src/share/vm/runtime/deoptimization.cpp

Mon, 01 Feb 2010 16:49:49 -0800

author
kvn
date
Mon, 01 Feb 2010 16:49:49 -0800
changeset 1641
87684f1a88b5
parent 1639
18a389214829
child 1688
f70b0d9ab095
permissions
-rw-r--r--

6614597: Performance variability in jvm2008 xml.validation
Summary: Fix incorrect marking of methods as not compilable.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_deoptimization.cpp.incl"
    28 bool DeoptimizationMarker::_is_active = false;
    30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    31                                          int  caller_adjustment,
    32                                          int  number_of_frames,
    33                                          intptr_t* frame_sizes,
    34                                          address* frame_pcs,
    35                                          BasicType return_type) {
    36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    37   _caller_adjustment         = caller_adjustment;
    38   _number_of_frames          = number_of_frames;
    39   _frame_sizes               = frame_sizes;
    40   _frame_pcs                 = frame_pcs;
    41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
    42   _return_type               = return_type;
    43   // PD (x86 only)
    44   _counter_temp              = 0;
    45   _initial_fp                = 0;
    46   _unpack_kind               = 0;
    47   _sender_sp_temp            = 0;
    49   _total_frame_sizes         = size_of_frames();
    50 }
    53 Deoptimization::UnrollBlock::~UnrollBlock() {
    54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
    55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
    56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
    57 }
    60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
    61   assert(register_number < RegisterMap::reg_count, "checking register number");
    62   return &_register_block[register_number * 2];
    63 }
    67 int Deoptimization::UnrollBlock::size_of_frames() const {
    68   // Acount first for the adjustment of the initial frame
    69   int result = _caller_adjustment;
    70   for (int index = 0; index < number_of_frames(); index++) {
    71     result += frame_sizes()[index];
    72   }
    73   return result;
    74 }
    77 void Deoptimization::UnrollBlock::print() {
    78   ttyLocker ttyl;
    79   tty->print_cr("UnrollBlock");
    80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
    81   tty->print(   "  frame_sizes: ");
    82   for (int index = 0; index < number_of_frames(); index++) {
    83     tty->print("%d ", frame_sizes()[index]);
    84   }
    85   tty->cr();
    86 }
    89 // In order to make fetch_unroll_info work properly with escape
    90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
    91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
    92 // of previously eliminated objects occurs in realloc_objects, which is
    93 // called from the method fetch_unroll_info_helper below.
    94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
    95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
    96   // but makes the entry a little slower. There is however a little dance we have to
    97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
    99   // fetch_unroll_info() is called at the beginning of the deoptimization
   100   // handler. Note this fact before we start generating temporary frames
   101   // that can confuse an asynchronous stack walker. This counter is
   102   // decremented at the end of unpack_frames().
   103   thread->inc_in_deopt_handler();
   105   return fetch_unroll_info_helper(thread);
   106 JRT_END
   109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   112   // Note: there is a safepoint safety issue here. No matter whether we enter
   113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   114   // the vframeArray is created.
   115   //
   117   // Allocate our special deoptimization ResourceMark
   118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   120   thread->set_deopt_mark(dmark);
   122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   123   RegisterMap map(thread, true);
   124   RegisterMap dummy_map(thread, false);
   125   // Now get the deoptee with a valid map
   126   frame deoptee = stub_frame.sender(&map);
   128   // Create a growable array of VFrames where each VFrame represents an inlined
   129   // Java frame.  This storage is allocated with the usual system arena.
   130   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   131   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   132   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   133   while (!vf->is_top()) {
   134     assert(vf->is_compiled_frame(), "Wrong frame type");
   135     chunk->push(compiledVFrame::cast(vf));
   136     vf = vf->sender();
   137   }
   138   assert(vf->is_compiled_frame(), "Wrong frame type");
   139   chunk->push(compiledVFrame::cast(vf));
   141 #ifdef COMPILER2
   142   // Reallocate the non-escaping objects and restore their fields. Then
   143   // relock objects if synchronization on them was eliminated.
   144   if (DoEscapeAnalysis) {
   145     if (EliminateAllocations) {
   146       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   147       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   148       bool reallocated = false;
   149       if (objects != NULL) {
   150         JRT_BLOCK
   151           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   152         JRT_END
   153       }
   154       if (reallocated) {
   155         reassign_fields(&deoptee, &map, objects);
   156 #ifndef PRODUCT
   157         if (TraceDeoptimization) {
   158           ttyLocker ttyl;
   159           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   160           print_objects(objects);
   161       }
   162 #endif
   163       }
   164     }
   165     if (EliminateLocks) {
   166 #ifndef PRODUCT
   167       bool first = true;
   168 #endif
   169       for (int i = 0; i < chunk->length(); i++) {
   170         compiledVFrame* cvf = chunk->at(i);
   171         assert (cvf->scope() != NULL,"expect only compiled java frames");
   172         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   173         if (monitors->is_nonempty()) {
   174           relock_objects(monitors, thread);
   175 #ifndef PRODUCT
   176           if (TraceDeoptimization) {
   177             ttyLocker ttyl;
   178             for (int j = 0; j < monitors->length(); j++) {
   179               MonitorInfo* mi = monitors->at(j);
   180               if (mi->eliminated()) {
   181                 if (first) {
   182                   first = false;
   183                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   184                 }
   185                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   186               }
   187             }
   188           }
   189 #endif
   190         }
   191       }
   192     }
   193   }
   194 #endif // COMPILER2
   195   // Ensure that no safepoint is taken after pointers have been stored
   196   // in fields of rematerialized objects.  If a safepoint occurs from here on
   197   // out the java state residing in the vframeArray will be missed.
   198   No_Safepoint_Verifier no_safepoint;
   200   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   202   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   203   thread->set_vframe_array_head(array);
   205   // Now that the vframeArray has been created if we have any deferred local writes
   206   // added by jvmti then we can free up that structure as the data is now in the
   207   // vframeArray
   209   if (thread->deferred_locals() != NULL) {
   210     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   211     int i = 0;
   212     do {
   213       // Because of inlining we could have multiple vframes for a single frame
   214       // and several of the vframes could have deferred writes. Find them all.
   215       if (list->at(i)->id() == array->original().id()) {
   216         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   217         list->remove_at(i);
   218         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   219         delete dlv;
   220       } else {
   221         i++;
   222       }
   223     } while ( i < list->length() );
   224     if (list->length() == 0) {
   225       thread->set_deferred_locals(NULL);
   226       // free the list and elements back to C heap.
   227       delete list;
   228     }
   230   }
   232   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   233   CodeBlob* cb = stub_frame.cb();
   234   // Verify we have the right vframeArray
   235   assert(cb->frame_size() >= 0, "Unexpected frame size");
   236   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   238   // If the deopt call site is a MethodHandle invoke call site we have
   239   // to adjust the unpack_sp.
   240   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   241   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   242     unpack_sp = deoptee.unextended_sp();
   244 #ifdef ASSERT
   245   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   246   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   247 #endif
   248   // This is a guarantee instead of an assert because if vframe doesn't match
   249   // we will unpack the wrong deoptimized frame and wind up in strange places
   250   // where it will be very difficult to figure out what went wrong. Better
   251   // to die an early death here than some very obscure death later when the
   252   // trail is cold.
   253   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   254   // in that it will fail to detect a problem when there is one. This needs
   255   // more work in tiger timeframe.
