheduled for pop-evac during RS update.
  2644         popular_region->set_popular_pending(false);
  2647       release_gc_alloc_regions();
  2649       cleanup_surviving_young_words();
  2651       if (g1_policy()->in_young_gc_mode()) {
  2652         _young_list->reset_sampled_info();
  2653         assert(check_young_list_empty(true),
  2654                "young list should be empty");
  2656 #if SCAN_ONLY_VERBOSE
  2657         _young_list->print();
  2658 #endif // SCAN_ONLY_VERBOSE
  2660         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2661                                              _young_list->first_survivor_region(),
  2662                                              _young_list->last_survivor_region());
  2663         _young_list->reset_auxilary_lists();
  2665     } else {
  2666       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2669     if (evacuation_failed()) {
  2670       _summary_bytes_used = recalculate_used();
  2671     } else {
  2672       // The "used" of the the collection set have already been subtracted
  2673       // when they were freed.  Add in the bytes evacuated.
  2674       _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2677     if (g1_policy()->in_young_gc_mode() &&
  2678         g1_policy()->should_initiate_conc_mark()) {
  2679       concurrent_mark()->checkpointRootsInitialPost();
  2680       set_marking_started();
  2681       doConcurrentMark();
  2684 #if SCAN_ONLY_VERBOSE
  2685     _young_list->print();
  2686 #endif // SCAN_ONLY_VERBOSE
  2688     double end_time_sec = os::elapsedTime();
  2689     double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2690     g1_policy()->record_pause_time_ms(pause_time_ms);
  2691     GCOverheadReporter::recordSTWEnd(end_time_sec);
  2692     g1_policy()->record_collection_pause_end(popular_region != NULL,
  2693                                              abandoned);
  2695     assert(regions_accounted_for(), "Region leakage.");
  2697     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2698       HandleMark hm;  // Discard invalid handles created during verification
  2699       gclog_or_tty->print(" VerifyAfterGC:");
  2700       Universe::verify(false);
  2703     if (was_enabled) ref_processor()->enable_discovery();
  2706       size_t expand_bytes = g1_policy()->expansion_amount();
  2707       if (expand_bytes > 0) {
  2708         size_t bytes_before = capacity();
  2709         expand(expand_bytes);
  2713     if (mark_in_progress()) {
  2714       concurrent_mark()->update_g1_committed();
  2717 #ifdef TRACESPINNING
  2718     ParallelTaskTerminator::print_termination_counts();
  2719 #endif
  2721     gc_epilogue(false);
  2724   assert(verify_region_lists(), "Bad region lists.");
  2726   if (reset_should_initiate_conc_mark)
  2727     g1_policy()->set_should_initiate_conc_mark();
  2729   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2730     gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2731     print_tracing_info();
  2732     vm_exit(-1);
  2736 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2737   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2738   HeapWord* original_top = NULL;
  2739   if (r != NULL)
  2740     original_top = r->top();
  2742   // We will want to record the used space in r as being there before gc.
  2743   // One we install it as a GC alloc region it's eligible for allocation.
  2744   // So record it now and use it later.
  2745   size_t r_used = 0;
  2746   if (r != NULL) {
  2747     r_used = r->used();
  2749     if (ParallelGCThreads > 0) {
  2750       // need to take the lock to guard against two threads calling
  2751       // get_gc_alloc_region concurrently (very unlikely but...)
  2752       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2753       r->save_marks();
  2756   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2757   _gc_alloc_regions[purpose] = r;
  2758   if (old_alloc_region != NULL) {
  2759     // Replace aliases too.
  2760     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2761       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2762         _gc_alloc_regions[ap] = r;
  2766   if (r != NULL) {
  2767     push_gc_alloc_region(r);
  2768     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2769       // We are using a region as a GC alloc region after it has been used
  2770       // as a mutator allocation region during the current marking cycle.
  2771       // The mutator-allocated objects are currently implicitly marked, but
  2772       // when we move hr->next_top_at_mark_start() forward at the the end
  2773       // of the GC pause, they won't be.  We therefore mark all objects in
  2774       // the "gap".  We do this object-by-object, since marking densely
  2775       // does not currently work right with marking bitmap iteration.  This
  2776       // means we rely on TLAB filling at the start of pauses, and no
  2777       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2778       // to fix the marking bitmap iteration.
  2779       HeapWord* curhw = r->next_top_at_mark_start();
  2780       HeapWord* t = original_top;
  2782       while (curhw < t) {
  2783         oop cur = (oop)curhw;
  2784         // We'll assume parallel for generality.  This is rare code.
  2785         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2786         curhw = curhw + cur->size();
  2788       assert(curhw == t, "Should have parsed correctly.");
  2790     if (G1PolicyVerbose > 1) {
  2791       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2792                           "for survivors:", r->bottom(), original_top, r->end());
  2793       r->print();
  2795     g1_policy()->record_before_bytes(r_used);
  2799 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2800   assert(Thread::current()->is_VM_thread() ||
  2801          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2802   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2803          "Precondition.");
  2804   hr->set_is_gc_alloc_region(true);
  2805   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2806   _gc_alloc_region_list = hr;
  2809 #ifdef G1_DEBUG
  2810 class FindGCAllocRegion: public HeapRegionClosure {
  2811 public:
  2812   bool doHeapRegion(HeapRegion* r) {
  2813     if (r->is_gc_alloc_region()) {
  2814       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2815                              r->hrs_index(), r->bottom());
  2817     return false;
  2819 };
  2820 #endif // G1_DEBUG
  2822 void G1CollectedHeap::forget_alloc_region_list() {
  2823   assert(Thread::current()->is_VM_thread(), "Precondition");
  2824   while (_gc_alloc_region_list != NULL) {
  2825     HeapRegion* r = _gc_alloc_region_list;
  2826     assert(r->is_gc_alloc_region(), "Invariant.");
  2827     _gc_alloc_region_list = r->next_gc_alloc_region();
  2828     r->set_next_gc_alloc_region(NULL);
  2829     r->set_is_gc_alloc_region(false);
  2830     if (r->is_survivor()) {
  2831       if (r->is_empty()) {
  2832         r->set_not_young();
  2833       } else {
  2834         _young_list->add_survivor_region(r);
  2837     if (r->is_empty()) {
  2838       ++_free_regions;
  2841 #ifdef G1_DEBUG
  2842   FindGCAllocRegion fa;
  2843   heap_region_iterate(&fa);
  2844 #endif // G1_DEBUG
  2848 bool G1CollectedHeap::check_gc_alloc_regions() {
  2849   // TODO: allocation regions check
  2850   return true;
  2853 void G1CollectedHeap::get_gc_alloc_regions() {
  2854   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2855     // Create new GC alloc regions.
  2856     HeapRegion* alloc_region = _gc_alloc_regions[ap];
  2857     // Clear this alloc region, so that in case it turns out to be
  2858     // unacceptable, we end up with no allocation region, rather than a bad
  2859     // one.
  2860     _gc_alloc_regions[ap] = NULL;
  2861     if (alloc_region == NULL || alloc_region->in_collection_set()) {
  2862       // Can't re-use old one.  Allocate a new one.
  2863       alloc_region = newAllocRegionWithExpansion(ap, 0);
  2865     if (alloc_region != NULL) {
  2866       set_gc_alloc_region(ap, alloc_region);
  2869   // Set alternative regions for allocation purposes that have reached
  2870   // thier limit.
  2871   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2872     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  2873     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  2874       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  2877   assert(check_gc_alloc_regions(), "alloc regions messed up");
  2880 void G1CollectedHeap::release_gc_alloc_regions() {
  2881   // We keep a separate list of all regions that have been alloc regions in
  2882   // the current collection pause.  Forget that now.
  2883   forget_alloc_region_list();
  2885   // The current alloc regions contain objs that have survived
  2886   // collection. Make them no longer GC alloc regions.
  2887   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2888     HeapRegion* r = _gc_alloc_regions[ap];
  2889     if (r != NULL && r->is_empty()) {
  2891         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  2892         r->set_zero_fill_complete();
  2893         put_free_region_on_list_locked(r);
  2896     // set_gc_alloc_region will also NULLify all aliases to the region
  2897     set_gc_alloc_region(ap, NULL);
  2898     _gc_alloc_region_counts[ap] = 0;
  2902 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  2903   _drain_in_progress = false;
  2904   set_evac_failure_closure(cl);
  2905   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  2908 void G1CollectedHeap::finalize_for_evac_failure() {
  2909   assert(_evac_failure_scan_stack != NULL &&
  2910          _evac_failure_scan_stack->length() == 0,
  2911          "Postcondition");
  2912   assert(!_drain_in_progress, "Postcondition");
  2913   // Don't have to delete, since the scan stack is a resource object.
  2914   _evac_failure_scan_stack = NULL;
  2919 // *** Sequential G1 Evacuation
  2921 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  2922   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  2923   // let the caller handle alloc failure
  2924   if (alloc_region == NULL) return NULL;
  2925   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  2926          "Either the object is humongous or the region isn't");
  2927   HeapWord* block = alloc_region->allocate(word_size);
  2928   if (block == NULL) {
  2929     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  2931   return block;
  2934 class G1IsAliveClosure: public BoolObjectClosure {
  2935   G1CollectedHeap* _g1;
  2936 public:
  2937   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  2938   void do_object(oop p) { assert(false, "Do not call."); }
  2939   bool do_object_b(oop p) {
  2940     // It is reachable if it is outside the collection set, or is inside
  2941     // and forwarded.
  2943 #ifdef G1_DEBUG
  2944     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  2945                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  2946                            !_g1->obj_in_cs(p) || p->is_forwarded());
  2947 #endif // G1_DEBUG
  2949     return !_g1->obj_in_cs(p) || p->is_forwarded();
  2951 };
  2953 class G1KeepAliveClosure: public OopClosure {
  2954   G1CollectedHeap* _g1;
  2955 public:
  2956   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  2957   void do_oop(narrowOop* p) {
  2958     guarantee(false, "NYI");
  2960   void do_oop(oop* p) {
  2961     oop obj = *p;
  2962 #ifdef G1_DEBUG
  2963     if (PrintGC && Verbose) {
  2964       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  2965                              p, (void*) obj, (void*) *p);
  2967 #endif // G1_DEBUG
  2969     if (_g1->obj_in_cs(obj)) {
  2970       assert( obj->is_forwarded(), "invariant" );
  2971       *p = obj->forwardee();
  2973 #ifdef G1_DEBUG
  2974       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  2975                              (void*) obj, (void*) *p);
  2976 #endif // G1_DEBUG
  2979 };
  2981 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  2982 private:
  2983   G1CollectedHeap* _g1;
  2984   G1RemSet* _g1_rem_set;
  2985 public:
  2986   UpdateRSetImmediate(G1CollectedHeap* g1) :
  2987     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  2989   void do_oop(narrowOop* p) {
  2990     guarantee(false, "NYI");
  2992   void do_oop(oop* p) {
  2993     assert(_from->is_in_reserved(p), "paranoia");
  2994     if (*p != NULL && !_from->is_survivor()) {
  2995       _g1_rem_set->par_write_ref(_from, p, 0);
  2998 };
  3000 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3001 private:
  3002   G1CollectedHeap* _g1;
  3003   DirtyCardQueue *_dcq;
  3004   CardTableModRefBS* _ct_bs;
  3006 public:
  3007   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3008     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3010   void do_oop(narrowOop* p) {
  3011     guarantee(false, "NYI");
  3013   void do_oop(oop* p) {
  3014     assert(_from->is_in_reserved(p), "paranoia");
  3015     if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
  3016       size_t card_index = _ct_bs->index_for(p);
  3017       if (_ct_bs->mark_card_deferred(card_index)) {
  3018         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3022 };
  3026 class RemoveSelfPointerClosure: public ObjectClosure {
  3027 private:
  3028   G1CollectedHeap* _g1;
  3029   ConcurrentMark* _cm;
  3030   HeapRegion* _hr;
  3031   size_t _prev_marked_bytes;
  3032   size_t _next_marked_bytes;
  3033   OopsInHeapRegionClosure *_cl;
  3034 public:
  3035   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3036     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3037     _next_marked_bytes(0), _cl(cl) {}
  3039   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3040   size_t next_marked_bytes() { return _next_marked_bytes; }
  3042   // The original idea here was to coalesce evacuated and dead objects.
  3043   // However that caused complications with the block offset table (BOT).
