src/share/vm/opto/compile.cpp

Tue, 30 Jun 2020 18:05:34 +0200

author
roland
date
Tue, 30 Jun 2020 18:05:34 +0200
changeset 9985
8712be1ae49a
parent 9957
d2ec2776ad0c
child 10015
eb7ce841ccec
permissions
-rw-r--r--

8240676: Meet not symmetric failure when running lucene on jdk8
Reviewed-by: kvn, thartmann

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "ci/ciReplay.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "code/exceptionHandlerTable.hpp"
    31 #include "code/nmethod.hpp"
    32 #include "compiler/compileLog.hpp"
    33 #include "compiler/disassembler.hpp"
    34 #include "compiler/oopMap.hpp"
    35 #include "jfr/jfrEvents.hpp"
    36 #include "opto/addnode.hpp"
    37 #include "opto/block.hpp"
    38 #include "opto/c2compiler.hpp"
    39 #include "opto/callGenerator.hpp"
    40 #include "opto/callnode.hpp"
    41 #include "opto/cfgnode.hpp"
    42 #include "opto/chaitin.hpp"
    43 #include "opto/compile.hpp"
    44 #include "opto/connode.hpp"
    45 #include "opto/divnode.hpp"
    46 #include "opto/escape.hpp"
    47 #include "opto/idealGraphPrinter.hpp"
    48 #include "opto/loopnode.hpp"
    49 #include "opto/machnode.hpp"
    50 #include "opto/macro.hpp"
    51 #include "opto/matcher.hpp"
    52 #include "opto/mathexactnode.hpp"
    53 #include "opto/memnode.hpp"
    54 #include "opto/mulnode.hpp"
    55 #include "opto/node.hpp"
    56 #include "opto/opcodes.hpp"
    57 #include "opto/output.hpp"
    58 #include "opto/parse.hpp"
    59 #include "opto/phaseX.hpp"
    60 #include "opto/rootnode.hpp"
    61 #include "opto/runtime.hpp"
    62 #include "opto/stringopts.hpp"
    63 #include "opto/type.hpp"
    64 #include "opto/vectornode.hpp"
    65 #include "runtime/arguments.hpp"
    66 #include "runtime/signature.hpp"
    67 #include "runtime/stubRoutines.hpp"
    68 #include "runtime/timer.hpp"
    69 #include "utilities/copy.hpp"
    70 #if defined AD_MD_HPP
    71 # include AD_MD_HPP
    72 #elif defined TARGET_ARCH_MODEL_x86_32
    73 # include "adfiles/ad_x86_32.hpp"
    74 #elif defined TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #elif defined TARGET_ARCH_MODEL_sparc
    77 # include "adfiles/ad_sparc.hpp"
    78 #elif defined TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #elif defined TARGET_ARCH_MODEL_ppc_64
    81 # include "adfiles/ad_ppc_64.hpp"
    82 #endif
    84 // -------------------- Compile::mach_constant_base_node -----------------------
    85 // Constant table base node singleton.
    86 MachConstantBaseNode* Compile::mach_constant_base_node() {
    87   if (_mach_constant_base_node == NULL) {
    88     _mach_constant_base_node = new (C) MachConstantBaseNode();
    89     _mach_constant_base_node->add_req(C->root());
    90   }
    91   return _mach_constant_base_node;
    92 }
    95 /// Support for intrinsics.
    97 // Return the index at which m must be inserted (or already exists).
    98 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
    99 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   100 #ifdef ASSERT
   101   for (int i = 1; i < _intrinsics->length(); i++) {
   102     CallGenerator* cg1 = _intrinsics->at(i-1);
   103     CallGenerator* cg2 = _intrinsics->at(i);
   104     assert(cg1->method() != cg2->method()
   105            ? cg1->method()     < cg2->method()
   106            : cg1->is_virtual() < cg2->is_virtual(),
   107            "compiler intrinsics list must stay sorted");
   108   }
   109 #endif
   110   // Binary search sorted list, in decreasing intervals [lo, hi].
   111   int lo = 0, hi = _intrinsics->length()-1;
   112   while (lo <= hi) {
   113     int mid = (uint)(hi + lo) / 2;
   114     ciMethod* mid_m = _intrinsics->at(mid)->method();
   115     if (m < mid_m) {
   116       hi = mid-1;
   117     } else if (m > mid_m) {
   118       lo = mid+1;
   119     } else {
   120       // look at minor sort key
   121       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   122       if (is_virtual < mid_virt) {
   123         hi = mid-1;
   124       } else if (is_virtual > mid_virt) {
   125         lo = mid+1;
   126       } else {
   127         return mid;  // exact match
   128       }
   129     }
   130   }
   131   return lo;  // inexact match
   132 }
   134 void Compile::register_intrinsic(CallGenerator* cg) {
   135   if (_intrinsics == NULL) {
   136     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   137   }
   138   // This code is stolen from ciObjectFactory::insert.
   139   // Really, GrowableArray should have methods for
   140   // insert_at, remove_at, and binary_search.
   141   int len = _intrinsics->length();
   142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   143   if (index == len) {
   144     _intrinsics->append(cg);
   145   } else {
   146 #ifdef ASSERT
   147     CallGenerator* oldcg = _intrinsics->at(index);
   148     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   149 #endif
   150     _intrinsics->append(_intrinsics->at(len-1));
   151     int pos;
   152     for (pos = len-2; pos >= index; pos--) {
   153       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   154     }
   155     _intrinsics->at_put(index, cg);
   156   }
   157   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   158 }
   160 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   161   assert(m->is_loaded(), "don't try this on unloaded methods");
   162   if (_intrinsics != NULL) {
   163     int index = intrinsic_insertion_index(m, is_virtual);
   164     if (index < _intrinsics->length()
   165         && _intrinsics->at(index)->method() == m
   166         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   167       return _intrinsics->at(index);
   168     }
   169   }
   170   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   171   if (m->intrinsic_id() != vmIntrinsics::_none &&
   172       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   173     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   174     if (cg != NULL) {
   175       // Save it for next time:
   176       register_intrinsic(cg);
   177       return cg;
   178     } else {
   179       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   180     }
   181   }
   182   return NULL;
   183 }
   185 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   186 // in library_call.cpp.
   189 #ifndef PRODUCT
   190 // statistics gathering...
   192 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   193 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   195 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   196   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   197   int oflags = _intrinsic_hist_flags[id];
   198   assert(flags != 0, "what happened?");
   199   if (is_virtual) {
   200     flags |= _intrinsic_virtual;
   201   }
   202   bool changed = (flags != oflags);
   203   if ((flags & _intrinsic_worked) != 0) {
   204     juint count = (_intrinsic_hist_count[id] += 1);
   205     if (count == 1) {
   206       changed = true;           // first time
   207     }
   208     // increment the overall count also:
   209     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   210   }
   211   if (changed) {
   212     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   213       // Something changed about the intrinsic's virtuality.
   214       if ((flags & _intrinsic_virtual) != 0) {
   215         // This is the first use of this intrinsic as a virtual call.
   216         if (oflags != 0) {
   217           // We already saw it as a non-virtual, so note both cases.
   218           flags |= _intrinsic_both;
   219         }
   220       } else if ((oflags & _intrinsic_both) == 0) {
   221         // This is the first use of this intrinsic as a non-virtual
   222         flags |= _intrinsic_both;
   223       }
   224     }
   225     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   226   }
   227   // update the overall flags also:
   228   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   229   return changed;
   230 }
   232 static char* format_flags(int flags, char* buf) {
   233   buf[0] = 0;
   234   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   235   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   236   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   237   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   238   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   239   if (buf[0] == 0)  strcat(buf, ",");
   240   assert(buf[0] == ',', "must be");
   241   return &buf[1];
   242 }
   244 void Compile::print_intrinsic_statistics() {
   245   char flagsbuf[100];
   246   ttyLocker ttyl;
   247   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   248   tty->print_cr("Compiler intrinsic usage:");
   249   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   250   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   251   #define PRINT_STAT_LINE(name, c, f) \
   252     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   253   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   254     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   255     int   flags = _intrinsic_hist_flags[id];
   256     juint count = _intrinsic_hist_count[id];
   257     if ((flags | count) != 0) {
   258       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   259     }
   260   }
   261   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   262   if (xtty != NULL)  xtty->tail("statistics");
   263 }
   265 void Compile::print_statistics() {
   266   { ttyLocker ttyl;
   267     if (xtty != NULL)  xtty->head("statistics type='opto'");
   268     Parse::print_statistics();
   269     PhaseCCP::print_statistics();
   270     PhaseRegAlloc::print_statistics();
   271     Scheduling::print_statistics();
   272     PhasePeephole::print_statistics();
   273     PhaseIdealLoop::print_statistics();
   274     if (xtty != NULL)  xtty->tail("statistics");
   275   }
   276   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   277     // put this under its own <statistics> element.
   278     print_intrinsic_statistics();
   279   }
   280 }
   281 #endif //PRODUCT
   283 // Support for bundling info
   284 Bundle* Compile::node_bundling(const Node *n) {
   285   assert(valid_bundle_info(n), "oob");
   286   return &_node_bundling_base[n->_idx];
   287 }
   289 bool Compile::valid_bundle_info(const Node *n) {
   290   return (_node_bundling_limit > n->_idx);
   291 }
   294 void Compile::gvn_replace_by(Node* n, Node* nn) {
   295   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   296     Node* use = n->last_out(i);
   297     bool is_in_table = initial_gvn()->hash_delete(use);
   298     uint uses_found = 0;
   299     for (uint j = 0; j < use->len(); j++) {
   300       if (use->in(j) == n) {
   301         if (j < use->req())
   302           use->set_req(j, nn);
   303         else
   304           use->set_prec(j, nn);
   305         uses_found++;
   306       }
   307     }
   308     if (is_in_table) {
   309       // reinsert into table
   310       initial_gvn()->hash_find_insert(use);
   311     }
   312     record_for_igvn(use);
   313     i -= uses_found;    // we deleted 1 or more copies of this edge
   314   }
   315 }
   318 static inline bool not_a_node(const Node* n) {
   319   if (n == NULL)                   return true;
   320   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   321   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   322   return false;
   323 }
   325 // Identify all nodes that are reachable from below, useful.
   326 // Use breadth-first pass that records state in a Unique_Node_List,
   327 // recursive traversal is slower.
   328 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   329   int estimated_worklist_size = live_nodes();
   330   useful.map( estimated_worklist_size, NULL );  // preallocate space
   332   // Initialize worklist
   333   if (root() != NULL)     { useful.push(root()); }
   334   // If 'top' is cached, declare it useful to preserve cached node
   335   if( cached_top_node() ) { useful.push(cached_top_node()); }
   337   // Push all useful nodes onto the list, breadthfirst
   338   for( uint next = 0; next < useful.size(); ++next ) {
   339     assert( next < unique(), "Unique useful nodes < total nodes");
   340     Node *n  = useful.at(next);
   341     uint max = n->len();
   342     for( uint i = 0; i < max; ++i ) {
   343       Node *m = n->in(i);
   344       if (not_a_node(m))  continue;
   345       useful.push(m);
   346     }
   347   }
   348 }
   350 // Update dead_node_list with any missing dead nodes using useful
   351 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   352 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   353   uint max_idx = unique();
   354   VectorSet& useful_node_set = useful.member_set();
   356   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   357     // If node with index node_idx is not in useful set,
   358     // mark it as dead in dead node list.
   359     if (! useful_node_set.test(node_idx) ) {
   360       record_dead_node(node_idx);
   361     }
   362   }
   363 }
   365 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   366   int shift = 0;
   367   for (int i = 0; i < inlines->length(); i++) {
   368     CallGenerator* cg = inlines->at(i);
   369     CallNode* call = cg->call_node();
   370     if (shift > 0) {
   371       inlines->at_put(i-shift, cg);
   372     }
   373     if (!useful.member(call)) {
   374       shift++;
   375     }
   376   }
   377   inlines->trunc_to(inlines->length()-shift);
   378 }
   380 // Disconnect all useless nodes by disconnecting those at the boundary.
   381 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   382   uint next = 0;
   383   while (next < useful.size()) {
   384     Node *n = useful.at(next++);
   385     if (n->is_SafePoint()) {
   386       // We're done with a parsing phase. Replaced nodes are not valid
   387       // beyond that point.
   388       n->as_SafePoint()->delete_replaced_nodes();
   389     }
   390     // Use raw traversal of out edges since this code removes out edges
   391     int max = n->outcnt();
   392     for (int j = 0; j < max; ++j) {
   393       Node* child = n->raw_out(j);
   394       if (! useful.member(child)) {
   395         assert(!child->is_top() || child != top(),
   396                "If top is cached in Compile object it is in useful list");
   397         // Only need to remove this out-edge to the useless node
   398         n->raw_del_out(j);
   399         --j;
   400         --max;
   401       }
   402     }
   403     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   404       record_for_igvn(n->unique_out());
   405     }
   406   }
   407   // Remove useless macro and predicate opaq nodes
   408   for (int i = C->macro_count()-1; i >= 0; i--) {
   409     Node* n = C->macro_node(i);
   410     if (!useful.member(n)) {
   411       remove_macro_node(n);
   412     }
   413   }
   414   // Remove useless CastII nodes with range check dependency
   415   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
   416     Node* cast = range_check_cast_node(i);
   417     if (!useful.member(cast)) {
   418       remove_range_check_cast(cast);
   419     }
   420   }
   421   // Remove useless expensive node
   422   for (int i = C->expensive_count()-1; i >= 0; i--) {
   423     Node* n = C->expensive_node(i);
   424     if (!useful.member(n)) {
   425       remove_expensive_node(n);
   426     }
   427   }
   428   // clean up the late inline lists
   429   remove_useless_late_inlines(&_string_late_inlines, useful);
   430   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   431   remove_useless_late_inlines(&_late_inlines, useful);
   432   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   433 }
   435 //------------------------------frame_size_in_words-----------------------------
   436 // frame_slots in units of words
   437 int Compile::frame_size_in_words() const {
   438   // shift is 0 in LP32 and 1 in LP64
   439   const int shift = (LogBytesPerWord - LogBytesPerInt);
   440   int words = _frame_slots >> shift;
   441   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   442   return words;
   443 }
   445 // To bang the stack of this compiled method we use the stack size
   446 // that the interpreter would need in case of a deoptimization. This
   447 // removes the need to bang the stack in the deoptimization blob which
   448 // in turn simplifies stack overflow handling.
   449 int Compile::bang_size_in_bytes() const {
   450   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
   451 }
   453 // ============================================================================
   454 //------------------------------CompileWrapper---------------------------------
   455 class CompileWrapper : public StackObj {
   456   Compile *const _compile;
   457  public:
   458   CompileWrapper(Compile* compile);
   460   ~CompileWrapper();
   461 };
   463 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   464   // the Compile* pointer is stored in the current ciEnv:
   465   ciEnv* env = compile->env();
   466   assert(env == ciEnv::current(), "must already be a ciEnv active");
   467   assert(env->compiler_data() == NULL, "compile already active?");
   468   env->set_compiler_data(compile);
   469   assert(compile == Compile::current(), "sanity");
   471   compile->set_type_dict(NULL);
   472   compile->set_type_hwm(NULL);
   473   compile->set_type_last_size(0);
   474   compile->set_last_tf(NULL, NULL);
   475   compile->set_indexSet_arena(NULL);
   476   compile->set_indexSet_free_block_list(NULL);
   477   compile->init_type_arena();
   478   Type::Initialize(compile);
   479   _compile->set_scratch_buffer_blob(NULL);
   480   _compile->begin_method();
   481 }
   482 CompileWrapper::~CompileWrapper() {
   483   _compile->end_method();
   484   if (_compile->scratch_buffer_blob() != NULL)
   485     BufferBlob::free(_compile->scratch_buffer_blob());
   486   _compile->env()->set_compiler_data(NULL);
   487 }
   490 //----------------------------print_compile_messages---------------------------
   491 void Compile::print_compile_messages() {
   492 #ifndef PRODUCT
   493   // Check if recompiling
   494   if (_subsume_loads == false && PrintOpto) {
   495     // Recompiling without allowing machine instructions to subsume loads
   496     tty->print_cr("*********************************************************");
   497     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   498     tty->print_cr("*********************************************************");
   499   }
   500   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   501     // Recompiling without escape analysis
   502     tty->print_cr("*********************************************************");
   503     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   504     tty->print_cr("*********************************************************");
   505   }
   506   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   507     // Recompiling without boxing elimination
   508     tty->print_cr("*********************************************************");
   509     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   510     tty->print_cr("*********************************************************");
   511   }
   512   if (env()->break_at_compile()) {
   513     // Open the debugger when compiling this method.
