src/cpu/sparc/vm/interp_masm_sparc.cpp

Mon, 01 Feb 2010 16:49:49 -0800

author
kvn
date
Mon, 01 Feb 2010 16:49:49 -0800
changeset 1641
87684f1a88b5
parent 1402
6918603297f7
child 1686
576e77447e3c
permissions
-rw-r--r--

6614597: Performance variability in jvm2008 xml.validation
Summary: Fix incorrect marking of methods as not compilable.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    34 // Implementation of InterpreterMacroAssembler
    36 // This file specializes the assember with interpreter-specific macros
    38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
    39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
    41 #else // CC_INTERP
    42 #ifndef STATE
    43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    44 #endif // STATE
    46 #endif // CC_INTERP
    48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    49   // Note: this algorithm is also used by C1's OSR entry sequence.
    50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    51   assert_different_registers(args_size, locals_size);
    52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    53   if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
    54   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    55   // Use br/mov combination because it works on both V8 and V9 and is
    56   // faster.
    57   Label skip_move;
    58   br(Assembler::negative, true, Assembler::pt, skip_move);
    59   delayed()->mov(G0, delta);
    60   bind(skip_move);
    61   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    62   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    63 }
    65 #ifndef CC_INTERP
    67 // Dispatch code executed in the prolog of a bytecode which does not do it's
    68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    70   assert_not_delayed();
    71 #ifdef FAST_DISPATCH
    72   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    73   // they both use I2.
    74   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    75   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    76   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    77                                                         // add offset to correct dispatch table
    78   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    79   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    80 #else
    81   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
    82   // dispatch table to use
    83   AddressLiteral tbl(Interpreter::dispatch_table(state));
    84   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    85   set(tbl, G3_scratch);                                 // compute addr of table
    86   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
    87 #endif
    88 }
    91 // Dispatch code executed in the epilog of a bytecode which does not do it's
    92 // own dispatch. The dispatch address in IdispatchAddress is used for the
    93 // dispatch.
    94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
    95   assert_not_delayed();
    96   verify_FPU(1, state);
    97   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
    98   jmp( IdispatchAddress, 0 );
    99   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   100   else                delayed()->nop();
   101 }
   104 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   105   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   106   assert_not_delayed();
   107   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   108   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   109 }
   112 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   113   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   114   assert_not_delayed();
   115   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   116   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   117 }
   120 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   121   // load current bytecode
   122   assert_not_delayed();
   123   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   124   dispatch_base(state, table);
   125 }
   128 void InterpreterMacroAssembler::call_VM_leaf_base(
   129   Register java_thread,
   130   address  entry_point,
   131   int      number_of_arguments
   132 ) {
   133   if (!java_thread->is_valid())
   134     java_thread = L7_thread_cache;
   135   // super call
   136   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   137 }
   140 void InterpreterMacroAssembler::call_VM_base(
   141   Register        oop_result,
   142   Register        java_thread,
   143   Register        last_java_sp,
   144   address         entry_point,
   145   int             number_of_arguments,
   146   bool            check_exception
   147 ) {
   148   if (!java_thread->is_valid())
   149     java_thread = L7_thread_cache;
   150   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   151   // takes responsibility for setting its own thread-state on call-out.
   152   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   154   //save_bcp();                                  // save bcp
   155   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   156   //restore_bcp();                               // restore bcp
   157   //restore_locals();                            // restore locals pointer
   158 }
   161 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   162   if (JvmtiExport::can_pop_frame()) {
   163     Label L;
   165     // Check the "pending popframe condition" flag in the current thread
   166     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
   168     // Initiate popframe handling only if it is not already being processed.  If the flag
   169     // has the popframe_processing bit set, it means that this code is called *during* popframe
   170     // handling - we don't want to reenter.
   171     btst(JavaThread::popframe_pending_bit, scratch_reg);
   172     br(zero, false, pt, L);
   173     delayed()->nop();
   174     btst(JavaThread::popframe_processing_bit, scratch_reg);
   175     br(notZero, false, pt, L);
   176     delayed()->nop();
   178     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   179     // address of the same-named entrypoint in the generated interpreter code.
   180     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   182     // Jump to Interpreter::_remove_activation_preserving_args_entry
   183     jmpl(O0, G0, G0);
   184     delayed()->nop();
   185     bind(L);
   186   }
   187 }
   190 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   191   Register thr_state = G4_scratch;
   192   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   193   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
   194   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
   195   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
   196   switch (state) {
   197   case ltos: ld_long(val_addr, Otos_l);                   break;
   198   case atos: ld_ptr(oop_addr, Otos_l);
   199              st_ptr(G0, oop_addr);                        break;
   200   case btos:                                           // fall through
   201   case ctos:                                           // fall through
   202   case stos:                                           // fall through
   203   case itos: ld(val_addr, Otos_l1);                       break;
   204   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   205   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   206   case vtos: /* nothing to do */                          break;
   207   default  : ShouldNotReachHere();
   208   }
   209   // Clean up tos value in the jvmti thread state
   210   or3(G0, ilgl, G3_scratch);
   211   stw(G3_scratch, tos_addr);
   212   st_long(G0, val_addr);
   213   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   214 }
   217 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   218   if (JvmtiExport::can_force_early_return()) {
   219     Label L;
   220     Register thr_state = G3_scratch;
   221     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   222     tst(thr_state);
   223     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   224     delayed()->nop();
   226     // Initiate earlyret handling only if it is not already being processed.
   227     // If the flag has the earlyret_processing bit set, it means that this code
   228     // is called *during* earlyret handling - we don't want to reenter.
   229     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
   230     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
   231     br(Assembler::notEqual, false, pt, L);
   232     delayed()->nop();
   234     // Call Interpreter::remove_activation_early_entry() to get the address of the
   235     // same-named entrypoint in the generated interpreter code
   236     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
   237     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   239     // Jump to Interpreter::_remove_activation_early_entry
   240     jmpl(O0, G0, G0);
   241     delayed()->nop();
   242     bind(L);
   243   }
   244 }
   247 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
   248   mov(arg_1, O0);
   249   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
   250 }
   251 #endif /* CC_INTERP */
   254 #ifndef CC_INTERP
   256 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   257   assert_not_delayed();
   258   dispatch_Lbyte_code(state, table);
   259 }
   262 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   263   dispatch_base(state, Interpreter::normal_table(state));
   264 }
   267 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   268   dispatch_base(state, Interpreter::dispatch_table(state));
   269 }
   272 // common code to dispatch and dispatch_only
   273 // dispatch value in Lbyte_code and increment Lbcp
   275 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   276   verify_FPU(1, state);
   277   // %%%%% maybe implement +VerifyActivationFrameSize here
   278   //verify_thread(); //too slow; we will just verify on method entry & exit
   279   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   280 #ifdef FAST_DISPATCH
   281   if (table == Interpreter::dispatch_table(state)) {
   282     // use IdispatchTables
   283     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   284                                                         // add offset to correct dispatch table
   285     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   286     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   287   } else {
   288 #endif
   289     // dispatch table to use
   290     AddressLiteral tbl(table);
   291     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   292     set(tbl, G3_scratch);                               // compute addr of table
   293     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   294 #ifdef FAST_DISPATCH
   295   }
   296 #endif
   297   jmp( G3_scratch, 0 );
   298   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   299   else                delayed()->nop();
   300 }
   303 // Helpers for expression stack
   305 // Longs and doubles are Category 2 computational types in the
   306 // JVM specification (section 3.11.1) and take 2 expression stack or
   307 // local slots.
   308 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   309 // for the dup* bytecodes depends on what types are already on the stack.
   310 // If the types are split into the two stack/local slots, that is much easier
   311 // (and we can use 0 for non-reference tags).
   313 // Known good alignment in _LP64 but unknown otherwise
   314 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   315   assert_not_delayed();
   317 #ifdef _LP64
   318   ldf(FloatRegisterImpl::D, r1, offset, d);
   319 #else
   320   ldf(FloatRegisterImpl::S, r1, offset, d);
   321   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
   322 #endif
   323 }
   325 // Known good alignment in _LP64 but unknown otherwise
   326 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   327   assert_not_delayed();
   329 #ifdef _LP64
   330   stf(FloatRegisterImpl::D, d, r1, offset);
   331   // store something more useful here
   332   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
   333 #else
   334   stf(FloatRegisterImpl::S, d, r1, offset);
   335   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
   336 #endif
   337 }
   340 // Known good alignment in _LP64 but unknown otherwise
   341 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   342   assert_not_delayed();
   343 #ifdef _LP64
   344   ldx(r1, offset, rd);
   345 #else
   346   ld(r1, offset, rd);
   347   ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
   348 #endif
   349 }
   351 // Known good alignment in _LP64 but unknown otherwise
   352 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   353   assert_not_delayed();
   355 #ifdef _LP64
   356   stx(l, r1, offset);
   357   // store something more useful here
   358   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
   359 #else
   360   st(l, r1, offset);
   361   st(l->successor(), r1, offset + Interpreter::stackElementSize());
   362 #endif
   363 }
   365 #ifdef ASSERT
   366 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
   367                                                  Register r,
   368                                                  Register scratch) {
   369   if (TaggedStackInterpreter) {
   370     Label ok, long_ok;
   371     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
   372     if (t == frame::TagCategory2) {
   373       cmp(r, G0);
   374       brx(Assembler::equal, false, Assembler::pt, long_ok);
   375       delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
   376       stop("stack long/double tag value bad");
   377       bind(long_ok);
   378       cmp(r, G0);
   379     } else if (t == frame::TagValue) {
   380       cmp(r, G0);
   381     } else {
   382       assert_different_registers(r, scratch);
   383       mov(t, scratch);
   384       cmp(r, scratch);
   385     }
   386     brx(Assembler::equal, false, Assembler::pt, ok);
   387     delayed()->nop();
   388     // Also compare if the stack value is zero, then the tag might
   389     // not have been set coming from deopt.