  3044   // In particular if there were two TLABs, one of them partially refined.
  3045   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3046   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3047   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3048   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3049   // would point into middle of the filler object.
  3050   //
  3051   // The current approach is to not coalesce and leave the BOT contents intact.
  3052   void do_object(oop obj) {
  3053     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3054       // The object failed to move.
  3055       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3056       _cm->markPrev(obj);
  3057       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3058       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3059       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3060         _cm->markAndGrayObjectIfNecessary(obj);
  3062       obj->set_mark(markOopDesc::prototype());
  3063       // While we were processing RSet buffers during the
  3064       // collection, we actually didn't scan any cards on the
  3065       // collection set, since we didn't want to update remebered
  3066       // sets with entries that point into the collection set, given
  3067       // that live objects fromthe collection set are about to move
  3068       // and such entries will be stale very soon. This change also
  3069       // dealt with a reliability issue which involved scanning a
  3070       // card in the collection set and coming across an array that
  3071       // was being chunked and looking malformed. The problem is
  3072       // that, if evacuation fails, we might have remembered set
  3073       // entries missing given that we skipped cards on the
  3074       // collection set. So, we'll recreate such entries now.
  3075       obj->oop_iterate(_cl);
  3076       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3077     } else {
  3078       // The object has been either evacuated or is dead. Fill it with a
  3079       // dummy object.
  3080       MemRegion mr((HeapWord*)obj, obj->size());
  3081       CollectedHeap::fill_with_object(mr);
  3082       _cm->clearRangeBothMaps(mr);
  3085 };
  3087 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3088   UpdateRSetImmediate immediate_update(_g1h);
  3089   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3090   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3091   OopsInHeapRegionClosure *cl;
  3092   if (G1DeferredRSUpdate) {
  3093     cl = &deferred_update;
  3094   } else {
  3095     cl = &immediate_update;
  3097   HeapRegion* cur = g1_policy()->collection_set();
  3098   while (cur != NULL) {
  3099     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3101     RemoveSelfPointerClosure rspc(_g1h, cl);
  3102     if (cur->evacuation_failed()) {
  3103       assert(cur->in_collection_set(), "bad CS");
  3104       cl->set_region(cur);
  3105       cur->object_iterate(&rspc);
  3107       // A number of manipulations to make the TAMS be the current top,
  3108       // and the marked bytes be the ones observed in the iteration.
  3109       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3110         // The comments below are the postconditions achieved by the
  3111         // calls.  Note especially the last such condition, which says that
  3112         // the count of marked bytes has been properly restored.
  3113         cur->note_start_of_marking(false);
  3114         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3115         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3116         // _next_marked_bytes == prev_marked_bytes.
  3117         cur->note_end_of_marking();
  3118         // _prev_top_at_mark_start == top(),
  3119         // _prev_marked_bytes == prev_marked_bytes
  3121       // If there is no mark in progress, we modified the _next variables
  3122       // above needlessly, but harmlessly.
  3123       if (_g1h->mark_in_progress()) {
  3124         cur->note_start_of_marking(false);
  3125         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3126         // _next_marked_bytes == next_marked_bytes.
  3129       // Now make sure the region has the right index in the sorted array.
  3130       g1_policy()->note_change_in_marked_bytes(cur);
  3132     cur = cur->next_in_collection_set();
  3134   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3136   // Now restore saved marks, if any.
  3137   if (_objs_with_preserved_marks != NULL) {
  3138     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3139     assert(_objs_with_preserved_marks->length() ==
  3140            _preserved_marks_of_objs->length(), "Both or none.");
  3141     guarantee(_objs_with_preserved_marks->length() ==
  3142               _preserved_marks_of_objs->length(), "Both or none.");
  3143     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3144       oop obj   = _objs_with_preserved_marks->at(i);
  3145       markOop m = _preserved_marks_of_objs->at(i);
  3146       obj->set_mark(m);
  3148     // Delete the preserved marks growable arrays (allocated on the C heap).
  3149     delete _objs_with_preserved_marks;
  3150     delete _preserved_marks_of_objs;
  3151     _objs_with_preserved_marks = NULL;
  3152     _preserved_marks_of_objs = NULL;
  3156 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3157   _evac_failure_scan_stack->push(obj);
  3160 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3161   assert(_evac_failure_scan_stack != NULL, "precondition");
  3163   while (_evac_failure_scan_stack->length() > 0) {
  3164      oop obj = _evac_failure_scan_stack->pop();
  3165      _evac_failure_closure->set_region(heap_region_containing(obj));
  3166      obj->oop_iterate_backwards(_evac_failure_closure);
  3170 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3171   markOop m = old->mark();
  3172   // forward to self
  3173   assert(!old->is_forwarded(), "precondition");
  3175   old->forward_to(old);
  3176   handle_evacuation_failure_common(old, m);
  3179 oop
  3180 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3181                                                oop old) {
  3182   markOop m = old->mark();
  3183   oop forward_ptr = old->forward_to_atomic(old);
  3184   if (forward_ptr == NULL) {
  3185     // Forward-to-self succeeded.
  3186     if (_evac_failure_closure != cl) {
  3187       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3188       assert(!_drain_in_progress,
  3189              "Should only be true while someone holds the lock.");
  3190       // Set the global evac-failure closure to the current thread's.
  3191       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3192       set_evac_failure_closure(cl);
  3193       // Now do the common part.
  3194       handle_evacuation_failure_common(old, m);
  3195       // Reset to NULL.
  3196       set_evac_failure_closure(NULL);
  3197     } else {
  3198       // The lock is already held, and this is recursive.
  3199       assert(_drain_in_progress, "This should only be the recursive case.");
  3200       handle_evacuation_failure_common(old, m);
  3202     return old;
  3203   } else {
  3204     // Someone else had a place to copy it.
  3205     return forward_ptr;
  3209 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3210   set_evacuation_failed(true);
  3212   preserve_mark_if_necessary(old, m);
  3214   HeapRegion* r = heap_region_containing(old);
  3215   if (!r->evacuation_failed()) {
  3216     r->set_evacuation_failed(true);
  3217     if (G1TraceRegions) {
  3218       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3219                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3220                           r, r->bottom(), r->end());
  3224   push_on_evac_failure_scan_stack(old);
  3226   if (!_drain_in_progress) {
  3227     // prevent recursion in copy_to_survivor_space()
  3228     _drain_in_progress = true;
  3229     drain_evac_failure_scan_stack();
  3230     _drain_in_progress = false;
  3234 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3235   if (m != markOopDesc::prototype()) {
  3236     if (_objs_with_preserved_marks == NULL) {
  3237       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3238       _objs_with_preserved_marks =
  3239         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3240       _preserved_marks_of_objs =
  3241         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3243     _objs_with_preserved_marks->push(obj);
  3244     _preserved_marks_of_objs->push(m);
  3248 // *** Parallel G1 Evacuation
  3250 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3251                                                   size_t word_size) {
  3252   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3253   // let the caller handle alloc failure
  3254   if (alloc_region == NULL) return NULL;
  3256   HeapWord* block = alloc_region->par_allocate(word_size);
  3257   if (block == NULL) {
  3258     MutexLockerEx x(par_alloc_during_gc_lock(),
  3259                     Mutex::_no_safepoint_check_flag);
  3260     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3262   return block;
  3265 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3266                                             bool par) {
  3267   // Another thread might have obtained alloc_region for the given
  3268   // purpose, and might be attempting to allocate in it, and might
  3269   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3270   // region below until we're sure the last allocation has happened.
  3271   // We ensure this by allocating the remaining space with a garbage
  3272   // object.
  3273   if (par) par_allocate_remaining_space(alloc_region);
  3274   // Now we can do the post-GC stuff on the region.
  3275   alloc_region->note_end_of_copying();
  3276   g1_policy()->record_after_bytes(alloc_region->used());
  3279 HeapWord*
  3280 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3281                                          HeapRegion*    alloc_region,
  3282                                          bool           par,
  3283                                          size_t         word_size) {
  3284   HeapWord* block = NULL;
  3285   // In the parallel case, a previous thread to obtain the lock may have
  3286   // already assigned a new gc_alloc_region.
  3287   if (alloc_region != _gc_alloc_regions[purpose]) {
  3288     assert(par, "But should only happen in parallel case.");
  3289     alloc_region = _gc_alloc_regions[purpose];
  3290     if (alloc_region == NULL) return NULL;
  3291     block = alloc_region->par_allocate(word_size);
  3292     if (block != NULL) return block;
  3293     // Otherwise, continue; this new region is empty, too.
  3295   assert(alloc_region != NULL, "We better have an allocation region");
  3296   retire_alloc_region(alloc_region, par);
  3298   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3299     // Cannot allocate more regions for the given purpose.
  3300     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3301     // Is there an alternative?
  3302     if (purpose != alt_purpose) {
  3303       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3304       // Has not the alternative region been aliased?
  3305       if (alloc_region != alt_region && alt_region != NULL) {
  3306         // Try to allocate in the alternative region.
  3307         if (par) {
  3308           block = alt_region->par_allocate(word_size);
  3309         } else {
  3310           block = alt_region->allocate(word_size);
  3312         // Make an alias.
  3313         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3314         if (block != NULL) {
  3315           return block;
  3317         retire_alloc_region(alt_region, par);
  3319       // Both the allocation region and the alternative one are full
  3320       // and aliased, replace them with a new allocation region.
  3321       purpose = alt_purpose;
  3322     } else {
  3323       set_gc_alloc_region(purpose, NULL);
  3324       return NULL;
  3328   // Now allocate a new region for allocation.
  3329   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3331   // let the caller handle alloc failure
  3332   if (alloc_region != NULL) {
  3334     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3335     assert(alloc_region->saved_mark_at_top(),
  3336            "Mark should have been saved already.");
  3337     // We used to assert that the region was zero-filled here, but no
  3338     // longer.
  3340     // This must be done last: once it's installed, other regions may
  3341     // allocate in it (without holding the lock.)
  3342     set_gc_alloc_region(purpose, alloc_region);
  3344     if (par) {
  3345       block = alloc_region->par_allocate(word_size);
  3346     } else {
  3347       block = alloc_region->allocate(word_size);
  3349     // Caller handles alloc failure.
  3350   } else {
  3351     // This sets other apis using the same old alloc region to NULL, also.
  3352     set_gc_alloc_region(purpose, NULL);
  3354   return block;  // May be NULL.
  3357 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3358   HeapWord* block = NULL;
  3359   size_t free_words;
  3360   do {
  3361     free_words = r->free()/HeapWordSize;
  3362     // If there's too little space, no one can allocate, so we're done.
  3363     if (free_words < (size_t)oopDesc::header_size()) return;
  3364     // Otherwise, try to claim it.
  3365     block = r->par_allocate(free_words);
  3366   } while (block == NULL);
  3367   fill_with_object(block, free_words);
  3370 #define use_local_bitmaps         1
  3371 #define verify_local_bitmaps      0
  3373 #ifndef PRODUCT
  3375 class GCLabBitMap;
  3376 class GCLabBitMapClosure: public BitMapClosure {
  3377 private:
  3378   ConcurrentMark* _cm;
  3379   GCLabBitMap*    _bitmap;
  3381 public:
  3382   GCLabBitMapClosure(ConcurrentMark* cm,
  3383                      GCLabBitMap* bitmap) {
  3384     _cm     = cm;
  3385     _bitmap = bitmap;
  3388   virtual bool do_bit(size_t offset);
  3389 };
  3391 #endif // PRODUCT
  3393 #define oop_buffer_length 256
  3395 class GCLabBitMap: public BitMap {
  3396 private:
  3397   ConcurrentMark* _cm;
  3399   int       _shifter;
  3400   size_t    _bitmap_word_covers_words;
  3402   // beginning of the heap
  3403   HeapWord* _heap_start;
  3405   // this is the actual start of the GCLab
  3406   HeapWord* _real_start_word;
  3408   // this is the actual end of the GCLab
  3409   HeapWord* _real_end_word;
  3411   // this is the first word, possibly located before the actual start
  3412   // of the GCLab, that corresponds to the first bit of the bitmap
  3413   HeapWord* _start_word;
  3415   // size of a GCLab in words
  3416   size_t _gclab_word_size;
  3418   static int shifter() {
  3419     return MinObjAlignment - 1;
  3422   // how many heap words does a single bitmap word corresponds to?