   256   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   258   int number_of_frames = array->frames();
   260   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   261   // virtual activation, which is the reverse of the elements in the vframes array.
   262   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   263   // +1 because we always have an interpreter return address for the final slot.
   264   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   265   int callee_parameters = 0;
   266   int callee_locals = 0;
   267   int popframe_extra_args = 0;
   268   // Create an interpreter return address for the stub to use as its return
   269   // address so the skeletal frames are perfectly walkable
   270   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   272   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   273   // activation be put back on the expression stack of the caller for reexecution
   274   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   275     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   276   }
   278   //
   279   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   280   // frame_sizes/frame_pcs[1] next oldest frame (int)
   281   // frame_sizes/frame_pcs[n] youngest frame (int)
   282   //
   283   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   284   // owns the space for the return address to it's caller).  Confusing ain't it.
   285   //
   286   // The vframe array can address vframes with indices running from
   287   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   288   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   289   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   290   // so things look a little strange in this loop.
   291   //
   292   for (int index = 0; index < array->frames(); index++ ) {
   293     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   294     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   295     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   296     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   297                                                                                                     callee_locals,
   298                                                                                                     index == 0,
   299                                                                                                     popframe_extra_args);
   300     // This pc doesn't have to be perfect just good enough to identify the frame
   301     // as interpreted so the skeleton frame will be walkable
   302     // The correct pc will be set when the skeleton frame is completely filled out
   303     // The final pc we store in the loop is wrong and will be overwritten below
   304     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   306     callee_parameters = array->element(index)->method()->size_of_parameters();
   307     callee_locals = array->element(index)->method()->max_locals();
   308     popframe_extra_args = 0;
   309   }
   311   // Compute whether the root vframe returns a float or double value.
   312   BasicType return_type;
   313   {
   314     HandleMark hm;
   315     methodHandle method(thread, array->element(0)->method());
   316     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
   317     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
   318   }
   320   // Compute information for handling adapters and adjusting the frame size of the caller.
   321   int caller_adjustment = 0;
   323   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   324   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   325   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   326   //
   327   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   328   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   330   // Compute the amount the oldest interpreter frame will have to adjust
   331   // its caller's stack by. If the caller is a compiled frame then
   332   // we pretend that the callee has no parameters so that the
   333   // extension counts for the full amount of locals and not just
   334   // locals-parms. This is because without a c2i adapter the parm
   335   // area as created by the compiled frame will not be usable by
   336   // the interpreter. (Depending on the calling convention there
   337   // may not even be enough space).
   339   // QQQ I'd rather see this pushed down into last_frame_adjust
   340   // and have it take the sender (aka caller).
   342   if (deopt_sender.is_compiled_frame()) {
   343     caller_adjustment = last_frame_adjust(0, callee_locals);
   344   } else if (callee_locals > callee_parameters) {
   345     // The caller frame may need extending to accommodate
   346     // non-parameter locals of the first unpacked interpreted frame.
   347     // Compute that adjustment.
   348     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   349   }
   352   // If the sender is deoptimized the we must retrieve the address of the handler
   353   // since the frame will "magically" show the original pc before the deopt
   354   // and we'd undo the deopt.
   356   frame_pcs[0] = deopt_sender.raw_pc();
   358   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   360   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   361                                       caller_adjustment * BytesPerWord,
   362                                       number_of_frames,
   363                                       frame_sizes,
   364                                       frame_pcs,
   365                                       return_type);
   366 #if defined(IA32) || defined(AMD64)
   367   // We need a way to pass fp to the unpacking code so the skeletal frames
   368   // come out correct. This is only needed for x86 because of c2 using ebp
   369   // as an allocatable register. So this update is useless (and harmless)
   370   // on the other platforms. It would be nice to do this in a different
   371   // way but even the old style deoptimization had a problem with deriving
   372   // this value. NEEDS_CLEANUP
   373   // Note: now that c1 is using c2's deopt blob we must do this on all
   374   // x86 based platforms
   375   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
   376   *fp_addr = array->sender().fp(); // was adapter_caller
   377 #endif /* IA32 || AMD64 */
   379   if (array->frames() > 1) {
   380     if (VerifyStack && TraceDeoptimization) {
   381       tty->print_cr("Deoptimizing method containing inlining");
   382     }
   383   }
   385   array->set_unroll_block(info);
   386   return info;
   387 }
   389 // Called to cleanup deoptimization data structures in normal case
   390 // after unpacking to stack and when stack overflow error occurs
   391 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   392                                         vframeArray *array) {
   394   // Get array if coming from exception
   395   if (array == NULL) {
   396     array = thread->vframe_array_head();
   397   }
   398   thread->set_vframe_array_head(NULL);
   400   // Free the previous UnrollBlock
   401   vframeArray* old_array = thread->vframe_array_last();
   402   thread->set_vframe_array_last(array);
   404   if (old_array != NULL) {
   405     UnrollBlock* old_info = old_array->unroll_block();
   406     old_array->set_unroll_block(NULL);
   407     delete old_info;
   408     delete old_array;
   409   }
   411   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   412   // inside the vframeArray (StackValueCollections)
   414   delete thread->deopt_mark();
   415   thread->set_deopt_mark(NULL);
   418   if (JvmtiExport::can_pop_frame()) {
   419 #ifndef CC_INTERP
   420     // Regardless of whether we entered this routine with the pending
   421     // popframe condition bit set, we should always clear it now
   422     thread->clear_popframe_condition();
   423 #else
   424     // C++ interpeter will clear has_pending_popframe when it enters
   425     // with method_resume. For deopt_resume2 we clear it now.
   426     if (thread->popframe_forcing_deopt_reexecution())
   427         thread->clear_popframe_condition();
   428 #endif /* CC_INTERP */
   429   }
   431   // unpack_frames() is called at the end of the deoptimization handler
   432   // and (in C2) at the end of the uncommon trap handler. Note this fact
   433   // so that an asynchronous stack walker can work again. This counter is
   434   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   435   // the beginning of uncommon_trap().
   436   thread->dec_in_deopt_handler();
   437 }
   440 // Return BasicType of value being returned
   441 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   443   // We are already active int he special DeoptResourceMark any ResourceObj's we
   444   // allocate will be freed at the end of the routine.
   446   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   447   // but makes the entry a little slower. There is however a little dance we have to
   448   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   449   ResetNoHandleMark rnhm; // No-op in release/product versions
   450   HandleMark hm;
   452   frame stub_frame = thread->last_frame();
   454   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   455   // must point to the vframeArray for the unpack frame.
   456   vframeArray* array = thread->vframe_array_head();
   458 #ifndef PRODUCT
   459   if (TraceDeoptimization) {
   460     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   461   }
   462 #endif
   464   UnrollBlock* info = array->unroll_block();
   466   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   467   array->unpack_to_stack(stub_frame, exec_mode);
   469   BasicType bt = info->return_type();
   471   // If we have an exception pending, claim that the return type is an oop
   472   // so the deopt_blob does not overwrite the exception_oop.