   390     ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   391     cmp(r, G0);
   392     brx(Assembler::equal, false, Assembler::pt, ok);
   393     delayed()->nop();
   394     stop("Stack tag value is bad");
   395     bind(ok);
   396   }
   397 }
   398 #endif // ASSERT
   400 void InterpreterMacroAssembler::pop_i(Register r) {
   401   assert_not_delayed();
   402   // Uses destination register r for scratch
   403   debug_only(verify_stack_tag(frame::TagValue, r));
   404   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   405   inc(Lesp, Interpreter::stackElementSize());
   406   debug_only(verify_esp(Lesp));
   407 }
   409 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   410   assert_not_delayed();
   411   // Uses destination register r for scratch
   412   debug_only(verify_stack_tag(frame::TagReference, r, scratch));
   413   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   414   inc(Lesp, Interpreter::stackElementSize());
   415   debug_only(verify_esp(Lesp));
   416 }
   418 void InterpreterMacroAssembler::pop_l(Register r) {
   419   assert_not_delayed();
   420   // Uses destination register r for scratch
   421   debug_only(verify_stack_tag(frame::TagCategory2, r));
   422   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   423   inc(Lesp, 2*Interpreter::stackElementSize());
   424   debug_only(verify_esp(Lesp));
   425 }
   428 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   429   assert_not_delayed();
   430   debug_only(verify_stack_tag(frame::TagValue, scratch));
   431   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   432   inc(Lesp, Interpreter::stackElementSize());
   433   debug_only(verify_esp(Lesp));
   434 }
   437 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   438   assert_not_delayed();
   439   debug_only(verify_stack_tag(frame::TagCategory2, scratch));
   440   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   441   inc(Lesp, 2*Interpreter::stackElementSize());
   442   debug_only(verify_esp(Lesp));
   443 }
   446 // (Note use register first, then decrement so dec can be done during store stall)
   447 void InterpreterMacroAssembler::tag_stack(Register r) {
   448   if (TaggedStackInterpreter) {
   449     st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
   450   }
   451 }
   453 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
   454   if (TaggedStackInterpreter) {
   455     assert (frame::TagValue == 0, "TagValue must be zero");
   456     if (t == frame::TagValue) {
   457       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
   458     } else if (t == frame::TagCategory2) {
   459       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
   460       // Tag next slot down too
   461       st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
   462     } else {
   463       assert_different_registers(r, O3);
   464       mov(t, O3);
   465       st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
   466     }
   467   }
   468 }
   470 void InterpreterMacroAssembler::push_i(Register r) {
   471   assert_not_delayed();
   472   debug_only(verify_esp(Lesp));
   473   tag_stack(frame::TagValue, r);
   474   st(  r,    Lesp, Interpreter::value_offset_in_bytes());
   475   dec( Lesp, Interpreter::stackElementSize());
   476 }
   478 void InterpreterMacroAssembler::push_ptr(Register r) {
   479   assert_not_delayed();
   480   tag_stack(frame::TagReference, r);
   481   st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
   482   dec( Lesp, Interpreter::stackElementSize());
   483 }
   485 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   486   assert_not_delayed();
   487   tag_stack(tag);
   488   st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
   489   dec( Lesp, Interpreter::stackElementSize());
   490 }
   492 // remember: our convention for longs in SPARC is:
   493 // O0 (Otos_l1) has high-order part in first word,
   494 // O1 (Otos_l2) has low-order part in second word
   496 void InterpreterMacroAssembler::push_l(Register r) {
   497   assert_not_delayed();
   498   debug_only(verify_esp(Lesp));
   499   tag_stack(frame::TagCategory2, r);
   500   // Longs are in stored in memory-correct order, even if unaligned.
   501   // and may be separated by stack tags.
   502   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   503   store_unaligned_long(r, Lesp, offset);
   504   dec(Lesp, 2 * Interpreter::stackElementSize());
   505 }
   508 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   509   assert_not_delayed();
   510   debug_only(verify_esp(Lesp));
   511   tag_stack(frame::TagValue, Otos_i);
   512   stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
   513   dec(Lesp, Interpreter::stackElementSize());
   514 }
   517 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   518   assert_not_delayed();
   519   debug_only(verify_esp(Lesp));
   520   tag_stack(frame::TagCategory2, Otos_i);
   521   // Longs are in stored in memory-correct order, even if unaligned.
   522   // and may be separated by stack tags.
   523   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   524   store_unaligned_double(d, Lesp, offset);
   525   dec(Lesp, 2 * Interpreter::stackElementSize());
   526 }
   529 void InterpreterMacroAssembler::push(TosState state) {
   530   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   531   switch (state) {
   532     case atos: push_ptr();            break;
   533     case btos: push_i();              break;
   534     case ctos:
   535     case stos: push_i();              break;
   536     case itos: push_i();              break;
   537     case ltos: push_l();              break;
   538     case ftos: push_f();              break;
   539     case dtos: push_d();              break;
   540     case vtos: /* nothing to do */    break;
   541     default  : ShouldNotReachHere();
   542   }
   543 }
   546 void InterpreterMacroAssembler::pop(TosState state) {
   547   switch (state) {
   548     case atos: pop_ptr();            break;
   549     case btos: pop_i();              break;
   550     case ctos:
   551     case stos: pop_i();              break;
   552     case itos: pop_i();              break;
   553     case ltos: pop_l();              break;
   554     case ftos: pop_f();              break;
   555     case dtos: pop_d();              break;
   556     case vtos: /* nothing to do */   break;
   557     default  : ShouldNotReachHere();
   558   }
   559   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   560 }
   563 // Tagged stack helpers for swap and dup
   564 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   565                                                  Register tag) {
   566   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   567   if (TaggedStackInterpreter) {
   568     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
   569   }
   570 }
   571 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   572                                                   Register tag) {
   573   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   574   if (TaggedStackInterpreter) {
   575     st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
   576   }
   577 }
   580 void InterpreterMacroAssembler::load_receiver(Register param_count,
   581                                               Register recv) {
   583   sll(param_count, Interpreter::logStackElementSize(), param_count);
   584   if (TaggedStackInterpreter) {
   585     add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
   586   }
   587   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
   588 }
   590 void InterpreterMacroAssembler::empty_expression_stack() {
   591   // Reset Lesp.
   592   sub( Lmonitors, wordSize, Lesp );
   594   // Reset SP by subtracting more space from Lesp.
   595   Label done;
   596   verify_oop(Lmethod);
   597   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
   599   // A native does not need to do this, since its callee does not change SP.
   600   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
   601   btst(JVM_ACC_NATIVE, Gframe_size);
   602   br(Assembler::notZero, false, Assembler::pt, done);
   603   delayed()->nop();
   605   // Compute max expression stack+register save area
   606   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
   607   if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
   608   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   610   //
   611   // now set up a stack frame with the size computed above
   612   //
   613   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   614   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   615   sub( Lesp, Gframe_size, Gframe_size );
   616   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   617   debug_only(verify_sp(Gframe_size, G4_scratch));
   618 #ifdef _LP64
   619   sub(Gframe_size, STACK_BIAS, Gframe_size );
   620 #endif
   621   mov(Gframe_size, SP);
   623   bind(done);
   624 }
   627 #ifdef ASSERT
   628 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   629   Label Bad, OK;
   631   // Saved SP must be aligned.
   632 #ifdef _LP64
   633   btst(2*BytesPerWord-1, Rsp);
   634 #else
   635   btst(LongAlignmentMask, Rsp);
   636 #endif
   637   br(Assembler::notZero, false, Assembler::pn, Bad);
   638   delayed()->nop();
   640   // Saved SP, plus register window size, must not be above FP.
   641   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   642 #ifdef _LP64
   643   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   644 #endif
   645   cmp(Rtemp, FP);
   646   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
   647   delayed()->nop();
   649   // Saved SP must not be ridiculously below current SP.
