src/share/vm/c1/c1_LIR.hpp

Wed, 22 Sep 2010 21:10:46 -0700

author
never
date
Wed, 22 Sep 2010 21:10:46 -0700
changeset 2171
87b64980e2f1
parent 2146
3a294e483abc
child 2314
f95d63e2154a
permissions
-rw-r--r--

6972540: sun/nio/ch/SocketChannelImpl compilation crashed when executing CompileTheWorld
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class BlockBegin;
    26 class BlockList;
    27 class LIR_Assembler;
    28 class CodeEmitInfo;
    29 class CodeStub;
    30 class CodeStubList;
    31 class ArrayCopyStub;
    32 class LIR_Op;
    33 class ciType;
    34 class ValueType;
    35 class LIR_OpVisitState;
    36 class FpuStackSim;
    38 //---------------------------------------------------------------------
    39 //                 LIR Operands
    40 //  LIR_OprDesc
    41 //    LIR_OprPtr
    42 //      LIR_Const
    43 //      LIR_Address
    44 //---------------------------------------------------------------------
    45 class LIR_OprDesc;
    46 class LIR_OprPtr;
    47 class LIR_Const;
    48 class LIR_Address;
    49 class LIR_OprVisitor;
    52 typedef LIR_OprDesc* LIR_Opr;
    53 typedef int          RegNr;
    55 define_array(LIR_OprArray, LIR_Opr)
    56 define_stack(LIR_OprList, LIR_OprArray)
    58 define_array(LIR_OprRefArray, LIR_Opr*)
    59 define_stack(LIR_OprRefList, LIR_OprRefArray)
    61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
    62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
    64 define_array(LIR_OpArray, LIR_Op*)
    65 define_stack(LIR_OpList, LIR_OpArray)
    67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
    68 class LIR_OprPtr: public CompilationResourceObj {
    69  public:
    70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
    71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
    73   virtual LIR_Const*  as_constant()              { return NULL; }
    74   virtual LIR_Address* as_address()              { return NULL; }
    75   virtual BasicType type() const                 = 0;
    76   virtual void print_value_on(outputStream* out) const = 0;
    77 };
    81 // LIR constants
    82 class LIR_Const: public LIR_OprPtr {
    83  private:
    84   JavaValue _value;
    86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
    87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
    88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
    90  public:
    91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
    92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
    93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
    94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
    95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
    96   LIR_Const(void* p) {
    97 #ifdef _LP64
    98     assert(sizeof(jlong) >= sizeof(p), "too small");;
    99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
   100 #else
   101     assert(sizeof(jint) >= sizeof(p), "too small");;
   102     _value.set_type(T_INT);     _value.set_jint((jint)p);
   103 #endif
   104   }
   106   virtual BasicType type()       const { return _value.get_type(); }
   107   virtual LIR_Const* as_constant()     { return this; }
   109   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
   110   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
   111   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
   112   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
   113   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
   114   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
   115   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
   117 #ifdef _LP64
   118   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
   119 #else
   120   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
   121 #endif
   124   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
   125   jint      as_jint_lo_bits() const    {
   126     if (type() == T_DOUBLE) {
   127       return low(jlong_cast(_value.get_jdouble()));
   128     } else {
   129       return as_jint_lo();
   130     }
   131   }
   132   jint      as_jint_hi_bits() const    {
   133     if (type() == T_DOUBLE) {
   134       return high(jlong_cast(_value.get_jdouble()));
   135     } else {
   136       return as_jint_hi();
   137     }
   138   }
   139   jlong      as_jlong_bits() const    {
   140     if (type() == T_DOUBLE) {
   141       return jlong_cast(_value.get_jdouble());
   142     } else {
   143       return as_jlong();
   144     }
   145   }
   147   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   150   bool is_zero_float() {
   151     jfloat f = as_jfloat();
   152     jfloat ok = 0.0f;
   153     return jint_cast(f) == jint_cast(ok);
   154   }
   156   bool is_one_float() {
   157     jfloat f = as_jfloat();
   158     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
   159   }
   161   bool is_zero_double() {
   162     jdouble d = as_jdouble();
   163     jdouble ok = 0.0;
   164     return jlong_cast(d) == jlong_cast(ok);
   165   }
   167   bool is_one_double() {
   168     jdouble d = as_jdouble();
   169     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
   170   }
   171 };
   174 //---------------------LIR Operand descriptor------------------------------------
   175 //
   176 // The class LIR_OprDesc represents a LIR instruction operand;
   177 // it can be a register (ALU/FPU), stack location or a constant;
   178 // Constants and addresses are represented as resource area allocated
   179 // structures (see above).
   180 // Registers and stack locations are inlined into the this pointer
   181 // (see value function).
   183 class LIR_OprDesc: public CompilationResourceObj {
   184  public:
   185   // value structure:
   186   //     data       opr-type opr-kind
   187   // +--------------+-------+-------+
   188   // [max...........|7 6 5 4|3 2 1 0]
   189   //                             ^
   190   //                    is_pointer bit
   191   //
   192   // lowest bit cleared, means it is a structure pointer
   193   // we need  4 bits to represent types
   195  private:
   196   friend class LIR_OprFact;
   198   // Conversion
   199   intptr_t value() const                         { return (intptr_t) this; }
   201   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
   202     return (value() & mask) == masked_value;
   203   }
   205   enum OprKind {
   206       pointer_value      = 0
   207     , stack_value        = 1
   208     , cpu_register       = 3
   209     , fpu_register       = 5
   210     , illegal_value      = 7
   211   };
   213   enum OprBits {
   214       pointer_bits   = 1
   215     , kind_bits      = 3
   216     , type_bits      = 4
   217     , size_bits      = 2
   218     , destroys_bits  = 1
   219     , virtual_bits   = 1
   220     , is_xmm_bits    = 1
   221     , last_use_bits  = 1
   222     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
   223     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
   224                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
   225     , data_bits      = BitsPerInt - non_data_bits
   226     , reg_bits       = data_bits / 2      // for two registers in one value encoding
   227   };
   229   enum OprShift {
   230       kind_shift     = 0
   231     , type_shift     = kind_shift     + kind_bits
   232     , size_shift     = type_shift     + type_bits
   233     , destroys_shift = size_shift     + size_bits
   234     , last_use_shift = destroys_shift + destroys_bits
   235     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
   236     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
   237     , is_xmm_shift   = virtual_shift + virtual_bits
   238     , data_shift     = is_xmm_shift + is_xmm_bits
   239     , reg1_shift = data_shift
   240     , reg2_shift = data_shift + reg_bits
   242   };
   244   enum OprSize {
   245       single_size = 0 << size_shift
   246     , double_size = 1 << size_shift
   247   };
   249   enum OprMask {
   250       kind_mask      = right_n_bits(kind_bits)
   251     , type_mask      = right_n_bits(type_bits) << type_shift
   252     , size_mask      = right_n_bits(size_bits) << size_shift
   253     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
   254     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
   255     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
   256     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
   257     , pointer_mask   = right_n_bits(pointer_bits)
   258     , lower_reg_mask = right_n_bits(reg_bits)
   259     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
   260   };
   262   uintptr_t data() const                         { return value() >> data_shift; }
   263   int lo_reg_half() const                        { return data() & lower_reg_mask; }
   264   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
   265   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
   266   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
   268   static char type_char(BasicType t);
   270  public:
   271   enum {
   272     vreg_base = ConcreteRegisterImpl::number_of_registers,
   273     vreg_max = (1 << data_bits) - 1
   274   };
   276   static inline LIR_Opr illegalOpr();
   278   enum OprType {
   279       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
   280     , int_type      = 1 << type_shift
   281     , long_type     = 2 << type_shift
   282     , object_type   = 3 << type_shift
   283     , address_type  = 4 << type_shift
   284     , float_type    = 5 << type_shift
   285     , double_type   = 6 << type_shift
   286   };
   287   friend OprType as_OprType(BasicType t);
   288   friend BasicType as_BasicType(OprType t);
   290   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
   291   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
   293   static OprSize size_for(BasicType t) {
   294     switch (t) {
   295       case T_LONG:
   296       case T_DOUBLE:
   297         return double_size;
   298         break;
   300       case T_FLOAT:
   301       case T_BOOLEAN:
   302       case T_CHAR:
   303       case T_BYTE:
   304       case T_SHORT:
   305       case T_INT:
   306       case T_ADDRESS:
   307       case T_OBJECT:
   308       case T_ARRAY:
   309         return single_size;
   310         break;
   312       default:
   313         ShouldNotReachHere();
   314         return single_size;
   315       }
   316   }
   319   void validate_type() const PRODUCT_RETURN;
   321   BasicType type() const {
   322     if (is_pointer()) {
   323       return pointer()->type();
   324     }
   325     return as_BasicType(type_field());
   326   }
   329   ValueType* value_type() const                  { return as_ValueType(type()); }
   331   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
   333   bool is_equal(LIR_Opr opr) const         { return this == opr; }
   334   // checks whether types are same
   335   bool is_same_type(LIR_Opr opr) const     {
   336     assert(type_field() != unknown_type &&
   337            opr->type_field() != unknown_type, "shouldn't see unknown_type");
   338     return type_field() == opr->type_field();