   474   if (exec_mode == Unpack_exception)
   475     bt = T_OBJECT;
   477   // Cleanup thread deopt data
   478   cleanup_deopt_info(thread, array);
   480 #ifndef PRODUCT
   481   if (VerifyStack) {
   482     ResourceMark res_mark;
   484     // Verify that the just-unpacked frames match the interpreter's
   485     // notions of expression stack and locals
   486     vframeArray* cur_array = thread->vframe_array_last();
   487     RegisterMap rm(thread, false);
   488     rm.set_include_argument_oops(false);
   489     bool is_top_frame = true;
   490     int callee_size_of_parameters = 0;
   491     int callee_max_locals = 0;
   492     for (int i = 0; i < cur_array->frames(); i++) {
   493       vframeArrayElement* el = cur_array->element(i);
   494       frame* iframe = el->iframe();
   495       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   497       // Get the oop map for this bci
   498       InterpreterOopMap mask;
   499       int cur_invoke_parameter_size = 0;
   500       bool try_next_mask = false;
   501       int next_mask_expression_stack_size = -1;
   502       int top_frame_expression_stack_adjustment = 0;
   503       methodHandle mh(thread, iframe->interpreter_frame_method());
   504       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   505       BytecodeStream str(mh);
   506       str.set_start(iframe->interpreter_frame_bci());
   507       int max_bci = mh->code_size();
   508       // Get to the next bytecode if possible
   509       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   510       // Check to see if we can grab the number of outgoing arguments
   511       // at an uncommon trap for an invoke (where the compiler
   512       // generates debug info before the invoke has executed)
   513       Bytecodes::Code cur_code = str.next();
   514       if (cur_code == Bytecodes::_invokevirtual ||
   515           cur_code == Bytecodes::_invokespecial ||
   516           cur_code == Bytecodes::_invokestatic  ||
   517           cur_code == Bytecodes::_invokeinterface) {
   518         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
   519         symbolHandle signature(thread, invoke->signature());
   520         ArgumentSizeComputer asc(signature);
   521         cur_invoke_parameter_size = asc.size();
   522         if (cur_code != Bytecodes::_invokestatic) {
   523           // Add in receiver
   524           ++cur_invoke_parameter_size;
   525         }
   526       }
   527       if (str.bci() < max_bci) {
   528         Bytecodes::Code bc = str.next();
   529         if (bc >= 0) {
   530           // The interpreter oop map generator reports results before
   531           // the current bytecode has executed except in the case of
   532           // calls. It seems to be hard to tell whether the compiler
   533           // has emitted debug information matching the "state before"
   534           // a given bytecode or the state after, so we try both
   535           switch (cur_code) {
   536             case Bytecodes::_invokevirtual:
   537             case Bytecodes::_invokespecial:
   538             case Bytecodes::_invokestatic:
   539             case Bytecodes::_invokeinterface:
   540             case Bytecodes::_athrow:
   541               break;
   542             default: {
   543               InterpreterOopMap next_mask;
   544               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   545               next_mask_expression_stack_size = next_mask.expression_stack_size();
   546               // Need to subtract off the size of the result type of
   547               // the bytecode because this is not described in the
   548               // debug info but returned to the interpreter in the TOS
   549               // caching register
   550               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   551               if (bytecode_result_type != T_ILLEGAL) {
   552                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   553               }
   554               assert(top_frame_expression_stack_adjustment >= 0, "");
   555               try_next_mask = true;
   556               break;
   557             }
   558           }
   559         }
   560       }
   562       // Verify stack depth and oops in frame
   563       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   564       if (!(
   565             /* SPARC */
   566             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   567             /* x86 */
   568             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   569             (try_next_mask &&
   570              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   571                                                                     top_frame_expression_stack_adjustment))) ||
   572             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   573             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   574              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   575             )) {
   576         ttyLocker ttyl;
   578         // Print out some information that will help us debug the problem
   579         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   580         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   581         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   582                       iframe->interpreter_frame_expression_stack_size());
   583         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   584         tty->print_cr("  try_next_mask = %d", try_next_mask);
   585         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   586         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   587         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   588         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   589         tty->print_cr("  exec_mode = %d", exec_mode);
   590         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   591         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   592         tty->print_cr("  Interpreted frames:");
   593         for (int k = 0; k < cur_array->frames(); k++) {
   594           vframeArrayElement* el = cur_array->element(k);
   595           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   596         }
   597         cur_array->print_on_2(tty);
   598         guarantee(false, "wrong number of expression stack elements during deopt");
   599       }
   600       VerifyOopClosure verify;
   601       iframe->oops_interpreted_do(&verify, &rm, false);
   602       callee_size_of_parameters = mh->size_of_parameters();
   603       callee_max_locals = mh->max_locals();
   604       is_top_frame = false;
   605     }
   606   }
   607 #endif /* !PRODUCT */
   610   return bt;
   611 JRT_END
   614 int Deoptimization::deoptimize_dependents() {
   615   Threads::deoptimized_wrt_marked_nmethods();
   616   return 0;
   617 }
   620 #ifdef COMPILER2
   621 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   622   Handle pending_exception(thread->pending_exception());
   623   const char* exception_file = thread->exception_file();
   624   int exception_line = thread->exception_line();
   625   thread->clear_pending_exception();
   627   for (int i = 0; i < objects->length(); i++) {
   628     assert(objects->at(i)->is_object(), "invalid debug information");
   629     ObjectValue* sv = (ObjectValue*) objects->at(i);
   631     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   632     oop obj = NULL;
   634     if (k->oop_is_instance()) {
   635       instanceKlass* ik = instanceKlass::cast(k());
   636       obj = ik->allocate_instance(CHECK_(false));
   637     } else if (k->oop_is_typeArray()) {
   638       typeArrayKlass* ak = typeArrayKlass::cast(k());
   639       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   640       int len = sv->field_size() / type2size[ak->element_type()];
   641       obj = ak->allocate(len, CHECK_(false));
   642     } else if (k->oop_is_objArray()) {
   643       objArrayKlass* ak = objArrayKlass::cast(k());
   644       obj = ak->allocate(sv->field_size(), CHECK_(false));
   645     }
   647     assert(obj != NULL, "allocation failed");
   648     assert(sv->value().is_null(), "redundant reallocation");
   649     sv->set_value(obj);
   650   }
   652   if (pending_exception.not_null()) {
   653     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   654   }
   656   return true;
   657 }
   659 // This assumes that the fields are stored in ObjectValue in the same order
   660 // they are yielded by do_nonstatic_fields.
   661 class FieldReassigner: public FieldClosure {
   662   frame* _fr;
   663   RegisterMap* _reg_map;
   664   ObjectValue* _sv;
   665   instanceKlass* _ik;
   666   oop _obj;
   668   int _i;
   669 public:
   670   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   671     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   673   int i() const { return _i; }
   676   void do_field(fieldDescriptor* fd) {
   677     intptr_t val;
   678     StackValue* value =
   679       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   680     int offset = fd->offset();
   681     switch (fd->field_type()) {
   682     case T_OBJECT: case T_ARRAY:
   683       assert(value->type() == T_OBJECT, "Agreement.");
   684       _obj->obj_field_put(offset, value->get_obj()());
   685       break;
   687     case T_LONG: case T_DOUBLE: {
   688       assert(value->type() == T_INT, "Agreement.");
   689       StackValue* low =
   690         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   691 #ifdef _LP64
   692       jlong res = (jlong)low->get_int();
   693 #else
   694 #ifdef SPARC
   695       // For SPARC we have to swap high and low words.
   696       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   697 #else
   698       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   699 #endif //SPARC
   700 #endif
   701       _obj->long_field_put(offset, res);
   702       break;
   703     }
   704     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   705     case T_INT: case T_FLOAT: // 4 bytes.