  3423   static size_t bitmap_word_covers_words() {
  3424     return BitsPerWord << shifter();
  3427   static size_t gclab_word_size() {
  3428     return ParallelGCG1AllocBufferSize / HeapWordSize;
  3431   static size_t bitmap_size_in_bits() {
  3432     size_t bits_in_bitmap = gclab_word_size() >> shifter();
  3433     // We are going to ensure that the beginning of a word in this
  3434     // bitmap also corresponds to the beginning of a word in the
  3435     // global marking bitmap. To handle the case where a GCLab
  3436     // starts from the middle of the bitmap, we need to add enough
  3437     // space (i.e. up to a bitmap word) to ensure that we have
  3438     // enough bits in the bitmap.
  3439     return bits_in_bitmap + BitsPerWord - 1;
  3441 public:
  3442   GCLabBitMap(HeapWord* heap_start)
  3443     : BitMap(bitmap_size_in_bits()),
  3444       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  3445       _shifter(shifter()),
  3446       _bitmap_word_covers_words(bitmap_word_covers_words()),
  3447       _heap_start(heap_start),
  3448       _gclab_word_size(gclab_word_size()),
  3449       _real_start_word(NULL),
  3450       _real_end_word(NULL),
  3451       _start_word(NULL)
  3453     guarantee( size_in_words() >= bitmap_size_in_words(),
  3454                "just making sure");
  3457   inline unsigned heapWordToOffset(HeapWord* addr) {
  3458     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  3459     assert(offset < size(), "offset should be within bounds");
  3460     return offset;
  3463   inline HeapWord* offsetToHeapWord(size_t offset) {
  3464     HeapWord* addr =  _start_word + (offset << _shifter);
  3465     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  3466     return addr;
  3469   bool fields_well_formed() {
  3470     bool ret1 = (_real_start_word == NULL) &&
  3471                 (_real_end_word == NULL) &&
  3472                 (_start_word == NULL);
  3473     if (ret1)
  3474       return true;
  3476     bool ret2 = _real_start_word >= _start_word &&
  3477       _start_word < _real_end_word &&
  3478       (_real_start_word + _gclab_word_size) == _real_end_word &&
  3479       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  3480                                                               > _real_end_word;
  3481     return ret2;
  3484   inline bool mark(HeapWord* addr) {
  3485     guarantee(use_local_bitmaps, "invariant");
  3486     assert(fields_well_formed(), "invariant");
  3488     if (addr >= _real_start_word && addr < _real_end_word) {
  3489       assert(!isMarked(addr), "should not have already been marked");
  3491       // first mark it on the bitmap
  3492       at_put(heapWordToOffset(addr), true);
  3494       return true;
  3495     } else {
  3496       return false;
  3500   inline bool isMarked(HeapWord* addr) {
  3501     guarantee(use_local_bitmaps, "invariant");
  3502     assert(fields_well_formed(), "invariant");
  3504     return at(heapWordToOffset(addr));
  3507   void set_buffer(HeapWord* start) {
  3508     guarantee(use_local_bitmaps, "invariant");
  3509     clear();
  3511     assert(start != NULL, "invariant");
  3512     _real_start_word = start;
  3513     _real_end_word   = start + _gclab_word_size;
  3515     size_t diff =
  3516       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  3517     _start_word = start - diff;
  3519     assert(fields_well_formed(), "invariant");
  3522 #ifndef PRODUCT
  3523   void verify() {
  3524     // verify that the marks have been propagated
  3525     GCLabBitMapClosure cl(_cm, this);
  3526     iterate(&cl);
  3528 #endif // PRODUCT
  3530   void retire() {
  3531     guarantee(use_local_bitmaps, "invariant");
  3532     assert(fields_well_formed(), "invariant");
  3534     if (_start_word != NULL) {
  3535       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  3537       // this means that the bitmap was set up for the GCLab
  3538       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  3540       mark_bitmap->mostly_disjoint_range_union(this,
  3541                                 0, // always start from the start of the bitmap
  3542                                 _start_word,
  3543                                 size_in_words());
  3544       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  3546 #ifndef PRODUCT
  3547       if (use_local_bitmaps && verify_local_bitmaps)
  3548         verify();
  3549 #endif // PRODUCT
  3550     } else {
  3551       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  3555   static size_t bitmap_size_in_words() {
  3556     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
  3558 };
  3560 #ifndef PRODUCT
  3562 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3563   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3564   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3565   return true;
  3568 #endif // PRODUCT
  3570 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  3571 private:
  3572   bool        _retired;
  3573   bool        _during_marking;
  3574   GCLabBitMap _bitmap;
  3576 public:
  3577   G1ParGCAllocBuffer() :
  3578     ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
  3579     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  3580     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
  3581     _retired(false)
  3582   { }
  3584   inline bool mark(HeapWord* addr) {
  3585     guarantee(use_local_bitmaps, "invariant");
  3586     assert(_during_marking, "invariant");
  3587     return _bitmap.mark(addr);
  3590   inline void set_buf(HeapWord* buf) {
  3591     if (use_local_bitmaps && _during_marking)
  3592       _bitmap.set_buffer(buf);
  3593     ParGCAllocBuffer::set_buf(buf);
  3594     _retired = false;
  3597   inline void retire(bool end_of_gc, bool retain) {
  3598     if (_retired)
  3599       return;
  3600     if (use_local_bitmaps && _during_marking) {
  3601       _bitmap.retire();
  3603     ParGCAllocBuffer::retire(end_of_gc, retain);
  3604     _retired = true;
  3606 };
  3609 class G1ParScanThreadState : public StackObj {
  3610 protected:
  3611   G1CollectedHeap* _g1h;
  3612   RefToScanQueue*  _refs;
  3613   DirtyCardQueue   _dcq;
  3614   CardTableModRefBS* _ct_bs;
  3615   G1RemSet* _g1_rem;
  3617   typedef GrowableArray<oop*> OverflowQueue;
  3618   OverflowQueue* _overflowed_refs;
  3620   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
  3621   ageTable           _age_table;
  3623   size_t           _alloc_buffer_waste;
  3624   size_t           _undo_waste;
  3626   OopsInHeapRegionClosure*      _evac_failure_cl;
  3627   G1ParScanHeapEvacClosure*     _evac_cl;
  3628   G1ParScanPartialArrayClosure* _partial_scan_cl;
  3630   int _hash_seed;
  3631   int _queue_num;
  3633   int _term_attempts;
  3634 #if G1_DETAILED_STATS
  3635   int _pushes, _pops, _steals, _steal_attempts;
  3636   int _overflow_pushes;
  3637 #endif
  3639   double _start;
  3640   double _start_strong_roots;
  3641   double _strong_roots_time;
  3642   double _start_term;
  3643   double _term_time;
  3645   // Map from young-age-index (0 == not young, 1 is youngest) to
  3646   // surviving words. base is what we get back from the malloc call
  3647   size_t* _surviving_young_words_base;
  3648   // this points into the array, as we use the first few entries for padding
  3649   size_t* _surviving_young_words;
  3651 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
  3653   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  3655   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  3657   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  3658   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  3660   void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
  3661     _g1_rem->par_write_ref(from, p, tid);
  3664   void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
  3665     // If the new value of the field points to the same region or
  3666     // is the to-space, we don't need to include it in the Rset updates.
  3667     if (!from->is_in_reserved(*p) && !from->is_survivor()) {
  3668       size_t card_index = ctbs()->index_for(p);
  3669       // If the card hasn't been added to the buffer, do it.
  3670       if (ctbs()->mark_card_deferred(card_index)) {
  3671         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  3676 public:
  3677   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3678     : _g1h(g1h),
  3679       _refs(g1h->task_queue(queue_num)),
  3680       _dcq(&g1h->dirty_card_queue_set()),
  3681       _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3682       _g1_rem(g1h->g1_rem_set()),
  3683       _hash_seed(17), _queue_num(queue_num),
  3684       _term_attempts(0),
  3685       _age_table(false),
  3686 #if G1_DETAILED_STATS
  3687       _pushes(0), _pops(0), _steals(0),
  3688       _steal_attempts(0),  _overflow_pushes(0),
  3689 #endif
  3690       _strong_roots_time(0), _term_time(0),
  3691       _alloc_buffer_waste(0), _undo_waste(0)
  3693     // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3694     // we "sacrifice" entry 0 to keep track of surviving bytes for
  3695     // non-young regions (where the age is -1)
  3696     // We also add a few elements at the beginning and at the end in
  3697     // an attempt to eliminate cache contention
  3698     size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3699     size_t array_length = PADDING_ELEM_NUM +
  3700                           real_length +
  3701                           PADDING_ELEM_NUM;
  3702     _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3703     if (_surviving_young_words_base == NULL)
  3704       vm_exit_out_of_memory(array_length * sizeof(size_t),
  3705                             "Not enough space for young surv histo.");
  3706     _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3707     memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3709     _overflowed_refs = new OverflowQueue(10);
  3711     _start = os::elapsedTime();
  3714   ~G1ParScanThreadState() {
  3715     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  3718   RefToScanQueue*   refs()            { return _refs;             }
  3719   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
  3720   ageTable*         age_table()       { return &_age_table;       }
  3722   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  3723     return &_alloc_buffers[purpose];
  3726   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
  3727   size_t undo_waste()                            { return _undo_waste; }
  3729   void push_on_queue(oop* ref) {
  3730     assert(ref != NULL, "invariant");
  3731     assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
  3733     if (!refs()->push(ref)) {
  3734       overflowed_refs()->push(ref);
  3735       IF_G1_DETAILED_STATS(note_overflow_push());
  3736     } else {
  3737       IF_G1_DETAILED_STATS(note_push());
  3741   void pop_from_queue(oop*& ref) {
  3742     if (!refs()->pop_local(ref)) {
  3743       ref = NULL;
  3744     } else {
  3745       assert(ref != NULL, "invariant");
  3746       assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
  3747              "invariant");
  3749       IF_G1_DETAILED_STATS(note_pop());
  3753   void pop_from_overflow_queue(oop*& ref) {
  3754     ref = overflowed_refs()->pop();
  3757   int refs_to_scan()                             { return refs()->size();                 }
  3758   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
  3760   void update_rs(HeapRegion* from, oop* p, int tid) {
  3761     if (G1DeferredRSUpdate) {
  3762       deferred_rs_update(from, p, tid);
  3763     } else {
  3764       immediate_rs_update(from, p, tid);
  3768   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  3770     HeapWord* obj = NULL;
  3771     if (word_sz * 100 <
  3772         (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
  3773                                                   ParallelGCBufferWastePct) {
  3774       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  3775       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  3776       alloc_buf->retire(false, false);
  3778       HeapWord* buf =
  3779         _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
  3780       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  3781       // Otherwise.
  3782       alloc_buf->set_buf(buf);
  3784       obj = alloc_buf->allocate(word_sz);
  3785       assert(obj != NULL, "buffer was definitely big enough...");
  3786     } else {
  3787       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  3789     return obj;
  3792   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  3793     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  3794     if (obj != NULL) return obj;
  3795     return allocate_slow(purpose, word_sz);
  3798   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  3799     if (alloc_buffer(purpose)->contains(obj)) {
  3800       guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  3801                 "should contain whole object");
  3802       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  3803     } else {
  3804       CollectedHeap::fill_with_object(obj, word_sz);
  3805       add_to_undo_waste(word_sz);
  3809   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  3810     _evac_failure_cl = evac_failure_cl;
  3812   OopsInHeapRegionClosure* evac_failure_closure() {
  3813     return _evac_failure_cl;
  3816   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  3817     _evac_cl = evac_cl;
  3820   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  3821     _partial_scan_cl = partial_scan_cl;
  3824   int* hash_seed() { return &_hash_seed; }
  3825   int  queue_num() { return _queue_num; }
  3827   int term_attempts()   { return _term_attempts; }
  3828   void note_term_attempt()  { _term_attempts++; }
  3830 #if G1_DETAILED_STATS
  3831   int pushes()          { return _pushes; }
  3832   int pops()            { return _pops; }
  3833   int steals()          { return _steals; }
  3834   int steal_attempts()  { return _steal_attempts; }
  3835   int overflow_pushes() { return _overflow_pushes; }
  3837   void note_push()          { _pushes++; }
  3838   void note_pop()           { _pops++; }
  3839   void note_steal()         { _steals++; }
  3840   void note_steal_attempt() { _steal_attempts++; }
  3841   void note_overflow_push() { _overflow_pushes++; }
  3842 #endif
  3844   void start_strong_roots() {
  3845     _start_strong_roots = os::elapsedTime();
  3847   void end_strong_roots() {
  3848     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  3850   double strong_roots_time() { return _strong_roots_time; }
  3852   void start_term_time() {
  3853     note_term_attempt();
  3854     _start_term = os::elapsedTime();
  3856   void end_term_time() {
  3857     _term_time += (os::elapsedTime() - _start_term);
  3859   double term_time() { return _term_time; }
  3861   double elapsed() {
  3862     return os::elapsedTime() - _start;
  3865   size_t* surviving_young_words() {
  3866     // We add on to hide entry 0 which accumulates surviving words for
  3867     // age -1 regions (i.e. non-young ones)
  3868     return _surviving_young_words;
  3871   void retire_alloc_buffers() {
  3872     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3873       size_t waste = _alloc_buffers[ap].words_remaining();
  3874       add_to_alloc_buffer_waste(waste);
  3875       _alloc_buffers[ap].retire(true, false);
  3879 private:
  3880   void deal_with_reference(oop* ref_to_scan) {
  3881     if (has_partial_array_mask(ref_to_scan)) {
  3882       _partial_scan_cl->do_oop_nv(ref_to_scan);
  3883     } else {
  3884       // Note: we can use "raw" versions of "region_containing" because
  3885       // "obj_to_scan" is definitely in the heap, and is not in a
  3886       // humongous region.