   650   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   651   set(maxstack, Rtemp);
   652   sub(SP, Rtemp, Rtemp);
   653 #ifdef _LP64
   654   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   655 #endif
   656   cmp(Rsp, Rtemp);
   657   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
   658   delayed()->nop();
   660   br(Assembler::always, false, Assembler::pn, OK);
   661   delayed()->nop();
   663   bind(Bad);
   664   stop("on return to interpreted call, restored SP is corrupted");
   666   bind(OK);
   667 }
   670 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   671   // about to read or write Resp[0]
   672   // make sure it is not in the monitors or the register save area
   673   Label OK1, OK2;
   675   cmp(Resp, Lmonitors);
   676   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   677   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   678   stop("too many pops:  Lesp points into monitor area");
   679   bind(OK1);
   680 #ifdef _LP64
   681   sub(Resp, STACK_BIAS, Resp);
   682 #endif
   683   cmp(Resp, SP);
   684   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   685   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   686   stop("too many pushes:  Lesp points into register window");
   687   bind(OK2);
   688 }
   689 #endif // ASSERT
   691 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   692 // do the call. Centralized so that all interpreter calls will do the same actions.
   693 // If jvmti single stepping is on for a thread we must not call compiled code.
   694 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   696   // Assume we want to go compiled if available
   698   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   700   if (JvmtiExport::can_post_interpreter_events()) {
   701     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   702     // compiled code in threads for which the event is enabled.  Check here for
   703     // interp_only_mode if these events CAN be enabled.
   704     verify_thread();
   705     Label skip_compiled_code;
   707     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   708     ld(interp_only, scratch);
   709     tst(scratch);
   710     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   711     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   712     bind(skip_compiled_code);
   713   }
   715   // the i2c_adapters need methodOop in G5_method (right? %%%)
   716   // do the call
   717 #ifdef ASSERT
   718   {
   719     Label ok;
   720     br_notnull(target, false, Assembler::pt, ok);
   721     delayed()->nop();
   722     stop("null entry point");
   723     bind(ok);
   724   }
   725 #endif // ASSERT
   727   // Adjust Rret first so Llast_SP can be same as Rret
   728   add(Rret, -frame::pc_return_offset, O7);
   729   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   730   // Record SP so we can remove any stack space allocated by adapter transition
   731   jmp(target, 0);
   732   delayed()->mov(SP, Llast_SP);
   733 }
   735 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   736   assert_not_delayed();
   738   Label not_taken;
   739   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   740   else             br (cc, false, Assembler::pn, not_taken);
   741   delayed()->nop();
   743   TemplateTable::branch(false,false);
   745   bind(not_taken);
   747   profile_not_taken_branch(G3_scratch);
   748 }
   751 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   752                                   int         bcp_offset,
   753                                   Register    Rtmp,
   754                                   Register    Rdst,
   755                                   signedOrNot is_signed,
   756                                   setCCOrNot  should_set_CC ) {
   757   assert(Rtmp != Rdst, "need separate temp register");
   758   assert_not_delayed();
   759   switch (is_signed) {
   760    default: ShouldNotReachHere();
   762    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   763    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   764   }
   765   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   766   sll( Rdst, BitsPerByte, Rdst);
   767   switch (should_set_CC ) {
   768    default: ShouldNotReachHere();
   770    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   771    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   772   }
   773 }
   776 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   777                                   int        bcp_offset,
   778                                   Register   Rtmp,
   779                                   Register   Rdst,
   780                                   setCCOrNot should_set_CC ) {
   781   assert(Rtmp != Rdst, "need separate temp register");
   782   assert_not_delayed();
   783   add( Lbcp, bcp_offset, Rtmp);
   784   andcc( Rtmp, 3, G0);
   785   Label aligned;
   786   switch (should_set_CC ) {
   787    default: ShouldNotReachHere();
   789    case      set_CC: break;
   790    case dont_set_CC: break;
   791   }
   793   br(Assembler::zero, true, Assembler::pn, aligned);
   794 #ifdef _LP64
   795   delayed()->ldsw(Rtmp, 0, Rdst);
   796 #else
   797   delayed()->ld(Rtmp, 0, Rdst);
   798 #endif
   800   ldub(Lbcp, bcp_offset + 3, Rdst);
   801   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   802   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   803 #ifdef _LP64
   804   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   805 #else
   806   // Unsigned load is faster than signed on some implementations
   807   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   808 #endif
   809   or3(Rtmp, Rdst, Rdst );
   811   bind(aligned);
   812   if (should_set_CC == set_CC) tst(Rdst);
   813 }
   816 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
   817   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   818   assert_different_registers(cache, tmp);
   819   assert_not_delayed();
   820   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   821               // convert from field index to ConstantPoolCacheEntry index
   822               // and from word index to byte offset
   823   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   824   add(LcpoolCache, tmp, cache);
   825 }
   828 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
   829   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   830   assert_different_registers(cache, tmp);
   831   assert_not_delayed();
   832   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   833               // convert from field index to ConstantPoolCacheEntry index
   834               // and from word index to byte offset
   835   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   836               // skip past the header
   837   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
   838               // construct pointer to cache entry
   839   add(LcpoolCache, tmp, cache);
   840 }
   843 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   844 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
   845 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   846                                                   Register Rsuper_klass,
   847                                                   Register Rtmp1,
   848                                                   Register Rtmp2,
   849                                                   Register Rtmp3,
   850                                                   Label &ok_is_subtype ) {
   851   Label not_subtype;
   853   // Profile the not-null value's klass.
   854   profile_typecheck(Rsub_klass, Rtmp1);
   856   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
   857                                 Rtmp1, Rtmp2,
   858                                 &ok_is_subtype, &not_subtype, NULL);
   860   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
   861                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
   862                                 &ok_is_subtype, NULL);
   864   bind(not_subtype);
   865   profile_typecheck_failed(Rtmp1);
   866 }
   868 // Separate these two to allow for delay slot in middle
   869 // These are used to do a test and full jump to exception-throwing code.
   871 // %%%%% Could possibly reoptimize this by testing to see if could use
   872 // a single conditional branch (i.e. if span is small enough.
   873 // If you go that route, than get rid of the split and give up
   874 // on the delay-slot hack.
   876 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   877                                                     Label&    ok ) {
   878   assert_not_delayed();
   879   br(ok_condition, true, pt, ok);
   880   // DELAY SLOT
   881 }
   883 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   884                                                     Label&    ok ) {
   885   assert_not_delayed();
   886   bp( ok_condition, true, Assembler::xcc, pt, ok);
   887   // DELAY SLOT
   888 }
   890 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   891                                                   Label&    ok ) {
   892   assert_not_delayed();
   893   brx(ok_condition, true, pt, ok);
   894   // DELAY SLOT
   895 }
   897 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   898                                                 Register Rscratch,
   899                                                 Label&   ok ) {
   900   assert(throw_entry_point != NULL, "entry point must be generated by now");
   901   AddressLiteral dest(throw_entry_point);
   902   jump_to(dest, Rscratch);
   903   delayed()->nop();
   904   bind(ok);
   905 }
   908 // And if you cannot use the delay slot, here is a shorthand:
   910 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   911                                                   address   throw_entry_point,
   912                                                   Register  Rscratch ) {
   913   Label ok;
   914   if (ok_condition != never) {
   915     throw_if_not_1_icc( ok_condition, ok);
   916     delayed()->nop();
   917   }
   918   throw_if_not_2( throw_entry_point, Rscratch, ok);
   919 }
   920 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   921                                                   address   throw_entry_point,
   922                                                   Register  Rscratch ) {
   923   Label ok;
   924   if (ok_condition != never) {
   925     throw_if_not_1_xcc( ok_condition, ok);
   926     delayed()->nop();
   927   }
   928   throw_if_not_2( throw_entry_point, Rscratch, ok);
   929 }
   930 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   931                                                 address   throw_entry_point,
   932                                                 Register  Rscratch ) {
   933   Label ok;
   934   if (ok_condition != never) {
   935     throw_if_not_1_x( ok_condition, ok);
   936     delayed()->nop();
   937   }
   938   throw_if_not_2( throw_entry_point, Rscratch, ok);
   939 }
   941 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   942 // Note: res is still shy of address by array offset into object.
   944 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   945   assert_not_delayed();
   947   verify_oop(array);
   948 #ifdef _LP64
   949   // sign extend since tos (index) can be a 32bit value
   950   sra(index, G0, index);
   951 #endif // _LP64
   953   // check array
   954   Label ptr_ok;
   955   tst(array);
   956   throw_if_not_1_x( notZero, ptr_ok );
   957   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
   958   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
   960   Label index_ok;
   961   cmp(index, tmp);
   962   throw_if_not_1_icc( lessUnsigned, index_ok );
   963   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
   964   else                  delayed()->add(array, index, res); // addr - const offset in index
   965   // convention: move aberrant index into G3_scratch for exception message
   966   mov(index, G3_scratch);
   967   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
   969   // add offset if didn't do it in delay slot
   970   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
   971 }
   974 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   975   assert_not_delayed();
   977   // pop array
   978   pop_ptr(array);
   980   // check array
   981   index_check_without_pop(array, index, index_shift, tmp, res);
   982 }
   985 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   986   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
   987 }
   990 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   991   get_constant_pool(Rdst);
   992   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
   993 }
   996 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   997   get_constant_pool(Rcpool);
   998   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
   999 }
  1002 // unlock if synchronized method
  1003 //
  1004 // Unlock the receiver if this is a synchronized method.