   706       assert(value->type() == T_INT, "Agreement.");
   707       val = value->get_int();
   708       _obj->int_field_put(offset, (jint)*((jint*)&val));
   709       break;
   711     case T_SHORT: case T_CHAR: // 2 bytes
   712       assert(value->type() == T_INT, "Agreement.");
   713       val = value->get_int();
   714       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   715       break;
   717     case T_BOOLEAN: case T_BYTE: // 1 byte
   718       assert(value->type() == T_INT, "Agreement.");
   719       val = value->get_int();
   720       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   721       break;
   723     default:
   724       ShouldNotReachHere();
   725     }
   726     _i++;
   727   }
   728 };
   730 // restore elements of an eliminated type array
   731 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   732   int index = 0;
   733   intptr_t val;
   735   for (int i = 0; i < sv->field_size(); i++) {
   736     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   737     switch(type) {
   738     case T_LONG: case T_DOUBLE: {
   739       assert(value->type() == T_INT, "Agreement.");
   740       StackValue* low =
   741         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   742 #ifdef _LP64
   743       jlong res = (jlong)low->get_int();
   744 #else
   745 #ifdef SPARC
   746       // For SPARC we have to swap high and low words.
   747       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   748 #else
   749       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   750 #endif //SPARC
   751 #endif
   752       obj->long_at_put(index, res);
   753       break;
   754     }
   756     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   757     case T_INT: case T_FLOAT: // 4 bytes.
   758       assert(value->type() == T_INT, "Agreement.");
   759       val = value->get_int();
   760       obj->int_at_put(index, (jint)*((jint*)&val));
   761       break;
   763     case T_SHORT: case T_CHAR: // 2 bytes
   764       assert(value->type() == T_INT, "Agreement.");
   765       val = value->get_int();
   766       obj->short_at_put(index, (jshort)*((jint*)&val));
   767       break;
   769     case T_BOOLEAN: case T_BYTE: // 1 byte
   770       assert(value->type() == T_INT, "Agreement.");
   771       val = value->get_int();
   772       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   773       break;
   775       default:
   776         ShouldNotReachHere();
   777     }
   778     index++;
   779   }
   780 }
   783 // restore fields of an eliminated object array
   784 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   785   for (int i = 0; i < sv->field_size(); i++) {
   786     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   787     assert(value->type() == T_OBJECT, "object element expected");
   788     obj->obj_at_put(i, value->get_obj()());
   789   }
   790 }
   793 // restore fields of all eliminated objects and arrays
   794 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   795   for (int i = 0; i < objects->length(); i++) {
   796     ObjectValue* sv = (ObjectValue*) objects->at(i);
   797     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   798     Handle obj = sv->value();
   799     assert(obj.not_null(), "reallocation was missed");
   801     if (k->oop_is_instance()) {
   802       instanceKlass* ik = instanceKlass::cast(k());
   803       FieldReassigner reassign(fr, reg_map, sv, obj());
   804       ik->do_nonstatic_fields(&reassign);
   805     } else if (k->oop_is_typeArray()) {
   806       typeArrayKlass* ak = typeArrayKlass::cast(k());
   807       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   808     } else if (k->oop_is_objArray()) {
   809       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   810     }
   811   }
   812 }
   815 // relock objects for which synchronization was eliminated
   816 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   817   for (int i = 0; i < monitors->length(); i++) {
   818     MonitorInfo* mon_info = monitors->at(i);
   819     if (mon_info->eliminated()) {
   820       assert(mon_info->owner() != NULL, "reallocation was missed");
   821       Handle obj = Handle(mon_info->owner());
   822       markOop mark = obj->mark();
   823       if (UseBiasedLocking && mark->has_bias_pattern()) {
   824         // New allocated objects may have the mark set to anonymously biased.
   825         // Also the deoptimized method may called methods with synchronization
   826         // where the thread-local object is bias locked to the current thread.
   827         assert(mark->is_biased_anonymously() ||
   828                mark->biased_locker() == thread, "should be locked to current thread");
   829         // Reset mark word to unbiased prototype.
   830         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   831         obj->set_mark(unbiased_prototype);
   832       }
   833       BasicLock* lock = mon_info->lock();
   834       ObjectSynchronizer::slow_enter(obj, lock, thread);
   835     }
   836     assert(mon_info->owner()->is_locked(), "object must be locked now");
   837   }
   838 }
   841 #ifndef PRODUCT
   842 // print information about reallocated objects
   843 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   844   fieldDescriptor fd;
   846   for (int i = 0; i < objects->length(); i++) {
   847     ObjectValue* sv = (ObjectValue*) objects->at(i);
   848     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   849     Handle obj = sv->value();
   851     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   852     k->as_klassOop()->print_value();
   853     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   854     tty->cr();
   856     if (Verbose) {
   857       k->oop_print_on(obj(), tty);
   858     }
   859   }
   860 }
   861 #endif
   862 #endif // COMPILER2
   864 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   866 #ifndef PRODUCT
   867   if (TraceDeoptimization) {
   868     ttyLocker ttyl;
   869     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   870     fr.print_on(tty);
   871     tty->print_cr("     Virtual frames (innermost first):");
   872     for (int index = 0; index < chunk->length(); index++) {
   873       compiledVFrame* vf = chunk->at(index);
   874       tty->print("       %2d - ", index);
   875       vf->print_value();
   876       int bci = chunk->at(index)->raw_bci();
   877       const char* code_name;
   878       if (bci == SynchronizationEntryBCI) {
   879         code_name = "sync entry";
   880       } else {
   881         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
   882         code_name = Bytecodes::name(code);
   883       }
   884       tty->print(" - %s", code_name);
   885       tty->print_cr(" @ bci %d ", bci);
   886       if (Verbose) {
   887         vf->print();
   888         tty->cr();
   889       }
   890     }
   891   }
   892 #endif
   894   // Register map for next frame (used for stack crawl).  We capture
   895   // the state of the deopt'ing frame's caller.  Thus if we need to
   896   // stuff a C2I adapter we can properly fill in the callee-save
   897   // register locations.
   898   frame caller = fr.sender(reg_map);
   899   int frame_size = caller.sp() - fr.sp();
   901   frame sender = caller;
   903   // Since the Java thread being deoptimized will eventually adjust it's own stack,
   904   // the vframeArray containing the unpacking information is allocated in the C heap.
   905   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
   906   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
   908   // Compare the vframeArray to the collected vframes
   909   assert(array->structural_compare(thread, chunk), "just checking");
   910   Events::log("# vframes = %d", (intptr_t)chunk->length());
   912 #ifndef PRODUCT
   913   if (TraceDeoptimization) {
   914     ttyLocker ttyl;
   915     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
   916     if (Verbose) {
   917       int count = 0;
   918       // this used to leak deoptimizedVFrame like it was going out of style!!!
   919       for (int index = 0; index < array->frames(); index++ ) {
   920         vframeArrayElement* e = array->element(index);
   921         e->print(tty);
   923         /*
   924           No printing yet.
   925         array->vframe_at(index)->print_activation(count++);
   926         // better as...
   927         array->print_activation_for(index, count++);
   928         */
   929       }
   930     }
   931   }
   932 #endif // PRODUCT
   934   return array;
   935 }
   938 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
   939   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   940   for (int i = 0; i < monitors->length(); i++) {
   941     MonitorInfo* mon_info = monitors->at(i);
   942     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
   943       objects_to_revoke->append(Handle(mon_info->owner()));
   944     }
   945   }
   946 }
   949 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
   950   if (!UseBiasedLocking) {
   951     return;
   952   }
   954   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
   956   // Unfortunately we don't have a RegisterMap available in most of
   957   // the places we want to call this routine so we need to walk the
   958   // stack again to update the register map.