  3887       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  3888       _evac_cl->set_region(r);
  3889       _evac_cl->do_oop_nv(ref_to_scan);
  3893 public:
  3894   void trim_queue() {
  3895     // I've replicated the loop twice, first to drain the overflow
  3896     // queue, second to drain the task queue. This is better than
  3897     // having a single loop, which checks both conditions and, inside
  3898     // it, either pops the overflow queue or the task queue, as each
  3899     // loop is tighter. Also, the decision to drain the overflow queue
  3900     // first is not arbitrary, as the overflow queue is not visible
  3901     // to the other workers, whereas the task queue is. So, we want to
  3902     // drain the "invisible" entries first, while allowing the other
  3903     // workers to potentially steal the "visible" entries.
  3905     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  3906       while (overflowed_refs_to_scan() > 0) {
  3907         oop *ref_to_scan = NULL;
  3908         pop_from_overflow_queue(ref_to_scan);
  3909         assert(ref_to_scan != NULL, "invariant");
  3910         // We shouldn't have pushed it on the queue if it was not
  3911         // pointing into the CSet.
  3912         assert(ref_to_scan != NULL, "sanity");
  3913         assert(has_partial_array_mask(ref_to_scan) ||
  3914                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  3916         deal_with_reference(ref_to_scan);
  3919       while (refs_to_scan() > 0) {
  3920         oop *ref_to_scan = NULL;
  3921         pop_from_queue(ref_to_scan);
  3923         if (ref_to_scan != NULL) {
  3924           // We shouldn't have pushed it on the queue if it was not
  3925           // pointing into the CSet.
  3926           assert(has_partial_array_mask(ref_to_scan) ||
  3927                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  3929           deal_with_reference(ref_to_scan);
  3934 };
  3936 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3937   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3938   _par_scan_state(par_scan_state) { }
  3940 // This closure is applied to the fields of the objects that have just been copied.
  3941 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
  3942 void G1ParScanClosure::do_oop_nv(oop* p) {
  3943   oop obj = *p;
  3945   if (obj != NULL) {
  3946     if (_g1->in_cset_fast_test(obj)) {
  3947       // We're not going to even bother checking whether the object is
  3948       // already forwarded or not, as this usually causes an immediate
  3949       // stall. We'll try to prefetch the object (for write, given that
  3950       // we might need to install the forwarding reference) and we'll
  3951       // get back to it when pop it from the queue
  3952       Prefetch::write(obj->mark_addr(), 0);
  3953       Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
  3955       // slightly paranoid test; I'm trying to catch potential
  3956       // problems before we go into push_on_queue to know where the
  3957       // problem is coming from
  3958       assert(obj == *p, "the value of *p should not have changed");
  3959       _par_scan_state->push_on_queue(p);
  3960     } else {
  3961       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3966 void G1ParCopyHelper::mark_forwardee(oop* p) {
  3967   // This is called _after_ do_oop_work has been called, hence after
  3968   // the object has been relocated to its new location and *p points
  3969   // to its new location.
  3971   oop thisOop = *p;
  3972   if (thisOop != NULL) {
  3973     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
  3974            "shouldn't still be in the CSet if evacuation didn't fail.");
  3975     HeapWord* addr = (HeapWord*)thisOop;
  3976     if (_g1->is_in_g1_reserved(addr))
  3977       _cm->grayRoot(oop(addr));
  3981 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3982   size_t    word_sz = old->size();
  3983   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3984   // +1 to make the -1 indexes valid...
  3985   int       young_index = from_region->young_index_in_cset()+1;
  3986   assert( (from_region->is_young() && young_index > 0) ||
  3987           (!from_region->is_young() && young_index == 0), "invariant" );
  3988   G1CollectorPolicy* g1p = _g1->g1_policy();
  3989   markOop m = old->mark();
  3990   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3991                                            : m->age();
  3992   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3993                                                              word_sz);
  3994   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3995   oop       obj     = oop(obj_ptr);
  3997   if (obj_ptr == NULL) {
  3998     // This will either forward-to-self, or detect that someone else has
  3999     // installed a forwarding pointer.
  4000     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4001     return _g1->handle_evacuation_failure_par(cl, old);
  4004   // We're going to allocate linearly, so might as well prefetch ahead.
  4005   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4007   oop forward_ptr = old->forward_to_atomic(obj);
  4008   if (forward_ptr == NULL) {
  4009     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4010     if (g1p->track_object_age(alloc_purpose)) {
  4011       // We could simply do obj->incr_age(). However, this causes a
  4012       // performance issue. obj->incr_age() will first check whether
  4013       // the object has a displaced mark by checking its mark word;
  4014       // getting the mark word from the new location of the object
  4015       // stalls. So, given that we already have the mark word and we
  4016       // are about to install it anyway, it's better to increase the
  4017       // age on the mark word, when the object does not have a
  4018       // displaced mark word. We're not expecting many objects to have
  4019       // a displaced marked word, so that case is not optimized
  4020       // further (it could be...) and we simply call obj->incr_age().
  4022       if (m->has_displaced_mark_helper()) {
  4023         // in this case, we have to install the mark word first,
  4024         // otherwise obj looks to be forwarded (the old mark word,
  4025         // which contains the forward pointer, was copied)
  4026         obj->set_mark(m);
  4027         obj->incr_age();
  4028       } else {
  4029         m = m->incr_age();
  4030         obj->set_mark(m);
  4032       _par_scan_state->age_table()->add(obj, word_sz);
  4033     } else {
  4034       obj->set_mark(m);
  4037     // preserve "next" mark bit
  4038     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  4039       if (!use_local_bitmaps ||
  4040           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4041         // if we couldn't mark it on the local bitmap (this happens when
  4042         // the object was not allocated in the GCLab), we have to bite
  4043         // the bullet and do the standard parallel mark
  4044         _cm->markAndGrayObjectIfNecessary(obj);
  4046 #if 1
  4047       if (_g1->isMarkedNext(old)) {
  4048         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4050 #endif
  4053     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4054     surv_young_words[young_index] += word_sz;
  4056     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4057       arrayOop(old)->set_length(0);
  4058       _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4059     } else {
  4060       // No point in using the slower heap_region_containing() method,
  4061       // given that we know obj is in the heap.
  4062       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4063       obj->oop_iterate_backwards(_scanner);
  4065   } else {
  4066     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4067     obj = forward_ptr;
  4069   return obj;
  4072 template<bool do_gen_barrier, G1Barrier barrier,
  4073          bool do_mark_forwardee, bool skip_cset_test>
  4074 void G1ParCopyClosure<do_gen_barrier, barrier,
  4075                       do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
  4076   oop obj = *p;
  4077   assert(barrier != G1BarrierRS || obj != NULL,
  4078          "Precondition: G1BarrierRS implies obj is nonNull");
  4080   // The only time we skip the cset test is when we're scanning
  4081   // references popped from the queue. And we only push on the queue
  4082   // references that we know point into the cset, so no point in
  4083   // checking again. But we'll leave an assert here for peace of mind.
  4084   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  4086   // here the null check is implicit in the cset_fast_test() test
  4087   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  4088 #if G1_REM_SET_LOGGING
  4089     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  4090                            "into CS.", p, (void*) obj);
  4091 #endif
  4092     if (obj->is_forwarded()) {
  4093       *p = obj->forwardee();
  4094     } else {
  4095       *p = copy_to_survivor_space(obj);
  4097     // When scanning the RS, we only care about objs in CS.
  4098     if (barrier == G1BarrierRS) {
  4099       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4103   // When scanning moved objs, must look at all oops.
  4104   if (barrier == G1BarrierEvac && obj != NULL) {
  4105     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4108   if (do_gen_barrier && obj != NULL) {
  4109     par_do_barrier(p);
  4113 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  4115 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
  4116   oop obj, int start, int end) {
  4117   // process our set of indices (include header in first chunk)
  4118   assert(start < end, "invariant");
  4119   T* const base      = (T*)objArrayOop(obj)->base();
  4120   T* const start_addr = (start == 0) ? (T*) obj : base + start;
  4121   T* const end_addr   = base + end;
  4122   MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
  4123   _scanner.set_region(_g1->heap_region_containing(obj));
  4124   obj->oop_iterate(&_scanner, mr);
  4127 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
  4128   assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
  4129   assert(has_partial_array_mask(p), "invariant");
  4130   oop old = clear_partial_array_mask(p);
  4131   assert(old->is_objArray(), "must be obj array");
  4132   assert(old->is_forwarded(), "must be forwarded");
  4133   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4135   objArrayOop obj = objArrayOop(old->forwardee());
  4136   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4137   // Process ParGCArrayScanChunk elements now
  4138   // and push the remainder back onto queue
  4139   int start     = arrayOop(old)->length();
  4140   int end       = obj->length();
  4141   int remainder = end - start;
  4142   assert(start <= end, "just checking");
  4143   if (remainder > 2 * ParGCArrayScanChunk) {
  4144     // Test above combines last partial chunk with a full chunk
  4145     end = start + ParGCArrayScanChunk;
  4146     arrayOop(old)->set_length(end);
  4147     // Push remainder.
  4148     _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4149   } else {
  4150     // Restore length so that the heap remains parsable in
  4151     // case of evacuation failure.