   339   }
   340   bool is_same_register(LIR_Opr opr) {
   341     return (is_register() && opr->is_register() &&
   342             kind_field() == opr->kind_field() &&
   343             (value() & no_type_mask) == (opr->value() & no_type_mask));
   344   }
   346   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
   347   bool is_illegal() const      { return kind_field() == illegal_value; }
   348   bool is_valid() const        { return kind_field() != illegal_value; }
   350   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
   351   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
   353   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
   354   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
   356   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
   357   bool is_oop() const;
   359   // semantic for fpu- and xmm-registers:
   360   // * is_float and is_double return true for xmm_registers
   361   //   (so is_single_fpu and is_single_xmm are true)
   362   // * So you must always check for is_???_xmm prior to is_???_fpu to
   363   //   distinguish between fpu- and xmm-registers
   365   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
   366   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
   367   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
   369   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
   370   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
   371   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
   372   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
   373   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
   375   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
   376   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
   377   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
   378   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
   379   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
   381   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
   382   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
   383   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
   385   // fast accessor functions for special bits that do not work for pointers
   386   // (in this functions, the check for is_pointer() is omitted)
   387   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
   388   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
   389   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
   390   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
   391   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
   393   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
   394   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
   395   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
   396   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
   399   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
   400   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
   401   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   402   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   403   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   404   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   405   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   406   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   407   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
   408   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   409   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   410   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
   412   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
   413   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
   414   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
   416   Register as_register()    const;
   417   Register as_register_lo() const;
   418   Register as_register_hi() const;
   420   Register as_pointer_register() {
   421 #ifdef _LP64
   422     if (is_double_cpu()) {
   423       assert(as_register_lo() == as_register_hi(), "should be a single register");
   424       return as_register_lo();
   425     }
   426 #endif
   427     return as_register();
   428   }
   430 #ifdef X86
   431   XMMRegister as_xmm_float_reg() const;
   432   XMMRegister as_xmm_double_reg() const;
   433   // for compatibility with RInfo
   434   int fpu () const                                  { return lo_reg_half(); }
   435 #endif // X86
   436 #if defined(SPARC) || defined(ARM) || defined(PPC)
   437   FloatRegister as_float_reg   () const;
   438   FloatRegister as_double_reg  () const;
   439 #endif
   441   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
   442   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
   443   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
   444   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
   445   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
   447   void print() const PRODUCT_RETURN;
   448   void print(outputStream* out) const PRODUCT_RETURN;
   449 };
   452 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
   453   switch (type) {
   454   case T_INT:      return LIR_OprDesc::int_type;
   455   case T_LONG:     return LIR_OprDesc::long_type;
   456   case T_FLOAT:    return LIR_OprDesc::float_type;
   457   case T_DOUBLE:   return LIR_OprDesc::double_type;
   458   case T_OBJECT:
   459   case T_ARRAY:    return LIR_OprDesc::object_type;
   460   case T_ADDRESS:  return LIR_OprDesc::address_type;
   461   case T_ILLEGAL:  // fall through
   462   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
   463   }
   464 }
   466 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
   467   switch (t) {
   468   case LIR_OprDesc::int_type:     return T_INT;
   469   case LIR_OprDesc::long_type:    return T_LONG;
   470   case LIR_OprDesc::float_type:   return T_FLOAT;
   471   case LIR_OprDesc::double_type:  return T_DOUBLE;
   472   case LIR_OprDesc::object_type:  return T_OBJECT;
   473   case LIR_OprDesc::address_type: return T_ADDRESS;
   474   case LIR_OprDesc::unknown_type: // fall through
   475   default: ShouldNotReachHere();  return T_ILLEGAL;
   476   }
   477 }
   480 // LIR_Address
   481 class LIR_Address: public LIR_OprPtr {
   482  friend class LIR_OpVisitState;
   484  public:
   485   // NOTE: currently these must be the log2 of the scale factor (and
   486   // must also be equivalent to the ScaleFactor enum in
   487   // assembler_i486.hpp)
   488   enum Scale {
   489     times_1  =  0,
   490     times_2  =  1,
   491     times_4  =  2,
   492     times_8  =  3
   493   };
   495  private:
   496   LIR_Opr   _base;
   497   LIR_Opr   _index;
   498   Scale     _scale;
   499   intx      _disp;
   500   BasicType _type;
   502  public:
   503   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
   504        _base(base)
   505      , _index(index)
   506      , _scale(times_1)
   507      , _type(type)
   508      , _disp(0) { verify(); }
   510   LIR_Address(LIR_Opr base, intx disp, BasicType type):
   511        _base(base)
   512      , _index(LIR_OprDesc::illegalOpr())
   513      , _scale(times_1)
   514      , _type(type)
   515      , _disp(disp) { verify(); }
   517   LIR_Address(LIR_Opr base, BasicType type):
   518        _base(base)
   519      , _index(LIR_OprDesc::illegalOpr())
   520      , _scale(times_1)
   521      , _type(type)
   522      , _disp(0) { verify(); }
   524 #if defined(X86) || defined(ARM)
   525   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
   526        _base(base)
   527      , _index(index)
   528      , _scale(scale)
   529      , _type(type)
   530      , _disp(disp) { verify(); }
   531 #endif // X86 || ARM
   533   LIR_Opr base()  const                          { return _base;  }
   534   LIR_Opr index() const                          { return _index; }
   535   Scale   scale() const                          { return _scale; }
   536   intx    disp()  const                          { return _disp;  }
   538   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
   540   virtual LIR_Address* as_address()              { return this;   }
   541   virtual BasicType type() const                 { return _type; }
   542   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   544   void verify() const PRODUCT_RETURN;
   546   static Scale scale(BasicType type);
   547 };
   550 // operand factory
   551 class LIR_OprFact: public AllStatic {
   552  public:
   554   static LIR_Opr illegalOpr;
   556   static LIR_Opr single_cpu(int reg) {
   557     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   558                                LIR_OprDesc::int_type             |
   559                                LIR_OprDesc::cpu_register         |
   560                                LIR_OprDesc::single_size);
   561   }
   562   static LIR_Opr single_cpu_oop(int reg) {
   563     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   564                                LIR_OprDesc::object_type          |
   565                                LIR_OprDesc::cpu_register         |
   566                                LIR_OprDesc::single_size);
   567   }
   568   static LIR_Opr single_cpu_address(int reg) {
   569     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   570                                LIR_OprDesc::address_type         |
   571                                LIR_OprDesc::cpu_register         |
   572                                LIR_OprDesc::single_size);
   573   }
   574   static LIR_Opr double_cpu(int reg1, int reg2) {
   575     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
   576     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   577                                (reg2 << LIR_OprDesc::reg2_shift) |
   578                                LIR_OprDesc::long_type            |
   579                                LIR_OprDesc::cpu_register         |
   580                                LIR_OprDesc::double_size);
   581   }
   583   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   584                                                                              LIR_OprDesc::float_type           |
   585                                                                              LIR_OprDesc::fpu_register         |
   586                                                                              LIR_OprDesc::single_size); }
   587 #if defined(ARM)
   588   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
   589   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   590   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
   591 #endif
   592 #ifdef SPARC
   593   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   594                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
   595                                                                              LIR_OprDesc::double_type          |
   596                                                                              LIR_OprDesc::fpu_register         |
   597                                                                              LIR_OprDesc::double_size); }