   959   if (map == NULL || !map->update_map()) {
   960     StackFrameStream sfs(thread, true);
   961     bool found = false;
   962     while (!found && !sfs.is_done()) {
   963       frame* cur = sfs.current();
   964       sfs.next();
   965       found = cur->id() == fr.id();
   966     }
   967     assert(found, "frame to be deoptimized not found on target thread's stack");
   968     map = sfs.register_map();
   969   }
   971   vframe* vf = vframe::new_vframe(&fr, map, thread);
   972   compiledVFrame* cvf = compiledVFrame::cast(vf);
   973   // Revoke monitors' biases in all scopes
   974   while (!cvf->is_top()) {
   975     collect_monitors(cvf, objects_to_revoke);
   976     cvf = compiledVFrame::cast(cvf->sender());
   977   }
   978   collect_monitors(cvf, objects_to_revoke);
   980   if (SafepointSynchronize::is_at_safepoint()) {
   981     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
   982   } else {
   983     BiasedLocking::revoke(objects_to_revoke);
   984   }
   985 }
   988 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
   989   if (!UseBiasedLocking) {
   990     return;
   991   }
   993   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
   994   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
   995   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
   996     if (jt->has_last_Java_frame()) {
   997       StackFrameStream sfs(jt, true);
   998       while (!sfs.is_done()) {
   999         frame* cur = sfs.current();
  1000         if (cb->contains(cur->pc())) {
  1001           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1002           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1003           // Revoke monitors' biases in all scopes
  1004           while (!cvf->is_top()) {
  1005             collect_monitors(cvf, objects_to_revoke);
  1006             cvf = compiledVFrame::cast(cvf->sender());
  1008           collect_monitors(cvf, objects_to_revoke);
  1010         sfs.next();
  1014   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1018 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1019   assert(fr.can_be_deoptimized(), "checking frame type");
  1021   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1023   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1025   // Patch the nmethod so that when execution returns to it we will
  1026   // deopt the execution state and return to the interpreter.
  1027   fr.deoptimize(thread);
  1030 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1031   // Deoptimize only if the frame comes from compile code.
  1032   // Do not deoptimize the frame which is already patched
  1033   // during the execution of the loops below.
  1034   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1035     return;
  1037   ResourceMark rm;
  1038   DeoptimizationMarker dm;
  1039   if (UseBiasedLocking) {
  1040     revoke_biases_of_monitors(thread, fr, map);
  1042   deoptimize_single_frame(thread, fr);
  1047 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1048   // Compute frame and register map based on thread and sp.
  1049   RegisterMap reg_map(thread, UseBiasedLocking);
  1050   frame fr = thread->last_frame();
  1051   while (fr.id() != id) {
  1052     fr = fr.sender(&reg_map);
  1054   deoptimize(thread, fr, &reg_map);
  1058 // JVMTI PopFrame support
  1059 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1061   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1063 JRT_END
  1066 #ifdef COMPILER2
  1067 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1068   // in case of an unresolved klass entry, load the class.
  1069   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1070     klassOop tk = constant_pool->klass_at(index, CHECK);
  1071     return;
  1074   if (!constant_pool->tag_at(index).is_symbol()) return;
  1076   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1077   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
  1079   // class name?
  1080   if (symbol->byte_at(0) != '(') {
  1081     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1082     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1083     return;
  1086   // then it must be a signature!
  1087   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1088     if (ss.is_object()) {
  1089       symbolOop s = ss.as_symbol(CHECK);
  1090       symbolHandle class_name (THREAD, s);
  1091       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1092       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1098 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1099   EXCEPTION_MARK;
  1100   load_class_by_index(constant_pool, index, THREAD);
  1101   if (HAS_PENDING_EXCEPTION) {
  1102     // Exception happened during classloading. We ignore the exception here, since it
  1103     // is going to be rethrown since the current activation is going to be deoptimzied and
  1104     // the interpreter will re-execute the bytecode.
  1105     CLEAR_PENDING_EXCEPTION;
  1109 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1110   HandleMark hm;
  1112   // uncommon_trap() is called at the beginning of the uncommon trap
  1113   // handler. Note this fact before we start generating temporary frames
  1114   // that can confuse an asynchronous stack walker. This counter is
  1115   // decremented at the end of unpack_frames().
  1116   thread->inc_in_deopt_handler();
  1118   // We need to update the map if we have biased locking.
  1119   RegisterMap reg_map(thread, UseBiasedLocking);
  1120   frame stub_frame = thread->last_frame();
  1121   frame fr = stub_frame.sender(&reg_map);
  1122   // Make sure the calling nmethod is not getting deoptimized and removed
  1123   // before we are done with it.
  1124   nmethodLocker nl(fr.pc());
  1127     ResourceMark rm;
  1129     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1130     revoke_biases_of_monitors(thread, fr, &reg_map);
  1132     DeoptReason reason = trap_request_reason(trap_request);
  1133     DeoptAction action = trap_request_action(trap_request);
  1134     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1136     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1137     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1138     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1140     nmethod* nm = cvf->code();
  1142     ScopeDesc*      trap_scope  = cvf->scope();
  1143     methodHandle    trap_method = trap_scope->method();
  1144     int             trap_bci    = trap_scope->bci();
  1145     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
  1147     // Record this event in the histogram.
  1148     gather_statistics(reason, action, trap_bc);
  1150     // Ensure that we can record deopt. history:
  1151     bool create_if_missing = ProfileTraps;
  1153     methodDataHandle trap_mdo
  1154       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1156     // Print a bunch of diagnostics, if requested.
  1157     if (TraceDeoptimization || LogCompilation) {
  1158       ResourceMark rm;
  1159       ttyLocker ttyl;
  1160       char buf[100];
  1161       if (xtty != NULL) {
  1162         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1163                          os::current_thread_id(),
  1164                          format_trap_request(buf, sizeof(buf), trap_request));
  1165         nm->log_identity(xtty);
  1167       symbolHandle class_name;
  1168       bool unresolved = false;
  1169       if (unloaded_class_index >= 0) {
  1170         constantPoolHandle constants (THREAD, trap_method->constants());
  1171         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1172           class_name = symbolHandle(THREAD,
  1173             constants->klass_name_at(unloaded_class_index));
  1174           unresolved = true;
  1175           if (xtty != NULL)
  1176             xtty->print(" unresolved='1'");
  1177         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1178           class_name = symbolHandle(THREAD,
  1179             constants->symbol_at(unloaded_class_index));
  1181         if (xtty != NULL)
  1182           xtty->name(class_name);
  1184       if (xtty != NULL && trap_mdo.not_null()) {
  1185         // Dump the relevant MDO state.
  1186         // This is the deopt count for the current reason, any previous
  1187         // reasons or recompiles seen at this point.