  1005 // Unlock any Java monitors from syncronized blocks.
  1006 //
  1007 // If there are locked Java monitors
  1008 //    If throw_monitor_exception
  1009 //       throws IllegalMonitorStateException
  1010 //    Else if install_monitor_exception
  1011 //       installs IllegalMonitorStateException
  1012 //    Else
  1013 //       no error processing
  1014 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
  1015                                                               bool throw_monitor_exception,
  1016                                                               bool install_monitor_exception) {
  1017   Label unlocked, unlock, no_unlock;
  1019   // get the value of _do_not_unlock_if_synchronized into G1_scratch
  1020   const Address do_not_unlock_if_synchronized(G2_thread,
  1021     JavaThread::do_not_unlock_if_synchronized_offset());
  1022   ldbool(do_not_unlock_if_synchronized, G1_scratch);
  1023   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
  1025   // check if synchronized method
  1026   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
  1027   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1028   push(state); // save tos
  1029   ld(access_flags, G3_scratch); // Load access flags.
  1030   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
  1031   br(zero, false, pt, unlocked);
  1032   delayed()->nop();
  1034   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
  1035   // is set.
  1036   tstbool(G1_scratch);
  1037   br(Assembler::notZero, false, pn, no_unlock);
  1038   delayed()->nop();
  1040   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1041   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1043   //Intel: if (throw_monitor_exception) ... else ...
  1044   // Entry already unlocked, need to throw exception
  1045   //...
  1047   // pass top-most monitor elem
  1048   add( top_most_monitor(), O1 );
  1050   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
  1051   br_notnull(G3_scratch, false, pt, unlock);
  1052   delayed()->nop();
  1054   if (throw_monitor_exception) {
  1055     // Entry already unlocked need to throw an exception
  1056     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1057     should_not_reach_here();
  1058   } else {
  1059     // Monitor already unlocked during a stack unroll.
  1060     // If requested, install an illegal_monitor_state_exception.
  1061     // Continue with stack unrolling.
  1062     if (install_monitor_exception) {
  1063       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1065     ba(false, unlocked);
  1066     delayed()->nop();
  1069   bind(unlock);
  1071   unlock_object(O1);
  1073   bind(unlocked);
  1075   // I0, I1: Might contain return value
  1077   // Check that all monitors are unlocked
  1078   { Label loop, exception, entry, restart;
  1080     Register Rmptr   = O0;
  1081     Register Rtemp   = O1;
  1082     Register Rlimit  = Lmonitors;
  1083     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1084     assert( (delta & LongAlignmentMask) == 0,
  1085             "sizeof BasicObjectLock must be even number of doublewords");
  1087     #ifdef ASSERT
  1088     add(top_most_monitor(), Rmptr, delta);
  1089     { Label L;
  1090       // ensure that Rmptr starts out above (or at) Rlimit
  1091       cmp(Rmptr, Rlimit);
  1092       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1093       delayed()->nop();
  1094       stop("monitor stack has negative size");
  1095       bind(L);
  1097     #endif
  1098     bind(restart);
  1099     ba(false, entry);
  1100     delayed()->
  1101     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1103     // Entry is still locked, need to throw exception
  1104     bind(exception);
  1105     if (throw_monitor_exception) {
  1106       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1107       should_not_reach_here();
  1108     } else {
  1109       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1110       // Unlock does not block, so don't have to worry about the frame
  1111       unlock_object(Rmptr);
  1112       if (install_monitor_exception) {
  1113         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1115       ba(false, restart);
  1116       delayed()->nop();
  1119     bind(loop);
  1120     cmp(Rtemp, G0);                             // check if current entry is used
  1121     brx(Assembler::notEqual, false, pn, exception);
  1122     delayed()->
  1123     dec(Rmptr, delta);                          // otherwise advance to next entry
  1124     #ifdef ASSERT
  1125     { Label L;
  1126       // ensure that Rmptr has not somehow stepped below Rlimit
  1127       cmp(Rmptr, Rlimit);
  1128       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1129       delayed()->nop();
  1130       stop("ran off the end of the monitor stack");
  1131       bind(L);
  1133     #endif
  1134     bind(entry);
  1135     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1136     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1137     delayed()->
  1138     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1141   bind(no_unlock);
  1142   pop(state);
  1143   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1147 // remove activation
  1148 //
  1149 // Unlock the receiver if this is a synchronized method.
  1150 // Unlock any Java monitors from syncronized blocks.
  1151 // Remove the activation from the stack.
  1152 //
  1153 // If there are locked Java monitors
  1154 //    If throw_monitor_exception
  1155 //       throws IllegalMonitorStateException
  1156 //    Else if install_monitor_exception
  1157 //       installs IllegalMonitorStateException
  1158 //    Else
  1159 //       no error processing
  1160 void InterpreterMacroAssembler::remove_activation(TosState state,
  1161                                                   bool throw_monitor_exception,
  1162                                                   bool install_monitor_exception) {
  1164   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1166   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1167   notify_method_exit(false, state, NotifyJVMTI);
  1169   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1170   verify_oop(Lmethod);
  1171   verify_thread();
  1173   // return tos
  1174   assert(Otos_l1 == Otos_i, "adjust code below");
  1175   switch (state) {
  1176 #ifdef _LP64
  1177   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1178 #else
  1179   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1180 #endif
  1181   case btos:                                      // fall through
  1182   case ctos:
  1183   case stos:                                      // fall through
  1184   case atos:                                      // fall through
  1185   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1186   case ftos:                                      // fall through
  1187   case dtos:                                      // fall through
  1188   case vtos: /* nothing to do */                     break;
  1189   default  : ShouldNotReachHere();
  1192 #if defined(COMPILER2) && !defined(_LP64)
  1193   if (state == ltos) {
  1194     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1195     // or compiled so just be safe use G1 and O0/O1
  1197     // Shift bits into high (msb) of G1
  1198     sllx(Otos_l1->after_save(), 32, G1);
  1199     // Zero extend low bits
  1200     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1201     or3 (Otos_l2->after_save(), G1, G1);
  1203 #endif /* COMPILER2 */
  1206 #endif /* CC_INTERP */
  1209 // Lock object
  1210 //
  1211 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1212 //            it must be initialized with the object to lock
  1213 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1214   if (UseHeavyMonitors) {
  1215     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1217   else {
  1218     Register obj_reg = Object;
  1219     Register mark_reg = G4_scratch;
  1220     Register temp_reg = G1_scratch;
  1221     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
  1222     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1223     Label    done;
  1225     Label slow_case;
  1227     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1229     // load markOop from object into mark_reg
  1230     ld_ptr(mark_addr, mark_reg);
  1232     if (UseBiasedLocking) {
  1233       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1236     // get the address of basicLock on stack that will be stored in the object
  1237     // we need a temporary register here as we do not want to clobber lock_reg
  1238     // (cas clobbers the destination register)
  1239     mov(lock_reg, temp_reg);
  1240     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1241     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1242     // initialize the box  (Must happen before we update the object mark!)
  1243     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1244     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1245     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1246     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1247       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1249     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1250     cmp(mark_reg, temp_reg);
  1251     brx(Assembler::equal, true, Assembler::pt, done);
  1252     delayed()->nop();
  1254     // We did not see an unlocked object so try the fast recursive case
  1256     // Check if owner is self by comparing the value in the markOop of object
  1257     // with the stack pointer
  1258     sub(temp_reg, SP, temp_reg);
  1259 #ifdef _LP64
  1260     sub(temp_reg, STACK_BIAS, temp_reg);
  1261 #endif
  1262     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1264     // Composite "andcc" test:
  1265     // (a) %sp -vs- markword proximity check, and,
  1266     // (b) verify mark word LSBs == 0 (Stack-locked).
  1267     //
  1268     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1269     // Note that the page size used for %sp proximity testing is arbitrary and is
  1270     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1271     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1272     // field of the andcc instruction.