   514     tty->print("### Breaking when compiling: ");
   515     method()->print_short_name();
   516     tty->cr();
   517     BREAKPOINT;
   518   }
   520   if( PrintOpto ) {
   521     if (is_osr_compilation()) {
   522       tty->print("[OSR]%3d", _compile_id);
   523     } else {
   524       tty->print("%3d", _compile_id);
   525     }
   526   }
   527 #endif
   528 }
   531 //-----------------------init_scratch_buffer_blob------------------------------
   532 // Construct a temporary BufferBlob and cache it for this compile.
   533 void Compile::init_scratch_buffer_blob(int const_size) {
   534   // If there is already a scratch buffer blob allocated and the
   535   // constant section is big enough, use it.  Otherwise free the
   536   // current and allocate a new one.
   537   BufferBlob* blob = scratch_buffer_blob();
   538   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   539     // Use the current blob.
   540   } else {
   541     if (blob != NULL) {
   542       BufferBlob::free(blob);
   543     }
   545     ResourceMark rm;
   546     _scratch_const_size = const_size;
   547     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   548     blob = BufferBlob::create("Compile::scratch_buffer", size);
   549     // Record the buffer blob for next time.
   550     set_scratch_buffer_blob(blob);
   551     // Have we run out of code space?
   552     if (scratch_buffer_blob() == NULL) {
   553       // Let CompilerBroker disable further compilations.
   554       record_failure("Not enough space for scratch buffer in CodeCache");
   555       return;
   556     }
   557   }
   559   // Initialize the relocation buffers
   560   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   561   set_scratch_locs_memory(locs_buf);
   562 }
   565 //-----------------------scratch_emit_size-------------------------------------
   566 // Helper function that computes size by emitting code
   567 uint Compile::scratch_emit_size(const Node* n) {
   568   // Start scratch_emit_size section.
   569   set_in_scratch_emit_size(true);
   571   // Emit into a trash buffer and count bytes emitted.
   572   // This is a pretty expensive way to compute a size,
   573   // but it works well enough if seldom used.
   574   // All common fixed-size instructions are given a size
   575   // method by the AD file.
   576   // Note that the scratch buffer blob and locs memory are
   577   // allocated at the beginning of the compile task, and
   578   // may be shared by several calls to scratch_emit_size.
   579   // The allocation of the scratch buffer blob is particularly
   580   // expensive, since it has to grab the code cache lock.
   581   BufferBlob* blob = this->scratch_buffer_blob();
   582   assert(blob != NULL, "Initialize BufferBlob at start");
   583   assert(blob->size() > MAX_inst_size, "sanity");
   584   relocInfo* locs_buf = scratch_locs_memory();
   585   address blob_begin = blob->content_begin();
   586   address blob_end   = (address)locs_buf;
   587   assert(blob->content_contains(blob_end), "sanity");
   588   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   589   buf.initialize_consts_size(_scratch_const_size);
   590   buf.initialize_stubs_size(MAX_stubs_size);
   591   assert(locs_buf != NULL, "sanity");
   592   int lsize = MAX_locs_size / 3;
   593   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   594   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   595   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   597   // Do the emission.
   599   Label fakeL; // Fake label for branch instructions.
   600   Label*   saveL = NULL;
   601   uint save_bnum = 0;
   602   bool is_branch = n->is_MachBranch();
   603   if (is_branch) {
   604     MacroAssembler masm(&buf);
   605     masm.bind(fakeL);
   606     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   607     n->as_MachBranch()->label_set(&fakeL, 0);
   608   }
   609   n->emit(buf, this->regalloc());
   611   // Emitting into the scratch buffer should not fail
   612   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
   614   if (is_branch) // Restore label.
   615     n->as_MachBranch()->label_set(saveL, save_bnum);
   617   // End scratch_emit_size section.
   618   set_in_scratch_emit_size(false);
   620   return buf.insts_size();
   621 }
   624 // ============================================================================
   625 //------------------------------Compile standard-------------------------------
   626 debug_only( int Compile::_debug_idx = 100000; )
   628 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   629 // the continuation bci for on stack replacement.
   632 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   633                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   634                 : Phase(Compiler),
   635                   _env(ci_env),
   636                   _log(ci_env->log()),
   637                   _compile_id(ci_env->compile_id()),
   638                   _save_argument_registers(false),
   639                   _stub_name(NULL),
   640                   _stub_function(NULL),
   641                   _stub_entry_point(NULL),
   642                   _method(target),
   643                   _entry_bci(osr_bci),
   644                   _initial_gvn(NULL),
   645                   _for_igvn(NULL),
   646                   _warm_calls(NULL),
   647                   _subsume_loads(subsume_loads),
   648                   _do_escape_analysis(do_escape_analysis),
   649                   _eliminate_boxing(eliminate_boxing),
   650                   _failure_reason(NULL),
   651                   _code_buffer("Compile::Fill_buffer"),
   652                   _orig_pc_slot(0),
   653                   _orig_pc_slot_offset_in_bytes(0),
   654                   _has_method_handle_invokes(false),
   655                   _mach_constant_base_node(NULL),
   656                   _node_bundling_limit(0),
   657                   _node_bundling_base(NULL),
   658                   _java_calls(0),
   659                   _inner_loops(0),
   660                   _scratch_const_size(-1),
   661                   _in_scratch_emit_size(false),
   662                   _dead_node_list(comp_arena()),
   663                   _dead_node_count(0),
   664 #ifndef PRODUCT
   665                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   666                   _in_dump_cnt(0),
   667                   _printer(IdealGraphPrinter::printer()),
   668 #endif
   669                   _congraph(NULL),
   670                   _comp_arena(mtCompiler),
   671                   _node_arena(mtCompiler),
   672                   _old_arena(mtCompiler),
   673                   _Compile_types(mtCompiler),
   674                   _replay_inline_data(NULL),
   675                   _late_inlines(comp_arena(), 2, 0, NULL),
   676                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   677                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   678                   _late_inlines_pos(0),
   679                   _number_of_mh_late_inlines(0),
   680                   _inlining_progress(false),
   681                   _inlining_incrementally(false),
   682                   _print_inlining_list(NULL),
   683                   _print_inlining_idx(0),
   684                   _interpreter_frame_size(0),
   685                   _max_node_limit(MaxNodeLimit) {
   686   C = this;
   688   CompileWrapper cw(this);
   689 #ifndef PRODUCT
   690   if (TimeCompiler2) {
   691     tty->print(" ");
   692     target->holder()->name()->print();
   693     tty->print(".");
   694     target->print_short_name();
   695     tty->print("  ");
   696   }
   697   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   698   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   699   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   700   if (!print_opto_assembly) {
   701     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   702     if (print_assembly && !Disassembler::can_decode()) {
   703       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   704       print_opto_assembly = true;
   705     }
   706   }
   707   set_print_assembly(print_opto_assembly);
   708   set_parsed_irreducible_loop(false);
   710   if (method()->has_option("ReplayInline")) {
   711     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
   712   }
   713 #endif
   714   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   715   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   716   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
   718   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
   719     // Make sure the method being compiled gets its own MDO,
   720     // so we can at least track the decompile_count().
   721     // Need MDO to record RTM code generation state.
   722     method()->ensure_method_data();
   723   }
   725   Init(::AliasLevel);
   728   print_compile_messages();
   730   _ilt = InlineTree::build_inline_tree_root();
   732   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   733   assert(num_alias_types() >= AliasIdxRaw, "");
   735 #define MINIMUM_NODE_HASH  1023
   736   // Node list that Iterative GVN will start with
   737   Unique_Node_List for_igvn(comp_arena());
   738   set_for_igvn(&for_igvn);
   740   // GVN that will be run immediately on new nodes
   741   uint estimated_size = method()->code_size()*4+64;
   742   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   743   PhaseGVN gvn(node_arena(), estimated_size);
   744   set_initial_gvn(&gvn);
   746   if (print_inlining() || print_intrinsics()) {
   747     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   748   }
   749   { // Scope for timing the parser
   750     TracePhase t3("parse", &_t_parser, true);
   752     // Put top into the hash table ASAP.
   753     initial_gvn()->transform_no_reclaim(top());
   755     // Set up tf(), start(), and find a CallGenerator.
   756     CallGenerator* cg = NULL;
   757     if (is_osr_compilation()) {
   758       const TypeTuple *domain = StartOSRNode::osr_domain();
   759       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   760       init_tf(TypeFunc::make(domain, range));
   761       StartNode* s = new (this) StartOSRNode(root(), domain);
   762       initial_gvn()->set_type_bottom(s);
   763       init_start(s);
   764       cg = CallGenerator::for_osr(method(), entry_bci());
   765     } else {
   766       // Normal case.
   767       init_tf(TypeFunc::make(method()));
   768       StartNode* s = new (this) StartNode(root(), tf()->domain());
   769       initial_gvn()->set_type_bottom(s);
   770       init_start(s);
   771       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   772         // With java.lang.ref.reference.get() we must go through the
   773         // intrinsic when G1 is enabled - even when get() is the root
   774         // method of the compile - so that, if necessary, the value in
   775         // the referent field of the reference object gets recorded by
   776         // the pre-barrier code.
   777         // Specifically, if G1 is enabled, the value in the referent
   778         // field is recorded by the G1 SATB pre barrier. This will
   779         // result in the referent being marked live and the reference
   780         // object removed from the list of discovered references during
   781         // reference processing.
   782         cg = find_intrinsic(method(), false);
   783       }
   784       if (cg == NULL) {
   785         float past_uses = method()->interpreter_invocation_count();
   786         float expected_uses = past_uses;
   787         cg = CallGenerator::for_inline(method(), expected_uses);
   788       }
   789     }
   790     if (failing())  return;
   791     if (cg == NULL) {
   792       record_method_not_compilable_all_tiers("cannot parse method");
   793       return;
   794     }
   795     JVMState* jvms = build_start_state(start(), tf());
   796     if ((jvms = cg->generate(jvms)) == NULL) {
   797       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
   798         record_method_not_compilable("method parse failed");
   799       }
   800       return;
   801     }
   802     GraphKit kit(jvms);
   804     if (!kit.stopped()) {
   805       // Accept return values, and transfer control we know not where.
   806       // This is done by a special, unique ReturnNode bound to root.
   807       return_values(kit.jvms());
   808     }
   810     if (kit.has_exceptions()) {
   811       // Any exceptions that escape from this call must be rethrown
   812       // to whatever caller is dynamically above us on the stack.
   813       // This is done by a special, unique RethrowNode bound to root.
   814       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   815     }
   817     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   819     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   820       inline_string_calls(true);
   821     }
   823     if (failing())  return;
   825     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   827     // Remove clutter produced by parsing.
   828     if (!failing()) {
   829       ResourceMark rm;
   830       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   831     }
   832   }
   834   // Note:  Large methods are capped off in do_one_bytecode().
   835   if (failing())  return;
   837   // After parsing, node notes are no longer automagic.
   838   // They must be propagated by register_new_node_with_optimizer(),
   839   // clone(), or the like.
   840   set_default_node_notes(NULL);
   842   for (;;) {
   843     int successes = Inline_Warm();
   844     if (failing())  return;
   845     if (successes == 0)  break;
   846   }
   848   // Drain the list.
   849   Finish_Warm();
   850 #ifndef PRODUCT
   851   if (_printer) {
   852     _printer->print_inlining(this);
   853   }
   854 #endif
   856   if (failing())  return;
   857   NOT_PRODUCT( verify_graph_edges(); )
   859   // Now optimize
   860   Optimize();
   861   if (failing())  return;
   862   NOT_PRODUCT( verify_graph_edges(); )
   864 #ifndef PRODUCT
   865   if (PrintIdeal) {
   866     ttyLocker ttyl;  // keep the following output all in one block
   867     // This output goes directly to the tty, not the compiler log.
   868     // To enable tools to match it up with the compilation activity,
   869     // be sure to tag this tty output with the compile ID.
   870     if (xtty != NULL) {
   871       xtty->head("ideal compile_id='%d'%s", compile_id(),
   872                  is_osr_compilation()    ? " compile_kind='osr'" :
   873                  "");
   874     }
   875     root()->dump(9999);
   876     if (xtty != NULL) {
   877       xtty->tail("ideal");
   878     }
   879   }
   880 #endif
   882   NOT_PRODUCT( verify_barriers(); )
   884   // Dump compilation data to replay it.
   885   if (method()->has_option("DumpReplay")) {
   886     env()->dump_replay_data(_compile_id);
   887   }
   888   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
   889     env()->dump_inline_data(_compile_id);
   890   }
   892   // Now that we know the size of all the monitors we can add a fixed slot
   893   // for the original deopt pc.
   895   _orig_pc_slot =  fixed_slots();
   896   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   897   set_fixed_slots(next_slot);
   899   // Compute when to use implicit null checks. Used by matching trap based
   900   // nodes and NullCheck optimization.
   901   set_allowed_deopt_reasons();
   903   // Now generate code
   904   Code_Gen();
   905   if (failing())  return;
   907   // Check if we want to skip execution of all compiled code.