   598 #endif
   599 #ifdef X86
   600   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   601                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   602                                                                              LIR_OprDesc::double_type          |
   603                                                                              LIR_OprDesc::fpu_register         |
   604                                                                              LIR_OprDesc::double_size); }
   606   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   607                                                                              LIR_OprDesc::float_type           |
   608                                                                              LIR_OprDesc::fpu_register         |
   609                                                                              LIR_OprDesc::single_size          |
   610                                                                              LIR_OprDesc::is_xmm_mask); }
   611   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   612                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   613                                                                              LIR_OprDesc::double_type          |
   614                                                                              LIR_OprDesc::fpu_register         |
   615                                                                              LIR_OprDesc::double_size          |
   616                                                                              LIR_OprDesc::is_xmm_mask); }
   617 #endif // X86
   618 #ifdef PPC
   619   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   620                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   621                                                                              LIR_OprDesc::double_type          |
   622                                                                              LIR_OprDesc::fpu_register         |
   623                                                                              LIR_OprDesc::double_size); }
   624   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
   625                                                                              LIR_OprDesc::float_type           |
   626                                                                              LIR_OprDesc::cpu_register         |
   627                                                                              LIR_OprDesc::single_size); }
   628   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
   629                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
   630                                                                              LIR_OprDesc::double_type          |
   631                                                                              LIR_OprDesc::cpu_register         |
   632                                                                              LIR_OprDesc::double_size); }
   633 #endif // PPC
   635   static LIR_Opr virtual_register(int index, BasicType type) {
   636     LIR_Opr res;
   637     switch (type) {
   638       case T_OBJECT: // fall through
   639       case T_ARRAY:
   640         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   641                                             LIR_OprDesc::object_type  |
   642                                             LIR_OprDesc::cpu_register |
   643                                             LIR_OprDesc::single_size  |
   644                                             LIR_OprDesc::virtual_mask);
   645         break;
   647       case T_INT:
   648         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   649                                   LIR_OprDesc::int_type              |
   650                                   LIR_OprDesc::cpu_register          |
   651                                   LIR_OprDesc::single_size           |
   652                                   LIR_OprDesc::virtual_mask);
   653         break;
   655       case T_ADDRESS:
   656         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   657                                   LIR_OprDesc::address_type          |
   658                                   LIR_OprDesc::cpu_register          |
   659                                   LIR_OprDesc::single_size           |
   660                                   LIR_OprDesc::virtual_mask);
   661         break;
   663       case T_LONG:
   664         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   665                                   LIR_OprDesc::long_type             |
   666                                   LIR_OprDesc::cpu_register          |
   667                                   LIR_OprDesc::double_size           |
   668                                   LIR_OprDesc::virtual_mask);
   669         break;
   671 #ifdef __SOFTFP__
   672       case T_FLOAT:
   673         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   674                                   LIR_OprDesc::float_type  |
   675                                   LIR_OprDesc::cpu_register |
   676                                   LIR_OprDesc::single_size |
   677                                   LIR_OprDesc::virtual_mask);
   678         break;
   679       case T_DOUBLE:
   680         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   681                                   LIR_OprDesc::double_type |
   682                                   LIR_OprDesc::cpu_register |
   683                                   LIR_OprDesc::double_size |
   684                                   LIR_OprDesc::virtual_mask);
   685         break;
   686 #else // __SOFTFP__
   687       case T_FLOAT:
   688         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   689                                   LIR_OprDesc::float_type           |
   690                                   LIR_OprDesc::fpu_register         |
   691                                   LIR_OprDesc::single_size          |
   692                                   LIR_OprDesc::virtual_mask);
   693         break;
   695       case
   696         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   697                                             LIR_OprDesc::double_type           |
   698                                             LIR_OprDesc::fpu_register          |
   699                                             LIR_OprDesc::double_size           |
   700                                             LIR_OprDesc::virtual_mask);
   701         break;
   702 #endif // __SOFTFP__
   703       default:       ShouldNotReachHere(); res = illegalOpr;
   704     }
   706 #ifdef ASSERT
   707     res->validate_type();
   708     assert(res->vreg_number() == index, "conversion check");
   709     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
   710     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   712     // old-style calculation; check if old and new method are equal
   713     LIR_OprDesc::OprType t = as_OprType(type);
   714 #ifdef __SOFTFP__
   715     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   716                                t |
   717                                LIR_OprDesc::cpu_register |
   718                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   719 #else // __SOFTFP__
   720     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
   721                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
   722                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   723     assert(res == old_res, "old and new method not equal");
   724 #endif // __SOFTFP__
   725 #endif // ASSERT
   727     return res;
   728   }
   730   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
   731   // the index is platform independent; a double stack useing indeces 2 and 3 has always
   732   // index 2.
   733   static LIR_Opr stack(int index, BasicType type) {
   734     LIR_Opr res;
   735     switch (type) {
   736       case T_OBJECT: // fall through
   737       case T_ARRAY:
   738         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   739                                   LIR_OprDesc::object_type           |
   740                                   LIR_OprDesc::stack_value           |
   741                                   LIR_OprDesc::single_size);
   742         break;
   744       case T_INT:
   745         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   746                                   LIR_OprDesc::int_type              |
   747                                   LIR_OprDesc::stack_value           |
   748                                   LIR_OprDesc::single_size);
   749         break;
   751       case T_ADDRESS:
   752         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   753                                   LIR_OprDesc::address_type          |
   754                                   LIR_OprDesc::stack_value           |
   755                                   LIR_OprDesc::single_size);
   756         break;
   758       case T_LONG:
   759         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   760                                   LIR_OprDesc::long_type             |
   761                                   LIR_OprDesc::stack_value           |
   762                                   LIR_OprDesc::double_size);
   763         break;
   765       case T_FLOAT:
   766         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   767                                   LIR_OprDesc::float_type            |
   768                                   LIR_OprDesc::stack_value           |
   769                                   LIR_OprDesc::single_size);
   770         break;
   771       case T_DOUBLE:
   772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   773                                   LIR_OprDesc::double_type           |
   774                                   LIR_OprDesc::stack_value           |
   775                                   LIR_OprDesc::double_size);
   776         break;
   778       default:       ShouldNotReachHere(); res = illegalOpr;
   779     }
   781 #ifdef ASSERT
   782     assert(index >= 0, "index must be positive");
   783     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   785     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   786                                           LIR_OprDesc::stack_value           |
   787                                           as_OprType(type)                   |
   788                                           LIR_OprDesc::size_for(type));
   789     assert(res == old_res, "old and new method not equal");
   790 #endif
   792     return res;
   793   }
   795   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
   796   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
   797   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
   798   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
   799   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