  1273     andcc (temp_reg, 0xFFFFF003, G0) ;
  1275     // if condition is true we are done and hence we can store 0 in the displaced
  1276     // header indicating it is a recursive lock and be done
  1277     brx(Assembler::zero, true, Assembler::pt, done);
  1278     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1280     // none of the above fast optimizations worked so we have to get into the
  1281     // slow case of monitor enter
  1282     bind(slow_case);
  1283     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1285     bind(done);
  1289 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1290 //
  1291 // Argument - lock_reg points to the BasicObjectLock for lock
  1292 // Throw IllegalMonitorException if object is not locked by current thread
  1293 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1294   if (UseHeavyMonitors) {
  1295     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1296   } else {
  1297     Register obj_reg = G3_scratch;
  1298     Register mark_reg = G4_scratch;
  1299     Register displaced_header_reg = G1_scratch;
  1300     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
  1301     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1302     Label    done;
  1304     if (UseBiasedLocking) {
  1305       // load the object out of the BasicObjectLock
  1306       ld_ptr(lockobj_addr, obj_reg);
  1307       biased_locking_exit(mark_addr, mark_reg, done, true);
  1308       st_ptr(G0, lockobj_addr);  // free entry
  1311     // Test first if we are in the fast recursive case
  1312     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
  1313     ld_ptr(lock_addr, displaced_header_reg);
  1314     br_null(displaced_header_reg, true, Assembler::pn, done);
  1315     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1317     // See if it is still a light weight lock, if so we just unlock
  1318     // the object and we are done
  1320     if (!UseBiasedLocking) {
  1321       // load the object out of the BasicObjectLock
  1322       ld_ptr(lockobj_addr, obj_reg);
  1325     // we have the displaced header in displaced_header_reg
  1326     // we expect to see the stack address of the basicLock in case the
  1327     // lock is still a light weight lock (lock_reg)
  1328     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1329     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1330       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1331     cmp(lock_reg, displaced_header_reg);
  1332     brx(Assembler::equal, true, Assembler::pn, done);
  1333     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1335     // The lock has been converted into a heavy lock and hence
  1336     // we need to get into the slow case
  1338     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1340     bind(done);
  1344 #ifndef CC_INTERP
  1346 // Get the method data pointer from the methodOop and set the
  1347 // specified register to its value.
  1349 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
  1350   assert(ProfileInterpreter, "must be profiling interpreter");
  1351   Label get_continue;
  1353   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1354   test_method_data_pointer(get_continue);
  1355   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1356   if (Roff != noreg)
  1357     // Roff contains a method data index ("mdi").  It defaults to zero.
  1358     add(ImethodDataPtr, Roff, ImethodDataPtr);
  1359   bind(get_continue);
  1362 // Set the method data pointer for the current bcp.
  1364 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1365   assert(ProfileInterpreter, "must be profiling interpreter");
  1366   Label zero_continue;
  1368   // Test MDO to avoid the call if it is NULL.
  1369   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
  1370   test_method_data_pointer(zero_continue);
  1371   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1372   set_method_data_pointer_offset(O0);
  1373   bind(zero_continue);
  1376 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1378 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1379   assert(ProfileInterpreter, "must be profiling interpreter");
  1380 #ifdef _LP64
  1381   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
  1382 #else
  1383   tst(ImethodDataPtr);
  1384   br(Assembler::zero, false, Assembler::pn, zero_continue);
  1385 #endif
  1386   delayed()->nop();
  1389 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1390   assert(ProfileInterpreter, "must be profiling interpreter");
  1391 #ifdef ASSERT
  1392   Label verify_continue;
  1393   test_method_data_pointer(verify_continue);
  1395   // If the mdp is valid, it will point to a DataLayout header which is
  1396   // consistent with the bcp.  The converse is highly probable also.
  1397   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1398   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
  1399   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  1400   add(G3_scratch, O5, G3_scratch);
  1401   cmp(Lbcp, G3_scratch);
  1402   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1404   Register temp_reg = O5;
  1405   delayed()->mov(ImethodDataPtr, temp_reg);
  1406   // %%% should use call_VM_leaf here?
  1407   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1408   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1409   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1410   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1411   mov(temp_reg->after_save(), O2);
  1412   save_thread(L7_thread_cache);
  1413   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1414   delayed()->nop();
  1415   restore_thread(L7_thread_cache);
  1416   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1417   restore();
  1418   bind(verify_continue);
  1419 #endif // ASSERT
  1422 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1423                                                                 Register cur_bcp,
  1424                                                                 Register Rtmp,
  1425                                                                 Label &profile_continue) {
  1426   assert(ProfileInterpreter, "must be profiling interpreter");
  1427   // Control will flow to "profile_continue" if the counter is less than the
  1428   // limit or if we call profile_method()
  1430   Label done;
  1432   // if no method data exists, and the counter is high enough, make one
  1433 #ifdef _LP64
  1434   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
  1435 #else
  1436   tst(ImethodDataPtr);
  1437   br(Assembler::notZero, false, Assembler::pn, done);
  1438 #endif
  1440   // Test to see if we should create a method data oop
  1441   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
  1442 #ifdef _LP64
  1443   delayed()->nop();
  1444   sethi(profile_limit, Rtmp);
  1445 #else
  1446   delayed()->sethi(profile_limit, Rtmp);
  1447 #endif
  1448   ld(Rtmp, profile_limit.low10(), Rtmp);
  1449   cmp(invocation_count, Rtmp);
  1450   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  1451   delayed()->nop();
  1453   // Build it now.
  1454   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
  1455   set_method_data_pointer_offset(O0);
  1456   ba(false, profile_continue);
  1457   delayed()->nop();
  1458   bind(done);
  1461 // Store a value at some constant offset from the method data pointer.
  1463 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1464   assert(ProfileInterpreter, "must be profiling interpreter");
  1465   st_ptr(value, ImethodDataPtr, constant);
  1468 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1469                                                       Register bumped_count,
  1470                                                       bool decrement) {
  1471   assert(ProfileInterpreter, "must be profiling interpreter");
  1473   // Load the counter.
  1474   ld_ptr(counter, bumped_count);
  1476   if (decrement) {
  1477     // Decrement the register.  Set condition codes.
  1478     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1480     // If the decrement causes the counter to overflow, stay negative
  1481     Label L;
  1482     brx(Assembler::negative, true, Assembler::pn, L);
  1484     // Store the decremented counter, if it is still negative.
  1485     delayed()->st_ptr(bumped_count, counter);
  1486     bind(L);
  1487   } else {
  1488     // Increment the register.  Set carry flag.
  1489     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1491     // If the increment causes the counter to overflow, pull back by 1.
  1492     assert(DataLayout::counter_increment == 1, "subc works");
  1493     subc(bumped_count, G0, bumped_count);
  1495     // Store the incremented counter.
  1496     st_ptr(bumped_count, counter);
  1500 // Increment the value at some constant offset from the method data pointer.
  1502 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1503                                                       Register bumped_count,
  1504                                                       bool decrement) {
  1505   // Locate the counter at a fixed offset from the mdp:
  1506   Address counter(ImethodDataPtr, constant);
  1507   increment_mdp_data_at(counter, bumped_count, decrement);
  1510 // Increment the value at some non-fixed (reg + constant) offset from
  1511 // the method data pointer.
  1513 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1514                                                       int constant,
  1515                                                       Register bumped_count,
  1516                                                       Register scratch2,
  1517                                                       bool decrement) {
  1518   // Add the constant to reg to get the offset.
  1519   add(ImethodDataPtr, reg, scratch2);
  1520   Address counter(scratch2, constant);
  1521   increment_mdp_data_at(counter, bumped_count, decrement);
  1524 // Set a flag value at the current method data pointer position.
  1525 // Updates a single byte of the header, to avoid races with other header bits.
  1527 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1528                                                 Register scratch) {
  1529   assert(ProfileInterpreter, "must be profiling interpreter");
  1530   // Load the data header
  1531   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1533   // Set the flag
  1534   or3(scratch, flag_constant, scratch);
  1536   // Store the modified header.
  1537   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1540 // Test the location at some offset from the method data pointer.
  1541 // If it is not equal to value, branch to the not_equal_continue Label.
  1542 // Set condition codes to match the nullness of the loaded value.
  1544 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1545                                                  Register value,
  1546                                                  Label& not_equal_continue,
  1547                                                  Register scratch) {
  1548   assert(ProfileInterpreter, "must be profiling interpreter");
  1549   ld_ptr(ImethodDataPtr, offset, scratch);
  1550   cmp(value, scratch);
  1551   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1552   delayed()->tst(scratch);
  1555 // Update the method data pointer by the displacement located at some fixed
  1556 // offset from the method data pointer.
  1558 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1559                                                      Register scratch) {
  1560   assert(ProfileInterpreter, "must be profiling interpreter");
  1561   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1562   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1565 // Update the method data pointer by the displacement located at the
  1566 // offset (reg + offset_of_disp).
  1568 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1569                                                      int offset_of_disp,
  1570                                                      Register scratch) {
  1571   assert(ProfileInterpreter, "must be profiling interpreter");
  1572   add(reg, offset_of_disp, scratch);
  1573   ld_ptr(ImethodDataPtr, scratch, scratch);
  1574   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1577 // Update the method data pointer by a simple constant displacement.
  1579 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1580   assert(ProfileInterpreter, "must be profiling interpreter");
  1581   add(ImethodDataPtr, constant, ImethodDataPtr);
  1584 // Update the method data pointer for a _ret bytecode whose target
  1585 // was not among our cached targets.