  4152     arrayOop(old)->set_length(end);
  4155   // process our set of indices (include header in first chunk)
  4156   process_array_chunk<oop>(obj, start, end);
  4159 int G1ScanAndBalanceClosure::_nq = 0;
  4161 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4162 protected:
  4163   G1CollectedHeap*              _g1h;
  4164   G1ParScanThreadState*         _par_scan_state;
  4165   RefToScanQueueSet*            _queues;
  4166   ParallelTaskTerminator*       _terminator;
  4168   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4169   RefToScanQueueSet*      queues()         { return _queues; }
  4170   ParallelTaskTerminator* terminator()     { return _terminator; }
  4172 public:
  4173   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4174                                 G1ParScanThreadState* par_scan_state,
  4175                                 RefToScanQueueSet* queues,
  4176                                 ParallelTaskTerminator* terminator)
  4177     : _g1h(g1h), _par_scan_state(par_scan_state),
  4178       _queues(queues), _terminator(terminator) {}
  4180   void do_void() {
  4181     G1ParScanThreadState* pss = par_scan_state();
  4182     while (true) {
  4183       oop* ref_to_scan;
  4184       pss->trim_queue();
  4185       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  4186       if (queues()->steal(pss->queue_num(),
  4187                           pss->hash_seed(),
  4188                           ref_to_scan)) {
  4189         IF_G1_DETAILED_STATS(pss->note_steal());
  4191         // slightly paranoid tests; I'm trying to catch potential
  4192         // problems before we go into push_on_queue to know where the
  4193         // problem is coming from
  4194         assert(ref_to_scan != NULL, "invariant");
  4195         assert(has_partial_array_mask(ref_to_scan) ||
  4196                                    _g1h->obj_in_cs(*ref_to_scan), "invariant");
  4197         pss->push_on_queue(ref_to_scan);
  4198         continue;
  4200       pss->start_term_time();
  4201       if (terminator()->offer_termination()) break;
  4202       pss->end_term_time();
  4204     pss->end_term_time();
  4205     pss->retire_alloc_buffers();
  4207 };
  4209 class G1ParTask : public AbstractGangTask {
  4210 protected:
  4211   G1CollectedHeap*       _g1h;
  4212   RefToScanQueueSet      *_queues;
  4213   ParallelTaskTerminator _terminator;
  4215   Mutex _stats_lock;
  4216   Mutex* stats_lock() { return &_stats_lock; }
  4218   size_t getNCards() {
  4219     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4220       / G1BlockOffsetSharedArray::N_bytes;
  4223 public:
  4224   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4225     : AbstractGangTask("G1 collection"),
  4226       _g1h(g1h),
  4227       _queues(task_queues),
  4228       _terminator(workers, _queues),
  4229       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4230   {}
  4232   RefToScanQueueSet* queues() { return _queues; }
  4234   RefToScanQueue *work_queue(int i) {
  4235     return queues()->queue(i);
  4238   void work(int i) {
  4239     ResourceMark rm;
  4240     HandleMark   hm;
  4242     G1ParScanThreadState            pss(_g1h, i);
  4243     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4244     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4245     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4247     pss.set_evac_closure(&scan_evac_cl);
  4248     pss.set_evac_failure_closure(&evac_failure_cl);
  4249     pss.set_partial_scan_closure(&partial_scan_cl);
  4251     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4252     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4253     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4255     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4256     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4257     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4259     OopsInHeapRegionClosure        *scan_root_cl;
  4260     OopsInHeapRegionClosure        *scan_perm_cl;
  4261     OopsInHeapRegionClosure        *scan_so_cl;
  4263     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  4264       scan_root_cl = &scan_mark_root_cl;
  4265       scan_perm_cl = &scan_mark_perm_cl;
  4266       scan_so_cl   = &scan_mark_heap_rs_cl;
  4267     } else {
  4268       scan_root_cl = &only_scan_root_cl;
  4269       scan_perm_cl = &only_scan_perm_cl;
  4270       scan_so_cl   = &only_scan_heap_rs_cl;
  4273     pss.start_strong_roots();
  4274     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4275                                   SharedHeap::SO_AllClasses,
  4276                                   scan_root_cl,
  4277                                   &only_scan_heap_rs_cl,
  4278                                   scan_so_cl,
  4279                                   scan_perm_cl,
  4280                                   i);
  4281     pss.end_strong_roots();
  4283       double start = os::elapsedTime();
  4284       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4285       evac.do_void();
  4286       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4287       double term_ms = pss.term_time()*1000.0;
  4288       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4289       _g1h->g1_policy()->record_termination_time(i, term_ms);
  4291     if (G1UseSurvivorSpace) {
  4292       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4294     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4296     // Clean up any par-expanded rem sets.
  4297     HeapRegionRemSet::par_cleanup();
  4299     MutexLocker x(stats_lock());
  4300     if (ParallelGCVerbose) {
  4301       gclog_or_tty->print("Thread %d complete:\n", i);
  4302 #if G1_DETAILED_STATS
  4303       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  4304                           pss.pushes(),
  4305                           pss.pops(),
  4306                           pss.overflow_pushes(),
  4307                           pss.steals(),
  4308                           pss.steal_attempts());
  4309 #endif
  4310       double elapsed      = pss.elapsed();
  4311       double strong_roots = pss.strong_roots_time();
  4312       double term         = pss.term_time();
  4313       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  4314                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  4315                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  4316                           elapsed * 1000.0,
  4317                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  4318                           term * 1000.0, (term*100.0/elapsed),
  4319                           pss.term_attempts());
  4320       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  4321       gclog_or_tty->print("  Waste: %8dK\n"
  4322                  "    Alloc Buffer: %8dK\n"
  4323                  "    Undo: %8dK\n",
  4324                  (total_waste * HeapWordSize) / K,
  4325                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  4326                  (pss.undo_waste() * HeapWordSize) / K);
  4329     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4330     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4332 };
  4334 // *** Common G1 Evacuation Stuff
  4336 class G1CountClosure: public OopsInHeapRegionClosure {
  4337 public:
  4338   int n;
  4339   G1CountClosure() : n(0) {}
  4340   void do_oop(narrowOop* p) {
  4341     guarantee(false, "NYI");
  4343   void do_oop(oop* p) {
  4344     oop obj = *p;
  4345     assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
  4346            "Rem set closure called on non-rem-set pointer.");
  4347     n++;
  4349 };
  4351 static G1CountClosure count_closure;
  4353 void
  4354 G1CollectedHeap::
  4355 g1_process_strong_roots(bool collecting_perm_gen,
  4356                         SharedHeap::ScanningOption so,
  4357                         OopClosure* scan_non_heap_roots,
  4358                         OopsInHeapRegionClosure* scan_rs,
  4359                         OopsInHeapRegionClosure* scan_so,
  4360                         OopsInGenClosure* scan_perm,
  4361                         int worker_i) {
  4362   // First scan the strong roots, including the perm gen.
  4363   double ext_roots_start = os::elapsedTime();
  4364   double closure_app_time_sec = 0.0;
  4366   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4367   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4368   buf_scan_perm.set_generation(perm_gen());
  4370   process_strong_roots(collecting_perm_gen, so,
  4371                        &buf_scan_non_heap_roots,
  4372                        &buf_scan_perm);
  4373   // Finish up any enqueued closure apps.
  4374   buf_scan_non_heap_roots.done();
  4375   buf_scan_perm.done();
  4376   double ext_roots_end = os::elapsedTime();
  4377   g1_policy()->reset_obj_copy_time(worker_i);
  4378   double obj_copy_time_sec =
  4379     buf_scan_non_heap_roots.closure_app_seconds() +
  4380     buf_scan_perm.closure_app_seconds();
  4381   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4382   double ext_root_time_ms =
  4383     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4384   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4386   // Scan strong roots in mark stack.
  4387   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4388     concurrent_mark()->oops_do(scan_non_heap_roots);
  4390   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4391   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4393   // XXX What should this be doing in the parallel case?
  4394   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4395   if (G1VerifyRemSet) {
  4396     // :::: FIXME ::::
  4397     // The stupid remembered set doesn't know how to filter out dead
  4398     // objects, which the smart one does, and so when it is created
  4399     // and then compared the number of entries in each differs and
  4400     // the verification code fails.
  4401     guarantee(false, "verification code is broken, see note");
  4403     // Let's make sure that the current rem set agrees with the stupidest
  4404     // one possible!
  4405     bool refs_enabled = ref_processor()->discovery_enabled();
  4406     if (refs_enabled) ref_processor()->disable_discovery();
  4407     StupidG1RemSet stupid(this);
  4408     count_closure.n = 0;
  4409     stupid.oops_into_collection_set_do(&count_closure, worker_i);
  4410     int stupid_n = count_closure.n;
  4411     count_closure.n = 0;
  4412     g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
  4413     guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
  4414     gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
  4415     if (refs_enabled) ref_processor()->enable_discovery();
  4417   if (scan_so != NULL) {
  4418     scan_scan_only_set(scan_so, worker_i);
  4420   // Now scan the complement of the collection set.
  4421   if (scan_rs != NULL) {
  4422     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4424   // Finish with the ref_processor roots.
  4425   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4426     ref_processor()->oops_do(scan_non_heap_roots);
  4428   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4429   _process_strong_tasks->all_tasks_completed();
  4432 void
  4433 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4434                                        OopsInHeapRegionClosure* oc,
  4435                                        int worker_i) {
  4436   HeapWord* startAddr = r->bottom();
  4437   HeapWord* endAddr = r->used_region().end();
  4439   oc->set_region(r);
  4441   HeapWord* p = r->bottom();
  4442   HeapWord* t = r->top();
  4443   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4444   while (p < t) {
  4445     oop obj = oop(p);
  4446     p += obj->oop_iterate(oc);
  4450 void
  4451 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4452                                     int worker_i) {
  4453   double start = os::elapsedTime();
  4455   BufferingOopsInHeapRegionClosure boc(oc);
  4457   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4458   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4460   OopsInHeapRegionClosure *foc;
  4461   if (g1_policy()->should_initiate_conc_mark())
  4462     foc = &scan_and_mark;
  4463   else
  4464     foc = &scan_only;
  4466   HeapRegion* hr;
  4467   int n = 0;
  4468   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4469     scan_scan_only_region(hr, foc, worker_i);
  4470     ++n;
  4472   boc.done();
  4474   double closure_app_s = boc.closure_app_seconds();
  4475   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4476   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4477   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4480 void
  4481 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4482                                        OopClosure* non_root_closure) {
  4483   SharedHeap::process_weak_roots(root_closure, non_root_closure);
  4487 class SaveMarksClosure: public HeapRegionClosure {
  4488 public:
  4489   bool doHeapRegion(HeapRegion* r) {
  4490     r->save_marks();
  4491     return false;
  4493 };
  4495 void G1CollectedHeap::save_marks() {
  4496   if (ParallelGCThreads == 0) {
  4497     SaveMarksClosure sm;
  4498     heap_region_iterate(&sm);
  4500   // We do this even in the parallel case
  4501   perm_gen()->save_marks();
  4504 void G1CollectedHeap::evacuate_collection_set() {
  4505   set_evacuation_failed(false);
  4507   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4508   concurrent_g1_refine()->set_use_cache(false);
  4509   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4510   set_par_threads(n_workers);
  4511   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4513   init_for_evac_failure(NULL);
  4515   change_strong_roots_parity();  // In preparation for parallel strong roots.
  4516   rem_set()->prepare_for_younger_refs_iterate(true);
  4518   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4519   double start_par = os::elapsedTime();
  4520   if (ParallelGCThreads > 0) {
  4521     // The individual threads will set their evac-failure closures.
  4522     workers()->run_task(&g1_par_task);
  4523   } else {
  4524     g1_par_task.work(0);
  4527   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4528   g1_policy()->record_par_time(par_time);
  4529   set_par_threads(0);
  4530   // Is this the right thing to do here?  We don't save marks
  4531   // on individual heap regions when we allocate from
  4532   // them in parallel, so this seems like the correct place for this.
  4533   retire_all_alloc_regions();
  4535     G1IsAliveClosure is_alive(this);
  4536     G1KeepAliveClosure keep_alive(this);
  4537     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4539   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4541   concurrent_g1_refine()->set_use_cache(true);
  4543   finalize_for_evac_failure();
  4545   // Must do this before removing self-forwarding pointers, which clears
  4546   // the per-region evac-failure flags.
  4547   concurrent_mark()->complete_marking_in_collection_set();
  4549   if (evacuation_failed()) {
  4550     remove_self_forwarding_pointers();
  4551     if (PrintGCDetails) {
  4552       gclog_or_tty->print(" (evacuation failed)");
  4553     } else if (PrintGC) {
  4554       gclog_or_tty->print("--");
  4558   if (G1DeferredRSUpdate) {
  4559     RedirtyLoggedCardTableEntryFastClosure redirty;
  4560     dirty_card_queue_set().set_closure(&redirty);
  4561     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4562     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4563     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4566   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4569 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4570   size_t pre_used = 0;
  4571   size_t cleared_h_regions = 0;
  4572   size_t freed_regions = 0;
  4573   UncleanRegionList local_list;
  4575   HeapWord* start = hr->bottom();
  4576   HeapWord* end   = hr->prev_top_at_mark_start();
  4577   size_t used_bytes = hr->used();
  4578   size_t live_bytes = hr->max_live_bytes();
  4579   if (used_bytes > 0) {
  4580     guarantee( live_bytes <= used_bytes, "invariant" );
  4581   } else {
  4582     guarantee( live_bytes == 0, "invariant" );
  4585   size_t garbage_bytes = used_bytes - live_bytes;
  4586   if (garbage_bytes > 0)
  4587     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4589   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4590                    &local_list);
  4591   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4592                           &local_list);
  4595 void
  4596 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4597                                   size_t& pre_used,
  4598                                   size_t& cleared_h_regions,
  4599                                   size_t& freed_regions,
  4600                                   UncleanRegionList* list,
  4601                                   bool par) {
  4602   assert(!hr->popular(), "should not free popular regions");
  4603   pre_used += hr->used();
  4604   if (hr->isHumongous()) {
  4605     assert(hr->startsHumongous(),
  4606            "Only the start of a humongous region should be freed.");
  4607     int ind = _hrs->find(hr);
  4608     assert(ind != -1, "Should have an index.");
  4609     // Clear the start region.