   800   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
   801   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
   802   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
   803   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
   804   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
   806   static LIR_Opr value_type(ValueType* type);
   807   static LIR_Opr dummy_value_type(ValueType* type);
   808 };
   811 //-------------------------------------------------------------------------------
   812 //                   LIR Instructions
   813 //-------------------------------------------------------------------------------
   814 //
   815 // Note:
   816 //  - every instruction has a result operand
   817 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
   818 //  - every instruction has a LIR_OpCode operand
   819 //  - LIR_OpN, means an instruction that has N input operands
   820 //
   821 // class hierarchy:
   822 //
   823 class  LIR_Op;
   824 class    LIR_Op0;
   825 class      LIR_OpLabel;
   826 class    LIR_Op1;
   827 class      LIR_OpBranch;
   828 class      LIR_OpConvert;
   829 class      LIR_OpAllocObj;
   830 class      LIR_OpRoundFP;
   831 class    LIR_Op2;
   832 class    LIR_OpDelay;
   833 class    LIR_Op3;
   834 class      LIR_OpAllocArray;
   835 class    LIR_OpCall;
   836 class      LIR_OpJavaCall;
   837 class      LIR_OpRTCall;
   838 class    LIR_OpArrayCopy;
   839 class    LIR_OpLock;
   840 class    LIR_OpTypeCheck;
   841 class    LIR_OpCompareAndSwap;
   842 class    LIR_OpProfileCall;
   845 // LIR operation codes
   846 enum LIR_Code {
   847     lir_none
   848   , begin_op0
   849       , lir_word_align
   850       , lir_label
   851       , lir_nop
   852       , lir_backwardbranch_target
   853       , lir_std_entry
   854       , lir_osr_entry
   855       , lir_build_frame
   856       , lir_fpop_raw
   857       , lir_24bit_FPU
   858       , lir_reset_FPU
   859       , lir_breakpoint
   860       , lir_rtcall
   861       , lir_membar
   862       , lir_membar_acquire
   863       , lir_membar_release
   864       , lir_get_thread
   865   , end_op0
   866   , begin_op1
   867       , lir_fxch
   868       , lir_fld
   869       , lir_ffree
   870       , lir_push
   871       , lir_pop
   872       , lir_null_check
   873       , lir_return
   874       , lir_leal
   875       , lir_neg
   876       , lir_branch
   877       , lir_cond_float_branch
   878       , lir_move
   879       , lir_prefetchr
   880       , lir_prefetchw
   881       , lir_convert
   882       , lir_alloc_object
   883       , lir_monaddr
   884       , lir_roundfp
   885       , lir_safepoint
   886       , lir_pack64
   887       , lir_unpack64
   888       , lir_unwind
   889   , end_op1
   890   , begin_op2
   891       , lir_cmp
   892       , lir_cmp_l2i
   893       , lir_ucmp_fd2i
   894       , lir_cmp_fd2i
   895       , lir_cmove
   896       , lir_add
   897       , lir_sub
   898       , lir_mul
   899       , lir_mul_strictfp
   900       , lir_div
   901       , lir_div_strictfp
   902       , lir_rem
   903       , lir_sqrt
   904       , lir_abs
   905       , lir_sin
   906       , lir_cos
   907       , lir_tan
   908       , lir_log
   909       , lir_log10
   910       , lir_logic_and
   911       , lir_logic_or
   912       , lir_logic_xor
   913       , lir_shl
   914       , lir_shr
   915       , lir_ushr
   916       , lir_alloc_array
   917       , lir_throw
   918       , lir_compare_to
   919   , end_op2
   920   , begin_op3
   921       , lir_idiv
   922       , lir_irem
   923   , end_op3
   924   , begin_opJavaCall
   925       , lir_static_call
   926       , lir_optvirtual_call
   927       , lir_icvirtual_call
   928       , lir_virtual_call
   929       , lir_dynamic_call
   930   , end_opJavaCall
   931   , begin_opArrayCopy
   932       , lir_arraycopy
   933   , end_opArrayCopy
   934   , begin_opLock
   935     , lir_lock
   936     , lir_unlock
   937   , end_opLock
   938   , begin_delay_slot
   939     , lir_delay_slot
   940   , end_delay_slot
   941   , begin_opTypeCheck
   942     , lir_instanceof
   943     , lir_checkcast
   944     , lir_store_check
   945   , end_opTypeCheck
   946   , begin_opCompareAndSwap
   947     , lir_cas_long
   948     , lir_cas_obj
   949     , lir_cas_int
   950   , end_opCompareAndSwap
   951   , begin_opMDOProfile
   952     , lir_profile_call
   953   , end_opMDOProfile
   954 };
   957 enum LIR_Condition {
   958     lir_cond_equal
   959   , lir_cond_notEqual
   960   , lir_cond_less
   961   , lir_cond_lessEqual
   962   , lir_cond_greaterEqual
   963   , lir_cond_greater
   964   , lir_cond_belowEqual
   965   , lir_cond_aboveEqual
   966   , lir_cond_always
   967   , lir_cond_unknown = -1
   968 };
   971 enum LIR_PatchCode {
   972   lir_patch_none,
   973   lir_patch_low,
   974   lir_patch_high,
   975   lir_patch_normal
   976 };
   979 enum LIR_MoveKind {
   980   lir_move_normal,
   981   lir_move_volatile,
   982   lir_move_unaligned,
   983   lir_move_max_flag
   984 };
   987 // --------------------------------------------------
   988 // LIR_Op
   989 // --------------------------------------------------
   990 class LIR_Op: public CompilationResourceObj {
   991  friend class LIR_OpVisitState;
   993 #ifdef ASSERT
   994  private:
   995   const char *  _file;
   996   int           _line;
   997 #endif
   999  protected:
  1000   LIR_Opr       _result;
  1001   unsigned short _code;
  1002   unsigned short _flags;
  1003   CodeEmitInfo* _info;
  1004   int           _id;     // value id for register allocation
  1005   int           _fpu_pop_count;
  1006   Instruction*  _source; // for debugging
  1008   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
  1010  protected:
  1011   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
  1013  public:
  1014   LIR_Op()
  1015     : _result(LIR_OprFact::illegalOpr)
  1016     , _code(lir_none)
  1017     , _flags(0)
  1018     , _info(NULL)
  1019 #ifdef ASSERT
  1020     , _file(NULL)
  1021     , _line(0)
  1022 #endif
  1023     , _fpu_pop_count(0)
  1024     , _source(NULL)
  1025     , _id(-1)                             {}
  1027   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
  1028     : _result(result)
  1029     , _code(code)
  1030     , _flags(0)
  1031     , _info(info)
  1032 #ifdef ASSERT
  1033     , _file(NULL)
  1034     , _line(0)
  1035 #endif
  1036     , _fpu_pop_count(0)
  1037     , _source(NULL)
  1038     , _id(-1)                             {}
  1040   CodeEmitInfo* info() const                  { return _info;   }
  1041   LIR_Code code()      const                  { return (LIR_Code)_code;   }
  1042   LIR_Opr result_opr() const                  { return _result; }
  1043   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
  1045 #ifdef ASSERT
  1046   void set_file_and_line(const char * file, int line) {
  1047     _file = file;
  1048     _line = line;
  1050 #endif
  1052   virtual const char * name() const PRODUCT_RETURN0;
  1054   int id()             const                  { return _id;     }
  1055   void set_id(int id)                         { _id = id; }
  1057   // FPU stack simulation helpers -- only used on Intel
  1058   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
  1059   int  fpu_pop_count() const                  { return _fpu_pop_count; }
  1060   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
  1062   Instruction* source() const                 { return _source; }
  1063   void set_source(Instruction* ins)           { _source = ins; }
  1065   virtual void emit_code(LIR_Assembler* masm) = 0;
  1066   virtual void print_instr(outputStream* out) const   = 0;
  1067   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
  1069   virtual LIR_OpCall* as_OpCall() { return NULL; }
  1070   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
  1071   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
  1072   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
  1073   virtual LIR_OpLock* as_OpLock() { return NULL; }
  1074   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
  1075   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
  1076   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
  1077   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
  1078   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
  1079   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
  1080   virtual LIR_Op0* as_Op0() { return NULL; }
  1081   virtual LIR_Op1* as_Op1() { return NULL; }
  1082   virtual LIR_Op2* as_Op2() { return NULL; }
  1083   virtual LIR_Op3* as_Op3() { return NULL; }
  1084   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
  1085   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
  1086   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
  1087   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
  1089   virtual void verify() const {}
  1090 };
  1092 // for calls
  1093 class LIR_OpCall: public LIR_Op {
  1094  friend class LIR_OpVisitState;
  1096  protected:
  1097   address      _addr;
  1098   LIR_OprList* _arguments;
  1099  protected:
  1100   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
  1101              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1102     : LIR_Op(code, result, info)
  1103     , _arguments(arguments)
  1104     , _addr(addr) {}
  1106  public:
  1107   address addr() const                           { return _addr; }
  1108   const LIR_OprList* arguments() const           { return _arguments; }
  1109   virtual LIR_OpCall* as_OpCall()                { return this; }
  1110 };
  1113 // --------------------------------------------------
  1114 // LIR_OpJavaCall
  1115 // --------------------------------------------------
  1116 class LIR_OpJavaCall: public LIR_OpCall {
  1117  friend class LIR_OpVisitState;
  1119  private:
  1120   ciMethod* _method;
  1121   LIR_Opr   _receiver;
  1122   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
  1124  public:
  1125   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1126                  LIR_Opr receiver, LIR_Opr result,
  1127                  address addr, LIR_OprList* arguments,
  1128                  CodeEmitInfo* info)
  1129   : LIR_OpCall(code, addr, result, arguments, info)
  1130   , _receiver(receiver)
  1131   , _method(method)
  1132   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1133   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1135   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1136                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
  1137                  LIR_OprList* arguments, CodeEmitInfo* info)
  1138   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
  1139   , _receiver(receiver)
  1140   , _method(method)
  1141   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1142   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1144   LIR_Opr receiver() const                       { return _receiver; }
  1145   ciMethod* method() const                       { return _method;   }
  1147   // JSR 292 support.