  1587 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1588                                                    Register return_bci) {
  1589   assert(ProfileInterpreter, "must be profiling interpreter");
  1590   push(state);
  1591   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1592   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1593   ld_ptr(l_tmp, return_bci);
  1594   pop(state);
  1597 // Count a taken branch in the bytecodes.
  1599 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1600   if (ProfileInterpreter) {
  1601     Label profile_continue;
  1603     // If no method data exists, go to profile_continue.
  1604     test_method_data_pointer(profile_continue);
  1606     // We are taking a branch.  Increment the taken count.
  1607     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1609     // The method data pointer needs to be updated to reflect the new target.
  1610     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1611     bind (profile_continue);
  1616 // Count a not-taken branch in the bytecodes.
  1618 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1619   if (ProfileInterpreter) {
  1620     Label profile_continue;
  1622     // If no method data exists, go to profile_continue.
  1623     test_method_data_pointer(profile_continue);
  1625     // We are taking a branch.  Increment the not taken count.
  1626     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1628     // The method data pointer needs to be updated to correspond to the
  1629     // next bytecode.
  1630     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1631     bind (profile_continue);
  1636 // Count a non-virtual call in the bytecodes.
  1638 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1639   if (ProfileInterpreter) {
  1640     Label profile_continue;
  1642     // If no method data exists, go to profile_continue.
  1643     test_method_data_pointer(profile_continue);
  1645     // We are making a call.  Increment the count.
  1646     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1648     // The method data pointer needs to be updated to reflect the new target.
  1649     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1650     bind (profile_continue);
  1655 // Count a final call in the bytecodes.
  1657 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1658   if (ProfileInterpreter) {
  1659     Label profile_continue;
  1661     // If no method data exists, go to profile_continue.
  1662     test_method_data_pointer(profile_continue);
  1664     // We are making a call.  Increment the count.
  1665     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1667     // The method data pointer needs to be updated to reflect the new target.
  1668     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1669     bind (profile_continue);
  1674 // Count a virtual call in the bytecodes.
  1676 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1677                                                      Register scratch) {
  1678   if (ProfileInterpreter) {
  1679     Label profile_continue;
  1681     // If no method data exists, go to profile_continue.
  1682     test_method_data_pointer(profile_continue);
  1684     // Record the receiver type.
  1685     record_klass_in_profile(receiver, scratch, true);
  1687     // The method data pointer needs to be updated to reflect the new target.
  1688     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1689     bind (profile_continue);
  1693 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1694                                         Register receiver, Register scratch,
  1695                                         int start_row, Label& done, bool is_virtual_call) {
  1696   if (TypeProfileWidth == 0) {
  1697     if (is_virtual_call) {
  1698       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1700     return;
  1703   int last_row = VirtualCallData::row_limit() - 1;
  1704   assert(start_row <= last_row, "must be work left to do");
  1705   // Test this row for both the receiver and for null.
  1706   // Take any of three different outcomes:
  1707   //   1. found receiver => increment count and goto done
  1708   //   2. found null => keep looking for case 1, maybe allocate this cell
  1709   //   3. found something else => keep looking for cases 1 and 2
  1710   // Case 3 is handled by a recursive call.
  1711   for (int row = start_row; row <= last_row; row++) {
  1712     Label next_test;
  1713     bool test_for_null_also = (row == start_row);
  1715     // See if the receiver is receiver[n].
  1716     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1717     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1718     // delayed()->tst(scratch);
  1720     // The receiver is receiver[n].  Increment count[n].
  1721     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1722     increment_mdp_data_at(count_offset, scratch);
  1723     ba(false, done);
  1724     delayed()->nop();
  1725     bind(next_test);
  1727     if (test_for_null_also) {
  1728       Label found_null;
  1729       // Failed the equality check on receiver[n]...  Test for null.
  1730       if (start_row == last_row) {
  1731         // The only thing left to do is handle the null case.
  1732         if (is_virtual_call) {
  1733           brx(Assembler::zero, false, Assembler::pn, found_null);
  1734           delayed()->nop();
  1735           // Receiver did not match any saved receiver and there is no empty row for it.
  1736           // Increment total counter to indicate polimorphic case.
  1737           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1738           ba(false, done);
  1739           delayed()->nop();
  1740           bind(found_null);
  1741         } else {
  1742           brx(Assembler::notZero, false, Assembler::pt, done);
  1743           delayed()->nop();
  1745         break;
  1747       // Since null is rare, make it be the branch-taken case.
  1748       brx(Assembler::zero, false, Assembler::pn, found_null);
  1749       delayed()->nop();
  1751       // Put all the "Case 3" tests here.
  1752       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
  1754       // Found a null.  Keep searching for a matching receiver,
  1755       // but remember that this is an empty (unused) slot.
  1756       bind(found_null);
  1760   // In the fall-through case, we found no matching receiver, but we
  1761   // observed the receiver[start_row] is NULL.
  1763   // Fill in the receiver field and increment the count.
  1764   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1765   set_mdp_data_at(recvr_offset, receiver);
  1766   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1767   mov(DataLayout::counter_increment, scratch);
  1768   set_mdp_data_at(count_offset, scratch);
  1769   if (start_row > 0) {
  1770     ba(false, done);
  1771     delayed()->nop();
  1775 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1776                                                         Register scratch, bool is_virtual_call) {
  1777   assert(ProfileInterpreter, "must be profiling");
  1778   Label done;
  1780   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
  1782   bind (done);
  1786 // Count a ret in the bytecodes.
  1788 void InterpreterMacroAssembler::profile_ret(TosState state,
  1789                                             Register return_bci,
  1790                                             Register scratch) {
  1791   if (ProfileInterpreter) {
  1792     Label profile_continue;
  1793     uint row;
  1795     // If no method data exists, go to profile_continue.
  1796     test_method_data_pointer(profile_continue);
  1798     // Update the total ret count.
  1799     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1801     for (row = 0; row < RetData::row_limit(); row++) {
  1802       Label next_test;
  1804       // See if return_bci is equal to bci[n]:
  1805       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1806                        return_bci, next_test, scratch);
  1808       // return_bci is equal to bci[n].  Increment the count.
  1809       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1811       // The method data pointer needs to be updated to reflect the new target.
  1812       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1813       ba(false, profile_continue);
  1814       delayed()->nop();
  1815       bind(next_test);
  1818     update_mdp_for_ret(state, return_bci);
  1820     bind (profile_continue);
  1824 // Profile an unexpected null in the bytecodes.
  1825 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1826   if (ProfileInterpreter) {
  1827     Label profile_continue;
  1829     // If no method data exists, go to profile_continue.
  1830     test_method_data_pointer(profile_continue);
  1832     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1834     // The method data pointer needs to be updated.
  1835     int mdp_delta = in_bytes(BitData::bit_data_size());
  1836     if (TypeProfileCasts) {
  1837       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1839     update_mdp_by_constant(mdp_delta);
  1841     bind (profile_continue);
  1845 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1846                                                   Register scratch) {
  1847   if (ProfileInterpreter) {
  1848     Label profile_continue;
  1850     // If no method data exists, go to profile_continue.
  1851     test_method_data_pointer(profile_continue);
  1853     int mdp_delta = in_bytes(BitData::bit_data_size());
  1854     if (TypeProfileCasts) {
  1855       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1857       // Record the object type.
  1858       record_klass_in_profile(klass, scratch, false);
  1861     // The method data pointer needs to be updated.
  1862     update_mdp_by_constant(mdp_delta);
  1864     bind (profile_continue);
  1868 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1869   if (ProfileInterpreter && TypeProfileCasts) {
  1870     Label profile_continue;
  1872     // If no method data exists, go to profile_continue.
  1873     test_method_data_pointer(profile_continue);
  1875     int count_offset = in_bytes(CounterData::count_offset());
  1876     // Back up the address, since we have already bumped the mdp.
  1877     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1879     // *Decrement* the counter.  We expect to see zero or small negatives.
  1880     increment_mdp_data_at(count_offset, scratch, true);
  1882     bind (profile_continue);
  1886 // Count the default case of a switch construct.
  1888 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1889   if (ProfileInterpreter) {
  1890     Label profile_continue;
  1892     // If no method data exists, go to profile_continue.
  1893     test_method_data_pointer(profile_continue);
  1895     // Update the default case count
  1896     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1897                           scratch);
  1899     // The method data pointer needs to be updated.
  1900     update_mdp_by_offset(
  1901                     in_bytes(MultiBranchData::default_displacement_offset()),
  1902                     scratch);
  1904     bind (profile_continue);
  1908 // Count the index'th case of a switch construct.
  1910 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1911                                                     Register scratch,
  1912                                                     Register scratch2,
  1913                                                     Register scratch3) {
  1914   if (ProfileInterpreter) {
  1915     Label profile_continue;
  1917     // If no method data exists, go to profile_continue.
  1918     test_method_data_pointer(profile_continue);
  1920     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1921     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1922     smul(index, scratch, scratch);
  1923     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1925     // Update the case count
  1926     increment_mdp_data_at(scratch,
  1927                           in_bytes(MultiBranchData::relative_count_offset()),
  1928                           scratch2,
  1929                           scratch3);
  1931     // The method data pointer needs to be updated.