  4610     hr->hr_clear(par, true /*clear_space*/);
  4611     list->insert_before_head(hr);
  4612     cleared_h_regions++;
  4613     freed_regions++;
  4614     // Clear any continued regions.
  4615     ind++;
  4616     while ((size_t)ind < n_regions()) {
  4617       HeapRegion* hrc = _hrs->at(ind);
  4618       if (!hrc->continuesHumongous()) break;
  4619       // Otherwise, does continue the H region.
  4620       assert(hrc->humongous_start_region() == hr, "Huh?");
  4621       hrc->hr_clear(par, true /*clear_space*/);
  4622       cleared_h_regions++;
  4623       freed_regions++;
  4624       list->insert_before_head(hrc);
  4625       ind++;
  4627   } else {
  4628     hr->hr_clear(par, true /*clear_space*/);
  4629     list->insert_before_head(hr);
  4630     freed_regions++;
  4631     // If we're using clear2, this should not be enabled.
  4632     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4636 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4637                                               size_t cleared_h_regions,
  4638                                               size_t freed_regions,
  4639                                               UncleanRegionList* list) {
  4640   if (list != NULL && list->sz() > 0) {
  4641     prepend_region_list_on_unclean_list(list);
  4643   // Acquire a lock, if we're parallel, to update possibly-shared
  4644   // variables.
  4645   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4647     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4648     _summary_bytes_used -= pre_used;
  4649     _num_humongous_regions -= (int) cleared_h_regions;
  4650     _free_regions += freed_regions;
  4655 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4656   while (list != NULL) {
  4657     guarantee( list->is_young(), "invariant" );
  4659     HeapWord* bottom = list->bottom();
  4660     HeapWord* end = list->end();
  4661     MemRegion mr(bottom, end);
  4662     ct_bs->dirty(mr);
  4664     list = list->get_next_young_region();
  4668 void G1CollectedHeap::cleanUpCardTable() {
  4669   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4670   double start = os::elapsedTime();
  4672   ct_bs->clear(_g1_committed);
  4674   // now, redirty the cards of the scan-only and survivor regions
  4675   // (it seemed faster to do it this way, instead of iterating over
  4676   // all regions and then clearing / dirtying as approprite)
  4677   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4678   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4680   double elapsed = os::elapsedTime() - start;
  4681   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4685 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4686   // First do any popular regions.
  4687   HeapRegion* hr;
  4688   while ((hr = popular_region_to_evac()) != NULL) {
  4689     evac_popular_region(hr);
  4691   // Now do heuristic pauses.
  4692   if (g1_policy()->should_do_collection_pause(word_size)) {
  4693     do_collection_pause();
  4697 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4698   double young_time_ms     = 0.0;
  4699   double non_young_time_ms = 0.0;
  4701   G1CollectorPolicy* policy = g1_policy();
  4703   double start_sec = os::elapsedTime();
  4704   bool non_young = true;
  4706   HeapRegion* cur = cs_head;
  4707   int age_bound = -1;
  4708   size_t rs_lengths = 0;
  4710   while (cur != NULL) {
  4711     if (non_young) {
  4712       if (cur->is_young()) {
  4713         double end_sec = os::elapsedTime();
  4714         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4715         non_young_time_ms += elapsed_ms;
  4717         start_sec = os::elapsedTime();
  4718         non_young = false;
  4720     } else {
  4721       if (!cur->is_on_free_list()) {
  4722         double end_sec = os::elapsedTime();
  4723         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4724         young_time_ms += elapsed_ms;
  4726         start_sec = os::elapsedTime();
  4727         non_young = true;
  4731     rs_lengths += cur->rem_set()->occupied();
  4733     HeapRegion* next = cur->next_in_collection_set();
  4734     assert(cur->in_collection_set(), "bad CS");
  4735     cur->set_next_in_collection_set(NULL);
  4736     cur->set_in_collection_set(false);
  4738     if (cur->is_young()) {
  4739       int index = cur->young_index_in_cset();
  4740       guarantee( index != -1, "invariant" );
  4741       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4742       size_t words_survived = _surviving_young_words[index];
  4743       cur->record_surv_words_in_group(words_survived);
  4744     } else {
  4745       int index = cur->young_index_in_cset();
  4746       guarantee( index == -1, "invariant" );
  4749     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4750             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4751             "invariant" );
  4753     if (!cur->evacuation_failed()) {
  4754       // And the region is empty.
  4755       assert(!cur->is_empty(),
  4756              "Should not have empty regions in a CS.");
  4757       free_region(cur);
  4758     } else {
  4759       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4760       cur->uninstall_surv_rate_group();
  4761       if (cur->is_young())
  4762         cur->set_young_index_in_cset(-1);
  4763       cur->set_not_young();
  4764       cur->set_evacuation_failed(false);
  4766     cur = next;
  4769   policy->record_max_rs_lengths(rs_lengths);
  4770   policy->cset_regions_freed();
  4772   double end_sec = os::elapsedTime();
  4773   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4774   if (non_young)
  4775     non_young_time_ms += elapsed_ms;
  4776   else
  4777     young_time_ms += elapsed_ms;
  4779   policy->record_young_free_cset_time_ms(young_time_ms);
  4780   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4783 HeapRegion*
  4784 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4785   assert(ZF_mon->owned_by_self(), "Precondition");
  4786   HeapRegion* res = pop_unclean_region_list_locked();
  4787   if (res != NULL) {
  4788     assert(!res->continuesHumongous() &&
  4789            res->zero_fill_state() != HeapRegion::Allocated,
  4790            "Only free regions on unclean list.");
  4791     if (zero_filled) {
  4792       res->ensure_zero_filled_locked();
  4793       res->set_zero_fill_allocated();
  4796   return res;
  4799 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4800   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4801   return alloc_region_from_unclean_list_locked(zero_filled);
  4804 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4805   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4806   put_region_on_unclean_list_locked(r);
  4807   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4810 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4811   MutexLockerEx x(Cleanup_mon);
  4812   set_unclean_regions_coming_locked(b);
  4815 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4816   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4817   _unclean_regions_coming = b;
  4818   // Wake up mutator threads that might be waiting for completeCleanup to
  4819   // finish.
  4820   if (!b) Cleanup_mon->notify_all();
  4823 void G1CollectedHeap::wait_for_cleanup_complete() {
  4824   MutexLockerEx x(Cleanup_mon);
  4825   wait_for_cleanup_complete_locked();
  4828 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4829   assert(Cleanup_mon->owned_by_self(), "precondition");
  4830   while (_unclean_regions_coming) {
  4831     Cleanup_mon->wait();
  4835 void
  4836 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4837   assert(ZF_mon->owned_by_self(), "precondition.");
  4838   _unclean_region_list.insert_before_head(r);
  4841 void
  4842 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4843   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4844   prepend_region_list_on_unclean_list_locked(list);
  4845   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4848 void
  4849 G1CollectedHeap::
  4850 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4851   assert(ZF_mon->owned_by_self(), "precondition.");
  4852   _unclean_region_list.prepend_list(list);
  4855 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4856   assert(ZF_mon->owned_by_self(), "precondition.");
  4857   HeapRegion* res = _unclean_region_list.pop();
  4858   if (res != NULL) {
  4859     // Inform ZF thread that there's a new unclean head.
  4860     if (_unclean_region_list.hd() != NULL && should_zf())
  4861       ZF_mon->notify_all();
  4863   return res;
  4866 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4867   assert(ZF_mon->owned_by_self(), "precondition.");
  4868   return _unclean_region_list.hd();
  4872 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4873   assert(ZF_mon->owned_by_self(), "Precondition");
  4874   HeapRegion* r = peek_unclean_region_list_locked();
  4875   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4876     // Result of below must be equal to "r", since we hold the lock.
  4877     (void)pop_unclean_region_list_locked();
  4878     put_free_region_on_list_locked(r);
  4879     return true;
  4880   } else {
  4881     return false;
  4885 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4886   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4887   return move_cleaned_region_to_free_list_locked();
  4891 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4892   assert(ZF_mon->owned_by_self(), "precondition.");
  4893   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4894   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4895         "Regions on free list must be zero filled");
  4896   assert(!r->isHumongous(), "Must not be humongous.");
  4897   assert(r->is_empty(), "Better be empty");
  4898   assert(!r->is_on_free_list(),
  4899          "Better not already be on free list");
  4900   assert(!r->is_on_unclean_list(),
  4901          "Better not already be on unclean list");
  4902   r->set_on_free_list(true);
  4903   r->set_next_on_free_list(_free_region_list);
  4904   _free_region_list = r;
  4905   _free_region_list_size++;
  4906   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4909 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4910   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4911   put_free_region_on_list_locked(r);
  4914 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4915   assert(ZF_mon->owned_by_self(), "precondition.");
  4916   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4917   HeapRegion* res = _free_region_list;
  4918   if (res != NULL) {
  4919     _free_region_list = res->next_from_free_list();
  4920     _free_region_list_size--;
  4921     res->set_on_free_list(false);
  4922     res->set_next_on_free_list(NULL);
  4923     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4925   return res;
  4929 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4930   // By self, or on behalf of self.
  4931   assert(Heap_lock->is_locked(), "Precondition");
  4932   HeapRegion* res = NULL;
  4933   bool first = true;
  4934   while (res == NULL) {
  4935     if (zero_filled || !first) {
  4936       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4937       res = pop_free_region_list_locked();
  4938       if (res != NULL) {
  4939         assert(!res->zero_fill_is_allocated(),
  4940                "No allocated regions on free list.");
  4941         res->set_zero_fill_allocated();
  4942       } else if (!first) {
  4943         break;  // We tried both, time to return NULL.
  4947     if (res == NULL) {
  4948       res = alloc_region_from_unclean_list(zero_filled);
  4950     assert(res == NULL ||
  4951            !zero_filled ||
  4952            res->zero_fill_is_allocated(),
  4953            "We must have allocated the region we're returning");
  4954     first = false;
  4956   return res;
  4959 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4960   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4962     HeapRegion* prev = NULL;
  4963     HeapRegion* cur = _unclean_region_list.hd();
  4964     while (cur != NULL) {
  4965       HeapRegion* next = cur->next_from_unclean_list();
  4966       if (cur->zero_fill_is_allocated()) {
  4967         // Remove from the list.
  4968         if (prev == NULL) {
  4969           (void)_unclean_region_list.pop();
  4970         } else {
  4971           _unclean_region_list.delete_after(prev);
  4973         cur->set_on_unclean_list(false);
  4974         cur->set_next_on_unclean_list(NULL);
  4975       } else {
  4976         prev = cur;
  4978       cur = next;
  4980     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4981            "Inv");
  4985     HeapRegion* prev = NULL;
  4986     HeapRegion* cur = _free_region_list;
  4987     while (cur != NULL) {
  4988       HeapRegion* next = cur->next_from_free_list();
  4989       if (cur->zero_fill_is_allocated()) {
  4990         // Remove from the list.
  4991         if (prev == NULL) {
  4992           _free_region_list = cur->next_from_free_list();
  4993         } else {
  4994           prev->set_next_on_free_list(cur->next_from_free_list());
  4996         cur->set_on_free_list(false);
  4997         cur->set_next_on_free_list(NULL);
  4998         _free_region_list_size--;
  4999       } else {
  5000         prev = cur;
  5002       cur = next;
  5004     assert(_free_region_list_size == free_region_list_length(), "Inv");
  5008 bool G1CollectedHeap::verify_region_lists() {
  5009   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5010   return verify_region_lists_locked();
  5013 bool G1CollectedHeap::verify_region_lists_locked() {
  5014   HeapRegion* unclean = _unclean_region_list.hd();
  5015   while (unclean != NULL) {
  5016     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  5017     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  5018     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  5019               "Everything else is possible.");
  5020     unclean = unclean->next_from_unclean_list();
  5022   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  5024   HeapRegion* free_r = _free_region_list;
  5025   while (free_r != NULL) {
  5026     assert(free_r->is_on_free_list(), "Well, it is!");
  5027     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  5028     switch (free_r->zero_fill_state()) {
  5029     case HeapRegion::NotZeroFilled:
  5030     case HeapRegion::ZeroFilling:
  5031       guarantee(false, "Should not be on free list.");
  5032       break;
  5033     default:
  5034       // Everything else is possible.