  1148   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
  1149   bool is_method_handle_invoke() const {
  1150     return
  1151       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
  1152       ||
  1153       (method()->holder()->name() == ciSymbol::java_dyn_MethodHandle() &&
  1154        methodOopDesc::is_method_handle_invoke_name(method()->name()->sid()));
  1157   intptr_t vtable_offset() const {
  1158     assert(_code == lir_virtual_call, "only have vtable for real vcall");
  1159     return (intptr_t) addr();
  1162   virtual void emit_code(LIR_Assembler* masm);
  1163   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
  1164   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1165 };
  1167 // --------------------------------------------------
  1168 // LIR_OpLabel
  1169 // --------------------------------------------------
  1170 // Location where a branch can continue
  1171 class LIR_OpLabel: public LIR_Op {
  1172  friend class LIR_OpVisitState;
  1174  private:
  1175   Label* _label;
  1176  public:
  1177   LIR_OpLabel(Label* lbl)
  1178    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
  1179    , _label(lbl)                                 {}
  1180   Label* label() const                           { return _label; }
  1182   virtual void emit_code(LIR_Assembler* masm);
  1183   virtual LIR_OpLabel* as_OpLabel() { return this; }
  1184   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1185 };
  1187 // LIR_OpArrayCopy
  1188 class LIR_OpArrayCopy: public LIR_Op {
  1189  friend class LIR_OpVisitState;
  1191  private:
  1192   ArrayCopyStub*  _stub;
  1193   LIR_Opr   _src;
  1194   LIR_Opr   _src_pos;
  1195   LIR_Opr   _dst;
  1196   LIR_Opr   _dst_pos;
  1197   LIR_Opr   _length;
  1198   LIR_Opr   _tmp;
  1199   ciArrayKlass* _expected_type;
  1200   int       _flags;
  1202 public:
  1203   enum Flags {
  1204     src_null_check         = 1 << 0,
  1205     dst_null_check         = 1 << 1,
  1206     src_pos_positive_check = 1 << 2,
  1207     dst_pos_positive_check = 1 << 3,
  1208     length_positive_check  = 1 << 4,
  1209     src_range_check        = 1 << 5,
  1210     dst_range_check        = 1 << 6,
  1211     type_check             = 1 << 7,
  1212     all_flags              = (1 << 8) - 1
  1213   };
  1215   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
  1216                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
  1218   LIR_Opr src() const                            { return _src; }
  1219   LIR_Opr src_pos() const                        { return _src_pos; }
  1220   LIR_Opr dst() const                            { return _dst; }
  1221   LIR_Opr dst_pos() const                        { return _dst_pos; }
  1222   LIR_Opr length() const                         { return _length; }
  1223   LIR_Opr tmp() const                            { return _tmp; }
  1224   int flags() const                              { return _flags; }
  1225   ciArrayKlass* expected_type() const            { return _expected_type; }
  1226   ArrayCopyStub* stub() const                    { return _stub; }
  1228   virtual void emit_code(LIR_Assembler* masm);
  1229   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
  1230   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1231 };
  1234 // --------------------------------------------------
  1235 // LIR_Op0
  1236 // --------------------------------------------------
  1237 class LIR_Op0: public LIR_Op {
  1238  friend class LIR_OpVisitState;
  1240  public:
  1241   LIR_Op0(LIR_Code code)
  1242    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1243   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
  1244    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1246   virtual void emit_code(LIR_Assembler* masm);
  1247   virtual LIR_Op0* as_Op0() { return this; }
  1248   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1249 };
  1252 // --------------------------------------------------
  1253 // LIR_Op1
  1254 // --------------------------------------------------
  1256 class LIR_Op1: public LIR_Op {
  1257  friend class LIR_OpVisitState;
  1259  protected:
  1260   LIR_Opr         _opr;   // input operand
  1261   BasicType       _type;  // Operand types
  1262   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
  1264   static void print_patch_code(outputStream* out, LIR_PatchCode code);
  1266   void set_kind(LIR_MoveKind kind) {
  1267     assert(code() == lir_move, "must be");
  1268     _flags = kind;
  1271  public:
  1272   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
  1273     : LIR_Op(code, result, info)
  1274     , _opr(opr)
  1275     , _patch(patch)
  1276     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1278   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
  1279     : LIR_Op(code, result, info)
  1280     , _opr(opr)
  1281     , _patch(patch)
  1282     , _type(type)                      {
  1283     assert(code == lir_move, "must be");
  1284     set_kind(kind);
  1287   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
  1288     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1289     , _opr(opr)
  1290     , _patch(lir_patch_none)
  1291     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1293   LIR_Opr in_opr()           const               { return _opr;   }
  1294   LIR_PatchCode patch_code() const               { return _patch; }
  1295   BasicType type()           const               { return _type;  }
  1297   LIR_MoveKind move_kind() const {
  1298     assert(code() == lir_move, "must be");
  1299     return (LIR_MoveKind)_flags;
  1302   virtual void emit_code(LIR_Assembler* masm);
  1303   virtual LIR_Op1* as_Op1() { return this; }
  1304   virtual const char * name() const PRODUCT_RETURN0;
  1306   void set_in_opr(LIR_Opr opr) { _opr = opr; }
  1308   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1309   virtual void verify() const;
  1310 };
  1313 // for runtime calls
  1314 class LIR_OpRTCall: public LIR_OpCall {
  1315  friend class LIR_OpVisitState;
  1317  private:
  1318   LIR_Opr _tmp;
  1319  public:
  1320   LIR_OpRTCall(address addr, LIR_Opr tmp,
  1321                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1322     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
  1323     , _tmp(tmp) {}
  1325   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1326   virtual void emit_code(LIR_Assembler* masm);
  1327   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
  1329   LIR_Opr tmp() const                            { return _tmp; }
  1331   virtual void verify() const;
  1332 };
  1335 class LIR_OpBranch: public LIR_Op {
  1336  friend class LIR_OpVisitState;
  1338  private:
  1339   LIR_Condition _cond;
  1340   BasicType     _type;
  1341   Label*        _label;
  1342   BlockBegin*   _block;  // if this is a branch to a block, this is the block
  1343   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
  1344   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
  1346  public:
  1347   LIR_OpBranch(LIR_Condition cond, Label* lbl)
  1348     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
  1349     , _cond(cond)
  1350     , _label(lbl)
  1351     , _block(NULL)
  1352     , _ublock(NULL)
  1353     , _stub(NULL) { }
  1355   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
  1356   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
  1358   // for unordered comparisons
  1359   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
  1361   LIR_Condition cond()        const              { return _cond;        }
  1362   BasicType     type()        const              { return _type;        }
  1363   Label*        label()       const              { return _label;       }
  1364   BlockBegin*   block()       const              { return _block;       }
  1365   BlockBegin*   ublock()      const              { return _ublock;      }
  1366   CodeStub*     stub()        const              { return _stub;       }
  1368   void          change_block(BlockBegin* b);
  1369   void          change_ublock(BlockBegin* b);
  1370   void          negate_cond();
  1372   virtual void emit_code(LIR_Assembler* masm);
  1373   virtual LIR_OpBranch* as_OpBranch() { return this; }
  1374   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1375 };
  1378 class ConversionStub;
  1380 class LIR_OpConvert: public LIR_Op1 {
  1381  friend class LIR_OpVisitState;
  1383  private:
  1384    Bytecodes::Code _bytecode;
  1385    ConversionStub* _stub;
  1386 #ifdef PPC
  1387   LIR_Opr _tmp1;
  1388   LIR_Opr _tmp2;
  1389 #endif
  1391  public:
  1392    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
  1393      : LIR_Op1(lir_convert, opr, result)
  1394      , _stub(stub)
  1395 #ifdef PPC
  1396      , _tmp1(LIR_OprDesc::illegalOpr())
  1397      , _tmp2(LIR_OprDesc::illegalOpr())
  1398 #endif
  1399      , _bytecode(code)                           {}
  1401 #ifdef PPC
  1402    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
  1403                  ,LIR_Opr tmp1, LIR_Opr tmp2)
  1404      : LIR_Op1(lir_convert, opr, result)
  1405      , _stub(stub)
  1406      , _tmp1(tmp1)
  1407      , _tmp2(tmp2)
  1408      , _bytecode(code)                           {}
  1409 #endif
  1411   Bytecodes::Code bytecode() const               { return _bytecode; }
  1412   ConversionStub* stub() const                   { return _stub; }
  1413 #ifdef PPC
  1414   LIR_Opr tmp1() const                           { return _tmp1; }
  1415   LIR_Opr tmp2() const                           { return _tmp2; }
  1416 #endif
  1418   virtual void emit_code(LIR_Assembler* masm);
  1419   virtual LIR_OpConvert* as_OpConvert() { return this; }
  1420   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1422   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
  1423 };
  1426 // LIR_OpAllocObj
  1427 class LIR_OpAllocObj : public LIR_Op1 {
  1428  friend class LIR_OpVisitState;
  1430  private:
  1431   LIR_Opr _tmp1;
  1432   LIR_Opr _tmp2;
  1433   LIR_Opr _tmp3;
  1434   LIR_Opr _tmp4;
  1435   int     _hdr_size;
  1436   int     _obj_size;
  1437   CodeStub* _stub;
  1438   bool    _init_check;
  1440  public:
  1441   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
  1442                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
  1443                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
  1444     : LIR_Op1(lir_alloc_object, klass, result)
  1445     , _tmp1(t1)
  1446     , _tmp2(t2)
  1447     , _tmp3(t3)
  1448     , _tmp4(t4)
  1449     , _hdr_size(hdr_size)
  1450     , _obj_size(obj_size)
  1451     , _init_check(init_check)