   908   {
   909 #ifndef PRODUCT
   910     if (OptoNoExecute) {
   911       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   912       return;
   913     }
   914     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   915 #endif
   917     if (is_osr_compilation()) {
   918       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   919       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   920     } else {
   921       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   922       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   923     }
   925     env()->register_method(_method, _entry_bci,
   926                            &_code_offsets,
   927                            _orig_pc_slot_offset_in_bytes,
   928                            code_buffer(),
   929                            frame_size_in_words(), _oop_map_set,
   930                            &_handler_table, &_inc_table,
   931                            compiler,
   932                            env()->comp_level(),
   933                            has_unsafe_access(),
   934                            SharedRuntime::is_wide_vector(max_vector_size()),
   935                            rtm_state()
   936                            );
   938     if (log() != NULL) // Print code cache state into compiler log
   939       log()->code_cache_state();
   940   }
   941 }
   943 //------------------------------Compile----------------------------------------
   944 // Compile a runtime stub
   945 Compile::Compile( ciEnv* ci_env,
   946                   TypeFunc_generator generator,
   947                   address stub_function,
   948                   const char *stub_name,
   949                   int is_fancy_jump,
   950                   bool pass_tls,
   951                   bool save_arg_registers,
   952                   bool return_pc )
   953   : Phase(Compiler),
   954     _env(ci_env),
   955     _log(ci_env->log()),
   956     _compile_id(0),
   957     _save_argument_registers(save_arg_registers),
   958     _method(NULL),
   959     _stub_name(stub_name),
   960     _stub_function(stub_function),
   961     _stub_entry_point(NULL),
   962     _entry_bci(InvocationEntryBci),
   963     _initial_gvn(NULL),
   964     _for_igvn(NULL),
   965     _warm_calls(NULL),
   966     _orig_pc_slot(0),
   967     _orig_pc_slot_offset_in_bytes(0),
   968     _subsume_loads(true),
   969     _do_escape_analysis(false),
   970     _eliminate_boxing(false),
   971     _failure_reason(NULL),
   972     _code_buffer("Compile::Fill_buffer"),
   973     _has_method_handle_invokes(false),
   974     _mach_constant_base_node(NULL),
   975     _node_bundling_limit(0),
   976     _node_bundling_base(NULL),
   977     _java_calls(0),
   978     _inner_loops(0),
   979 #ifndef PRODUCT
   980     _trace_opto_output(TraceOptoOutput),
   981     _in_dump_cnt(0),
   982     _printer(NULL),
   983 #endif
   984     _comp_arena(mtCompiler),
   985     _node_arena(mtCompiler),
   986     _old_arena(mtCompiler),
   987     _Compile_types(mtCompiler),
   988     _dead_node_list(comp_arena()),
   989     _dead_node_count(0),
   990     _congraph(NULL),
   991     _replay_inline_data(NULL),
   992     _number_of_mh_late_inlines(0),
   993     _inlining_progress(false),
   994     _inlining_incrementally(false),
   995     _print_inlining_list(NULL),
   996     _print_inlining_idx(0),
   997     _allowed_reasons(0),
   998     _interpreter_frame_size(0),
   999     _max_node_limit(MaxNodeLimit) {
  1000   C = this;
  1002 #ifndef PRODUCT
  1003   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
  1004   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
  1005   set_print_assembly(PrintFrameConverterAssembly);
  1006   set_parsed_irreducible_loop(false);
  1007 #endif
  1008   set_has_irreducible_loop(false); // no loops
  1010   CompileWrapper cw(this);
  1011   Init(/*AliasLevel=*/ 0);
  1012   init_tf((*generator)());
  1015     // The following is a dummy for the sake of GraphKit::gen_stub
  1016     Unique_Node_List for_igvn(comp_arena());
  1017     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
  1018     PhaseGVN gvn(Thread::current()->resource_area(),255);
  1019     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
  1020     gvn.transform_no_reclaim(top());
  1022     GraphKit kit;
  1023     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
  1026   NOT_PRODUCT( verify_graph_edges(); )
  1027   Code_Gen();
  1028   if (failing())  return;
  1031   // Entry point will be accessed using compile->stub_entry_point();
  1032   if (code_buffer() == NULL) {
  1033     Matcher::soft_match_failure();
  1034   } else {
  1035     if (PrintAssembly && (WizardMode || Verbose))
  1036       tty->print_cr("### Stub::%s", stub_name);
  1038     if (!failing()) {
  1039       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
  1041       // Make the NMethod
  1042       // For now we mark the frame as never safe for profile stackwalking
  1043       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
  1044                                                       code_buffer(),
  1045                                                       CodeOffsets::frame_never_safe,
  1046                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
  1047                                                       frame_size_in_words(),
  1048                                                       _oop_map_set,
  1049                                                       save_arg_registers);
  1050       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
  1052       _stub_entry_point = rs->entry_point();
  1057 //------------------------------Init-------------------------------------------
  1058 // Prepare for a single compilation
  1059 void Compile::Init(int aliaslevel) {
  1060   _unique  = 0;
  1061   _regalloc = NULL;
  1063   _tf      = NULL;  // filled in later
  1064   _top     = NULL;  // cached later
  1065   _matcher = NULL;  // filled in later
  1066   _cfg     = NULL;  // filled in later
  1068   set_24_bit_selection_and_mode(Use24BitFP, false);
  1070   _node_note_array = NULL;
  1071   _default_node_notes = NULL;
  1073   _immutable_memory = NULL; // filled in at first inquiry
  1075   // Globally visible Nodes
  1076   // First set TOP to NULL to give safe behavior during creation of RootNode
  1077   set_cached_top_node(NULL);
  1078   set_root(new (this) RootNode());
  1079   // Now that you have a Root to point to, create the real TOP
  1080   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1081   set_recent_alloc(NULL, NULL);
  1083   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1084   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1085   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1086   env()->set_dependencies(new Dependencies(env()));
  1088   _fixed_slots = 0;
  1089   set_has_split_ifs(false);
  1090   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1091   set_has_stringbuilder(false);
  1092   set_has_boxed_value(false);
  1093   _trap_can_recompile = false;  // no traps emitted yet
  1094   _major_progress = true; // start out assuming good things will happen
  1095   set_has_unsafe_access(false);
  1096   set_max_vector_size(0);
  1097   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1098   set_decompile_count(0);
  1100   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1101   set_num_loop_opts(LoopOptsCount);
  1102   set_do_inlining(Inline);
  1103   set_max_inline_size(MaxInlineSize);
  1104   set_freq_inline_size(FreqInlineSize);
  1105   set_do_scheduling(OptoScheduling);
  1106   set_do_count_invocations(false);
  1107   set_do_method_data_update(false);
  1108   set_rtm_state(NoRTM); // No RTM lock eliding by default
  1109   method_has_option_value("MaxNodeLimit", _max_node_limit);
  1110 #if INCLUDE_RTM_OPT
  1111   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
  1112     int rtm_state = method()->method_data()->rtm_state();
  1113     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
  1114       // Don't generate RTM lock eliding code.
  1115       set_rtm_state(NoRTM);
  1116     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
  1117       // Generate RTM lock eliding code without abort ratio calculation code.
  1118       set_rtm_state(UseRTM);
  1119     } else if (UseRTMDeopt) {
  1120       // Generate RTM lock eliding code and include abort ratio calculation
  1121       // code if UseRTMDeopt is on.
  1122       set_rtm_state(ProfileRTM);
  1125 #endif
  1126   if (debug_info()->recording_non_safepoints()) {
  1127     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1128                         (comp_arena(), 8, 0, NULL));
  1129     set_default_node_notes(Node_Notes::make(this));
  1132   // // -- Initialize types before each compile --
  1133   // // Update cached type information
  1134   // if( _method && _method->constants() )
  1135   //   Type::update_loaded_types(_method, _method->constants());
  1137   // Init alias_type map.
  1138   if (!_do_escape_analysis && aliaslevel == 3)
  1139     aliaslevel = 2;  // No unique types without escape analysis
  1140   _AliasLevel = aliaslevel;
  1141   const int grow_ats = 16;
  1142   _max_alias_types = grow_ats;
  1143   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1144   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1145   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1147     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1149   // Initialize the first few types.
  1150   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1151   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1152   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1153   _num_alias_types = AliasIdxRaw+1;
  1154   // Zero out the alias type cache.
  1155   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1156   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1157   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1159   _intrinsics = NULL;
  1160   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1161   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1162   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1163   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1164   register_library_intrinsics();
  1165 #ifdef ASSERT
  1166   _type_verify_symmetry = true;
  1167 #endif
  1170 //---------------------------init_start----------------------------------------
  1171 // Install the StartNode on this compile object.
  1172 void Compile::init_start(StartNode* s) {
  1173   if (failing())
  1174     return; // already failing
  1175   assert(s == start(), "");
  1178 StartNode* Compile::start() const {
  1179   assert(!failing(), "");
  1180   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1181     Node* start = root()->fast_out(i);
  1182     if( start->is_Start() )
  1183       return start->as_Start();
  1185   fatal("Did not find Start node!");
  1186   return NULL;
  1189 //-------------------------------immutable_memory-------------------------------------
  1190 // Access immutable memory
  1191 Node* Compile::immutable_memory() {
  1192   if (_immutable_memory != NULL) {
  1193     return _immutable_memory;
  1195   StartNode* s = start();
  1196   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1197     Node *p = s->fast_out(i);
  1198     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1199       _immutable_memory = p;
  1200       return _immutable_memory;
  1203   ShouldNotReachHere();
  1204   return NULL;
  1207 //----------------------set_cached_top_node------------------------------------
  1208 // Install the cached top node, and make sure Node::is_top works correctly.
  1209 void Compile::set_cached_top_node(Node* tn) {
  1210   if (tn != NULL)  verify_top(tn);
  1211   Node* old_top = _top;
  1212   _top = tn;
  1213   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1214   // their _out arrays.
  1215   if (_top != NULL)     _top->setup_is_top();
  1216   if (old_top != NULL)  old_top->setup_is_top();
  1217   assert(_top == NULL || top()->is_top(), "");
  1220 #ifdef ASSERT
  1221 uint Compile::count_live_nodes_by_graph_walk() {
  1222   Unique_Node_List useful(comp_arena());
  1223   // Get useful node list by walking the graph.
  1224   identify_useful_nodes(useful);
  1225   return useful.size();
  1228 void Compile::print_missing_nodes() {
  1230   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1231   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1232     return;
  1235   // This is an expensive function. It is executed only when the user
  1236   // specifies VerifyIdealNodeCount option or otherwise knows the
  1237   // additional work that needs to be done to identify reachable nodes
  1238   // by walking the flow graph and find the missing ones using
  1239   // _dead_node_list.
  1241   Unique_Node_List useful(comp_arena());
  1242   // Get useful node list by walking the graph.
  1243   identify_useful_nodes(useful);
  1245   uint l_nodes = C->live_nodes();
  1246   uint l_nodes_by_walk = useful.size();
  1248   if (l_nodes != l_nodes_by_walk) {
  1249     if (_log != NULL) {
  1250       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1251       _log->stamp();
  1252       _log->end_head();
  1254     VectorSet& useful_member_set = useful.member_set();
  1255     int last_idx = l_nodes_by_walk;
  1256     for (int i = 0; i < last_idx; i++) {
  1257       if (useful_member_set.test(i)) {
  1258         if (_dead_node_list.test(i)) {
  1259           if (_log != NULL) {
  1260             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1262           if (PrintIdealNodeCount) {
  1263             // Print the log message to tty
  1264               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1265               useful.at(i)->dump();
  1269       else if (! _dead_node_list.test(i)) {
  1270         if (_log != NULL) {
  1271           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1273         if (PrintIdealNodeCount) {
  1274           // Print the log message to tty
  1275           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1279     if (_log != NULL) {
  1280       _log->tail("mismatched_nodes");
  1284 #endif
  1286 #ifndef PRODUCT
  1287 void Compile::verify_top(Node* tn) const {
  1288   if (tn != NULL) {
  1289     assert(tn->is_Con(), "top node must be a constant");
  1290     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1291     assert(tn->in(0) != NULL, "must have live top node");
  1294 #endif
  1297 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1299 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1300   guarantee(arr != NULL, "");
  1301   int num_blocks = arr->length();
  1302   if (grow_by < num_blocks)  grow_by = num_blocks;
  1303   int num_notes = grow_by * _node_notes_block_size;
  1304   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1305   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1306   while (num_notes > 0) {
  1307     arr->append(notes);
  1308     notes     += _node_notes_block_size;
  1309     num_notes -= _node_notes_block_size;
  1311   assert(num_notes == 0, "exact multiple, please");
  1314 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1315   if (source == NULL || dest == NULL)  return false;
  1317   if (dest->is_Con())
  1318     return false;               // Do not push debug info onto constants.
  1320 #ifdef ASSERT
  1321   // Leave a bread crumb trail pointing to the original node:
  1322   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1323     dest->set_debug_orig(source);
  1325 #endif
  1327   if (node_note_array() == NULL)
  1328     return false;               // Not collecting any notes now.
  1330   // This is a copy onto a pre-existing node, which may already have notes.
  1331   // If both nodes have notes, do not overwrite any pre-existing notes.
  1332   Node_Notes* source_notes = node_notes_at(source->_idx);
  1333   if (source_notes == NULL || source_notes->is_clear())  return false;
  1334   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1335   if (dest_notes == NULL || dest_notes->is_clear()) {
  1336     return set_node_notes_at(dest->_idx, source_notes);
  1339   Node_Notes merged_notes = (*source_notes);
  1340   // The order of operations here ensures that dest notes will win...
  1341   merged_notes.update_from(dest_notes);
  1342   return set_node_notes_at(dest->_idx, &merged_notes);
  1346 //--------------------------allow_range_check_smearing-------------------------
  1347 // Gating condition for coalescing similar range checks.
  1348 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1349 // single covering check that is at least as strong as any of them.
  1350 // If the optimization succeeds, the simplified (strengthened) range check
  1351 // will always succeed.  If it fails, we will deopt, and then give up
  1352 // on the optimization.
  1353 bool Compile::allow_range_check_smearing() const {
  1354   // If this method has already thrown a range-check,
  1355   // assume it was because we already tried range smearing
  1356   // and it failed.
  1357   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1358   return !already_trapped;
  1362 //------------------------------flatten_alias_type-----------------------------
  1363 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1364   int offset = tj->offset();
  1365   TypePtr::PTR ptr = tj->ptr();
  1367   // Known instance (scalarizable allocation) alias only with itself.
  1368   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1369                        tj->is_oopptr()->is_known_instance();
  1371   // Process weird unsafe references.
  1372   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1373     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1374     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1375     tj = TypeOopPtr::BOTTOM;
  1376     ptr = tj->ptr();
  1377     offset = tj->offset();
  1380   // Array pointers need some flattening
  1381   const TypeAryPtr *ta = tj->isa_aryptr();
  1382   if (ta && ta->is_stable()) {
  1383     // Erase stability property for alias analysis.
  1384     tj = ta = ta->cast_to_stable(false);
  1386   if( ta && is_known_inst ) {
  1387     if ( offset != Type::OffsetBot &&
  1388          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1389       offset = Type::OffsetBot; // Flatten constant access into array body only
  1390       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1392   } else if( ta && _AliasLevel >= 2 ) {
  1393     // For arrays indexed by constant indices, we flatten the alias
  1394     // space to include all of the array body.  Only the header, klass
  1395     // and array length can be accessed un-aliased.
  1396     if( offset != Type::OffsetBot ) {
  1397       if( ta->const_oop() ) { // MethodData* or Method*
  1398         offset = Type::OffsetBot;   // Flatten constant access into array body
  1399         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1400       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1401         // range is OK as-is.
  1402         tj = ta = TypeAryPtr::RANGE;
  1403       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1404         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1405         ta = TypeAryPtr::RANGE; // generic ignored junk
  1406         ptr = TypePtr::BotPTR;
  1407       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1408         tj = TypeInstPtr::MARK;
  1409         ta = TypeAryPtr::RANGE; // generic ignored junk
  1410         ptr = TypePtr::BotPTR;
  1411       } else {                  // Random constant offset into array body
  1412         offset = Type::OffsetBot;   // Flatten constant access into array body
  1413         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1416     // Arrays of fixed size alias with arrays of unknown size.
  1417     if (ta->size() != TypeInt::POS) {
  1418       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1419       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1421     // Arrays of known objects become arrays of unknown objects.
  1422     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1423       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1424       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1426     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1427       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1428       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1430     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1431     // cannot be distinguished by bytecode alone.
  1432     if (ta->elem() == TypeInt::BOOL) {
  1433       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1434       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1435       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1437     // During the 2nd round of IterGVN, NotNull castings are removed.
  1438     // Make sure the Bottom and NotNull variants alias the same.
  1439     // Also, make sure exact and non-exact variants alias the same.
  1440     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
  1441       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1445   // Oop pointers need some flattening
  1446   const TypeInstPtr *to = tj->isa_instptr();
  1447   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1448     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1449     if( ptr == TypePtr::Constant ) {
  1450       if (to->klass() != ciEnv::current()->Class_klass() ||
  1451           offset < k->size_helper() * wordSize) {
  1452         // No constant oop pointers (such as Strings); they alias with
  1453         // unknown strings.
  1454         assert(!is_known_inst, "not scalarizable allocation");
  1455         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1457     } else if( is_known_inst ) {
  1458       tj = to; // Keep NotNull and klass_is_exact for instance type
  1459     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1460       // During the 2nd round of IterGVN, NotNull castings are removed.
  1461       // Make sure the Bottom and NotNull variants alias the same.
  1462       // Also, make sure exact and non-exact variants alias the same.
  1463       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1465     if (to->speculative() != NULL) {
  1466       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
  1468     // Canonicalize the holder of this field
  1469     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1470       // First handle header references such as a LoadKlassNode, even if the
  1471       // object's klass is unloaded at compile time (4965979).
  1472       if (!is_known_inst) { // Do it only for non-instance types
  1473         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1475     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1476       // Static fields are in the space above the normal instance
  1477       // fields in the java.lang.Class instance.
  1478       if (to->klass() != ciEnv::current()->Class_klass()) {
  1479         to = NULL;
  1480         tj = TypeOopPtr::BOTTOM;
  1481         offset = tj->offset();
  1483     } else {
  1484       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1485       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1486         if( is_known_inst ) {
  1487           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1488         } else {
  1489           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1495   // Klass pointers to object array klasses need some flattening
  1496   const TypeKlassPtr *tk = tj->isa_klassptr();
  1497   if( tk ) {
  1498     // If we are referencing a field within a Klass, we need
  1499     // to assume the worst case of an Object.  Both exact and
  1500     // inexact types must flatten to the same alias class so
  1501     // use NotNull as the PTR.
  1502     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1504       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1505                                    TypeKlassPtr::OBJECT->klass(),
  1506                                    offset);
  1509     ciKlass* klass = tk->klass();
  1510     if( klass->is_obj_array_klass() ) {
  1511       ciKlass* k = TypeAryPtr::OOPS->klass();
  1512       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1513         k = TypeInstPtr::BOTTOM->klass();
  1514       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1517     // Check for precise loads from the primary supertype array and force them
  1518     // to the supertype cache alias index.  Check for generic array loads from
  1519     // the primary supertype array and also force them to the supertype cache
  1520     // alias index.  Since the same load can reach both, we need to merge
  1521     // these 2 disparate memories into the same alias class.  Since the
  1522     // primary supertype array is read-only, there's no chance of confusion
  1523     // where we bypass an array load and an array store.