  5035       break;
  5037     free_r = free_r->next_from_free_list();
  5039   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  5040   // If we didn't do an assertion...
  5041   return true;
  5044 size_t G1CollectedHeap::free_region_list_length() {
  5045   assert(ZF_mon->owned_by_self(), "precondition.");
  5046   size_t len = 0;
  5047   HeapRegion* cur = _free_region_list;
  5048   while (cur != NULL) {
  5049     len++;
  5050     cur = cur->next_from_free_list();
  5052   return len;
  5055 size_t G1CollectedHeap::unclean_region_list_length() {
  5056   assert(ZF_mon->owned_by_self(), "precondition.");
  5057   return _unclean_region_list.length();
  5060 size_t G1CollectedHeap::n_regions() {
  5061   return _hrs->length();
  5064 size_t G1CollectedHeap::max_regions() {
  5065   return
  5066     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  5067     HeapRegion::GrainBytes;
  5070 size_t G1CollectedHeap::free_regions() {
  5071   /* Possibly-expensive assert.
  5072   assert(_free_regions == count_free_regions(),
  5073          "_free_regions is off.");
  5074   */
  5075   return _free_regions;
  5078 bool G1CollectedHeap::should_zf() {
  5079   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  5082 class RegionCounter: public HeapRegionClosure {
  5083   size_t _n;
  5084 public:
  5085   RegionCounter() : _n(0) {}
  5086   bool doHeapRegion(HeapRegion* r) {
  5087     if (r->is_empty() && !r->popular()) {
  5088       assert(!r->isHumongous(), "H regions should not be empty.");
  5089       _n++;
  5091     return false;
  5093   int res() { return (int) _n; }
  5094 };
  5096 size_t G1CollectedHeap::count_free_regions() {
  5097   RegionCounter rc;
  5098   heap_region_iterate(&rc);
  5099   size_t n = rc.res();
  5100   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  5101     n--;
  5102   return n;
  5105 size_t G1CollectedHeap::count_free_regions_list() {
  5106   size_t n = 0;
  5107   size_t o = 0;
  5108   ZF_mon->lock_without_safepoint_check();
  5109   HeapRegion* cur = _free_region_list;
  5110   while (cur != NULL) {
  5111     cur = cur->next_from_free_list();
  5112     n++;
  5114   size_t m = unclean_region_list_length();
  5115   ZF_mon->unlock();
  5116   return n + m;
  5119 bool G1CollectedHeap::should_set_young_locked() {
  5120   assert(heap_lock_held_for_gc(),
  5121               "the heap lock should already be held by or for this thread");
  5122   return  (g1_policy()->in_young_gc_mode() &&
  5123            g1_policy()->should_add_next_region_to_young_list());
  5126 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5127   assert(heap_lock_held_for_gc(),
  5128               "the heap lock should already be held by or for this thread");
  5129   _young_list->push_region(hr);
  5130   g1_policy()->set_region_short_lived(hr);
  5133 class NoYoungRegionsClosure: public HeapRegionClosure {
  5134 private:
  5135   bool _success;
  5136 public:
  5137   NoYoungRegionsClosure() : _success(true) { }
  5138   bool doHeapRegion(HeapRegion* r) {
  5139     if (r->is_young()) {
  5140       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5141                              r->bottom(), r->end());
  5142       _success = false;
  5144     return false;
  5146   bool success() { return _success; }
  5147 };
  5149 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  5150                                              bool check_sample) {
  5151   bool ret = true;
  5153   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  5154   if (!ignore_scan_only_list) {
  5155     NoYoungRegionsClosure closure;
  5156     heap_region_iterate(&closure);
  5157     ret = ret && closure.success();
  5160   return ret;
  5163 void G1CollectedHeap::empty_young_list() {
  5164   assert(heap_lock_held_for_gc(),
  5165               "the heap lock should already be held by or for this thread");
  5166   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5168   _young_list->empty_list();
  5171 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5172   bool no_allocs = true;
  5173   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5174     HeapRegion* r = _gc_alloc_regions[ap];
  5175     no_allocs = r == NULL || r->saved_mark_at_top();
  5177   return no_allocs;
  5180 void G1CollectedHeap::retire_all_alloc_regions() {
  5181   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5182     HeapRegion* r = _gc_alloc_regions[ap];
  5183     if (r != NULL) {
  5184       // Check for aliases.
  5185       bool has_processed_alias = false;
  5186       for (int i = 0; i < ap; ++i) {
  5187         if (_gc_alloc_regions[i] == r) {
  5188           has_processed_alias = true;
  5189           break;
  5192       if (!has_processed_alias) {
  5193         retire_alloc_region(r, false /* par */);
  5200 // Done at the start of full GC.
  5201 void G1CollectedHeap::tear_down_region_lists() {
  5202   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5203   while (pop_unclean_region_list_locked() != NULL) ;
  5204   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  5205          "Postconditions of loop.")
  5206   while (pop_free_region_list_locked() != NULL) ;
  5207   assert(_free_region_list == NULL, "Postcondition of loop.");
  5208   if (_free_region_list_size != 0) {
  5209     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  5210     print();
  5212   assert(_free_region_list_size == 0, "Postconditions of loop.");
  5216 class RegionResetter: public HeapRegionClosure {
  5217   G1CollectedHeap* _g1;
  5218   int _n;
  5219 public:
  5220   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5221   bool doHeapRegion(HeapRegion* r) {
  5222     if (r->continuesHumongous()) return false;
  5223     if (r->top() > r->bottom()) {
  5224       if (r->top() < r->end()) {
  5225         Copy::fill_to_words(r->top(),
  5226                           pointer_delta(r->end(), r->top()));
  5228       r->set_zero_fill_allocated();
  5229     } else {
  5230       assert(r->is_empty(), "tautology");
  5231       if (r->popular()) {
  5232         if (r->zero_fill_state() != HeapRegion::Allocated) {
  5233           r->ensure_zero_filled_locked();
  5234           r->set_zero_fill_allocated();
  5236       } else {
  5237         _n++;
  5238         switch (r->zero_fill_state()) {
  5239         case HeapRegion::NotZeroFilled:
  5240         case HeapRegion::ZeroFilling:
  5241           _g1->put_region_on_unclean_list_locked(r);
  5242           break;
  5243         case HeapRegion::Allocated:
  5244           r->set_zero_fill_complete();
  5245           // no break; go on to put on free list.
  5246         case HeapRegion::ZeroFilled:
  5247           _g1->put_free_region_on_list_locked(r);
  5248           break;
  5252     return false;
  5255   int getFreeRegionCount() {return _n;}
  5256 };
  5258 // Done at the end of full GC.
  5259 void G1CollectedHeap::rebuild_region_lists() {
  5260   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5261   // This needs to go at the end of the full GC.
  5262   RegionResetter rs;
  5263   heap_region_iterate(&rs);
  5264   _free_regions = rs.getFreeRegionCount();
  5265   // Tell the ZF thread it may have work to do.
  5266   if (should_zf()) ZF_mon->notify_all();
  5269 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5270   G1CollectedHeap* _g1;
  5271   int _n;
  5272 public:
  5273   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5274   bool doHeapRegion(HeapRegion* r) {
  5275     if (r->continuesHumongous()) return false;
  5276     if (r->top() > r->bottom()) {
  5277       // There are assertions in "set_zero_fill_needed()" below that
  5278       // require top() == bottom(), so this is technically illegal.
  5279       // We'll skirt the law here, by making that true temporarily.
  5280       DEBUG_ONLY(HeapWord* save_top = r->top();
  5281                  r->set_top(r->bottom()));
  5282       r->set_zero_fill_needed();
  5283       DEBUG_ONLY(r->set_top(save_top));
  5285     return false;
  5287 };
  5289 // Done at the start of full GC.
  5290 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5291   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5292   // This needs to go at the end of the full GC.
  5293   UsedRegionsNeedZeroFillSetter rs;
  5294   heap_region_iterate(&rs);
  5297 class CountObjClosure: public ObjectClosure {
  5298   size_t _n;
  5299 public:
  5300   CountObjClosure() : _n(0) {}
  5301   void do_object(oop obj) { _n++; }
  5302   size_t n() { return _n; }
  5303 };
  5305 size_t G1CollectedHeap::pop_object_used_objs() {
  5306   size_t sum_objs = 0;
  5307   for (int i = 0; i < G1NumPopularRegions; i++) {
  5308     CountObjClosure cl;
  5309     _hrs->at(i)->object_iterate(&cl);
  5310     sum_objs += cl.n();
  5312   return sum_objs;
  5315 size_t G1CollectedHeap::pop_object_used_bytes() {
  5316   size_t sum_bytes = 0;
  5317   for (int i = 0; i < G1NumPopularRegions; i++) {
  5318     sum_bytes += _hrs->at(i)->used();
  5320   return sum_bytes;
  5324 static int nq = 0;
  5326 HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) {
  5327   while (_cur_pop_hr_index < G1NumPopularRegions) {
  5328     HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5329     HeapWord* res = cur_pop_region->allocate(word_size);
  5330     if (res != NULL) {
  5331       // We account for popular objs directly in the used summary:
  5332       _summary_bytes_used += (word_size * HeapWordSize);
  5333       return res;
  5335     // Otherwise, try the next region (first making sure that we remember
  5336     // the last "top" value as the "next_top_at_mark_start", so that
  5337     // objects made popular during markings aren't automatically considered
  5338     // live).
  5339     cur_pop_region->note_end_of_copying();
  5340     // Otherwise, try the next region.
  5341     _cur_pop_hr_index++;
  5343   // XXX: For now !!!
  5344   vm_exit_out_of_memory(word_size,
  5345                         "Not enough pop obj space (To Be Fixed)");
  5346   return NULL;
  5349 class HeapRegionList: public CHeapObj {
  5350   public:
  5351   HeapRegion* hr;
  5352   HeapRegionList* next;
  5353 };
  5355 void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) {
  5356   // This might happen during parallel GC, so protect by this lock.
  5357   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5358   // We don't schedule regions whose evacuations are already pending, or
  5359   // are already being evacuated.
  5360   if (!r->popular_pending() && !r->in_collection_set()) {
  5361     r->set_popular_pending(true);
  5362     if (G1TracePopularity) {
  5363       gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" "
  5364                              "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.",
  5365                              r, r->bottom(), r->end());
  5367     HeapRegionList* hrl = new HeapRegionList;
  5368     hrl->hr = r;
  5369     hrl->next = _popular_regions_to_be_evacuated;
  5370     _popular_regions_to_be_evacuated = hrl;
  5374 HeapRegion* G1CollectedHeap::popular_region_to_evac() {
  5375   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5376   HeapRegion* res = NULL;
  5377   while (_popular_regions_to_be_evacuated != NULL && res == NULL) {
  5378     HeapRegionList* hrl = _popular_regions_to_be_evacuated;
  5379     _popular_regions_to_be_evacuated = hrl->next;
  5380     res = hrl->hr;
  5381     // The G1RSPopLimit may have increased, so recheck here...
  5382     if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5383       // Hah: don't need to schedule.
  5384       if (G1TracePopularity) {
  5385         gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" "
  5386                                "["PTR_FORMAT", "PTR_FORMAT") "
  5387                                "for pop-object evacuation (size %d < limit %d)",
  5388                                res, res->bottom(), res->end(),
  5389                                res->rem_set()->occupied(), G1RSPopLimit);
  5391       res->set_popular_pending(false);
  5392       res = NULL;
  5394     // We do not reset res->popular() here; if we did so, it would allow
  5395     // the region to be "rescheduled" for popularity evacuation.  Instead,
  5396     // this is done in the collection pause, with the world stopped.
  5397     // So the invariant is that the regions in the list have the popularity
  5398     // boolean set, but having the boolean set does not imply membership
  5399     // on the list (though there can at most one such pop-pending region
  5400     // not on the list at any time).
  5401     delete hrl;
  5403   return res;
  5406 void G1CollectedHeap::evac_popular_region(HeapRegion* hr) {
  5407   while (true) {
  5408     // Don't want to do a GC pause while cleanup is being completed!
  5409     wait_for_cleanup_complete();
  5411     // Read the GC count while holding the Heap_lock
  5412     int gc_count_before = SharedHeap::heap()->total_collections();
  5413     g1_policy()->record_stop_world_start();
  5416       MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  5417       VM_G1PopRegionCollectionPause op(gc_count_before, hr);
  5418       VMThread::execute(&op);
  5420       // If the prolog succeeded, we didn't do a GC for this.