  1932     update_mdp_by_offset(scratch,
  1933                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1934                      scratch2);
  1936     bind (profile_continue);
  1940 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1942 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1943                                                       Register Rtemp,
  1944                                                       Register Rtemp2 ) {
  1946   Register Rlimit = Lmonitors;
  1947   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1948   assert( (delta & LongAlignmentMask) == 0,
  1949           "sizeof BasicObjectLock must be even number of doublewords");
  1951   sub( SP,        delta, SP);
  1952   sub( Lesp,      delta, Lesp);
  1953   sub( Lmonitors, delta, Lmonitors);
  1955   if (!stack_is_empty) {
  1957     // must copy stack contents down
  1959     Label start_copying, next;
  1961     // untested("monitor stack expansion");
  1962     compute_stack_base(Rtemp);
  1963     ba( false, start_copying );
  1964     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
  1966     // note: must copy from low memory upwards
  1967     // On entry to loop,
  1968     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  1969     // Loop mutates Rtemp
  1971     bind( next);
  1973     st_ptr(Rtemp2, Rtemp, 0);
  1974     inc(Rtemp, wordSize);
  1975     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  1977     bind( start_copying );
  1979     brx( notEqual, true, pn, next );
  1980     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  1982     // done copying stack
  1986 // Locals
  1987 #ifdef ASSERT
  1988 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
  1989                                                  Register base,
  1990                                                  Register scratch,
  1991                                                  int n) {
  1992   if (TaggedStackInterpreter) {
  1993     Label ok, long_ok;
  1994     // Use dst for scratch
  1995     assert_different_registers(base, scratch);
  1996     ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
  1997     if (t == frame::TagCategory2) {
  1998       cmp(scratch, G0);
  1999       brx(Assembler::equal, false, Assembler::pt, long_ok);
  2000       delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
  2001       stop("local long/double tag value bad");
  2002       bind(long_ok);
  2003       // compare second half tag
  2004       cmp(scratch, G0);
  2005     } else if (t == frame::TagValue) {
  2006       cmp(scratch, G0);
  2007     } else {
  2008       assert_different_registers(O3, base, scratch);
  2009       mov(t, O3);
  2010       cmp(scratch, O3);
  2012     brx(Assembler::equal, false, Assembler::pt, ok);
  2013     delayed()->nop();
  2014     // Also compare if the local value is zero, then the tag might
  2015     // not have been set coming from deopt.
  2016     ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
  2017     cmp(scratch, G0);
  2018     brx(Assembler::equal, false, Assembler::pt, ok);
  2019     delayed()->nop();
  2020     stop("Local tag value is bad");
  2021     bind(ok);
  2024 #endif // ASSERT
  2026 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  2027   assert_not_delayed();
  2028   sll(index, Interpreter::logStackElementSize(), index);
  2029   sub(Llocals, index, index);
  2030   debug_only(verify_local_tag(frame::TagReference, index, dst));
  2031   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
  2032   // Note:  index must hold the effective address--the iinc template uses it
  2035 // Just like access_local_ptr but the tag is a returnAddress
  2036 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  2037                                                            Register dst ) {
  2038   assert_not_delayed();
  2039   sll(index, Interpreter::logStackElementSize(), index);
  2040   sub(Llocals, index, index);
  2041   debug_only(verify_local_tag(frame::TagValue, index, dst));
  2042   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
  2045 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  2046   assert_not_delayed();
  2047   sll(index, Interpreter::logStackElementSize(), index);
  2048   sub(Llocals, index, index);
  2049   debug_only(verify_local_tag(frame::TagValue, index, dst));
  2050   ld(index, Interpreter::value_offset_in_bytes(), dst);
  2051   // Note:  index must hold the effective address--the iinc template uses it
  2055 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  2056   assert_not_delayed();
  2057   sll(index, Interpreter::logStackElementSize(), index);
  2058   sub(Llocals, index, index);
  2059   debug_only(verify_local_tag(frame::TagCategory2, index, dst));
  2060   // First half stored at index n+1 (which grows down from Llocals[n])
  2061   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  2065 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  2066   assert_not_delayed();
  2067   sll(index, Interpreter::logStackElementSize(), index);
  2068   sub(Llocals, index, index);
  2069   debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
  2070   ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
  2074 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  2075   assert_not_delayed();
  2076   sll(index, Interpreter::logStackElementSize(), index);
  2077   sub(Llocals, index, index);
  2078   debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
  2079   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  2083 #ifdef ASSERT
  2084 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  2085   Label L;
  2087   assert(Rindex != Rscratch, "Registers cannot be same");
  2088   assert(Rindex != Rscratch1, "Registers cannot be same");
  2089   assert(Rlimit != Rscratch, "Registers cannot be same");
  2090   assert(Rlimit != Rscratch1, "Registers cannot be same");
  2091   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  2093   // untested("reg area corruption");
  2094   add(Rindex, offset, Rscratch);
  2095   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  2096   cmp(Rscratch, Rscratch1);
  2097   brx(Assembler::greaterEqualUnsigned, false, pn, L);
  2098   delayed()->nop();
  2099   stop("regsave area is being clobbered");
  2100   bind(L);
  2102 #endif // ASSERT
  2104 void InterpreterMacroAssembler::tag_local(frame::Tag t,
  2105                                           Register base,
  2106                                           Register src,
  2107                                           int n) {
  2108   if (TaggedStackInterpreter) {
  2109     // have to store zero because local slots can be reused (rats!)
  2110     if (t == frame::TagValue) {
  2111       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
  2112     } else if (t == frame::TagCategory2) {
  2113       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
  2114       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
  2115     } else {
  2116       // assert that we don't stomp the value in 'src'
  2117       // O3 is arbitrary because it's not used.
  2118       assert_different_registers(src, base, O3);
  2119       mov( t, O3);
  2120       st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
  2126 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  2127   assert_not_delayed();
  2128   sll(index, Interpreter::logStackElementSize(), index);
  2129   sub(Llocals, index, index);
  2130   debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
  2131   tag_local(frame::TagValue, index, src);
  2132   st(src, index, Interpreter::value_offset_in_bytes());
  2135 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
  2136                                                  Register tag ) {
  2137   assert_not_delayed();
  2138   sll(index, Interpreter::logStackElementSize(), index);
  2139   sub(Llocals, index, index);
  2140   #ifdef ASSERT
  2141   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  2142   #endif
  2143   st_ptr(src, index, Interpreter::value_offset_in_bytes());
  2144   // Store tag register directly
  2145   if (TaggedStackInterpreter) {
  2146     st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
  2152 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
  2153                                                  Register tag ) {
  2154   st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
  2155   if (TaggedStackInterpreter) {
  2156     st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
  2160 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  2161   assert_not_delayed();
  2162   sll(index, Interpreter::logStackElementSize(), index);
  2163   sub(Llocals, index, index);
  2164   #ifdef ASSERT
  2165   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2166   #endif
  2167   tag_local(frame::TagCategory2, index, src);
  2168   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2172 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2173   assert_not_delayed();
  2174   sll(index, Interpreter::logStackElementSize(), index);
  2175   sub(Llocals, index, index);
  2176   #ifdef ASSERT
  2177   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  2178   #endif
  2179   tag_local(frame::TagValue, index, G1_scratch);
  2180   stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
  2184 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2185   assert_not_delayed();
  2186   sll(index, Interpreter::logStackElementSize(), index);
  2187   sub(Llocals, index, index);
  2188   #ifdef ASSERT
  2189   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2190   #endif
  2191   tag_local(frame::TagCategory2, index, G1_scratch);
  2192   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2196 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2197   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2198   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2199   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2203 Address InterpreterMacroAssembler::top_most_monitor() {
  2204   return Address(FP, top_most_monitor_byte_offset());
  2208 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2209   add( Lesp,      wordSize,                                    Rdest );
  2212 #endif /* CC_INTERP */
  2214 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2215   assert(UseCompiler, "incrementing must be useful");
  2216 #ifdef CC_INTERP
  2217   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2218                                  InvocationCounter::counter_offset());
  2219   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2220                                  InvocationCounter::counter_offset());
  2221 #else
  2222   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2223                                InvocationCounter::counter_offset());
  2224   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2225                                InvocationCounter::counter_offset());
  2226 #endif /* CC_INTERP */
  2227   int delta = InvocationCounter::count_increment;
  2229   // Load each counter in a register
  2230   ld( inv_counter, Rtmp );
  2231   ld( be_counter, Rtmp2 );
  2233   assert( is_simm13( delta ), " delta too large.");
  2235   // Add the delta to the invocation counter and store the result
  2236   add( Rtmp, delta, Rtmp );
  2238   // Mask the backedge counter
  2239   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2241   // Store value
  2242   st( Rtmp, inv_counter);
  2244   // Add invocation counter + backedge counter
  2245   add( Rtmp, Rtmp2, Rtmp);
  2247   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2250 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2251   assert(UseCompiler, "incrementing must be useful");
  2252 #ifdef CC_INTERP
  2253   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2254                                  InvocationCounter::counter_offset());
  2255   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2256                                  InvocationCounter::counter_offset());
  2257 #else
  2258   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2259                                InvocationCounter::counter_offset());
  2260   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2261                                InvocationCounter::counter_offset());
  2262 #endif /* CC_INTERP */
  2263   int delta = InvocationCounter::count_increment;
  2264   // Load each counter in a register
  2265   ld( be_counter, Rtmp );
  2266   ld( inv_counter, Rtmp2 );
  2268   // Add the delta to the backedge counter
  2269   add( Rtmp, delta, Rtmp );
  2271   // Mask the invocation counter, add to backedge counter
  2272   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2274   // and store the result to memory
  2275   st( Rtmp, be_counter );
  2277   // Add backedge + invocation counter
  2278   add( Rtmp, Rtmp2, Rtmp );
  2280   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2283 #ifndef CC_INTERP
  2284 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2285                                                              Register branch_bcp,
  2286                                                              Register Rtmp ) {
  2287   Label did_not_overflow;
  2288   Label overflow_with_error;
  2289   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2290   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2292   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
  2293   load_contents(limit, Rtmp);
  2294   cmp(backedge_count, Rtmp);
  2295   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
  2296   delayed()->nop();
  2298   // When ProfileInterpreter is on, the backedge_count comes from the
  2299   // methodDataOop, which value does not get reset on the call to
  2300   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2301   // routine while the method is being compiled, add a second test to make sure
  2302   // the overflow function is called only once every overflow_frequency.