  1524     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1525     if (offset == Type::OffsetBot ||
  1526         (offset >= primary_supers_offset &&
  1527          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1528         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1529       offset = in_bytes(Klass::secondary_super_cache_offset());
  1530       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1534   // Flatten all Raw pointers together.
  1535   if (tj->base() == Type::RawPtr)
  1536     tj = TypeRawPtr::BOTTOM;
  1538   if (tj->base() == Type::AnyPtr)
  1539     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1541   // Flatten all to bottom for now
  1542   switch( _AliasLevel ) {
  1543   case 0:
  1544     tj = TypePtr::BOTTOM;
  1545     break;
  1546   case 1:                       // Flatten to: oop, static, field or array
  1547     switch (tj->base()) {
  1548     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1549     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1550     case Type::AryPtr:   // do not distinguish arrays at all
  1551     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1552     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1553     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1554     default: ShouldNotReachHere();
  1556     break;
  1557   case 2:                       // No collapsing at level 2; keep all splits
  1558   case 3:                       // No collapsing at level 3; keep all splits
  1559     break;
  1560   default:
  1561     Unimplemented();
  1564   offset = tj->offset();
  1565   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1567   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1568           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1569           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1570           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1571           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1572           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1573           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1574           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1575   assert( tj->ptr() != TypePtr::TopPTR &&
  1576           tj->ptr() != TypePtr::AnyNull &&
  1577           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1578 //    assert( tj->ptr() != TypePtr::Constant ||
  1579 //            tj->base() == Type::RawPtr ||
  1580 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1582   return tj;
  1585 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1586   _index = i;
  1587   _adr_type = at;
  1588   _field = NULL;
  1589   _element = NULL;
  1590   _is_rewritable = true; // default
  1591   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1592   if (atoop != NULL && atoop->is_known_instance()) {
  1593     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1594     _general_index = Compile::current()->get_alias_index(gt);
  1595   } else {
  1596     _general_index = 0;
  1600 BasicType Compile::AliasType::basic_type() const {
  1601   if (element() != NULL) {
  1602     const Type* element = adr_type()->is_aryptr()->elem();
  1603     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
  1604   } if (field() != NULL) {
  1605     return field()->layout_type();
  1606   } else {
  1607     return T_ILLEGAL; // unknown
  1611 //---------------------------------print_on------------------------------------
  1612 #ifndef PRODUCT
  1613 void Compile::AliasType::print_on(outputStream* st) {
  1614   if (index() < 10)
  1615         st->print("@ <%d> ", index());
  1616   else  st->print("@ <%d>",  index());
  1617   st->print(is_rewritable() ? "   " : " RO");
  1618   int offset = adr_type()->offset();
  1619   if (offset == Type::OffsetBot)
  1620         st->print(" +any");
  1621   else  st->print(" +%-3d", offset);
  1622   st->print(" in ");
  1623   adr_type()->dump_on(st);
  1624   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1625   if (field() != NULL && tjp) {
  1626     if (tjp->klass()  != field()->holder() ||
  1627         tjp->offset() != field()->offset_in_bytes()) {
  1628       st->print(" != ");
  1629       field()->print();
  1630       st->print(" ***");
  1635 void print_alias_types() {
  1636   Compile* C = Compile::current();
  1637   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1638   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1639     C->alias_type(idx)->print_on(tty);
  1640     tty->cr();
  1643 #endif
  1646 //----------------------------probe_alias_cache--------------------------------
  1647 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1648   intptr_t key = (intptr_t) adr_type;
  1649   key ^= key >> logAliasCacheSize;
  1650   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1654 //-----------------------------grow_alias_types--------------------------------
  1655 void Compile::grow_alias_types() {
  1656   const int old_ats  = _max_alias_types; // how many before?
  1657   const int new_ats  = old_ats;          // how many more?
  1658   const int grow_ats = old_ats+new_ats;  // how many now?
  1659   _max_alias_types = grow_ats;
  1660   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1661   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1662   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1663   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1667 //--------------------------------find_alias_type------------------------------
  1668 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1669   if (_AliasLevel == 0)
  1670     return alias_type(AliasIdxBot);
  1672   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1673   if (ace->_adr_type == adr_type) {
  1674     return alias_type(ace->_index);
  1677   // Handle special cases.
  1678   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1679   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1681   // Do it the slow way.
  1682   const TypePtr* flat = flatten_alias_type(adr_type);
  1684 #ifdef ASSERT
  1686     ResourceMark rm;
  1687     assert(flat == flatten_alias_type(flat),
  1688            err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
  1689                    Type::str(flat), Type::str(flatten_alias_type(flat))));
  1690     assert(flat != TypePtr::BOTTOM,
  1691            err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
  1692     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1693       const TypeOopPtr* foop = flat->is_oopptr();
  1694       // Scalarizable allocations have exact klass always.
  1695       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1696       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1697       assert(foop == flatten_alias_type(xoop),
  1698              err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
  1699                      Type::str(foop), Type::str(xoop)));
  1702 #endif
  1704   int idx = AliasIdxTop;
  1705   for (int i = 0; i < num_alias_types(); i++) {
  1706     if (alias_type(i)->adr_type() == flat) {
  1707       idx = i;
  1708       break;
  1712   if (idx == AliasIdxTop) {
  1713     if (no_create)  return NULL;
  1714     // Grow the array if necessary.
  1715     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1716     // Add a new alias type.
  1717     idx = _num_alias_types++;
  1718     _alias_types[idx]->Init(idx, flat);
  1719     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1720     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1721     if (flat->isa_instptr()) {
  1722       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1723           && flat->is_instptr()->klass() == env()->Class_klass())
  1724         alias_type(idx)->set_rewritable(false);
  1726     if (flat->isa_aryptr()) {
  1727 #ifdef ASSERT
  1728       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1729       // (T_BYTE has the weakest alignment and size restrictions...)
  1730       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1731 #endif
  1732       if (flat->offset() == TypePtr::OffsetBot) {
  1733         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1736     if (flat->isa_klassptr()) {
  1737       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1738         alias_type(idx)->set_rewritable(false);
  1739       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1740         alias_type(idx)->set_rewritable(false);
  1741       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1742         alias_type(idx)->set_rewritable(false);
  1743       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1744         alias_type(idx)->set_rewritable(false);
  1746     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1747     // but the base pointer type is not distinctive enough to identify
  1748     // references into JavaThread.)
  1750     // Check for final fields.
  1751     const TypeInstPtr* tinst = flat->isa_instptr();
  1752     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1753       ciField* field;
  1754       if (tinst->const_oop() != NULL &&
  1755           tinst->klass() == ciEnv::current()->Class_klass() &&
  1756           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1757         // static field
  1758         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1759         field = k->get_field_by_offset(tinst->offset(), true);
  1760       } else {
  1761         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1762         field = k->get_field_by_offset(tinst->offset(), false);
  1764       assert(field == NULL ||
  1765              original_field == NULL ||
  1766              (field->holder() == original_field->holder() &&
  1767               field->offset() == original_field->offset() &&
  1768               field->is_static() == original_field->is_static()), "wrong field?");
  1769       // Set field() and is_rewritable() attributes.
  1770       if (field != NULL)  alias_type(idx)->set_field(field);
  1774   // Fill the cache for next time.
  1775   ace->_adr_type = adr_type;
  1776   ace->_index    = idx;
  1777   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1779   // Might as well try to fill the cache for the flattened version, too.
  1780   AliasCacheEntry* face = probe_alias_cache(flat);
  1781   if (face->_adr_type == NULL) {
  1782     face->_adr_type = flat;
  1783     face->_index    = idx;
  1784     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1787   return alias_type(idx);
  1791 Compile::AliasType* Compile::alias_type(ciField* field) {
  1792   const TypeOopPtr* t;
  1793   if (field->is_static())
  1794     t = TypeInstPtr::make(field->holder()->java_mirror());
  1795   else
  1796     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1797   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1798   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1799   return atp;
  1803 //------------------------------have_alias_type--------------------------------
  1804 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1805   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1806   if (ace->_adr_type == adr_type) {
  1807     return true;
  1810   // Handle special cases.
  1811   if (adr_type == NULL)             return true;
  1812   if (adr_type == TypePtr::BOTTOM)  return true;
  1814   return find_alias_type(adr_type, true, NULL) != NULL;
  1817 //-----------------------------must_alias--------------------------------------
  1818 // True if all values of the given address type are in the given alias category.
  1819 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1820   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1821   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1822   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1823   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1825   // the only remaining possible overlap is identity
  1826   int adr_idx = get_alias_index(adr_type);
  1827   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1828   assert(adr_idx == alias_idx ||
  1829          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1830           && adr_type                       != TypeOopPtr::BOTTOM),
  1831          "should not be testing for overlap with an unsafe pointer");
  1832   return adr_idx == alias_idx;
  1835 //------------------------------can_alias--------------------------------------
  1836 // True if any values of the given address type are in the given alias category.
  1837 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1838   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1839   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1840   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1841   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1843   // the only remaining possible overlap is identity
  1844   int adr_idx = get_alias_index(adr_type);
  1845   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1846   return adr_idx == alias_idx;
  1851 //---------------------------pop_warm_call-------------------------------------
  1852 WarmCallInfo* Compile::pop_warm_call() {
  1853   WarmCallInfo* wci = _warm_calls;
  1854   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1855   return wci;
  1858 //----------------------------Inline_Warm--------------------------------------
  1859 int Compile::Inline_Warm() {
  1860   // If there is room, try to inline some more warm call sites.
  1861   // %%% Do a graph index compaction pass when we think we're out of space?
  1862   if (!InlineWarmCalls)  return 0;
  1864   int calls_made_hot = 0;
  1865   int room_to_grow   = NodeCountInliningCutoff - unique();
  1866   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1867   int amount_grown   = 0;
  1868   WarmCallInfo* call;
  1869   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1870     int est_size = (int)call->size();
  1871     if (est_size > (room_to_grow - amount_grown)) {
  1872       // This one won't fit anyway.  Get rid of it.
  1873       call->make_cold();
  1874       continue;
  1876     call->make_hot();
  1877     calls_made_hot++;
  1878     amount_grown   += est_size;
  1879     amount_to_grow -= est_size;
  1882   if (calls_made_hot > 0)  set_major_progress();
  1883   return calls_made_hot;
  1887 //----------------------------Finish_Warm--------------------------------------
  1888 void Compile::Finish_Warm() {
  1889   if (!InlineWarmCalls)  return;
  1890   if (failing())  return;
  1891   if (warm_calls() == NULL)  return;
  1893   // Clean up loose ends, if we are out of space for inlining.
  1894   WarmCallInfo* call;
  1895   while ((call = pop_warm_call()) != NULL) {
  1896     call->make_cold();
  1900 //---------------------cleanup_loop_predicates-----------------------
  1901 // Remove the opaque nodes that protect the predicates so that all unused
  1902 // checks and uncommon_traps will be eliminated from the ideal graph
  1903 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1904   if (predicate_count()==0) return;
  1905   for (int i = predicate_count(); i > 0; i--) {
  1906     Node * n = predicate_opaque1_node(i-1);
  1907     assert(n->Opcode() == Op_Opaque1, "must be");
  1908     igvn.replace_node(n, n->in(1));
  1910   assert(predicate_count()==0, "should be clean!");
  1913 void Compile::add_range_check_cast(Node* n) {
  1914   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
  1915   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
  1916   _range_check_casts->append(n);
  1919 // Remove all range check dependent CastIINodes.
  1920 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
  1921   for (int i = range_check_cast_count(); i > 0; i--) {
  1922     Node* cast = range_check_cast_node(i-1);
  1923     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
  1924     igvn.replace_node(cast, cast->in(1));
  1926   assert(range_check_cast_count() == 0, "should be empty");
  1929 // StringOpts and late inlining of string methods
  1930 void Compile::inline_string_calls(bool parse_time) {
  1932     // remove useless nodes to make the usage analysis simpler
  1933     ResourceMark rm;
  1934     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1938     ResourceMark rm;
  1939     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1940     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1941     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1944   // now inline anything that we skipped the first time around
  1945   if (!parse_time) {
  1946     _late_inlines_pos = _late_inlines.length();
  1949   while (_string_late_inlines.length() > 0) {
  1950     CallGenerator* cg = _string_late_inlines.pop();
  1951     cg->do_late_inline();
  1952     if (failing())  return;
  1954   _string_late_inlines.trunc_to(0);
  1957 // Late inlining of boxing methods
  1958 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1959   if (_boxing_late_inlines.length() > 0) {
  1960     assert(has_boxed_value(), "inconsistent");
  1962     PhaseGVN* gvn = initial_gvn();
  1963     set_inlining_incrementally(true);
  1965     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1966     for_igvn()->clear();
  1967     gvn->replace_with(&igvn);
  1969     _late_inlines_pos = _late_inlines.length();
  1971     while (_boxing_late_inlines.length() > 0) {
  1972       CallGenerator* cg = _boxing_late_inlines.pop();
  1973       cg->do_late_inline();
  1974       if (failing())  return;
  1976     _boxing_late_inlines.trunc_to(0);
  1979       ResourceMark rm;
  1980       PhaseRemoveUseless pru(gvn, for_igvn());
  1983     igvn = PhaseIterGVN(gvn);
  1984     igvn.optimize();
  1986     set_inlining_progress(false);
  1987     set_inlining_incrementally(false);
  1991 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1992   assert(IncrementalInline, "incremental inlining should be on");
  1993   PhaseGVN* gvn = initial_gvn();
  1995   set_inlining_progress(false);
  1996   for_igvn()->clear();
  1997   gvn->replace_with(&igvn);
  1999   int i = 0;
  2001   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  2002     CallGenerator* cg = _late_inlines.at(i);
  2003     _late_inlines_pos = i+1;
  2004     cg->do_late_inline();
  2005     if (failing())  return;
  2007   int j = 0;
  2008   for (; i < _late_inlines.length(); i++, j++) {
  2009     _late_inlines.at_put(j, _late_inlines.at(i));
  2011   _late_inlines.trunc_to(j);
  2014     ResourceMark rm;
  2015     PhaseRemoveUseless pru(gvn, for_igvn());
  2018   igvn = PhaseIterGVN(gvn);
  2021 // Perform incremental inlining until bound on number of live nodes is reached
  2022 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  2023   PhaseGVN* gvn = initial_gvn();
  2025   set_inlining_incrementally(true);
  2026   set_inlining_progress(true);
  2027   uint low_live_nodes = 0;
  2029   while(inlining_progress() && _late_inlines.length() > 0) {
  2031     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  2032       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  2033         // PhaseIdealLoop is expensive so we only try it once we are
  2034         // out of live nodes and we only try it again if the previous
  2035         // helped got the number of nodes down significantly
  2036         PhaseIdealLoop ideal_loop( igvn, false, true );
  2037         if (failing())  return;
  2038         low_live_nodes = live_nodes();
  2039         _major_progress = true;
  2042       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  2043         break;
  2047     inline_incrementally_one(igvn);
  2049     if (failing())  return;
  2051     igvn.optimize();
  2053     if (failing())  return;
  2056   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  2058   if (_string_late_inlines.length() > 0) {
  2059     assert(has_stringbuilder(), "inconsistent");
  2060     for_igvn()->clear();
  2061     initial_gvn()->replace_with(&igvn);
  2063     inline_string_calls(false);
  2065     if (failing())  return;
  2068       ResourceMark rm;
  2069       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  2072     igvn = PhaseIterGVN(gvn);
  2074     igvn.optimize();
  2077   set_inlining_incrementally(false);
  2081 // Remove edges from "root" to each SafePoint at a backward branch.
  2082 // They were inserted during parsing (see add_safepoint()) to make
  2083 // infinite loops without calls or exceptions visible to root, i.e.,
  2084 // useful.
  2085 void Compile::remove_root_to_sfpts_edges() {
  2086   Node *r = root();
  2087   if (r != NULL) {
  2088     for (uint i = r->req(); i < r->len(); ++i) {
  2089       Node *n = r->in(i);
  2090       if (n != NULL && n->is_SafePoint()) {
  2091         r->rm_prec(i);
  2092         --i;
  2098 //------------------------------Optimize---------------------------------------
  2099 // Given a graph, optimize it.