  5421       if (op.prologue_succeeded()) break;
  5423     // Otherwise we didn't.  We should recheck the size, though, since
  5424     // the limit may have increased...
  5425     if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5426       hr->set_popular_pending(false);
  5427       break;
  5432 void G1CollectedHeap::atomic_inc_obj_rc(oop obj) {
  5433   Atomic::inc(obj_rc_addr(obj));
  5436 class CountRCClosure: public OopsInHeapRegionClosure {
  5437   G1CollectedHeap* _g1h;
  5438   bool _parallel;
  5439 public:
  5440   CountRCClosure(G1CollectedHeap* g1h) :
  5441     _g1h(g1h), _parallel(ParallelGCThreads > 0)
  5442   {}
  5443   void do_oop(narrowOop* p) {
  5444     guarantee(false, "NYI");
  5446   void do_oop(oop* p) {
  5447     oop obj = *p;
  5448     assert(obj != NULL, "Precondition.");
  5449     if (_parallel) {
  5450       // We go sticky at the limit to avoid excess contention.
  5451       // If we want to track the actual RC's further, we'll need to keep a
  5452       // per-thread hash table or something for the popular objects.
  5453       if (_g1h->obj_rc(obj) < G1ObjPopLimit) {
  5454         _g1h->atomic_inc_obj_rc(obj);
  5456     } else {
  5457       _g1h->inc_obj_rc(obj);
  5460 };
  5462 class EvacPopObjClosure: public ObjectClosure {
  5463   G1CollectedHeap* _g1h;
  5464   size_t _pop_objs;
  5465   size_t _max_rc;
  5466 public:
  5467   EvacPopObjClosure(G1CollectedHeap* g1h) :
  5468     _g1h(g1h), _pop_objs(0), _max_rc(0) {}
  5470   void do_object(oop obj) {
  5471     size_t rc = _g1h->obj_rc(obj);
  5472     _max_rc = MAX2(rc, _max_rc);
  5473     if (rc >= (size_t) G1ObjPopLimit) {
  5474       _g1h->_pop_obj_rc_at_copy.add((double)rc);
  5475       size_t word_sz = obj->size();
  5476       HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz);
  5477       oop new_pop_obj = (oop)new_pop_loc;
  5478       Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz);
  5479       obj->forward_to(new_pop_obj);
  5480       G1ScanAndBalanceClosure scan_and_balance(_g1h);
  5481       new_pop_obj->oop_iterate_backwards(&scan_and_balance);
  5482       // preserve "next" mark bit if marking is in progress.
  5483       if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) {
  5484         _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj);
  5487       if (G1TracePopularity) {
  5488         gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT
  5489                                " pop (%d), move to " PTR_FORMAT,
  5490                                (void*) obj, word_sz,
  5491                                _g1h->obj_rc(obj), (void*) new_pop_obj);
  5493       _pop_objs++;
  5496   size_t pop_objs() { return _pop_objs; }
  5497   size_t max_rc() { return _max_rc; }
  5498 };
  5500 class G1ParCountRCTask : public AbstractGangTask {
  5501   G1CollectedHeap* _g1h;
  5502   BitMap _bm;
  5504   size_t getNCards() {
  5505     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  5506       / G1BlockOffsetSharedArray::N_bytes;
  5508   CountRCClosure _count_rc_closure;
  5509 public:
  5510   G1ParCountRCTask(G1CollectedHeap* g1h) :
  5511     AbstractGangTask("G1 Par RC Count task"),
  5512     _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h)
  5513   {}
  5515   void work(int i) {
  5516     ResourceMark rm;
  5517     HandleMark   hm;
  5518     _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i);
  5520 };
  5522 void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) {
  5523   // We're evacuating a single region (for popularity).
  5524   if (G1TracePopularity) {
  5525     gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")",
  5526                            popular_region->bottom(), popular_region->end());
  5528   g1_policy()->set_single_region_collection_set(popular_region);
  5529   size_t max_rc;
  5530   if (!compute_reference_counts_and_evac_popular(popular_region,
  5531                                                  &max_rc)) {
  5532     // We didn't evacuate any popular objects.
  5533     // We increase the RS popularity limit, to prevent this from
  5534     // happening in the future.
  5535     if (G1RSPopLimit < (1 << 30)) {
  5536       G1RSPopLimit *= 2;
  5538     // For now, interesting enough for a message:
  5539 #if 1
  5540     gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), "
  5541                            "failed to find a pop object (max = %d).",
  5542                            popular_region->bottom(), popular_region->end(),
  5543                            max_rc);
  5544     gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit);
  5545 #endif // 0
  5546     // Also, we reset the collection set to NULL, to make the rest of
  5547     // the collection do nothing.
  5548     assert(popular_region->next_in_collection_set() == NULL,
  5549            "should be single-region.");
  5550     popular_region->set_in_collection_set(false);
  5551     popular_region->set_popular_pending(false);
  5552     g1_policy()->clear_collection_set();
  5556 bool G1CollectedHeap::
  5557 compute_reference_counts_and_evac_popular(HeapRegion* popular_region,
  5558                                           size_t* max_rc) {
  5559   HeapWord* rc_region_bot;
  5560   HeapWord* rc_region_end;
  5562   // Set up the reference count region.
  5563   HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords);
  5564   if (rc_region != NULL) {
  5565     rc_region_bot = rc_region->bottom();
  5566     rc_region_end = rc_region->end();
  5567   } else {
  5568     rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords);
  5569     if (rc_region_bot == NULL) {
  5570       vm_exit_out_of_memory(HeapRegion::GrainWords,
  5571                             "No space for RC region.");
  5573     rc_region_end = rc_region_bot + HeapRegion::GrainWords;
  5576   if (G1TracePopularity)
  5577     gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")",
  5578                            rc_region_bot, rc_region_end);
  5579   if (rc_region_bot > popular_region->bottom()) {
  5580     _rc_region_above = true;
  5581     _rc_region_diff =
  5582       pointer_delta(rc_region_bot, popular_region->bottom(), 1);
  5583   } else {
  5584     assert(rc_region_bot < popular_region->bottom(), "Can't be equal.");
  5585     _rc_region_above = false;
  5586     _rc_region_diff =
  5587       pointer_delta(popular_region->bottom(), rc_region_bot, 1);
  5589   g1_policy()->record_pop_compute_rc_start();
  5590   // Count external references.
  5591   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5592   if (ParallelGCThreads > 0) {
  5594     set_par_threads(workers()->total_workers());
  5595     G1ParCountRCTask par_count_rc_task(this);
  5596     workers()->run_task(&par_count_rc_task);
  5597     set_par_threads(0);
  5599   } else {
  5600     CountRCClosure count_rc_closure(this);
  5601     g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0);
  5603   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5604   g1_policy()->record_pop_compute_rc_end();
  5606   // Now evacuate popular objects.
  5607   g1_policy()->record_pop_evac_start();
  5608   EvacPopObjClosure evac_pop_obj_cl(this);
  5609   popular_region->object_iterate(&evac_pop_obj_cl);
  5610   *max_rc = evac_pop_obj_cl.max_rc();
  5612   // Make sure the last "top" value of the current popular region is copied
  5613   // as the "next_top_at_mark_start", so that objects made popular during
  5614   // markings aren't automatically considered live.
  5615   HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5616   cur_pop_region->note_end_of_copying();
  5618   if (rc_region != NULL) {
  5619     free_region(rc_region);
  5620   } else {
  5621     FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot);
  5623   g1_policy()->record_pop_evac_end();
  5625   return evac_pop_obj_cl.pop_objs() > 0;
  5628 class CountPopObjInfoClosure: public HeapRegionClosure {
  5629   size_t _objs;
  5630   size_t _bytes;
  5632   class CountObjClosure: public ObjectClosure {
  5633     int _n;
  5634   public:
  5635     CountObjClosure() : _n(0) {}
  5636     void do_object(oop obj) { _n++; }
  5637     size_t n() { return _n; }
  5638   };
  5640 public:
  5641   CountPopObjInfoClosure() : _objs(0), _bytes(0) {}
  5642   bool doHeapRegion(HeapRegion* r) {
  5643     _bytes += r->used();
  5644     CountObjClosure blk;
  5645     r->object_iterate(&blk);
  5646     _objs += blk.n();
  5647     return false;
  5649   size_t objs() { return _objs; }
  5650   size_t bytes() { return _bytes; }
  5651 };
  5654 void G1CollectedHeap::print_popularity_summary_info() const {
  5655   CountPopObjInfoClosure blk;
  5656   for (int i = 0; i <= _cur_pop_hr_index; i++) {
  5657     blk.doHeapRegion(_hrs->at(i));
  5659   gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.",
  5660                          blk.objs(), blk.bytes());
  5661   gclog_or_tty->print_cr("   RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].",
  5662                 _pop_obj_rc_at_copy.avg(),
  5663                 _pop_obj_rc_at_copy.maximum(),
  5664                 _pop_obj_rc_at_copy.sd());
  5667 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5668   _refine_cte_cl->set_concurrent(concurrent);
  5671 #ifndef PRODUCT
  5673 class PrintHeapRegionClosure: public HeapRegionClosure {
  5674 public:
  5675   bool doHeapRegion(HeapRegion *r) {
  5676     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5677     if (r != NULL) {
  5678       if (r->is_on_free_list())
  5679         gclog_or_tty->print("Free ");
  5680       if (r->is_young())
  5681         gclog_or_tty->print("Young ");
  5682       if (r->isHumongous())
  5683         gclog_or_tty->print("Is Humongous ");
  5684       r->print();
  5686     return false;
  5688 };
  5690 class SortHeapRegionClosure : public HeapRegionClosure {
  5691   size_t young_regions,free_regions, unclean_regions;
  5692   size_t hum_regions, count;
  5693   size_t unaccounted, cur_unclean, cur_alloc;
  5694   size_t total_free;
  5695   HeapRegion* cur;
  5696 public:
  5697   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5698     free_regions(0), unclean_regions(0),
  5699     hum_regions(0),
  5700     count(0), unaccounted(0),
  5701     cur_alloc(0), total_free(0)
  5702   {}
  5703   bool doHeapRegion(HeapRegion *r) {
  5704     count++;
  5705     if (r->is_on_free_list()) free_regions++;
  5706     else if (r->is_on_unclean_list()) unclean_regions++;
  5707     else if (r->isHumongous())  hum_regions++;
  5708     else if (r->is_young()) young_regions++;
  5709     else if (r == cur) cur_alloc++;
  5710     else unaccounted++;
  5711     return false;
  5713   void print() {
  5714     total_free = free_regions + unclean_regions;
  5715     gclog_or_tty->print("%d regions\n", count);
  5716     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5717                         total_free, free_regions, unclean_regions);
  5718     gclog_or_tty->print("%d humongous %d young\n",
  5719                         hum_regions, young_regions);
  5720     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5721     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5723 };
  5725 void G1CollectedHeap::print_region_counts() {
  5726   SortHeapRegionClosure sc(_cur_alloc_region);
  5727   PrintHeapRegionClosure cl;
  5728   heap_region_iterate(&cl);
  5729   heap_region_iterate(&sc);
  5730   sc.print();
  5731   print_region_accounting_info();
  5732 };
  5734 bool G1CollectedHeap::regions_accounted_for() {
  5735   // TODO: regions accounting for young/survivor/tenured
  5736   return true;
  5739 bool G1CollectedHeap::print_region_accounting_info() {
  5740   gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions);
  5741   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5742                          free_regions(),
  5743                          count_free_regions(), count_free_regions_list(),
  5744                          _free_region_list_size, _unclean_region_list.sz());
  5745   gclog_or_tty->print_cr("cur_alloc: %d.",
  5746                          (_cur_alloc_region == NULL ? 0 : 1));
  5747   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5749   // TODO: check regions accounting for young/survivor/tenured
  5750   return true;
  5753 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5754   HeapRegion* hr = heap_region_containing(p);
  5755   if (hr == NULL) {
  5756     return is_in_permanent(p);
  5757   } else {
  5758     return hr->is_in(p);
  5761 #endif // PRODUCT
  5763 void G1CollectedHeap::g1_unimplemented() {
  5764   // Unimplemented();
  5768 // Local Variables: ***
  5769 // c-indentation-style: gnu ***
  5770 // End: ***

mercurial