  1188         int dcnt = trap_mdo->trap_count(reason);
  1189         if (dcnt != 0)
  1190           xtty->print(" count='%d'", dcnt);
  1191         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1192         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1193         if (dos != 0) {
  1194           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1195           if (trap_state_is_recompiled(dos)) {
  1196             int recnt2 = trap_mdo->overflow_recompile_count();
  1197             if (recnt2 != 0)
  1198               xtty->print(" recompiles2='%d'", recnt2);
  1202       if (xtty != NULL) {
  1203         xtty->stamp();
  1204         xtty->end_head();
  1206       if (TraceDeoptimization) {  // make noise on the tty
  1207         tty->print("Uncommon trap occurred in");
  1208         nm->method()->print_short_name(tty);
  1209         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1210                    fr.pc(),
  1211                    (int) os::current_thread_id(),
  1212                    trap_reason_name(reason),
  1213                    trap_action_name(action),
  1214                    unloaded_class_index);
  1215         if (class_name.not_null()) {
  1216           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1217           class_name->print_symbol_on(tty);
  1219         tty->cr();
  1221       if (xtty != NULL) {
  1222         // Log the precise location of the trap.
  1223         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1224           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1225           xtty->method(sd->method());
  1226           xtty->end_elem();
  1227           if (sd->is_top())  break;
  1229         xtty->tail("uncommon_trap");
  1232     // (End diagnostic printout.)
  1234     // Load class if necessary
  1235     if (unloaded_class_index >= 0) {
  1236       constantPoolHandle constants(THREAD, trap_method->constants());
  1237       load_class_by_index(constants, unloaded_class_index);
  1240     // Flush the nmethod if necessary and desirable.
  1241     //
  1242     // We need to avoid situations where we are re-flushing the nmethod
  1243     // because of a hot deoptimization site.  Repeated flushes at the same
  1244     // point need to be detected by the compiler and avoided.  If the compiler
  1245     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1246     // module must take measures to avoid an infinite cycle of recompilation
  1247     // and deoptimization.  There are several such measures:
  1248     //
  1249     //   1. If a recompilation is ordered a second time at some site X
  1250     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1251     //   to give the interpreter time to exercise the method more thoroughly.
  1252     //   If this happens, the method's overflow_recompile_count is incremented.
  1253     //
  1254     //   2. If the compiler fails to reduce the deoptimization rate, then
  1255     //   the method's overflow_recompile_count will begin to exceed the set
  1256     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1257     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1258     //   to the interpreter.  This is a performance hit for hot methods,
  1259     //   but is better than a disastrous infinite cycle of recompilations.
  1260     //   (Actually, only the method containing the site X is abandoned.)
  1261     //
  1262     //   3. In parallel with the previous measures, if the total number of
  1263     //   recompilations of a method exceeds the much larger set limit
  1264     //   PerMethodRecompilationCutoff, the method is abandoned.
  1265     //   This should only happen if the method is very large and has
  1266     //   many "lukewarm" deoptimizations.  The code which enforces this
  1267     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1268     //
  1269     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1270     // to recompile at each bytecode independently of the per-BCI cutoff.
  1271     //
  1272     // The decision to update code is up to the compiler, and is encoded
  1273     // in the Action_xxx code.  If the compiler requests Action_none
  1274     // no trap state is changed, no compiled code is changed, and the
  1275     // computation suffers along in the interpreter.
  1276     //
  1277     // The other action codes specify various tactics for decompilation
  1278     // and recompilation.  Action_maybe_recompile is the loosest, and
  1279     // allows the compiled code to stay around until enough traps are seen,
  1280     // and until the compiler gets around to recompiling the trapping method.
  1281     //
  1282     // The other actions cause immediate removal of the present code.
  1284     bool update_trap_state = true;
  1285     bool make_not_entrant = false;
  1286     bool make_not_compilable = false;
  1287     bool reset_counters = false;
  1288     switch (action) {
  1289     case Action_none:
  1290       // Keep the old code.
  1291       update_trap_state = false;
  1292       break;
  1293     case Action_maybe_recompile:
  1294       // Do not need to invalidate the present code, but we can
  1295       // initiate another
  1296       // Start compiler without (necessarily) invalidating the nmethod.
  1297       // The system will tolerate the old code, but new code should be
  1298       // generated when possible.
  1299       break;
  1300     case Action_reinterpret:
  1301       // Go back into the interpreter for a while, and then consider
  1302       // recompiling form scratch.
  1303       make_not_entrant = true;
  1304       // Reset invocation counter for outer most method.
  1305       // This will allow the interpreter to exercise the bytecodes
  1306       // for a while before recompiling.
  1307       // By contrast, Action_make_not_entrant is immediate.
  1308       //
  1309       // Note that the compiler will track null_check, null_assert,
  1310       // range_check, and class_check events and log them as if they
  1311       // had been traps taken from compiled code.  This will update
  1312       // the MDO trap history so that the next compilation will
  1313       // properly detect hot trap sites.
  1314       reset_counters = true;
  1315       break;
  1316     case Action_make_not_entrant:
  1317       // Request immediate recompilation, and get rid of the old code.
  1318       // Make them not entrant, so next time they are called they get
  1319       // recompiled.  Unloaded classes are loaded now so recompile before next
  1320       // time they are called.  Same for uninitialized.  The interpreter will
  1321       // link the missing class, if any.
  1322       make_not_entrant = true;
  1323       break;
  1324     case Action_make_not_compilable:
  1325       // Give up on compiling this method at all.
  1326       make_not_entrant = true;
  1327       make_not_compilable = true;
  1328       break;
  1329     default:
  1330       ShouldNotReachHere();
  1333     // Setting +ProfileTraps fixes the following, on all platforms:
  1334     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1335     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1336     // recompile relies on a methodDataOop to record heroic opt failures.
  1338     // Whether the interpreter is producing MDO data or not, we also need
  1339     // to use the MDO to detect hot deoptimization points and control
  1340     // aggressive optimization.
  1341     bool inc_recompile_count = false;
  1342     ProfileData* pdata = NULL;
  1343     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1344       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1345       uint this_trap_count = 0;
  1346       bool maybe_prior_trap = false;
  1347       bool maybe_prior_recompile = false;
  1348       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1349                                    //outputs:
  1350                                    this_trap_count,
  1351                                    maybe_prior_trap,
  1352                                    maybe_prior_recompile);
  1353       // Because the interpreter also counts null, div0, range, and class
  1354       // checks, these traps from compiled code are double-counted.
  1355       // This is harmless; it just means that the PerXTrapLimit values
  1356       // are in effect a little smaller than they look.
  1358       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1359       if (per_bc_reason != Reason_none) {
  1360         // Now take action based on the partially known per-BCI history.
  1361         if (maybe_prior_trap
  1362             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1363           // If there are too many traps at this BCI, force a recompile.
  1364           // This will allow the compiler to see the limit overflow, and
  1365           // take corrective action, if possible.  The compiler generally
  1366           // does not use the exact PerBytecodeTrapLimit value, but instead
  1367           // changes its tactics if it sees any traps at all.  This provides
  1368           // a little hysteresis, delaying a recompile until a trap happens
  1369           // several times.
  1370           //
  1371           // Actually, since there is only one bit of counter per BCI,
  1372           // the possible per-BCI counts are {0,1,(per-method count)}.
  1373           // This produces accurate results if in fact there is only
  1374           // one hot trap site, but begins to get fuzzy if there are
  1375           // many sites.  For example, if there are ten sites each
  1376           // trapping two or more times, they each get the blame for
  1377           // all of their traps.
  1378           make_not_entrant = true;
  1381         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1382         if (make_not_entrant && maybe_prior_recompile) {
  1383           // More than one recompile at this point.