  2100 void Compile::Optimize() {
  2101   TracePhase t1("optimizer", &_t_optimizer, true);
  2103 #ifndef PRODUCT
  2104   if (env()->break_at_compile()) {
  2105     BREAKPOINT;
  2108 #endif
  2110   ResourceMark rm;
  2111   int          loop_opts_cnt;
  2113   NOT_PRODUCT( verify_graph_edges(); )
  2115   print_method(PHASE_AFTER_PARSING);
  2118   // Iterative Global Value Numbering, including ideal transforms
  2119   // Initialize IterGVN with types and values from parse-time GVN
  2120   PhaseIterGVN igvn(initial_gvn());
  2122     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  2123     igvn.optimize();
  2126   print_method(PHASE_ITER_GVN1, 2);
  2128   if (failing())  return;
  2131     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2132     inline_incrementally(igvn);
  2135   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2137   if (failing())  return;
  2139   if (eliminate_boxing()) {
  2140     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2141     // Inline valueOf() methods now.
  2142     inline_boxing_calls(igvn);
  2144     if (AlwaysIncrementalInline) {
  2145       inline_incrementally(igvn);
  2148     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2150     if (failing())  return;
  2153   // Now that all inlining is over, cut edge from root to loop
  2154   // safepoints
  2155   remove_root_to_sfpts_edges();
  2157   // Remove the speculative part of types and clean up the graph from
  2158   // the extra CastPP nodes whose only purpose is to carry them. Do
  2159   // that early so that optimizations are not disrupted by the extra
  2160   // CastPP nodes.
  2161   remove_speculative_types(igvn);
  2163   // No more new expensive nodes will be added to the list from here
  2164   // so keep only the actual candidates for optimizations.
  2165   cleanup_expensive_nodes(igvn);
  2167   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
  2168     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
  2169     initial_gvn()->replace_with(&igvn);
  2170     for_igvn()->clear();
  2171     Unique_Node_List new_worklist(C->comp_arena());
  2173       ResourceMark rm;
  2174       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
  2176     set_for_igvn(&new_worklist);
  2177     igvn = PhaseIterGVN(initial_gvn());
  2178     igvn.optimize();
  2181   // Perform escape analysis
  2182   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2183     if (has_loops()) {
  2184       // Cleanup graph (remove dead nodes).
  2185       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2186       PhaseIdealLoop ideal_loop( igvn, false, true );
  2187       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2188       if (failing())  return;
  2190     ConnectionGraph::do_analysis(this, &igvn);
  2192     if (failing())  return;
  2194     // Optimize out fields loads from scalar replaceable allocations.
  2195     igvn.optimize();
  2196     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2198     if (failing())  return;
  2200     if (congraph() != NULL && macro_count() > 0) {
  2201       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2202       PhaseMacroExpand mexp(igvn);
  2203       mexp.eliminate_macro_nodes();
  2204       igvn.set_delay_transform(false);
  2206       igvn.optimize();
  2207       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2209       if (failing())  return;
  2213   // Loop transforms on the ideal graph.  Range Check Elimination,
  2214   // peeling, unrolling, etc.
  2216   // Set loop opts counter
  2217   loop_opts_cnt = num_loop_opts();
  2218   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2220       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2221       PhaseIdealLoop ideal_loop( igvn, true );
  2222       loop_opts_cnt--;
  2223       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2224       if (failing())  return;
  2226     // Loop opts pass if partial peeling occurred in previous pass
  2227     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2228       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2229       PhaseIdealLoop ideal_loop( igvn, false );
  2230       loop_opts_cnt--;
  2231       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2232       if (failing())  return;
  2234     // Loop opts pass for loop-unrolling before CCP
  2235     if(major_progress() && (loop_opts_cnt > 0)) {
  2236       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2237       PhaseIdealLoop ideal_loop( igvn, false );
  2238       loop_opts_cnt--;
  2239       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2241     if (!failing()) {
  2242       // Verify that last round of loop opts produced a valid graph
  2243       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2244       PhaseIdealLoop::verify(igvn);
  2247   if (failing())  return;
  2249   // Conditional Constant Propagation;
  2250   PhaseCCP ccp( &igvn );
  2251   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2253     TracePhase t2("ccp", &_t_ccp, true);
  2254     ccp.do_transform();
  2256   print_method(PHASE_CPP1, 2);
  2258   assert( true, "Break here to ccp.dump_old2new_map()");
  2260   // Iterative Global Value Numbering, including ideal transforms
  2262     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2263     igvn = ccp;
  2264     igvn.optimize();
  2267   print_method(PHASE_ITER_GVN2, 2);
  2269   if (failing())  return;
  2271   // Loop transforms on the ideal graph.  Range Check Elimination,
  2272   // peeling, unrolling, etc.
  2273   if(loop_opts_cnt > 0) {
  2274     debug_only( int cnt = 0; );
  2275     while(major_progress() && (loop_opts_cnt > 0)) {
  2276       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2277       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2278       PhaseIdealLoop ideal_loop( igvn, true);
  2279       loop_opts_cnt--;
  2280       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2281       if (failing())  return;
  2286     // Verify that all previous optimizations produced a valid graph
  2287     // at least to this point, even if no loop optimizations were done.
  2288     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2289     PhaseIdealLoop::verify(igvn);
  2292   if (range_check_cast_count() > 0) {
  2293     // No more loop optimizations. Remove all range check dependent CastIINodes.
  2294     C->remove_range_check_casts(igvn);
  2295     igvn.optimize();
  2299     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2300     PhaseMacroExpand  mex(igvn);
  2301     if (mex.expand_macro_nodes()) {
  2302       assert(failing(), "must bail out w/ explicit message");
  2303       return;
  2307  } // (End scope of igvn; run destructor if necessary for asserts.)
  2309   dump_inlining();
  2310   // A method with only infinite loops has no edges entering loops from root
  2312     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2313     if (final_graph_reshaping()) {
  2314       assert(failing(), "must bail out w/ explicit message");
  2315       return;
  2319   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2323 //------------------------------Code_Gen---------------------------------------
  2324 // Given a graph, generate code for it
  2325 void Compile::Code_Gen() {
  2326   if (failing()) {
  2327     return;
  2330   // Perform instruction selection.  You might think we could reclaim Matcher
  2331   // memory PDQ, but actually the Matcher is used in generating spill code.
  2332   // Internals of the Matcher (including some VectorSets) must remain live
  2333   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2334   // set a bit in reclaimed memory.
  2336   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2337   // nodes.  Mapping is only valid at the root of each matched subtree.
  2338   NOT_PRODUCT( verify_graph_edges(); )
  2340   Matcher matcher;
  2341   _matcher = &matcher;
  2343     TracePhase t2("matcher", &_t_matcher, true);
  2344     matcher.match();
  2346   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2347   // nodes.  Mapping is only valid at the root of each matched subtree.
  2348   NOT_PRODUCT( verify_graph_edges(); )
  2350   // If you have too many nodes, or if matching has failed, bail out
  2351   check_node_count(0, "out of nodes matching instructions");
  2352   if (failing()) {
  2353     return;
  2356   // Build a proper-looking CFG
  2357   PhaseCFG cfg(node_arena(), root(), matcher);
  2358   _cfg = &cfg;
  2360     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2361     bool success = cfg.do_global_code_motion();
  2362     if (!success) {
  2363       return;
  2366     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2367     NOT_PRODUCT( verify_graph_edges(); )
  2368     debug_only( cfg.verify(); )
  2371   PhaseChaitin regalloc(unique(), cfg, matcher);
  2372   _regalloc = &regalloc;
  2374     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2375     // Perform register allocation.  After Chaitin, use-def chains are
  2376     // no longer accurate (at spill code) and so must be ignored.
  2377     // Node->LRG->reg mappings are still accurate.
  2378     _regalloc->Register_Allocate();
  2380     // Bail out if the allocator builds too many nodes
  2381     if (failing()) {
  2382       return;
  2386   // Prior to register allocation we kept empty basic blocks in case the
  2387   // the allocator needed a place to spill.  After register allocation we
  2388   // are not adding any new instructions.  If any basic block is empty, we
  2389   // can now safely remove it.
  2391     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2392     cfg.remove_empty_blocks();
  2393     if (do_freq_based_layout()) {
  2394       PhaseBlockLayout layout(cfg);
  2395     } else {
  2396       cfg.set_loop_alignment();
  2398     cfg.fixup_flow();
  2401   // Apply peephole optimizations
  2402   if( OptoPeephole ) {
  2403     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2404     PhasePeephole peep( _regalloc, cfg);
  2405     peep.do_transform();
  2408   // Do late expand if CPU requires this.
  2409   if (Matcher::require_postalloc_expand) {
  2410     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
  2411     cfg.postalloc_expand(_regalloc);
  2414   // Convert Nodes to instruction bits in a buffer
  2416     // %%%% workspace merge brought two timers together for one job
  2417     TracePhase t2a("output", &_t_output, true);
  2418     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2419     Output();
  2422   print_method(PHASE_FINAL_CODE);
  2424   // He's dead, Jim.
  2425   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
  2426   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
  2430 //------------------------------dump_asm---------------------------------------
  2431 // Dump formatted assembly
  2432 #ifndef PRODUCT
  2433 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2434   bool cut_short = false;
  2435   tty->print_cr("#");
  2436   tty->print("#  ");  _tf->dump();  tty->cr();
  2437   tty->print_cr("#");
  2439   // For all blocks
  2440   int pc = 0x0;                 // Program counter
  2441   char starts_bundle = ' ';
  2442   _regalloc->dump_frame();
  2444   Node *n = NULL;
  2445   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2446     if (VMThread::should_terminate()) {
  2447       cut_short = true;
  2448       break;
  2450     Block* block = _cfg->get_block(i);
  2451     if (block->is_connector() && !Verbose) {
  2452       continue;
  2454     n = block->head();
  2455     if (pcs && n->_idx < pc_limit) {
  2456       tty->print("%3.3x   ", pcs[n->_idx]);
  2457     } else {
  2458       tty->print("      ");
  2460     block->dump_head(_cfg);
  2461     if (block->is_connector()) {
  2462       tty->print_cr("        # Empty connector block");
  2463     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2464       tty->print_cr("        # Block is sole successor of call");
  2467     // For all instructions
  2468     Node *delay = NULL;
  2469     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2470       if (VMThread::should_terminate()) {
  2471         cut_short = true;
  2472         break;
  2474       n = block->get_node(j);
  2475       if (valid_bundle_info(n)) {
  2476         Bundle* bundle = node_bundling(n);
  2477         if (bundle->used_in_unconditional_delay()) {
  2478           delay = n;
  2479           continue;
  2481         if (bundle->starts_bundle()) {
  2482           starts_bundle = '+';
  2486       if (WizardMode) {
  2487         n->dump();
  2490       if( !n->is_Region() &&    // Dont print in the Assembly
  2491           !n->is_Phi() &&       // a few noisely useless nodes
  2492           !n->is_Proj() &&
  2493           !n->is_MachTemp() &&
  2494           !n->is_SafePointScalarObject() &&
  2495           !n->is_Catch() &&     // Would be nice to print exception table targets
  2496           !n->is_MergeMem() &&  // Not very interesting
  2497           !n->is_top() &&       // Debug info table constants
  2498           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2499           ) {
  2500         if (pcs && n->_idx < pc_limit)
  2501           tty->print("%3.3x", pcs[n->_idx]);
  2502         else
  2503           tty->print("   ");
  2504         tty->print(" %c ", starts_bundle);
  2505         starts_bundle = ' ';
  2506         tty->print("\t");
  2507         n->format(_regalloc, tty);
  2508         tty->cr();
  2511       // If we have an instruction with a delay slot, and have seen a delay,
  2512       // then back up and print it
  2513       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2514         assert(delay != NULL, "no unconditional delay instruction");
  2515         if (WizardMode) delay->dump();
  2517         if (node_bundling(delay)->starts_bundle())
  2518           starts_bundle = '+';
  2519         if (pcs && n->_idx < pc_limit)
  2520           tty->print("%3.3x", pcs[n->_idx]);
  2521         else
  2522           tty->print("   ");
  2523         tty->print(" %c ", starts_bundle);
  2524         starts_bundle = ' ';
  2525         tty->print("\t");
  2526         delay->format(_regalloc, tty);
  2527         tty->cr();
  2528         delay = NULL;
  2531       // Dump the exception table as well
  2532       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2533         // Print the exception table for this offset
  2534         _handler_table.print_subtable_for(pc);
  2538     if (pcs && n->_idx < pc_limit)
  2539       tty->print_cr("%3.3x", pcs[n->_idx]);
  2540     else
  2541       tty->cr();
  2543     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2545   } // End of per-block dump
  2546   tty->cr();
  2548   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2550 #endif
  2552 //------------------------------Final_Reshape_Counts---------------------------
  2553 // This class defines counters to help identify when a method
  2554 // may/must be executed using hardware with only 24-bit precision.
  2555 struct Final_Reshape_Counts : public StackObj {
  2556   int  _call_count;             // count non-inlined 'common' calls
  2557   int  _float_count;            // count float ops requiring 24-bit precision
  2558   int  _double_count;           // count double ops requiring more precision
  2559   int  _java_call_count;        // count non-inlined 'java' calls
  2560   int  _inner_loop_count;       // count loops which need alignment
  2561   VectorSet _visited;           // Visitation flags
  2562   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2564   Final_Reshape_Counts() :
  2565     _call_count(0), _float_count(0), _double_count(0),
  2566     _java_call_count(0), _inner_loop_count(0),
  2567     _visited( Thread::current()->resource_area() ) { }
  2569   void inc_call_count  () { _call_count  ++; }
  2570   void inc_float_count () { _float_count ++; }
  2571   void inc_double_count() { _double_count++; }
  2572   void inc_java_call_count() { _java_call_count++; }
  2573   void inc_inner_loop_count() { _inner_loop_count++; }
  2575   int  get_call_count  () const { return _call_count  ; }
  2576   int  get_float_count () const { return _float_count ; }
  2577   int  get_double_count() const { return _double_count; }
  2578   int  get_java_call_count() const { return _java_call_count; }
  2579   int  get_inner_loop_count() const { return _inner_loop_count; }
  2580 };
  2582 #ifdef ASSERT
  2583 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2584   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2585   // Make sure the offset goes inside the instance layout.
  2586   return k->contains_field_offset(tp->offset());
  2587   // Note that OffsetBot and OffsetTop are very negative.
  2589 #endif
  2591 // Eliminate trivially redundant StoreCMs and accumulate their
  2592 // precedence edges.
  2593 void Compile::eliminate_redundant_card_marks(Node* n) {
  2594   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2595   if (n->in(MemNode::Address)->outcnt() > 1) {
  2596     // There are multiple users of the same address so it might be
  2597     // possible to eliminate some of the StoreCMs
  2598     Node* mem = n->in(MemNode::Memory);
  2599     Node* adr = n->in(MemNode::Address);
  2600     Node* val = n->in(MemNode::ValueIn);
  2601     Node* prev = n;
  2602     bool done = false;
  2603     // Walk the chain of StoreCMs eliminating ones that match.  As
  2604     // long as it's a chain of single users then the optimization is
  2605     // safe.  Eliminating partially redundant StoreCMs would require
  2606     // cloning copies down the other paths.
  2607     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2608       if (adr == mem->in(MemNode::Address) &&
  2609           val == mem->in(MemNode::ValueIn)) {
  2610         // redundant StoreCM
  2611         if (mem->req() > MemNode::OopStore) {
  2612           // Hasn't been processed by this code yet.
  2613           n->add_prec(mem->in(MemNode::OopStore));
  2614         } else {
  2615           // Already converted to precedence edge
  2616           for (uint i = mem->req(); i < mem->len(); i++) {
  2617             // Accumulate any precedence edges
  2618             if (mem->in(i) != NULL) {
  2619               n->add_prec(mem->in(i));
  2622           // Everything above this point has been processed.
  2623           done = true;
  2625         // Eliminate the previous StoreCM
  2626         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2627         assert(mem->outcnt() == 0, "should be dead");
  2628         mem->disconnect_inputs(NULL, this);
  2629       } else {
  2630         prev = mem;
  2632       mem = prev->in(MemNode::Memory);
  2637 //------------------------------final_graph_reshaping_impl----------------------
  2638 // Implement items 1-5 from final_graph_reshaping below.
  2639 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2641   if ( n->outcnt() == 0 ) return; // dead node
  2642   uint nop = n->Opcode();
  2644   // Check for 2-input instruction with "last use" on right input.