  1452     , _stub(stub)                                { }
  1454   LIR_Opr klass()        const                   { return in_opr();     }
  1455   LIR_Opr obj()          const                   { return result_opr(); }
  1456   LIR_Opr tmp1()         const                   { return _tmp1;        }
  1457   LIR_Opr tmp2()         const                   { return _tmp2;        }
  1458   LIR_Opr tmp3()         const                   { return _tmp3;        }
  1459   LIR_Opr tmp4()         const                   { return _tmp4;        }
  1460   int     header_size()  const                   { return _hdr_size;    }
  1461   int     object_size()  const                   { return _obj_size;    }
  1462   bool    init_check()   const                   { return _init_check;  }
  1463   CodeStub* stub()       const                   { return _stub;        }
  1465   virtual void emit_code(LIR_Assembler* masm);
  1466   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
  1467   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1468 };
  1471 // LIR_OpRoundFP
  1472 class LIR_OpRoundFP : public LIR_Op1 {
  1473  friend class LIR_OpVisitState;
  1475  private:
  1476   LIR_Opr _tmp;
  1478  public:
  1479   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
  1480     : LIR_Op1(lir_roundfp, reg, result)
  1481     , _tmp(stack_loc_temp) {}
  1483   LIR_Opr tmp() const                            { return _tmp; }
  1484   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
  1485   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1486 };
  1488 // LIR_OpTypeCheck
  1489 class LIR_OpTypeCheck: public LIR_Op {
  1490  friend class LIR_OpVisitState;
  1492  private:
  1493   LIR_Opr       _object;
  1494   LIR_Opr       _array;
  1495   ciKlass*      _klass;
  1496   LIR_Opr       _tmp1;
  1497   LIR_Opr       _tmp2;
  1498   LIR_Opr       _tmp3;
  1499   bool          _fast_check;
  1500   CodeEmitInfo* _info_for_patch;
  1501   CodeEmitInfo* _info_for_exception;
  1502   CodeStub*     _stub;
  1503   ciMethod*     _profiled_method;
  1504   int           _profiled_bci;
  1505   bool          _should_profile;
  1507 public:
  1508   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1509                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1510                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
  1511   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
  1512                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  1514   LIR_Opr object() const                         { return _object;         }
  1515   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
  1516   LIR_Opr tmp1() const                           { return _tmp1;           }
  1517   LIR_Opr tmp2() const                           { return _tmp2;           }
  1518   LIR_Opr tmp3() const                           { return _tmp3;           }
  1519   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
  1520   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
  1521   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
  1522   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
  1523   CodeStub* stub() const                         { return _stub;           }
  1525   // methodDataOop profiling
  1526   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
  1527   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
  1528   void set_should_profile(bool b)                { _should_profile = b;       }
  1529   ciMethod* profiled_method() const              { return _profiled_method;   }
  1530   int       profiled_bci() const                 { return _profiled_bci;      }
  1531   bool      should_profile() const               { return _should_profile;    }
  1533   virtual void emit_code(LIR_Assembler* masm);
  1534   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
  1535   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1536 };
  1538 // LIR_Op2
  1539 class LIR_Op2: public LIR_Op {
  1540  friend class LIR_OpVisitState;
  1542   int  _fpu_stack_size; // for sin/cos implementation on Intel
  1544  protected:
  1545   LIR_Opr   _opr1;
  1546   LIR_Opr   _opr2;
  1547   BasicType _type;
  1548   LIR_Opr   _tmp;
  1549   LIR_Condition _condition;
  1551   void verify() const;
  1553  public:
  1554   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
  1555     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1556     , _opr1(opr1)
  1557     , _opr2(opr2)
  1558     , _type(T_ILLEGAL)
  1559     , _condition(condition)
  1560     , _fpu_stack_size(0)
  1561     , _tmp(LIR_OprFact::illegalOpr) {
  1562     assert(code == lir_cmp, "code check");
  1565   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
  1566     : LIR_Op(code, result, NULL)
  1567     , _opr1(opr1)
  1568     , _opr2(opr2)
  1569     , _type(T_ILLEGAL)
  1570     , _condition(condition)
  1571     , _fpu_stack_size(0)
  1572     , _tmp(LIR_OprFact::illegalOpr) {
  1573     assert(code == lir_cmove, "code check");
  1576   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
  1577           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
  1578     : LIR_Op(code, result, info)
  1579     , _opr1(opr1)
  1580     , _opr2(opr2)
  1581     , _type(type)
  1582     , _condition(lir_cond_unknown)
  1583     , _fpu_stack_size(0)
  1584     , _tmp(LIR_OprFact::illegalOpr) {
  1585     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1588   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
  1589     : LIR_Op(code, result, NULL)
  1590     , _opr1(opr1)
  1591     , _opr2(opr2)
  1592     , _type(T_ILLEGAL)
  1593     , _condition(lir_cond_unknown)
  1594     , _fpu_stack_size(0)
  1595     , _tmp(tmp) {
  1596     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1599   LIR_Opr in_opr1() const                        { return _opr1; }
  1600   LIR_Opr in_opr2() const                        { return _opr2; }
  1601   BasicType type()  const                        { return _type; }
  1602   LIR_Opr tmp_opr() const                        { return _tmp; }
  1603   LIR_Condition condition() const  {
  1604     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
  1606   void set_condition(LIR_Condition condition) {
  1607     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
  1610   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
  1611   int  fpu_stack_size() const                    { return _fpu_stack_size; }
  1613   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
  1614   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
  1616   virtual void emit_code(LIR_Assembler* masm);
  1617   virtual LIR_Op2* as_Op2() { return this; }
  1618   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1619 };
  1621 class LIR_OpAllocArray : public LIR_Op {
  1622  friend class LIR_OpVisitState;
  1624  private:
  1625   LIR_Opr   _klass;
  1626   LIR_Opr   _len;
  1627   LIR_Opr   _tmp1;
  1628   LIR_Opr   _tmp2;
  1629   LIR_Opr   _tmp3;
  1630   LIR_Opr   _tmp4;
  1631   BasicType _type;
  1632   CodeStub* _stub;
  1634  public:
  1635   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
  1636     : LIR_Op(lir_alloc_array, result, NULL)
  1637     , _klass(klass)
  1638     , _len(len)
  1639     , _tmp1(t1)
  1640     , _tmp2(t2)
  1641     , _tmp3(t3)
  1642     , _tmp4(t4)
  1643     , _type(type)
  1644     , _stub(stub) {}
  1646   LIR_Opr   klass()   const                      { return _klass;       }
  1647   LIR_Opr   len()     const                      { return _len;         }
  1648   LIR_Opr   obj()     const                      { return result_opr(); }
  1649   LIR_Opr   tmp1()    const                      { return _tmp1;        }
  1650   LIR_Opr   tmp2()    const                      { return _tmp2;        }
  1651   LIR_Opr   tmp3()    const                      { return _tmp3;        }
  1652   LIR_Opr   tmp4()    const                      { return _tmp4;        }
  1653   BasicType type()    const                      { return _type;        }
  1654   CodeStub* stub()    const                      { return _stub;        }
  1656   virtual void emit_code(LIR_Assembler* masm);
  1657   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
  1658   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1659 };
  1662 class LIR_Op3: public LIR_Op {
  1663  friend class LIR_OpVisitState;
  1665  private:
  1666   LIR_Opr _opr1;
  1667   LIR_Opr _opr2;
  1668   LIR_Opr _opr3;
  1669  public:
  1670   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
  1671     : LIR_Op(code, result, info)
  1672     , _opr1(opr1)
  1673     , _opr2(opr2)
  1674     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
  1675   LIR_Opr in_opr1() const                        { return _opr1; }
  1676   LIR_Opr in_opr2() const                        { return _opr2; }
  1677   LIR_Opr in_opr3() const                        { return _opr3; }
  1679   virtual void emit_code(LIR_Assembler* masm);
  1680   virtual LIR_Op3* as_Op3() { return this; }
  1681   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1682 };
  1685 //--------------------------------
  1686 class LabelObj: public CompilationResourceObj {
  1687  private:
  1688   Label _label;
  1689  public:
  1690   LabelObj()                                     {}
  1691   Label* label()                                 { return &_label; }
  1692 };
  1695 class LIR_OpLock: public LIR_Op {
  1696  friend class LIR_OpVisitState;
  1698  private:
  1699   LIR_Opr _hdr;
  1700   LIR_Opr _obj;
  1701   LIR_Opr _lock;
  1702   LIR_Opr _scratch;
  1703   CodeStub* _stub;
  1704  public:
  1705   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
  1706     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1707     , _hdr(hdr)
  1708     , _obj(obj)
  1709     , _lock(lock)
  1710     , _scratch(scratch)
  1711     , _stub(stub)                      {}
  1713   LIR_Opr hdr_opr() const                        { return _hdr; }
  1714   LIR_Opr obj_opr() const                        { return _obj; }
  1715   LIR_Opr lock_opr() const                       { return _lock; }
  1716   LIR_Opr scratch_opr() const                    { return _scratch; }
  1717   CodeStub* stub() const                         { return _stub; }
  1719   virtual void emit_code(LIR_Assembler* masm);
  1720   virtual LIR_OpLock* as_OpLock() { return this; }
  1721   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1722 };
  1725 class LIR_OpDelay: public LIR_Op {
  1726  friend class LIR_OpVisitState;
  1728  private:
  1729   LIR_Op* _op;
  1731  public:
  1732   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
  1733     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