  1384           inc_recompile_count = maybe_prior_trap;
  1386       } else {
  1387         // For reasons which are not recorded per-bytecode, we simply
  1388         // force recompiles unconditionally.
  1389         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1390         make_not_entrant = true;
  1393       // Go back to the compiler if there are too many traps in this method.
  1394       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1395         // If there are too many traps in this method, force a recompile.
  1396         // This will allow the compiler to see the limit overflow, and
  1397         // take corrective action, if possible.
  1398         // (This condition is an unlikely backstop only, because the
  1399         // PerBytecodeTrapLimit is more likely to take effect first,
  1400         // if it is applicable.)
  1401         make_not_entrant = true;
  1404       // Here's more hysteresis:  If there has been a recompile at
  1405       // this trap point already, run the method in the interpreter
  1406       // for a while to exercise it more thoroughly.
  1407       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1408         reset_counters = true;
  1413     // Take requested actions on the method:
  1415     // Recompile
  1416     if (make_not_entrant) {
  1417       if (!nm->make_not_entrant()) {
  1418         return; // the call did not change nmethod's state
  1421       if (pdata != NULL) {
  1422         // Record the recompilation event, if any.
  1423         int tstate0 = pdata->trap_state();
  1424         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1425         if (tstate1 != tstate0)
  1426           pdata->set_trap_state(tstate1);
  1430     if (inc_recompile_count) {
  1431       trap_mdo->inc_overflow_recompile_count();
  1432       if ((uint)trap_mdo->overflow_recompile_count() >
  1433           (uint)PerBytecodeRecompilationCutoff) {
  1434         // Give up on the method containing the bad BCI.
  1435         if (trap_method() == nm->method()) {
  1436           make_not_compilable = true;
  1437         } else {
  1438           trap_method->set_not_compilable();
  1439           // But give grace to the enclosing nm->method().
  1444     // Reset invocation counters
  1445     if (reset_counters) {
  1446       if (nm->is_osr_method())
  1447         reset_invocation_counter(trap_scope, CompileThreshold);
  1448       else
  1449         reset_invocation_counter(trap_scope);
  1452     // Give up compiling
  1453     if (make_not_compilable && !nm->method()->is_not_compilable()) {
  1454       assert(make_not_entrant, "consistent");
  1455       nm->method()->set_not_compilable();
  1458   } // Free marked resources
  1461 JRT_END
  1463 methodDataOop
  1464 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1465                                 bool create_if_missing) {
  1466   Thread* THREAD = thread;
  1467   methodDataOop mdo = m()->method_data();
  1468   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1469     // Build an MDO.  Ignore errors like OutOfMemory;
  1470     // that simply means we won't have an MDO to update.
  1471     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1472     if (HAS_PENDING_EXCEPTION) {
  1473       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1474       CLEAR_PENDING_EXCEPTION;
  1476     mdo = m()->method_data();
  1478   return mdo;
  1481 ProfileData*
  1482 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1483                                          int trap_bci,
  1484                                          Deoptimization::DeoptReason reason,
  1485                                          //outputs:
  1486                                          uint& ret_this_trap_count,
  1487                                          bool& ret_maybe_prior_trap,
  1488                                          bool& ret_maybe_prior_recompile) {
  1489   uint prior_trap_count = trap_mdo->trap_count(reason);
  1490   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1492   // If the runtime cannot find a place to store trap history,
  1493   // it is estimated based on the general condition of the method.
  1494   // If the method has ever been recompiled, or has ever incurred
  1495   // a trap with the present reason , then this BCI is assumed
  1496   // (pessimistically) to be the culprit.
  1497   bool maybe_prior_trap      = (prior_trap_count != 0);
  1498   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1499   ProfileData* pdata = NULL;
  1502   // For reasons which are recorded per bytecode, we check per-BCI data.
  1503   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1504   if (per_bc_reason != Reason_none) {
  1505     // Find the profile data for this BCI.  If there isn't one,
  1506     // try to allocate one from the MDO's set of spares.
  1507     // This will let us detect a repeated trap at this point.
  1508     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1510     if (pdata != NULL) {
  1511       // Query the trap state of this profile datum.
  1512       int tstate0 = pdata->trap_state();
  1513       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1514         maybe_prior_trap = false;
  1515       if (!trap_state_is_recompiled(tstate0))
  1516         maybe_prior_recompile = false;
  1518       // Update the trap state of this profile datum.
  1519       int tstate1 = tstate0;
  1520       // Record the reason.
  1521       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1522       // Store the updated state on the MDO, for next time.
  1523       if (tstate1 != tstate0)
  1524         pdata->set_trap_state(tstate1);
  1525     } else {
  1526       if (LogCompilation && xtty != NULL) {
  1527         ttyLocker ttyl;
  1528         // Missing MDP?  Leave a small complaint in the log.
  1529         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1534   // Return results:
  1535   ret_this_trap_count = this_trap_count;
  1536   ret_maybe_prior_trap = maybe_prior_trap;
  1537   ret_maybe_prior_recompile = maybe_prior_recompile;
  1538   return pdata;
  1541 void
  1542 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1543   ResourceMark rm;
  1544   // Ignored outputs:
  1545   uint ignore_this_trap_count;
  1546   bool ignore_maybe_prior_trap;
  1547   bool ignore_maybe_prior_recompile;
  1548   query_update_method_data(trap_mdo, trap_bci,
  1549                            (DeoptReason)reason,
  1550                            ignore_this_trap_count,
  1551                            ignore_maybe_prior_trap,
  1552                            ignore_maybe_prior_recompile);
  1555 void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
  1556   ScopeDesc* sd = trap_scope;
  1557   for (; !sd->is_top(); sd = sd->sender()) {
  1558     // Reset ICs of inlined methods, since they can trigger compilations also.
  1559     sd->method()->invocation_counter()->reset();
  1561   InvocationCounter* c = sd->method()->invocation_counter();
  1562   if (top_count != _no_count) {
  1563     // It was an OSR method, so bump the count higher.
  1564     c->set(c->state(), top_count);
  1565   } else {
  1566     c->reset();
  1568   sd->method()->backedge_counter()->reset();
  1571 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1573   // Still in Java no safepoints
  1575     // This enters VM and may safepoint
  1576     uncommon_trap_inner(thread, trap_request);
  1578   return fetch_unroll_info_helper(thread);
  1581 // Local derived constants.
  1582 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1583 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1584 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1586 //---------------------------trap_state_reason---------------------------------
  1587 Deoptimization::DeoptReason
  1588 Deoptimization::trap_state_reason(int trap_state) {
  1589   // This assert provides the link between the width of DataLayout::trap_bits
  1590   // and the encoding of "recorded" reasons.  It ensures there are enough
  1591   // bits to store all needed reasons in the per-BCI MDO profile.