  2645   // Swap to left input.  Implements item (2).
  2646   if( n->req() == 3 &&          // two-input instruction
  2647       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2648       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2649       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2650       !n->in(2)->is_Con() ) {   // right use is not a constant
  2651     // Check for commutative opcode
  2652     switch( nop ) {
  2653     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2654     case Op_MaxI:  case Op_MinI:
  2655     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2656     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2657     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2658       // Move "last use" input to left by swapping inputs
  2659       n->swap_edges(1, 2);
  2660       break;
  2662     default:
  2663       break;
  2667 #ifdef ASSERT
  2668   if( n->is_Mem() ) {
  2669     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2670     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2671             // oop will be recorded in oop map if load crosses safepoint
  2672             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2673                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2674             "raw memory operations should have control edge");
  2676 #endif
  2677   // Count FPU ops and common calls, implements item (3)
  2678   switch( nop ) {
  2679   // Count all float operations that may use FPU
  2680   case Op_AddF:
  2681   case Op_SubF:
  2682   case Op_MulF:
  2683   case Op_DivF:
  2684   case Op_NegF:
  2685   case Op_ModF:
  2686   case Op_ConvI2F:
  2687   case Op_ConF:
  2688   case Op_CmpF:
  2689   case Op_CmpF3:
  2690   // case Op_ConvL2F: // longs are split into 32-bit halves
  2691     frc.inc_float_count();
  2692     break;
  2694   case Op_ConvF2D:
  2695   case Op_ConvD2F:
  2696     frc.inc_float_count();
  2697     frc.inc_double_count();
  2698     break;
  2700   // Count all double operations that may use FPU
  2701   case Op_AddD:
  2702   case Op_SubD:
  2703   case Op_MulD:
  2704   case Op_DivD:
  2705   case Op_NegD:
  2706   case Op_ModD:
  2707   case Op_ConvI2D:
  2708   case Op_ConvD2I:
  2709   // case Op_ConvL2D: // handled by leaf call
  2710   // case Op_ConvD2L: // handled by leaf call
  2711   case Op_ConD:
  2712   case Op_CmpD:
  2713   case Op_CmpD3:
  2714     frc.inc_double_count();
  2715     break;
  2716   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2717   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2718   case Op_Opaque3:
  2719     n->subsume_by(n->in(1), this);
  2720     break;
  2721   case Op_CallStaticJava:
  2722   case Op_CallJava:
  2723   case Op_CallDynamicJava:
  2724     frc.inc_java_call_count(); // Count java call site;
  2725   case Op_CallRuntime:
  2726   case Op_CallLeaf:
  2727   case Op_CallLeafNoFP: {
  2728     assert( n->is_Call(), "" );
  2729     CallNode *call = n->as_Call();
  2730     // Count call sites where the FP mode bit would have to be flipped.
  2731     // Do not count uncommon runtime calls:
  2732     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2733     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2734     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2735       frc.inc_call_count();   // Count the call site
  2736     } else {                  // See if uncommon argument is shared
  2737       Node *n = call->in(TypeFunc::Parms);
  2738       int nop = n->Opcode();
  2739       // Clone shared simple arguments to uncommon calls, item (1).
  2740       if( n->outcnt() > 1 &&
  2741           !n->is_Proj() &&
  2742           nop != Op_CreateEx &&
  2743           nop != Op_CheckCastPP &&
  2744           nop != Op_DecodeN &&
  2745           nop != Op_DecodeNKlass &&
  2746           !n->is_Mem() ) {
  2747         Node *x = n->clone();
  2748         call->set_req( TypeFunc::Parms, x );
  2751     break;
  2754   case Op_StoreD:
  2755   case Op_LoadD:
  2756   case Op_LoadD_unaligned:
  2757     frc.inc_double_count();
  2758     goto handle_mem;
  2759   case Op_StoreF:
  2760   case Op_LoadF:
  2761     frc.inc_float_count();
  2762     goto handle_mem;
  2764   case Op_StoreCM:
  2766       // Convert OopStore dependence into precedence edge
  2767       Node* prec = n->in(MemNode::OopStore);
  2768       n->del_req(MemNode::OopStore);
  2769       n->add_prec(prec);
  2770       eliminate_redundant_card_marks(n);
  2773     // fall through
  2775   case Op_StoreB:
  2776   case Op_StoreC:
  2777   case Op_StorePConditional:
  2778   case Op_StoreI:
  2779   case Op_StoreL:
  2780   case Op_StoreIConditional:
  2781   case Op_StoreLConditional:
  2782   case Op_CompareAndSwapI:
  2783   case Op_CompareAndSwapL:
  2784   case Op_CompareAndSwapP:
  2785   case Op_CompareAndSwapN:
  2786   case Op_GetAndAddI:
  2787   case Op_GetAndAddL:
  2788   case Op_GetAndSetI:
  2789   case Op_GetAndSetL:
  2790   case Op_GetAndSetP:
  2791   case Op_GetAndSetN:
  2792   case Op_StoreP:
  2793   case Op_StoreN:
  2794   case Op_StoreNKlass:
  2795   case Op_LoadB:
  2796   case Op_LoadUB:
  2797   case Op_LoadUS:
  2798   case Op_LoadI:
  2799   case Op_LoadKlass:
  2800   case Op_LoadNKlass:
  2801   case Op_LoadL:
  2802   case Op_LoadL_unaligned:
  2803   case Op_LoadPLocked:
  2804   case Op_LoadP:
  2805   case Op_LoadN:
  2806   case Op_LoadRange:
  2807   case Op_LoadS: {
  2808   handle_mem:
  2809 #ifdef ASSERT
  2810     if( VerifyOptoOopOffsets ) {
  2811       assert( n->is_Mem(), "" );
  2812       MemNode *mem  = (MemNode*)n;
  2813       // Check to see if address types have grounded out somehow.
  2814       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2815       assert( !tp || oop_offset_is_sane(tp), "" );
  2817 #endif
  2818     break;
  2821   case Op_AddP: {               // Assert sane base pointers
  2822     Node *addp = n->in(AddPNode::Address);
  2823     assert( !addp->is_AddP() ||
  2824             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2825             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2826             "Base pointers must match" );
  2827 #ifdef _LP64
  2828     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2829         addp->Opcode() == Op_ConP &&
  2830         addp == n->in(AddPNode::Base) &&
  2831         n->in(AddPNode::Offset)->is_Con()) {
  2832       // Use addressing with narrow klass to load with offset on x86.
  2833       // On sparc loading 32-bits constant and decoding it have less
  2834       // instructions (4) then load 64-bits constant (7).
  2835       // Do this transformation here since IGVN will convert ConN back to ConP.
  2836       const Type* t = addp->bottom_type();
  2837       if (t->isa_oopptr() || t->isa_klassptr()) {
  2838         Node* nn = NULL;
  2840         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2842         // Look for existing ConN node of the same exact type.
  2843         Node* r  = root();
  2844         uint cnt = r->outcnt();
  2845         for (uint i = 0; i < cnt; i++) {
  2846           Node* m = r->raw_out(i);
  2847           if (m!= NULL && m->Opcode() == op &&
  2848               m->bottom_type()->make_ptr() == t) {
  2849             nn = m;
  2850             break;
  2853         if (nn != NULL) {
  2854           // Decode a narrow oop to match address
  2855           // [R12 + narrow_oop_reg<<3 + offset]
  2856           if (t->isa_oopptr()) {
  2857             nn = new (this) DecodeNNode(nn, t);
  2858           } else {
  2859             nn = new (this) DecodeNKlassNode(nn, t);
  2861           n->set_req(AddPNode::Base, nn);
  2862           n->set_req(AddPNode::Address, nn);
  2863           if (addp->outcnt() == 0) {
  2864             addp->disconnect_inputs(NULL, this);
  2869 #endif
  2870     break;
  2873 #ifdef _LP64
  2874   case Op_CastPP:
  2875     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2876       Node* in1 = n->in(1);
  2877       const Type* t = n->bottom_type();
  2878       Node* new_in1 = in1->clone();
  2879       new_in1->as_DecodeN()->set_type(t);
  2881       if (!Matcher::narrow_oop_use_complex_address()) {
  2882         //
  2883         // x86, ARM and friends can handle 2 adds in addressing mode
  2884         // and Matcher can fold a DecodeN node into address by using
  2885         // a narrow oop directly and do implicit NULL check in address:
  2886         //
  2887         // [R12 + narrow_oop_reg<<3 + offset]
  2888         // NullCheck narrow_oop_reg
  2889         //
  2890         // On other platforms (Sparc) we have to keep new DecodeN node and
  2891         // use it to do implicit NULL check in address:
  2892         //
  2893         // decode_not_null narrow_oop_reg, base_reg
  2894         // [base_reg + offset]
  2895         // NullCheck base_reg
  2896         //
  2897         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2898         // to keep the information to which NULL check the new DecodeN node
  2899         // corresponds to use it as value in implicit_null_check().
  2900         //
  2901         new_in1->set_req(0, n->in(0));
  2904       n->subsume_by(new_in1, this);
  2905       if (in1->outcnt() == 0) {
  2906         in1->disconnect_inputs(NULL, this);
  2909     break;
  2911   case Op_CmpP:
  2912     // Do this transformation here to preserve CmpPNode::sub() and
  2913     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2914     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2915       Node* in1 = n->in(1);
  2916       Node* in2 = n->in(2);
  2917       if (!in1->is_DecodeNarrowPtr()) {
  2918         in2 = in1;
  2919         in1 = n->in(2);
  2921       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2923       Node* new_in2 = NULL;
  2924       if (in2->is_DecodeNarrowPtr()) {
  2925         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2926         new_in2 = in2->in(1);
  2927       } else if (in2->Opcode() == Op_ConP) {
  2928         const Type* t = in2->bottom_type();
  2929         if (t == TypePtr::NULL_PTR) {
  2930           assert(in1->is_DecodeN(), "compare klass to null?");
  2931           // Don't convert CmpP null check into CmpN if compressed
  2932           // oops implicit null check is not generated.
  2933           // This will allow to generate normal oop implicit null check.
  2934           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2935             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2936           //
  2937           // This transformation together with CastPP transformation above
  2938           // will generated code for implicit NULL checks for compressed oops.
  2939           //
  2940           // The original code after Optimize()
  2941           //
  2942           //    LoadN memory, narrow_oop_reg
  2943           //    decode narrow_oop_reg, base_reg
  2944           //    CmpP base_reg, NULL
  2945           //    CastPP base_reg // NotNull
  2946           //    Load [base_reg + offset], val_reg
  2947           //
  2948           // after these transformations will be
  2949           //
  2950           //    LoadN memory, narrow_oop_reg
  2951           //    CmpN narrow_oop_reg, NULL
  2952           //    decode_not_null narrow_oop_reg, base_reg
  2953           //    Load [base_reg + offset], val_reg
  2954           //
  2955           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2956           // since narrow oops can be used in debug info now (see the code in
  2957           // final_graph_reshaping_walk()).
  2958           //
  2959           // At the end the code will be matched to
  2960           // on x86:
  2961           //
  2962           //    Load_narrow_oop memory, narrow_oop_reg
  2963           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2964           //    NullCheck narrow_oop_reg
  2965           //
  2966           // and on sparc:
  2967           //
  2968           //    Load_narrow_oop memory, narrow_oop_reg
  2969           //    decode_not_null narrow_oop_reg, base_reg
  2970           //    Load [base_reg + offset], val_reg
  2971           //    NullCheck base_reg
  2972           //
  2973         } else if (t->isa_oopptr()) {
  2974           new_in2 = ConNode::make(this, t->make_narrowoop());
  2975         } else if (t->isa_klassptr()) {
  2976           new_in2 = ConNode::make(this, t->make_narrowklass());
  2979       if (new_in2 != NULL) {
  2980         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2981         n->subsume_by(cmpN, this);
  2982         if (in1->outcnt() == 0) {
  2983           in1->disconnect_inputs(NULL, this);
  2985         if (in2->outcnt() == 0) {
  2986           in2->disconnect_inputs(NULL, this);
  2990     break;
  2992   case Op_DecodeN:
  2993   case Op_DecodeNKlass:
  2994     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2995     // DecodeN could be pinned when it can't be fold into
  2996     // an address expression, see the code for Op_CastPP above.
  2997     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2998     break;
  3000   case Op_EncodeP:
  3001   case Op_EncodePKlass: {
  3002     Node* in1 = n->in(1);
  3003     if (in1->is_DecodeNarrowPtr()) {
  3004       n->subsume_by(in1->in(1), this);
  3005     } else if (in1->Opcode() == Op_ConP) {
  3006       const Type* t = in1->bottom_type();
  3007       if (t == TypePtr::NULL_PTR) {
  3008         assert(t->isa_oopptr(), "null klass?");
  3009         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  3010       } else if (t->isa_oopptr()) {
  3011         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  3012       } else if (t->isa_klassptr()) {
  3013         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  3016     if (in1->outcnt() == 0) {
  3017       in1->disconnect_inputs(NULL, this);
  3019     break;
  3022   case Op_Proj: {
  3023     if (OptimizeStringConcat) {
  3024       ProjNode* p = n->as_Proj();
  3025       if (p->_is_io_use) {
  3026         // Separate projections were used for the exception path which
  3027         // are normally removed by a late inline.  If it wasn't inlined
  3028         // then they will hang around and should just be replaced with
  3029         // the original one.
  3030         Node* proj = NULL;
  3031         // Replace with just one
  3032         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  3033           Node *use = i.get();
  3034           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  3035             proj = use;
  3036             break;
  3039         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
  3040         if (proj != NULL) {
  3041           p->subsume_by(proj, this);
  3045     break;
  3048   case Op_Phi:
  3049     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  3050       // The EncodeP optimization may create Phi with the same edges
  3051       // for all paths. It is not handled well by Register Allocator.
  3052       Node* unique_in = n->in(1);
  3053       assert(unique_in != NULL, "");
  3054       uint cnt = n->req();
  3055       for (uint i = 2; i < cnt; i++) {
  3056         Node* m = n->in(i);
  3057         assert(m != NULL, "");
  3058         if (unique_in != m)
  3059           unique_in = NULL;
  3061       if (unique_in != NULL) {
  3062         n->subsume_by(unique_in, this);
  3065     break;
  3067 #endif
  3069 #ifdef ASSERT
  3070   case Op_CastII:
  3071     // Verify that all range check dependent CastII nodes were removed.
  3072     if (n->isa_CastII()->has_range_check()) {
  3073       n->dump(3);
  3074       assert(false, "Range check dependent CastII node was not removed");
  3076     break;
  3077 #endif
  3079   case Op_ModI:
  3080     if (UseDivMod) {
  3081       // Check if a%b and a/b both exist
  3082       Node* d = n->find_similar(Op_DivI);
  3083       if (d) {
  3084         // Replace them with a fused divmod if supported
  3085         if (Matcher::has_match_rule(Op_DivModI)) {
  3086           DivModINode* divmod = DivModINode::make(this, n);
  3087           d->subsume_by(divmod->div_proj(), this);
  3088           n->subsume_by(divmod->mod_proj(), this);
  3089         } else {
  3090           // replace a%b with a-((a/b)*b)
  3091           Node* mult = new (this) MulINode(d, d->in(2));
  3092           Node* sub  = new (this) SubINode(d->in(1), mult);
  3093           n->subsume_by(sub, this);
  3097     break;
  3099   case Op_ModL:
  3100     if (UseDivMod) {
  3101       // Check if a%b and a/b both exist
  3102       Node* d = n->find_similar(Op_DivL);
  3103       if (d) {
  3104         // Replace them with a fused divmod if supported
  3105         if (Matcher::has_match_rule(Op_DivModL)) {
  3106           DivModLNode* divmod = DivModLNode::make(this, n);
  3107           d->subsume_by(divmod->div_proj(), this);
  3108           n->subsume_by(divmod->mod_proj(), this);
  3109         } else {
  3110           // replace a%b with a-((a/b)*b)
  3111           Node* mult = new (this) MulLNode(d, d->in(2));
  3112           Node* sub  = new (this) SubLNode(d->in(1), mult);
  3113           n->subsume_by(sub, this);
  3117     break;
  3119   case Op_LoadVector:
  3120   case Op_StoreVector:
  3121     break;
  3123   case Op_PackB:
  3124   case Op_PackS:
  3125   case Op_PackI:
  3126   case Op_PackF:
  3127   case Op_PackL:
  3128   case Op_PackD:
  3129     if (n->req()-1 > 2) {
  3130       // Replace many operand PackNodes with a binary tree for matching
  3131       PackNode* p = (PackNode*) n;
  3132       Node* btp = p->binary_tree_pack(this, 1, n->req());
  3133       n->subsume_by(btp, this);
  3135     break;
  3136   case Op_Loop:
  3137   case Op_CountedLoop:
  3138     if (n->as_Loop()->is_inner_loop()) {
  3139       frc.inc_inner_loop_count();
  3141     break;
  3142   case Op_LShiftI:
  3143   case Op_RShiftI:
  3144   case Op_URShiftI:
  3145   case Op_LShiftL:
  3146   case Op_RShiftL:
  3147   case Op_URShiftL:
  3148     if (Matcher::need_masked_shift_count) {
  3149       // The cpu's shift instructions don't restrict the count to the
  3150       // lower 5/6 bits. We need to do the masking ourselves.