  1734     _op(op) {
  1735     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
  1737   virtual void emit_code(LIR_Assembler* masm);
  1738   virtual LIR_OpDelay* as_OpDelay() { return this; }
  1739   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1740   LIR_Op* delay_op() const { return _op; }
  1741   CodeEmitInfo* call_info() const { return info(); }
  1742 };
  1745 // LIR_OpCompareAndSwap
  1746 class LIR_OpCompareAndSwap : public LIR_Op {
  1747  friend class LIR_OpVisitState;
  1749  private:
  1750   LIR_Opr _addr;
  1751   LIR_Opr _cmp_value;
  1752   LIR_Opr _new_value;
  1753   LIR_Opr _tmp1;
  1754   LIR_Opr _tmp2;
  1756  public:
  1757   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  1758                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
  1759     : LIR_Op(code, result, NULL)  // no result, no info
  1760     , _addr(addr)
  1761     , _cmp_value(cmp_value)
  1762     , _new_value(new_value)
  1763     , _tmp1(t1)
  1764     , _tmp2(t2)                                  { }
  1766   LIR_Opr addr()        const                    { return _addr;  }
  1767   LIR_Opr cmp_value()   const                    { return _cmp_value; }
  1768   LIR_Opr new_value()   const                    { return _new_value; }
  1769   LIR_Opr tmp1()        const                    { return _tmp1;      }
  1770   LIR_Opr tmp2()        const                    { return _tmp2;      }
  1772   virtual void emit_code(LIR_Assembler* masm);
  1773   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
  1774   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1775 };
  1777 // LIR_OpProfileCall
  1778 class LIR_OpProfileCall : public LIR_Op {
  1779  friend class LIR_OpVisitState;
  1781  private:
  1782   ciMethod* _profiled_method;
  1783   int _profiled_bci;
  1784   LIR_Opr _mdo;
  1785   LIR_Opr _recv;
  1786   LIR_Opr _tmp1;
  1787   ciKlass* _known_holder;
  1789  public:
  1790   // Destroys recv
  1791   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
  1792     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1793     , _profiled_method(profiled_method)
  1794     , _profiled_bci(profiled_bci)
  1795     , _mdo(mdo)
  1796     , _recv(recv)
  1797     , _tmp1(t1)
  1798     , _known_holder(known_holder)                { }
  1800   ciMethod* profiled_method() const              { return _profiled_method;  }
  1801   int       profiled_bci()    const              { return _profiled_bci;     }
  1802   LIR_Opr   mdo()             const              { return _mdo;              }
  1803   LIR_Opr   recv()            const              { return _recv;             }
  1804   LIR_Opr   tmp1()            const              { return _tmp1;             }
  1805   ciKlass*  known_holder()    const              { return _known_holder;     }
  1807   virtual void emit_code(LIR_Assembler* masm);
  1808   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
  1809   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1810 };
  1812 class LIR_InsertionBuffer;
  1814 //--------------------------------LIR_List---------------------------------------------------
  1815 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
  1816 // The LIR instructions are appended by the LIR_List class itself;
  1817 //
  1818 // Notes:
  1819 // - all offsets are(should be) in bytes
  1820 // - local positions are specified with an offset, with offset 0 being local 0
  1822 class LIR_List: public CompilationResourceObj {
  1823  private:
  1824   LIR_OpList  _operations;
  1826   Compilation*  _compilation;
  1827 #ifndef PRODUCT
  1828   BlockBegin*   _block;
  1829 #endif
  1830 #ifdef ASSERT
  1831   const char *  _file;
  1832   int           _line;
  1833 #endif
  1835   void append(LIR_Op* op) {
  1836     if (op->source() == NULL)
  1837       op->set_source(_compilation->current_instruction());
  1838 #ifndef PRODUCT
  1839     if (PrintIRWithLIR) {
  1840       _compilation->maybe_print_current_instruction();
  1841       op->print(); tty->cr();
  1843 #endif // PRODUCT
  1845     _operations.append(op);
  1847 #ifdef ASSERT
  1848     op->verify();
  1849     op->set_file_and_line(_file, _line);
  1850     _file = NULL;
  1851     _line = 0;
  1852 #endif
  1855  public:
  1856   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
  1858 #ifdef ASSERT
  1859   void set_file_and_line(const char * file, int line);
  1860 #endif
  1862   //---------- accessors ---------------
  1863   LIR_OpList* instructions_list()                { return &_operations; }
  1864   int         length() const                     { return _operations.length(); }
  1865   LIR_Op*     at(int i) const                    { return _operations.at(i); }
  1867   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
  1869   // insert LIR_Ops in buffer to right places in LIR_List
  1870   void append(LIR_InsertionBuffer* buffer);
  1872   //---------- mutators ---------------
  1873   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
  1874   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
  1875   void remove_at(int i)                          { _operations.remove_at(i); }
  1877   //---------- printing -------------
  1878   void print_instructions() PRODUCT_RETURN;
  1881   //---------- instructions -------------
  1882   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1883                         address dest, LIR_OprList* arguments,
  1884                         CodeEmitInfo* info) {
  1885     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
  1887   void call_static(ciMethod* method, LIR_Opr result,
  1888                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1889     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
  1891   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1892                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1893     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
  1895   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1896                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
  1897     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
  1899   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1900                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1901     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
  1904   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
  1905   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
  1906   void membar()                                  { append(new LIR_Op0(lir_membar)); }
  1907   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
  1908   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
  1910   void nop()                                     { append(new LIR_Op0(lir_nop)); }
  1911   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
  1913   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
  1914   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
  1916   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
  1918   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
  1919   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
  1921   // result is a stack location for old backend and vreg for UseLinearScan
  1922   // stack_loc_temp is an illegal register for old backend
  1923   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
  1924   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1925   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1926   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1927   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  1928   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
  1929   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
  1931   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
  1933   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
  1934   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
  1936   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
  1938   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
  1940 #ifdef PPC
  1941   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
  1942 #endif
  1943   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
  1945   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
  1946   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
  1947   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
  1949   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
  1950   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
  1952   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
  1953   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  1954     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
  1956   void unwind_exception(LIR_Opr exceptionOop) {
  1957     append(new LIR_Op1(lir_unwind, exceptionOop));
  1960   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  1961     append(new LIR_Op2(lir_compare_to,  left, right, dst));
  1964   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
  1965   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
  1967   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
  1968     append(new LIR_Op2(lir_cmp, condition, left, right, info));
  1970   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
  1971     cmp(condition, left, LIR_OprFact::intConst(right), info);
  1974   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
  1975   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
  1977   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
  1978     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
  1981   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  1982                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  1983   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  1984                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  1985   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  1986                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  1988   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
  1989   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
  1990   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
  1991   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
  1992   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
  1993   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
  1994   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
  1996   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
  1997   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
  1998   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
  1999   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
  2000   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
  2001   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
  2002   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
  2004   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2005   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2007   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2009   void prefetch(LIR_Address* addr, bool is_store);
  2011   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2012   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2013   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2014   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2015   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2017   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2018   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2019   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2020   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2022   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
  2023   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
  2025   // jump is an unconditional branch
  2026   void jump(BlockBegin* block) {
  2027     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
  2029   void jump(CodeStub* stub) {
  2030     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
  2032   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
  2033   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
  2034     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2035     append(new LIR_OpBranch(cond, type, block));
  2037   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
  2038     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2039     append(new LIR_OpBranch(cond, type, stub));
  2041   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
  2042     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
  2043     append(new LIR_OpBranch(cond, type, block, unordered));
  2046   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2047   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2048   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2050   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2051   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2052   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2054   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
  2055   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
  2057   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
  2058     append(new LIR_OpRTCall(routine, tmp, result, arguments));
  2061   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
  2062                     LIR_OprList* arguments, CodeEmitInfo* info) {
  2063     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
  2066   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
  2067   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
  2068   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
  2070   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
  2071   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
  2072   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
  2074   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
  2076   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
  2078   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
  2079   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  2081   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
  2082                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  2083                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  2084                   ciMethod* profiled_method, int profiled_bci);
  2085   // methodDataOop profiling
  2086   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
  2087     append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass));
  2089 };
  2091 void print_LIR(BlockList* blocks);
  2093 class LIR_InsertionBuffer : public CompilationResourceObj {
  2094  private:
  2095   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
  2097   // list of insertion points. index and count are stored alternately:
  2098   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
  2099   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
  2100   intStack    _index_and_count;
  2102   // the LIR_Ops to be inserted
  2103   LIR_OpList  _ops;
  2105   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
  2106   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
  2107   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
  2109 #ifdef ASSERT
  2110   void verify();
  2111 #endif
  2112  public:
  2113   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
  2115   // must be called before using the insertion buffer
  2116   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
  2117   bool initialized() const  { return _lir != NULL; }
  2118   // called automatically when the buffer is appended to the LIR_List
  2119   void finish()             { _lir = NULL; }
  2121   // accessors
  2122   LIR_List*  lir_list() const             { return _lir; }
  2123   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
  2124   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
  2125   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
  2127   int number_of_ops() const               { return _ops.length(); }
  2128   LIR_Op* op_at(int i) const              { return _ops.at(i); }
  2130   // append an instruction to the buffer
  2131   void append(int index, LIR_Op* op);
  2133   // instruction
  2134   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  2135 };
  2138 //
  2139 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
  2140 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
  2141 // information about the input, output and temporaries used by the
  2142 // op to be recorded.  It also records whether the op has call semantics
  2143 // and also records all the CodeEmitInfos used by this op.
  2144 //
  2147 class LIR_OpVisitState: public StackObj {
  2148  public:
  2149   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
  2151   enum {
  2152     maxNumberOfOperands = 16,
  2153     maxNumberOfInfos = 4
  2154   };
  2156  private:
  2157   LIR_Op*          _op;
  2159   // optimization: the operands and infos are not stored in a variable-length
  2160   //               list, but in a fixed-size array to save time of size checks and resizing
  2161   int              _oprs_len[numModes];
  2162   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
  2163   int _info_len;
  2164   CodeEmitInfo*    _info_new[maxNumberOfInfos];
  2166   bool             _has_call;
  2167   bool             _has_slow_case;
  2170   // only include register operands
  2171   // addresses are decomposed to the base and index registers
  2172   // constants and stack operands are ignored
  2173   void append(LIR_Opr& opr, OprMode mode) {
  2174     assert(opr->is_valid(), "should not call this otherwise");
  2175     assert(mode >= 0 && mode < numModes, "bad mode");
  2177     if (opr->is_register()) {
  2178        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2179       _oprs_new[mode][_oprs_len[mode]++] = &opr;
  2181     } else if (opr->is_pointer()) {
  2182       LIR_Address* address = opr->as_address_ptr();
  2183       if (address != NULL) {
  2184         // special handling for addresses: add base and index register of the address
  2185         // both are always input operands!
  2186         if (address->_base->is_valid()) {
  2187           assert(address->_base->is_register(), "must be");
  2188           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2189           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
  2191         if (address->_index->is_valid()) {
  2192           assert(address->_index->is_register(), "must be");
  2193           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2194           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
  2197       } else {
  2198         assert(opr->is_constant(), "constant operands are not processed");
  2200     } else {
  2201       assert(opr->is_stack(), "stack operands are not processed");
  2205   void append(CodeEmitInfo* info) {
  2206     assert(info != NULL, "should not call this otherwise");
  2207     assert(_info_len < maxNumberOfInfos, "array overflow");
  2208     _info_new[_info_len++] = info;
  2211  public:
  2212   LIR_OpVisitState()         { reset(); }
  2214   LIR_Op* op() const         { return _op; }
  2215   void set_op(LIR_Op* op)    { reset(); _op = op; }
  2217   bool has_call() const      { return _has_call; }
  2218   bool has_slow_case() const { return _has_slow_case; }
  2220   void reset() {
  2221     _op = NULL;
  2222     _has_call = false;
  2223     _has_slow_case = false;
  2225     _oprs_len[inputMode] = 0;
  2226     _oprs_len[tempMode] = 0;
  2227     _oprs_len[outputMode] = 0;
  2228     _info_len = 0;
  2232   int opr_count(OprMode mode) const {
  2233     assert(mode >= 0 && mode < numModes, "bad mode");
  2234     return _oprs_len[mode];
  2237   LIR_Opr opr_at(OprMode mode, int index) const {
  2238     assert(mode >= 0 && mode < numModes, "bad mode");
  2239     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2240     return *_oprs_new[mode][index];
  2243   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
  2244     assert(mode >= 0 && mode < numModes, "bad mode");
  2245     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2246     *_oprs_new[mode][index] = opr;
  2249   int info_count() const {
  2250     return _info_len;
  2253   CodeEmitInfo* info_at(int index) const {
  2254     assert(index < _info_len, "index out of bounds");
  2255     return _info_new[index];
  2258   XHandlers* all_xhandler();
  2260   // collects all register operands of the instruction
  2261   void visit(LIR_Op* op);
  2263 #if ASSERT
  2264   // check that an operation has no operands
  2265   bool no_operands(LIR_Op* op);
  2266 #endif
  2268   // LIR_Op visitor functions use these to fill in the state
  2269   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
  2270   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
  2271   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
  2272   void do_info(CodeEmitInfo* info)        { append(info); }
  2274   void do_stub(CodeStub* stub);
  2275   void do_call()                          { _has_call = true; }
  2276   void do_slow_case()                     { _has_slow_case = true; }
  2277   void do_slow_case(CodeEmitInfo* info) {
  2278     _has_slow_case = true;
  2279     append(info);
  2281 };
  2284 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };

mercurial