  2303   if (ProfileInterpreter) {
  2304     const int overflow_frequency = 1024;
  2305     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2306     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2307     delayed()->nop();
  2310   // overflow in loop, pass branch bytecode
  2311   set(6,Rtmp);
  2312   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2314   // Was an OSR adapter generated?
  2315   // O0 = osr nmethod
  2316   tst(O0);
  2317   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
  2318   delayed()->nop();
  2320   // Has the nmethod been invalidated already?
  2321   ld(O0, nmethod::entry_bci_offset(), O2);
  2322   cmp(O2, InvalidOSREntryBci);
  2323   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
  2324   delayed()->nop();
  2326   // migrate the interpreter frame off of the stack
  2328   mov(G2_thread, L7);
  2329   // save nmethod
  2330   mov(O0, L6);
  2331   set_last_Java_frame(SP, noreg);
  2332   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2333   reset_last_Java_frame();
  2334   mov(L7, G2_thread);
  2336   // move OSR nmethod to I1
  2337   mov(L6, I1);
  2339   // OSR buffer to I0
  2340   mov(O0, I0);
  2342   // remove the interpreter frame
  2343   restore(I5_savedSP, 0, SP);
  2345   // Jump to the osr code.
  2346   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2347   jmp(O2, G0);
  2348   delayed()->nop();
  2350   bind(overflow_with_error);
  2352   bind(did_not_overflow);
  2357 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2358   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2362 // local helper function for the verify_oop_or_return_address macro
  2363 static bool verify_return_address(methodOopDesc* m, int bci) {
  2364 #ifndef PRODUCT
  2365   address pc = (address)(m->constMethod())
  2366              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  2367   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2368   if (!m->contains(pc))                                          return false;
  2369   address jsr_pc;
  2370   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2371   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2372   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2373   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2374 #endif // PRODUCT
  2375   return false;
  2379 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2380   if (!VerifyOops)  return;
  2381   // the VM documentation for the astore[_wide] bytecode allows
  2382   // the TOS to be not only an oop but also a return address
  2383   Label test;
  2384   Label skip;
  2385   // See if it is an address (in the current method):
  2387   mov(reg, Rtmp);
  2388   const int log2_bytecode_size_limit = 16;
  2389   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2390   br_notnull( Rtmp, false, pt, test );
  2391   delayed()->nop();
  2393   // %%% should use call_VM_leaf here?
  2394   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2395   save_thread(L7_thread_cache);
  2396   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2397   delayed()->nop();
  2398   restore_thread(L7_thread_cache);
  2399   br_notnull( O0, false, pt, skip );
  2400   delayed()->restore();
  2402   // Perform a more elaborate out-of-line call
  2403   // Not an address; verify it:
  2404   bind(test);
  2405   verify_oop(reg);
  2406   bind(skip);
  2410 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2411   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2413 #endif /* CC_INTERP */
  2415 // Inline assembly for:
  2416 //
  2417 // if (thread is in interp_only_mode) {
  2418 //   InterpreterRuntime::post_method_entry();
  2419 // }
  2420 // if (DTraceMethodProbes) {
  2421 //   SharedRuntime::dtrace_method_entry(method, receiver);
  2422 // }
  2423 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2424 //   SharedRuntime::rc_trace_method_entry(method, receiver);
  2425 // }
  2427 void InterpreterMacroAssembler::notify_method_entry() {
  2429   // C++ interpreter only uses this for native methods.
  2431   // Whenever JVMTI puts a thread in interp_only_mode, method
  2432   // entry/exit events are sent for that thread to track stack
  2433   // depth.  If it is possible to enter interp_only_mode we add
  2434   // the code to check if the event should be sent.
  2435   if (JvmtiExport::can_post_interpreter_events()) {
  2436     Label L;
  2437     Register temp_reg = O5;
  2438     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2439     ld(interp_only, temp_reg);
  2440     tst(temp_reg);
  2441     br(zero, false, pt, L);
  2442     delayed()->nop();
  2443     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2444     bind(L);
  2448     Register temp_reg = O5;
  2449     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2450     call_VM_leaf(noreg,
  2451       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2452       G2_thread, Lmethod);
  2455   // RedefineClasses() tracing support for obsolete method entry
  2456   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2457     call_VM_leaf(noreg,
  2458       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2459       G2_thread, Lmethod);
  2464 // Inline assembly for:
  2465 //
  2466 // if (thread is in interp_only_mode) {
  2467 //   // save result
  2468 //   InterpreterRuntime::post_method_exit();
  2469 //   // restore result
  2470 // }
  2471 // if (DTraceMethodProbes) {
  2472 //   SharedRuntime::dtrace_method_exit(thread, method);
  2473 // }
  2474 //
  2475 // Native methods have their result stored in d_tmp and l_tmp
  2476 // Java methods have their result stored in the expression stack
  2478 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2479                                                    TosState state,
  2480                                                    NotifyMethodExitMode mode) {
  2481   // C++ interpreter only uses this for native methods.
  2483   // Whenever JVMTI puts a thread in interp_only_mode, method
  2484   // entry/exit events are sent for that thread to track stack
  2485   // depth.  If it is possible to enter interp_only_mode we add
  2486   // the code to check if the event should be sent.
  2487   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2488     Label L;
  2489     Register temp_reg = O5;
  2490     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2491     ld(interp_only, temp_reg);
  2492     tst(temp_reg);
  2493     br(zero, false, pt, L);
  2494     delayed()->nop();
  2496     // Note: frame::interpreter_frame_result has a dependency on how the
  2497     // method result is saved across the call to post_method_exit. For
  2498     // native methods it assumes the result registers are saved to
  2499     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2500     // implementation will need to be updated too.
  2502     save_return_value(state, is_native_method);
  2503     call_VM(noreg,
  2504             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2505     restore_return_value(state, is_native_method);
  2506     bind(L);
  2510     Register temp_reg = O5;
  2511     // Dtrace notification
  2512     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2513     save_return_value(state, is_native_method);
  2514     call_VM_leaf(
  2515       noreg,
  2516       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2517       G2_thread, Lmethod);
  2518     restore_return_value(state, is_native_method);
  2522 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2523 #ifdef CC_INTERP
  2524   // result potentially in O0/O1: save it across calls
  2525   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2526 #ifdef _LP64
  2527   stx(O0, STATE(_native_lresult));
  2528 #else
  2529   std(O0, STATE(_native_lresult));
  2530 #endif
  2531 #else // CC_INTERP
  2532   if (is_native_call) {
  2533     stf(FloatRegisterImpl::D, F0, d_tmp);
  2534 #ifdef _LP64
  2535     stx(O0, l_tmp);
  2536 #else
  2537     std(O0, l_tmp);
  2538 #endif
  2539   } else {
  2540     push(state);
  2542 #endif // CC_INTERP
  2545 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2546 #ifdef CC_INTERP
  2547   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2548 #ifdef _LP64
  2549   ldx(STATE(_native_lresult), O0);
  2550 #else
  2551   ldd(STATE(_native_lresult), O0);
  2552 #endif
  2553 #else // CC_INTERP
  2554   if (is_native_call) {
  2555     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2556 #ifdef _LP64
  2557     ldx(l_tmp, O0);
  2558 #else
  2559     ldd(l_tmp, O0);
  2560 #endif
  2561   } else {
  2562     pop(state);
  2564 #endif // CC_INTERP

mercurial