  3151       Node* in2 = n->in(2);
  3152       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  3153       const TypeInt* t = in2->find_int_type();
  3154       if (t != NULL && t->is_con()) {
  3155         juint shift = t->get_con();
  3156         if (shift > mask) { // Unsigned cmp
  3157           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  3159       } else {
  3160         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  3161           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  3162           n->set_req(2, shift);
  3165       if (in2->outcnt() == 0) { // Remove dead node
  3166         in2->disconnect_inputs(NULL, this);
  3169     break;
  3170   case Op_MemBarStoreStore:
  3171   case Op_MemBarRelease:
  3172     // Break the link with AllocateNode: it is no longer useful and
  3173     // confuses register allocation.
  3174     if (n->req() > MemBarNode::Precedent) {
  3175       n->set_req(MemBarNode::Precedent, top());
  3177     break;
  3178   default:
  3179     assert( !n->is_Call(), "" );
  3180     assert( !n->is_Mem(), "" );
  3181     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
  3182     break;
  3185   // Collect CFG split points
  3186   if (n->is_MultiBranch())
  3187     frc._tests.push(n);
  3190 //------------------------------final_graph_reshaping_walk---------------------
  3191 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3192 // requires that the walk visits a node's inputs before visiting the node.
  3193 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3194   ResourceArea *area = Thread::current()->resource_area();
  3195   Unique_Node_List sfpt(area);
  3197   frc._visited.set(root->_idx); // first, mark node as visited
  3198   uint cnt = root->req();
  3199   Node *n = root;
  3200   uint  i = 0;
  3201   while (true) {
  3202     if (i < cnt) {
  3203       // Place all non-visited non-null inputs onto stack
  3204       Node* m = n->in(i);
  3205       ++i;
  3206       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3207         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
  3208           // compute worst case interpreter size in case of a deoptimization
  3209           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
  3211           sfpt.push(m);
  3213         cnt = m->req();
  3214         nstack.push(n, i); // put on stack parent and next input's index
  3215         n = m;
  3216         i = 0;
  3218     } else {
  3219       // Now do post-visit work
  3220       final_graph_reshaping_impl( n, frc );
  3221       if (nstack.is_empty())
  3222         break;             // finished
  3223       n = nstack.node();   // Get node from stack
  3224       cnt = n->req();
  3225       i = nstack.index();
  3226       nstack.pop();        // Shift to the next node on stack
  3230   // Skip next transformation if compressed oops are not used.
  3231   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3232       (!UseCompressedOops && !UseCompressedClassPointers))
  3233     return;
  3235   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3236   // It could be done for an uncommon traps or any safepoints/calls
  3237   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3238   while (sfpt.size() > 0) {
  3239     n = sfpt.pop();
  3240     JVMState *jvms = n->as_SafePoint()->jvms();
  3241     assert(jvms != NULL, "sanity");
  3242     int start = jvms->debug_start();
  3243     int end   = n->req();
  3244     bool is_uncommon = (n->is_CallStaticJava() &&
  3245                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3246     for (int j = start; j < end; j++) {
  3247       Node* in = n->in(j);
  3248       if (in->is_DecodeNarrowPtr()) {
  3249         bool safe_to_skip = true;
  3250         if (!is_uncommon ) {
  3251           // Is it safe to skip?
  3252           for (uint i = 0; i < in->outcnt(); i++) {
  3253             Node* u = in->raw_out(i);
  3254             if (!u->is_SafePoint() ||
  3255                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3256               safe_to_skip = false;
  3260         if (safe_to_skip) {
  3261           n->set_req(j, in->in(1));
  3263         if (in->outcnt() == 0) {
  3264           in->disconnect_inputs(NULL, this);
  3271 //------------------------------final_graph_reshaping--------------------------
  3272 // Final Graph Reshaping.
  3273 //
  3274 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3275 //     and not commoned up and forced early.  Must come after regular
  3276 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3277 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3278 //     Remove Opaque nodes.
  3279 // (2) Move last-uses by commutative operations to the left input to encourage
  3280 //     Intel update-in-place two-address operations and better register usage
  3281 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3282 //     calls canonicalizing them back.
  3283 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3284 //     and call sites.  On Intel, we can get correct rounding either by
  3285 //     forcing singles to memory (requires extra stores and loads after each
  3286 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3287 //     clearing the mode bit around call sites).  The mode bit is only used
  3288 //     if the relative frequency of single FP ops to calls is low enough.
  3289 //     This is a key transform for SPEC mpeg_audio.
  3290 // (4) Detect infinite loops; blobs of code reachable from above but not
  3291 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3292 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3293 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3294 //     Detection is by looking for IfNodes where only 1 projection is
  3295 //     reachable from below or CatchNodes missing some targets.
  3296 // (5) Assert for insane oop offsets in debug mode.
  3298 bool Compile::final_graph_reshaping() {
  3299   // an infinite loop may have been eliminated by the optimizer,
  3300   // in which case the graph will be empty.
  3301   if (root()->req() == 1) {
  3302     record_method_not_compilable("trivial infinite loop");
  3303     return true;
  3306   // Expensive nodes have their control input set to prevent the GVN
  3307   // from freely commoning them. There's no GVN beyond this point so
  3308   // no need to keep the control input. We want the expensive nodes to
  3309   // be freely moved to the least frequent code path by gcm.
  3310   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3311   for (int i = 0; i < expensive_count(); i++) {
  3312     _expensive_nodes->at(i)->set_req(0, NULL);
  3315   Final_Reshape_Counts frc;
  3317   // Visit everybody reachable!
  3318   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
  3319   Node_Stack nstack(live_nodes() >> 1);
  3320   final_graph_reshaping_walk(nstack, root(), frc);
  3322   // Check for unreachable (from below) code (i.e., infinite loops).
  3323   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3324     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3325     // Get number of CFG targets.
  3326     // Note that PCTables include exception targets after calls.
  3327     uint required_outcnt = n->required_outcnt();
  3328     if (n->outcnt() != required_outcnt) {
  3329       // Check for a few special cases.  Rethrow Nodes never take the
  3330       // 'fall-thru' path, so expected kids is 1 less.
  3331       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3332         if (n->in(0)->in(0)->is_Call()) {
  3333           CallNode *call = n->in(0)->in(0)->as_Call();
  3334           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3335             required_outcnt--;      // Rethrow always has 1 less kid
  3336           } else if (call->req() > TypeFunc::Parms &&
  3337                      call->is_CallDynamicJava()) {
  3338             // Check for null receiver. In such case, the optimizer has
  3339             // detected that the virtual call will always result in a null
  3340             // pointer exception. The fall-through projection of this CatchNode
  3341             // will not be populated.
  3342             Node *arg0 = call->in(TypeFunc::Parms);
  3343             if (arg0->is_Type() &&
  3344                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3345               required_outcnt--;
  3347           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3348                      call->req() > TypeFunc::Parms+1 &&
  3349                      call->is_CallStaticJava()) {
  3350             // Check for negative array length. In such case, the optimizer has
  3351             // detected that the allocation attempt will always result in an
  3352             // exception. There is no fall-through projection of this CatchNode .
  3353             Node *arg1 = call->in(TypeFunc::Parms+1);
  3354             if (arg1->is_Type() &&
  3355                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3356               required_outcnt--;
  3361       // Recheck with a better notion of 'required_outcnt'
  3362       if (n->outcnt() != required_outcnt) {
  3363         record_method_not_compilable("malformed control flow");
  3364         return true;            // Not all targets reachable!
  3367     // Check that I actually visited all kids.  Unreached kids
  3368     // must be infinite loops.
  3369     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3370       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3371         record_method_not_compilable("infinite loop");
  3372         return true;            // Found unvisited kid; must be unreach
  3376   // If original bytecodes contained a mixture of floats and doubles
  3377   // check if the optimizer has made it homogenous, item (3).
  3378   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3379       frc.get_float_count() > 32 &&
  3380       frc.get_double_count() == 0 &&
  3381       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3382     set_24_bit_selection_and_mode( false,  true );
  3385   set_java_calls(frc.get_java_call_count());
  3386   set_inner_loops(frc.get_inner_loop_count());
  3388   // No infinite loops, no reason to bail out.
  3389   return false;
  3392 //-----------------------------too_many_traps----------------------------------
  3393 // Report if there are too many traps at the current method and bci.
  3394 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3395 bool Compile::too_many_traps(ciMethod* method,
  3396                              int bci,
  3397                              Deoptimization::DeoptReason reason) {
  3398   ciMethodData* md = method->method_data();
  3399   if (md->is_empty()) {
  3400     // Assume the trap has not occurred, or that it occurred only
  3401     // because of a transient condition during start-up in the interpreter.
  3402     return false;
  3404   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
  3405   if (md->has_trap_at(bci, m, reason) != 0) {
  3406     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3407     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3408     // assume the worst.
  3409     if (log())
  3410       log()->elem("observe trap='%s' count='%d'",
  3411                   Deoptimization::trap_reason_name(reason),
  3412                   md->trap_count(reason));
  3413     return true;
  3414   } else {
  3415     // Ignore method/bci and see if there have been too many globally.
  3416     return too_many_traps(reason, md);
  3420 // Less-accurate variant which does not require a method and bci.
  3421 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3422                              ciMethodData* logmd) {
  3423   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
  3424     // Too many traps globally.
  3425     // Note that we use cumulative trap_count, not just md->trap_count.
  3426     if (log()) {
  3427       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3428       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3429                   Deoptimization::trap_reason_name(reason),
  3430                   mcount, trap_count(reason));
  3432     return true;
  3433   } else {
  3434     // The coast is clear.
  3435     return false;
  3439 //--------------------------too_many_recompiles--------------------------------
  3440 // Report if there are too many recompiles at the current method and bci.
  3441 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3442 // Is not eager to return true, since this will cause the compiler to use
  3443 // Action_none for a trap point, to avoid too many recompilations.
  3444 bool Compile::too_many_recompiles(ciMethod* method,
  3445                                   int bci,
  3446                                   Deoptimization::DeoptReason reason) {
  3447   ciMethodData* md = method->method_data();
  3448   if (md->is_empty()) {
  3449     // Assume the trap has not occurred, or that it occurred only
  3450     // because of a transient condition during start-up in the interpreter.
  3451     return false;
  3453   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3454   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3455   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3456   Deoptimization::DeoptReason per_bc_reason
  3457     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3458   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
  3459   if ((per_bc_reason == Deoptimization::Reason_none
  3460        || md->has_trap_at(bci, m, reason) != 0)
  3461       // The trap frequency measure we care about is the recompile count:
  3462       && md->trap_recompiled_at(bci, m)
  3463       && md->overflow_recompile_count() >= bc_cutoff) {
  3464     // Do not emit a trap here if it has already caused recompilations.
  3465     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3466     // assume the worst.
  3467     if (log())
  3468       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3469                   Deoptimization::trap_reason_name(reason),
  3470                   md->trap_count(reason),
  3471                   md->overflow_recompile_count());
  3472     return true;
  3473   } else if (trap_count(reason) != 0
  3474              && decompile_count() >= m_cutoff) {
  3475     // Too many recompiles globally, and we have seen this sort of trap.
  3476     // Use cumulative decompile_count, not just md->decompile_count.
  3477     if (log())
  3478       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3479                   Deoptimization::trap_reason_name(reason),
  3480                   md->trap_count(reason), trap_count(reason),
  3481                   md->decompile_count(), decompile_count());
  3482     return true;
  3483   } else {
  3484     // The coast is clear.
  3485     return false;
  3489 // Compute when not to trap. Used by matching trap based nodes and
  3490 // NullCheck optimization.
  3491 void Compile::set_allowed_deopt_reasons() {
  3492   _allowed_reasons = 0;
  3493   if (is_method_compilation()) {
  3494     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
  3495       assert(rs < BitsPerInt, "recode bit map");
  3496       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
  3497         _allowed_reasons |= nth_bit(rs);
  3503 #ifndef PRODUCT
  3504 //------------------------------verify_graph_edges---------------------------
  3505 // Walk the Graph and verify that there is a one-to-one correspondence
  3506 // between Use-Def edges and Def-Use edges in the graph.
  3507 void Compile::verify_graph_edges(bool no_dead_code) {
  3508   if (VerifyGraphEdges) {
  3509     ResourceArea *area = Thread::current()->resource_area();
  3510     Unique_Node_List visited(area);
  3511     // Call recursive graph walk to check edges
  3512     _root->verify_edges(visited);
  3513     if (no_dead_code) {
  3514       // Now make sure that no visited node is used by an unvisited node.
  3515       bool dead_nodes = false;
  3516       Unique_Node_List checked(area);
  3517       while (visited.size() > 0) {
  3518         Node* n = visited.pop();
  3519         checked.push(n);
  3520         for (uint i = 0; i < n->outcnt(); i++) {
  3521           Node* use = n->raw_out(i);
  3522           if (checked.member(use))  continue;  // already checked
  3523           if (visited.member(use))  continue;  // already in the graph
  3524           if (use->is_Con())        continue;  // a dead ConNode is OK
  3525           // At this point, we have found a dead node which is DU-reachable.
  3526           if (!dead_nodes) {
  3527             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3528             dead_nodes = true;
  3530           use->dump(2);
  3531           tty->print_cr("---");
  3532           checked.push(use);  // No repeats; pretend it is now checked.
  3535       assert(!dead_nodes, "using nodes must be reachable from root");
  3540 // Verify GC barriers consistency
  3541 // Currently supported:
  3542 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
  3543 void Compile::verify_barriers() {
  3544   if (UseG1GC) {
  3545     // Verify G1 pre-barriers
  3546     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
  3548     ResourceArea *area = Thread::current()->resource_area();
  3549     Unique_Node_List visited(area);
  3550     Node_List worklist(area);
  3551     // We're going to walk control flow backwards starting from the Root
  3552     worklist.push(_root);
  3553     while (worklist.size() > 0) {
  3554       Node* x = worklist.pop();
  3555       if (x == NULL || x == top()) continue;
  3556       if (visited.member(x)) {
  3557         continue;
  3558       } else {
  3559         visited.push(x);
  3562       if (x->is_Region()) {
  3563         for (uint i = 1; i < x->req(); i++) {
  3564           worklist.push(x->in(i));
  3566       } else {
  3567         worklist.push(x->in(0));
  3568         // We are looking for the pattern:
  3569         //                            /->ThreadLocal
  3570         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
  3571         //              \->ConI(0)
  3572         // We want to verify that the If and the LoadB have the same control
  3573         // See GraphKit::g1_write_barrier_pre()
  3574         if (x->is_If()) {
  3575           IfNode *iff = x->as_If();
  3576           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
  3577             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
  3578             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
  3579                 && cmp->in(1)->is_Load()) {
  3580               LoadNode* load = cmp->in(1)->as_Load();
  3581               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
  3582                   && load->in(2)->in(3)->is_Con()
  3583                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
  3585                 Node* if_ctrl = iff->in(0);
  3586                 Node* load_ctrl = load->in(0);
  3588                 if (if_ctrl != load_ctrl) {
  3589                   // Skip possible CProj->NeverBranch in infinite loops
  3590                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
  3591                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
  3592                     if_ctrl = if_ctrl->in(0)->in(0);
  3595                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
  3605 #endif
  3607 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3608 // This is required because there is not quite a 1-1 relation between the
  3609 // ciEnv and its compilation task and the Compile object.  Note that one
  3610 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3611 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3612 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3613 // by the logic in C2Compiler.