  1592   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1593   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1594   trap_state -= recompile_bit;
  1595   if (trap_state == DS_REASON_MASK) {
  1596     return Reason_many;
  1597   } else {
  1598     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1599     return (DeoptReason)trap_state;
  1602 //-------------------------trap_state_has_reason-------------------------------
  1603 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1604   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1605   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1606   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1607   trap_state -= recompile_bit;
  1608   if (trap_state == DS_REASON_MASK) {
  1609     return -1;  // true, unspecifically (bottom of state lattice)
  1610   } else if (trap_state == reason) {
  1611     return 1;   // true, definitely
  1612   } else if (trap_state == 0) {
  1613     return 0;   // false, definitely (top of state lattice)
  1614   } else {
  1615     return 0;   // false, definitely
  1618 //-------------------------trap_state_add_reason-------------------------------
  1619 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1620   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1621   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1622   trap_state -= recompile_bit;
  1623   if (trap_state == DS_REASON_MASK) {
  1624     return trap_state + recompile_bit;     // already at state lattice bottom
  1625   } else if (trap_state == reason) {
  1626     return trap_state + recompile_bit;     // the condition is already true
  1627   } else if (trap_state == 0) {
  1628     return reason + recompile_bit;          // no condition has yet been true
  1629   } else {
  1630     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1633 //-----------------------trap_state_is_recompiled------------------------------
  1634 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1635   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1637 //-----------------------trap_state_set_recompiled-----------------------------
  1638 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1639   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1640   else    return trap_state & ~DS_RECOMPILE_BIT;
  1642 //---------------------------format_trap_state---------------------------------
  1643 // This is used for debugging and diagnostics, including hotspot.log output.
  1644 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1645                                               int trap_state) {
  1646   DeoptReason reason      = trap_state_reason(trap_state);
  1647   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1648   // Re-encode the state from its decoded components.
  1649   int decoded_state = 0;
  1650   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1651     decoded_state = trap_state_add_reason(decoded_state, reason);
  1652   if (recomp_flag)
  1653     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1654   // If the state re-encodes properly, format it symbolically.
  1655   // Because this routine is used for debugging and diagnostics,
  1656   // be robust even if the state is a strange value.
  1657   size_t len;
  1658   if (decoded_state != trap_state) {
  1659     // Random buggy state that doesn't decode??
  1660     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1661   } else {
  1662     len = jio_snprintf(buf, buflen, "%s%s",
  1663                        trap_reason_name(reason),
  1664                        recomp_flag ? " recompiled" : "");
  1666   if (len >= buflen)
  1667     buf[buflen-1] = '\0';
  1668   return buf;
  1672 //--------------------------------statics--------------------------------------
  1673 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1674   = Deoptimization::Action_reinterpret;
  1675 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1676   // Note:  Keep this in sync. with enum DeoptReason.
  1677   "none",
  1678   "null_check",
  1679   "null_assert",
  1680   "range_check",
  1681   "class_check",
  1682   "array_check",
  1683   "intrinsic",
  1684   "bimorphic",
  1685   "unloaded",
  1686   "uninitialized",
  1687   "unreached",
  1688   "unhandled",
  1689   "constraint",
  1690   "div0_check",
  1691   "age",
  1692   "predicate"
  1693 };
  1694 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1695   // Note:  Keep this in sync. with enum DeoptAction.
  1696   "none",
  1697   "maybe_recompile",
  1698   "reinterpret",
  1699   "make_not_entrant",
  1700   "make_not_compilable"
  1701 };
  1703 const char* Deoptimization::trap_reason_name(int reason) {
  1704   if (reason == Reason_many)  return "many";
  1705   if ((uint)reason < Reason_LIMIT)
  1706     return _trap_reason_name[reason];
  1707   static char buf[20];
  1708   sprintf(buf, "reason%d", reason);
  1709   return buf;
  1711 const char* Deoptimization::trap_action_name(int action) {
  1712   if ((uint)action < Action_LIMIT)
  1713     return _trap_action_name[action];
  1714   static char buf[20];
  1715   sprintf(buf, "action%d", action);
  1716   return buf;
  1719 // This is used for debugging and diagnostics, including hotspot.log output.
  1720 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1721                                                 int trap_request) {
  1722   jint unloaded_class_index = trap_request_index(trap_request);
  1723   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1724   const char* action = trap_action_name(trap_request_action(trap_request));
  1725   size_t len;
  1726   if (unloaded_class_index < 0) {
  1727     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1728                        reason, action);
  1729   } else {
  1730     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1731                        reason, action, unloaded_class_index);
  1733   if (len >= buflen)
  1734     buf[buflen-1] = '\0';
  1735   return buf;
  1738 juint Deoptimization::_deoptimization_hist
  1739         [Deoptimization::Reason_LIMIT]
  1740     [1 + Deoptimization::Action_LIMIT]
  1741         [Deoptimization::BC_CASE_LIMIT]
  1742   = {0};
  1744 enum {
  1745   LSB_BITS = 8,
  1746   LSB_MASK = right_n_bits(LSB_BITS)
  1747 };
  1749 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1750                                        Bytecodes::Code bc) {
  1751   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1752   assert(action >= 0 && action < Action_LIMIT, "oob");
  1753   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1754   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1755   juint* cases = _deoptimization_hist[reason][1+action];
  1756   juint* bc_counter_addr = NULL;
  1757   juint  bc_counter      = 0;
  1758   // Look for an unused counter, or an exact match to this BC.
  1759   if (bc != Bytecodes::_illegal) {
  1760     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1761       juint* counter_addr = &cases[bc_case];
  1762       juint  counter = *counter_addr;
  1763       if ((counter == 0 && bc_counter_addr == NULL)
  1764           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1765         // this counter is either free or is already devoted to this BC
  1766         bc_counter_addr = counter_addr;
  1767         bc_counter = counter | bc;
  1771   if (bc_counter_addr == NULL) {
  1772     // Overflow, or no given bytecode.
  1773     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1774     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1776   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1779 jint Deoptimization::total_deoptimization_count() {
  1780   return _deoptimization_hist[Reason_none][0][0];
  1783 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1784   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1785   return _deoptimization_hist[reason][0][0];
  1788 void Deoptimization::print_statistics() {
  1789   juint total = total_deoptimization_count();
  1790   juint account = total;
  1791   if (total != 0) {
  1792     ttyLocker ttyl;
  1793     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1794     tty->print_cr("Deoptimization traps recorded:");
  1795     #define PRINT_STAT_LINE(name, r) \
  1796       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1797     PRINT_STAT_LINE("total", total);
  1798     // For each non-zero entry in the histogram, print the reason,
  1799     // the action, and (if specifically known) the type of bytecode.
  1800     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1801       for (int action = 0; action < Action_LIMIT; action++) {
  1802         juint* cases = _deoptimization_hist[reason][1+action];
  1803         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1804           juint counter = cases[bc_case];
  1805           if (counter != 0) {
  1806             char name[1*K];
  1807             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1808             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1809               bc = Bytecodes::_illegal;
  1810             sprintf(name, "%s/%s/%s",
  1811                     trap_reason_name(reason),
  1812                     trap_action_name(action),
  1813                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1814             juint r = counter >> LSB_BITS;
  1815             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1816             account -= r;
  1821     if (account != 0) {
  1822       PRINT_STAT_LINE("unaccounted", account);
  1824     #undef PRINT_STAT_LINE
  1825     if (xtty != NULL)  xtty->tail("statistics");
  1828 #else // COMPILER2
  1831 // Stubs for C1 only system.
  1832 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1833   return false;
  1836 const char* Deoptimization::trap_reason_name(int reason) {
  1837   return "unknown";
  1840 void Deoptimization::print_statistics() {
  1841   // no output
  1844 void
  1845 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1846   // no udpate
  1849 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1850   return 0;
  1853 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1854                                        Bytecodes::Code bc) {
  1855   // no update
  1858 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1859                                               int trap_state) {
  1860   jio_snprintf(buf, buflen, "#%d", trap_state);
  1861   return buf;
  1864 #endif // COMPILER2

mercurial