  3614 void Compile::record_failure(const char* reason) {
  3615   if (log() != NULL) {
  3616     log()->elem("failure reason='%s' phase='compile'", reason);
  3618   if (_failure_reason == NULL) {
  3619     // Record the first failure reason.
  3620     _failure_reason = reason;
  3623   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3624     C->print_method(PHASE_FAILURE);
  3626   _root = NULL;  // flush the graph, too
  3629 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3630   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3631     _phase_name(name), _dolog(dolog)
  3633   if (dolog) {
  3634     C = Compile::current();
  3635     _log = C->log();
  3636   } else {
  3637     C = NULL;
  3638     _log = NULL;
  3640   if (_log != NULL) {
  3641     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3642     _log->stamp();
  3643     _log->end_head();
  3647 Compile::TracePhase::~TracePhase() {
  3649   C = Compile::current();
  3650   if (_dolog) {
  3651     _log = C->log();
  3652   } else {
  3653     _log = NULL;
  3656 #ifdef ASSERT
  3657   if (PrintIdealNodeCount) {
  3658     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3659                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3662   if (VerifyIdealNodeCount) {
  3663     Compile::current()->print_missing_nodes();
  3665 #endif
  3667   if (_log != NULL) {
  3668     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3672 //=============================================================================
  3673 // Two Constant's are equal when the type and the value are equal.
  3674 bool Compile::Constant::operator==(const Constant& other) {
  3675   if (type()          != other.type()         )  return false;
  3676   if (can_be_reused() != other.can_be_reused())  return false;
  3677   // For floating point values we compare the bit pattern.
  3678   switch (type()) {
  3679   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3680   case T_LONG:
  3681   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3682   case T_OBJECT:
  3683   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3684   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3685   case T_METADATA: return (_v._metadata == other._v._metadata);
  3686   default: ShouldNotReachHere();
  3688   return false;
  3691 static int type_to_size_in_bytes(BasicType t) {
  3692   switch (t) {
  3693   case T_LONG:    return sizeof(jlong  );
  3694   case T_FLOAT:   return sizeof(jfloat );
  3695   case T_DOUBLE:  return sizeof(jdouble);
  3696   case T_METADATA: return sizeof(Metadata*);
  3697     // We use T_VOID as marker for jump-table entries (labels) which
  3698     // need an internal word relocation.
  3699   case T_VOID:
  3700   case T_ADDRESS:
  3701   case T_OBJECT:  return sizeof(jobject);
  3704   ShouldNotReachHere();
  3705   return -1;
  3708 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3709   // sort descending
  3710   if (a->freq() > b->freq())  return -1;
  3711   if (a->freq() < b->freq())  return  1;
  3712   return 0;
  3715 void Compile::ConstantTable::calculate_offsets_and_size() {
  3716   // First, sort the array by frequencies.
  3717   _constants.sort(qsort_comparator);
  3719 #ifdef ASSERT
  3720   // Make sure all jump-table entries were sorted to the end of the
  3721   // array (they have a negative frequency).
  3722   bool found_void = false;
  3723   for (int i = 0; i < _constants.length(); i++) {
  3724     Constant con = _constants.at(i);
  3725     if (con.type() == T_VOID)
  3726       found_void = true;  // jump-tables
  3727     else
  3728       assert(!found_void, "wrong sorting");
  3730 #endif
  3732   int offset = 0;
  3733   for (int i = 0; i < _constants.length(); i++) {
  3734     Constant* con = _constants.adr_at(i);
  3736     // Align offset for type.
  3737     int typesize = type_to_size_in_bytes(con->type());
  3738     offset = align_size_up(offset, typesize);
  3739     con->set_offset(offset);   // set constant's offset
  3741     if (con->type() == T_VOID) {
  3742       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3743       offset = offset + typesize * n->outcnt();  // expand jump-table
  3744     } else {
  3745       offset = offset + typesize;
  3749   // Align size up to the next section start (which is insts; see
  3750   // CodeBuffer::align_at_start).
  3751   assert(_size == -1, "already set?");
  3752   _size = align_size_up(offset, CodeEntryAlignment);
  3755 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3756   MacroAssembler _masm(&cb);
  3757   for (int i = 0; i < _constants.length(); i++) {
  3758     Constant con = _constants.at(i);
  3759     address constant_addr = NULL;
  3760     switch (con.type()) {
  3761     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3762     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3763     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3764     case T_OBJECT: {
  3765       jobject obj = con.get_jobject();
  3766       int oop_index = _masm.oop_recorder()->find_index(obj);
  3767       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3768       break;
  3770     case T_ADDRESS: {
  3771       address addr = (address) con.get_jobject();
  3772       constant_addr = _masm.address_constant(addr);
  3773       break;
  3775     // We use T_VOID as marker for jump-table entries (labels) which
  3776     // need an internal word relocation.
  3777     case T_VOID: {
  3778       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3779       // Fill the jump-table with a dummy word.  The real value is
  3780       // filled in later in fill_jump_table.
  3781       address dummy = (address) n;
  3782       constant_addr = _masm.address_constant(dummy);
  3783       // Expand jump-table
  3784       for (uint i = 1; i < n->outcnt(); i++) {
  3785         address temp_addr = _masm.address_constant(dummy + i);
  3786         assert(temp_addr, "consts section too small");
  3788       break;
  3790     case T_METADATA: {
  3791       Metadata* obj = con.get_metadata();
  3792       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3793       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3794       break;
  3796     default: ShouldNotReachHere();
  3798     assert(constant_addr, "consts section too small");
  3799     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
  3800             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
  3804 int Compile::ConstantTable::find_offset(Constant& con) const {
  3805   int idx = _constants.find(con);
  3806   assert(idx != -1, "constant must be in constant table");
  3807   int offset = _constants.at(idx).offset();
  3808   assert(offset != -1, "constant table not emitted yet?");
  3809   return offset;
  3812 void Compile::ConstantTable::add(Constant& con) {
  3813   if (con.can_be_reused()) {
  3814     int idx = _constants.find(con);
  3815     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3816       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3817       return;
  3820   (void) _constants.append(con);
  3823 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3824   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3825   Constant con(type, value, b->_freq);
  3826   add(con);
  3827   return con;
  3830 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3831   Constant con(metadata);
  3832   add(con);
  3833   return con;
  3836 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3837   jvalue value;
  3838   BasicType type = oper->type()->basic_type();
  3839   switch (type) {
  3840   case T_LONG:    value.j = oper->constantL(); break;
  3841   case T_FLOAT:   value.f = oper->constantF(); break;
  3842   case T_DOUBLE:  value.d = oper->constantD(); break;
  3843   case T_OBJECT:
  3844   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3845   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3846   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3848   return add(n, type, value);
  3851 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3852   jvalue value;
  3853   // We can use the node pointer here to identify the right jump-table
  3854   // as this method is called from Compile::Fill_buffer right before
  3855   // the MachNodes are emitted and the jump-table is filled (means the
  3856   // MachNode pointers do not change anymore).
  3857   value.l = (jobject) n;
  3858   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3859   add(con);
  3860   return con;
  3863 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3864   // If called from Compile::scratch_emit_size do nothing.
  3865   if (Compile::current()->in_scratch_emit_size())  return;
  3867   assert(labels.is_nonempty(), "must be");
  3868   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3870   // Since MachConstantNode::constant_offset() also contains
  3871   // table_base_offset() we need to subtract the table_base_offset()
  3872   // to get the plain offset into the constant table.
  3873   int offset = n->constant_offset() - table_base_offset();
  3875   MacroAssembler _masm(&cb);
  3876   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3878   for (uint i = 0; i < n->outcnt(); i++) {
  3879     address* constant_addr = &jump_table_base[i];
  3880     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
  3881     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3882     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3886 void Compile::dump_inlining() {
  3887   if (print_inlining() || print_intrinsics()) {
  3888     // Print inlining message for candidates that we couldn't inline
  3889     // for lack of space or non constant receiver
  3890     for (int i = 0; i < _late_inlines.length(); i++) {
  3891       CallGenerator* cg = _late_inlines.at(i);
  3892       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3894     Unique_Node_List useful;
  3895     useful.push(root());
  3896     for (uint next = 0; next < useful.size(); ++next) {
  3897       Node* n  = useful.at(next);
  3898       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3899         CallNode* call = n->as_Call();
  3900         CallGenerator* cg = call->generator();
  3901         cg->print_inlining_late("receiver not constant");
  3903       uint max = n->len();
  3904       for ( uint i = 0; i < max; ++i ) {
  3905         Node *m = n->in(i);
  3906         if ( m == NULL ) continue;
  3907         useful.push(m);
  3910     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3911       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
  3916 // Dump inlining replay data to the stream.
  3917 // Don't change thread state and acquire any locks.
  3918 void Compile::dump_inline_data(outputStream* out) {
  3919   InlineTree* inl_tree = ilt();
  3920   if (inl_tree != NULL) {
  3921     out->print(" inline %d", inl_tree->count());
  3922     inl_tree->dump_replay_data(out);
  3926 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3927   if (n1->Opcode() < n2->Opcode())      return -1;
  3928   else if (n1->Opcode() > n2->Opcode()) return 1;
  3930   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3931   for (uint i = 1; i < n1->req(); i++) {
  3932     if (n1->in(i) < n2->in(i))      return -1;
  3933     else if (n1->in(i) > n2->in(i)) return 1;
  3936   return 0;
  3939 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3940   Node* n1 = *n1p;
  3941   Node* n2 = *n2p;
  3943   return cmp_expensive_nodes(n1, n2);
  3946 void Compile::sort_expensive_nodes() {
  3947   if (!expensive_nodes_sorted()) {
  3948     _expensive_nodes->sort(cmp_expensive_nodes);
  3952 bool Compile::expensive_nodes_sorted() const {
  3953   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3954     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3955       return false;
  3958   return true;
  3961 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3962   if (_expensive_nodes->length() == 0) {
  3963     return false;
  3966   assert(OptimizeExpensiveOps, "optimization off?");
  3968   // Take this opportunity to remove dead nodes from the list
  3969   int j = 0;
  3970   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3971     Node* n = _expensive_nodes->at(i);
  3972     if (!n->is_unreachable(igvn)) {
  3973       assert(n->is_expensive(), "should be expensive");
  3974       _expensive_nodes->at_put(j, n);
  3975       j++;
  3978   _expensive_nodes->trunc_to(j);
  3980   // Then sort the list so that similar nodes are next to each other
  3981   // and check for at least two nodes of identical kind with same data
  3982   // inputs.
  3983   sort_expensive_nodes();
  3985   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3986     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3987       return true;
  3991   return false;
  3994 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3995   if (_expensive_nodes->length() == 0) {
  3996     return;
  3999   assert(OptimizeExpensiveOps, "optimization off?");
  4001   // Sort to bring similar nodes next to each other and clear the
  4002   // control input of nodes for which there's only a single copy.
  4003   sort_expensive_nodes();
  4005   int j = 0;
  4006   int identical = 0;
  4007   int i = 0;
  4008   for (; i < _expensive_nodes->length()-1; i++) {
  4009     assert(j <= i, "can't write beyond current index");
  4010     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  4011       identical++;
  4012       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  4013       continue;
  4015     if (identical > 0) {
  4016       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  4017       identical = 0;
  4018     } else {
  4019       Node* n = _expensive_nodes->at(i);
  4020       igvn.hash_delete(n);
  4021       n->set_req(0, NULL);
  4022       igvn.hash_insert(n);
  4025   if (identical > 0) {
  4026     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  4027   } else if (_expensive_nodes->length() >= 1) {
  4028     Node* n = _expensive_nodes->at(i);
  4029     igvn.hash_delete(n);
  4030     n->set_req(0, NULL);
  4031     igvn.hash_insert(n);
  4033   _expensive_nodes->trunc_to(j);
  4036 void Compile::add_expensive_node(Node * n) {
  4037   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  4038   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  4039   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  4040   if (OptimizeExpensiveOps) {
  4041     _expensive_nodes->append(n);
  4042   } else {
  4043     // Clear control input and let IGVN optimize expensive nodes if
  4044     // OptimizeExpensiveOps is off.
  4045     n->set_req(0, NULL);
  4049 /**
  4050  * Remove the speculative part of types and clean up the graph
  4051  */
  4052 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
  4053   if (UseTypeSpeculation) {
  4054     Unique_Node_List worklist;
  4055     worklist.push(root());
  4056     int modified = 0;
  4057     // Go over all type nodes that carry a speculative type, drop the
  4058     // speculative part of the type and enqueue the node for an igvn
  4059     // which may optimize it out.
  4060     for (uint next = 0; next < worklist.size(); ++next) {
  4061       Node *n  = worklist.at(next);
  4062       if (n->is_Type()) {
  4063         TypeNode* tn = n->as_Type();
  4064         const Type* t = tn->type();
  4065         const Type* t_no_spec = t->remove_speculative();
  4066         if (t_no_spec != t) {
  4067           bool in_hash = igvn.hash_delete(n);
  4068           assert(in_hash, "node should be in igvn hash table");
  4069           tn->set_type(t_no_spec);
  4070           igvn.hash_insert(n);
  4071           igvn._worklist.push(n); // give it a chance to go away
  4072           modified++;
  4075       uint max = n->len();
  4076       for( uint i = 0; i < max; ++i ) {
  4077         Node *m = n->in(i);
  4078         if (not_a_node(m))  continue;
  4079         worklist.push(m);
  4082     // Drop the speculative part of all types in the igvn's type table
  4083     igvn.remove_speculative_types();
  4084     if (modified > 0) {
  4085       igvn.optimize();
  4087 #ifdef ASSERT
  4088     // Verify that after the IGVN is over no speculative type has resurfaced
  4089     worklist.clear();
  4090     worklist.push(root());
  4091     for (uint next = 0; next < worklist.size(); ++next) {
  4092       Node *n  = worklist.at(next);
  4093       const Type* t = igvn.type_or_null(n);
  4094       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
  4095       if (n->is_Type()) {
  4096         t = n->as_Type()->type();
  4097         assert(t == t->remove_speculative(), "no more speculative types");
  4099       uint max = n->len();
  4100       for( uint i = 0; i < max; ++i ) {
  4101         Node *m = n->in(i);
  4102         if (not_a_node(m))  continue;
  4103         worklist.push(m);
  4106     igvn.check_no_speculative_types();
  4107 #endif
  4111 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
  4112 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
  4113   if (ctrl != NULL) {
  4114     // Express control dependency by a CastII node with a narrow type.
  4115     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
  4116     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
  4117     // node from floating above the range check during loop optimizations. Otherwise, the
  4118     // ConvI2L node may be eliminated independently of the range check, causing the data path
  4119     // to become TOP while the control path is still there (although it's unreachable).
  4120     value->set_req(0, ctrl);
  4121     // Save CastII node to remove it after loop optimizations.
  4122     phase->C->add_range_check_cast(value);
  4123     value = phase->transform(value);
  4125   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
  4126   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
  4129 // Auxiliary method to support randomized stressing/fuzzing.
  4130 //
  4131 // This method can be called the arbitrary number of times, with current count
  4132 // as the argument. The logic allows selecting a single candidate from the
  4133 // running list of candidates as follows:
  4134 //    int count = 0;
  4135 //    Cand* selected = null;
  4136 //    while(cand = cand->next()) {
  4137 //      if (randomized_select(++count)) {
  4138 //        selected = cand;
  4139 //      }
  4140 //    }
  4141 //
  4142 // Including count equalizes the chances any candidate is "selected".
  4143 // This is useful when we don't have the complete list of candidates to choose
  4144 // from uniformly. In this case, we need to adjust the randomicity of the
  4145 // selection, or else we will end up biasing the selection towards the latter
  4146 // candidates.
  4147 //
  4148 // Quick back-envelope calculation shows that for the list of n candidates
  4149 // the equal probability for the candidate to persist as "best" can be
  4150 // achieved by replacing it with "next" k-th candidate with the probability
  4151 // of 1/k. It can be easily shown that by the end of the run, the
  4152 // probability for any candidate is converged to 1/n, thus giving the
  4153 // uniform distribution among all the candidates.
  4154 //
  4155 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  4156 #define RANDOMIZED_DOMAIN_POW 29
  4157 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  4158 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  4159 bool Compile::randomized_select(int count) {
  4160   assert(count > 0, "only positive");
  4161   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial