src/share/vm/memory/binaryTreeDictionary.cpp

Sat, 23 Nov 2013 12:25:13 +0100

author
mgronlun
date
Sat, 23 Nov 2013 12:25:13 +0100
changeset 6131
86e6d691f2e1
parent 5941
bdfbb1fb19ca
child 6337
ab36007d6358
permissions
-rw-r--r--

8028128: Add a type safe alternative for working with counter based data
Reviewed-by: dholmes, egahlin

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "utilities/macros.hpp"
    27 #include "gc_implementation/shared/allocationStats.hpp"
    28 #include "memory/binaryTreeDictionary.hpp"
    29 #include "memory/freeList.hpp"
    30 #include "memory/freeBlockDictionary.hpp"
    31 #include "memory/metachunk.hpp"
    32 #include "runtime/globals.hpp"
    33 #include "utilities/ostream.hpp"
    34 #include "utilities/macros.hpp"
    35 #include "gc_implementation/shared/spaceDecorator.hpp"
    36 #if INCLUDE_ALL_GCS
    37 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
    38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    39 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    40 #endif // INCLUDE_ALL_GCS
    42 ////////////////////////////////////////////////////////////////////////////////
    43 // A binary tree based search structure for free blocks.
    44 // This is currently used in the Concurrent Mark&Sweep implementation.
    45 ////////////////////////////////////////////////////////////////////////////////
    47 template <class Chunk_t, template <class> class FreeList_t>
    48 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
    50 template <class Chunk_t, template <class> class FreeList_t>
    51 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
    52   // Do some assertion checking here.
    53   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
    54 }
    56 template <class Chunk_t, template <class> class FreeList_t>
    57 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
    58   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
    59   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    60     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    61               embedded_list()->right()  == NULL, "should be clear");
    62   }
    63   if (nextTC != NULL) {
    64     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    65     guarantee(nextTC->size() == size(), "wrong size");
    66     nextTC->verify_tree_chunk_list();
    67   }
    68 }
    70 template <class Chunk_t, template <class> class FreeList_t>
    71 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
    72   _left(NULL), _right(NULL) {}
    74 template <class Chunk_t, template <class> class FreeList_t>
    75 TreeList<Chunk_t, FreeList_t>*
    76 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
    77   // This first free chunk in the list will be the tree list.
    78   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
    79     "Chunk is too small for a TreeChunk");
    80   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
    81   tl->initialize();
    82   tc->set_list(tl);
    83   tl->set_size(tc->size());
    84   tl->link_head(tc);
    85   tl->link_tail(tc);
    86   tl->set_count(1);
    87   assert(tl->parent() == NULL, "Should be clear");
    88   return tl;
    89 }
    92 template <class Chunk_t, template <class> class FreeList_t>
    93 TreeList<Chunk_t, FreeList_t>*
    94 get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
    95   FreeBlockDictionary<Chunk_t>::verify_par_locked();
    96   Chunk_t* res = get_chunk_from_tree(size, dither);
    97   assert(res == NULL || res->is_free(),
    98          "Should be returning a free chunk");
    99   assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
   100          res->size() == size, "Not correct size");
   101   return res;
   102 }
   104 template <class Chunk_t, template <class> class FreeList_t>
   105 TreeList<Chunk_t, FreeList_t>*
   106 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
   107   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
   108   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
   109     "Chunk is too small for a TreeChunk");
   110   // The space will have been mangled initially but
   111   // is not remangled when a Chunk_t is returned to the free list
   112   // (since it is used to maintain the chunk on the free list).
   113   tc->assert_is_mangled();
   114   tc->set_size(size);
   115   tc->link_prev(NULL);
   116   tc->link_next(NULL);
   117   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   118   return tl;
   119 }
   122 #if INCLUDE_ALL_GCS
   123 // Specialize for AdaptiveFreeList which tries to avoid
   124 // splitting a chunk of a size that is under populated in favor of
   125 // an over populated size.  The general get_better_list() just returns
   126 // the current list.
   127 template <>
   128 TreeList<FreeChunk, AdaptiveFreeList>*
   129 TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
   130   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
   131   // A candidate chunk has been found.  If it is already under
   132   // populated, get a chunk associated with the hint for this
   133   // chunk.
   135   TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
   136   if (surplus() <= 0) {
   137     /* Use the hint to find a size with a surplus, and reset the hint. */
   138     TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
   139     while (hintTL->hint() != 0) {
   140       assert(hintTL->hint() > hintTL->size(),
   141         "hint points in the wrong direction");
   142       hintTL = dictionary->find_list(hintTL->hint());
   143       assert(curTL != hintTL, "Infinite loop");
   144       if (hintTL == NULL ||
   145           hintTL == curTL /* Should not happen but protect against it */ ) {
   146         // No useful hint.  Set the hint to NULL and go on.
   147         curTL->set_hint(0);
   148         break;
   149       }
   150       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
   151       if (hintTL->surplus() > 0) {
   152         // The hint led to a list that has a surplus.  Use it.
   153         // Set the hint for the candidate to an overpopulated
   154         // size.
   155         curTL->set_hint(hintTL->size());
   156         // Change the candidate.
   157         curTL = hintTL;
   158         break;
   159       }
   160     }
   161   }
   162   return curTL;
   163 }
   164 #endif // INCLUDE_ALL_GCS
   166 template <class Chunk_t, template <class> class FreeList_t>
   167 TreeList<Chunk_t, FreeList_t>*
   168 TreeList<Chunk_t, FreeList_t>::get_better_list(
   169   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
   170   return this;
   171 }
   173 template <class Chunk_t, template <class> class FreeList_t>
   174 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
   176   TreeList<Chunk_t, FreeList_t>* retTL = this;
   177   Chunk_t* list = head();
   178   assert(!list || list != list->next(), "Chunk on list twice");
   179   assert(tc != NULL, "Chunk being removed is NULL");
   180   assert(parent() == NULL || this == parent()->left() ||
   181     this == parent()->right(), "list is inconsistent");
   182   assert(tc->is_free(), "Header is not marked correctly");
   183   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   184   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   186   Chunk_t* prevFC = tc->prev();
   187   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
   188   assert(list != NULL, "should have at least the target chunk");
   190   // Is this the first item on the list?
   191   if (tc == list) {
   192     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
   193     // first chunk in the list unless it is the last chunk in the list
   194     // because the first chunk is also acting as the tree node.
   195     // When coalescing happens, however, the first chunk in the a tree
   196     // list can be the start of a free range.  Free ranges are removed
   197     // from the free lists so that they are not available to be
   198     // allocated when the sweeper yields (giving up the free list lock)
   199     // to allow mutator activity.  If this chunk is the first in the
   200     // list and is not the last in the list, do the work to copy the
   201     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
   202     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
   203     if (nextTC == NULL) {
   204       assert(prevFC == NULL, "Not last chunk in the list");
   205       set_tail(NULL);
   206       set_head(NULL);
   207     } else {
   208       // copy embedded list.
   209       nextTC->set_embedded_list(tc->embedded_list());
   210       retTL = nextTC->embedded_list();
   211       // Fix the pointer to the list in each chunk in the list.
   212       // This can be slow for a long list.  Consider having
   213       // an option that does not allow the first chunk on the
   214       // list to be coalesced.
   215       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
   216           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
   217         curTC->set_list(retTL);
   218       }
   219       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
   220       if (retTL->parent() != NULL) {
   221         if (this == retTL->parent()->left()) {
   222           retTL->parent()->set_left(retTL);
   223         } else {
   224           assert(this == retTL->parent()->right(), "Parent is incorrect");
   225           retTL->parent()->set_right(retTL);
   226         }
   227       }
   228       // Fix the children's parent pointers to point to the
   229       // new list.
   230       assert(right() == retTL->right(), "Should have been copied");
   231       if (retTL->right() != NULL) {
   232         retTL->right()->set_parent(retTL);
   233       }
   234       assert(left() == retTL->left(), "Should have been copied");
   235       if (retTL->left() != NULL) {
   236         retTL->left()->set_parent(retTL);
   237       }
   238       retTL->link_head(nextTC);
   239       assert(nextTC->is_free(), "Should be a free chunk");
   240     }
   241   } else {
   242     if (nextTC == NULL) {
   243       // Removing chunk at tail of list
   244       this->link_tail(prevFC);
   245     }
   246     // Chunk is interior to the list
   247     prevFC->link_after(nextTC);
   248   }
   250   // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
   251   // tree node may have changed. Don't use "this"
   252   // TreeList<Chunk_t, FreeList_t>*.
   253   // chunk should still be a free chunk (bit set in _prev)
   254   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   255     "Wrong sized chunk in list");
   256   debug_only(
   257     tc->link_prev(NULL);
   258     tc->link_next(NULL);
   259     tc->set_list(NULL);
   260     bool prev_found = false;
   261     bool next_found = false;
   262     for (Chunk_t* curFC = retTL->head();
   263          curFC != NULL; curFC = curFC->next()) {
   264       assert(curFC != tc, "Chunk is still in list");
   265       if (curFC == prevFC) {
   266         prev_found = true;
   267       }
   268       if (curFC == nextTC) {
   269         next_found = true;
   270       }
   271     }
   272     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   273     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   274     assert(retTL->parent() == NULL ||
   275            retTL == retTL->parent()->left() ||
   276            retTL == retTL->parent()->right(),
   277            "list is inconsistent");
   278   )
   279   retTL->decrement_count();
   281   assert(tc->is_free(), "Should still be a free chunk");
   282   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   283     "list invariant");
   284   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   285     "list invariant");
   286   return retTL;
   287 }
   289 template <class Chunk_t, template <class> class FreeList_t>
   290 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   291   assert(chunk != NULL, "returning NULL chunk");
   292   assert(chunk->list() == this, "list should be set for chunk");
   293   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   294   // which means that the list can never be empty.
   295   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   296   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   297   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   299   Chunk_t* fc = tail();
   300   fc->link_after(chunk);
   301   this->link_tail(chunk);
   303   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   304   FreeList_t<Chunk_t>::increment_count();
   305   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   306   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   307   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   308 }
   310 // Add this chunk at the head of the list.  "At the head of the list"
   311 // is defined to be after the chunk pointer to by head().  This is
   312 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
   313 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
   314 template <class Chunk_t, template <class> class FreeList_t>
   315 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   316   assert(chunk->list() == this, "list should be set for chunk");
   317   assert(head() != NULL, "The tree list is embedded in the first chunk");
   318   assert(chunk != NULL, "returning NULL chunk");
   319   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   320   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   321   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   323   Chunk_t* fc = head()->next();
   324   if (fc != NULL) {
   325     chunk->link_after(fc);
   326   } else {
   327     assert(tail() == NULL, "List is inconsistent");
   328     this->link_tail(chunk);
   329   }
   330   head()->link_after(chunk);
   331   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   332   FreeList_t<Chunk_t>::increment_count();
   333   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   334   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   335   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   336 }
   338 template <class Chunk_t, template <class> class FreeList_t>
   339 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
   340   assert((ZapUnusedHeapArea &&
   341           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
   342           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
   343           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
   344           (size() == 0 && prev() == NULL && next() == NULL),
   345     "Space should be clear or mangled");
   346 }
   348 template <class Chunk_t, template <class> class FreeList_t>
   349 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
   350   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
   351     "Wrong type of chunk?");
   352   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
   353 }
   355 template <class Chunk_t, template <class> class FreeList_t>
   356 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
   357   assert(head() != NULL, "The head of the list cannot be NULL");
   358   Chunk_t* fc = head()->next();
   359   TreeChunk<Chunk_t, FreeList_t>* retTC;
   360   if (fc == NULL) {
   361     retTC = head_as_TreeChunk();
   362   } else {
   363     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   364   }
   365   assert(retTC->list() == this, "Wrong type of chunk.");
   366   return retTC;
   367 }
   369 // Returns the block with the largest heap address amongst
   370 // those in the list for this size; potentially slow and expensive,
   371 // use with caution!
   372 template <class Chunk_t, template <class> class FreeList_t>
   373 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
   374   assert(head() != NULL, "The head of the list cannot be NULL");
   375   Chunk_t* fc = head()->next();
   376   TreeChunk<Chunk_t, FreeList_t>* retTC;
   377   if (fc == NULL) {
   378     retTC = head_as_TreeChunk();
   379   } else {
   380     // walk down the list and return the one with the highest
   381     // heap address among chunks of this size.
   382     Chunk_t* last = fc;
   383     while (fc->next() != NULL) {
   384       if ((HeapWord*)last < (HeapWord*)fc) {
   385         last = fc;
   386       }
   387       fc = fc->next();
   388     }
   389     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
   390   }
   391   assert(retTC->list() == this, "Wrong type of chunk.");
   392   return retTC;
   393 }
   395 template <class Chunk_t, template <class> class FreeList_t>
   396 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
   397   assert((mr.byte_size() > min_size()), "minimum chunk size");
   399   reset(mr);
   400   assert(root()->left() == NULL, "reset check failed");
   401   assert(root()->right() == NULL, "reset check failed");
   402   assert(root()->head()->next() == NULL, "reset check failed");
   403   assert(root()->head()->prev() == NULL, "reset check failed");
   404   assert(total_size() == root()->size(), "reset check failed");
   405   assert(total_free_blocks() == 1, "reset check failed");
   406 }
   408 template <class Chunk_t, template <class> class FreeList_t>
   409 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
   410   _total_size = _total_size + inc;
   411 }
   413 template <class Chunk_t, template <class> class FreeList_t>
   414 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
   415   _total_size = _total_size - dec;
   416 }
   418 template <class Chunk_t, template <class> class FreeList_t>
   419 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
   420   assert((mr.byte_size() > min_size()), "minimum chunk size");
   421   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
   422   set_total_size(mr.word_size());
   423   set_total_free_blocks(1);
   424 }
   426 template <class Chunk_t, template <class> class FreeList_t>
   427 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
   428   MemRegion mr(addr, heap_word_size(byte_size));
   429   reset(mr);
   430 }
   432 template <class Chunk_t, template <class> class FreeList_t>
   433 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
   434   set_root(NULL);
   435   set_total_size(0);
   436   set_total_free_blocks(0);
   437 }
   439 // Get a free block of size at least size from tree, or NULL.
   440 template <class Chunk_t, template <class> class FreeList_t>
   441 TreeChunk<Chunk_t, FreeList_t>*
   442 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
   443                               size_t size,
   444                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
   445 {
   446   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   447   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
   449   assert((size >= min_size()), "minimum chunk size");
   450   if (FLSVerifyDictionary) {
   451     verify_tree();
   452   }
   453   // starting at the root, work downwards trying to find match.
   454   // Remember the last node of size too great or too small.
   455   for (prevTL = curTL = root(); curTL != NULL;) {
   456     if (curTL->size() == size) {        // exact match
   457       break;
   458     }
   459     prevTL = curTL;
   460     if (curTL->size() < size) {        // proceed to right sub-tree
   461       curTL = curTL->right();
   462     } else {                           // proceed to left sub-tree
   463       assert(curTL->size() > size, "size inconsistency");
   464       curTL = curTL->left();
   465     }
   466   }
   467   if (curTL == NULL) { // couldn't find exact match
   469     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
   471     // try and find the next larger size by walking back up the search path
   472     for (curTL = prevTL; curTL != NULL;) {
   473       if (curTL->size() >= size) break;
   474       else curTL = curTL->parent();
   475     }
   476     assert(curTL == NULL || curTL->count() > 0,
   477       "An empty list should not be in the tree");
   478   }
   479   if (curTL != NULL) {
   480     assert(curTL->size() >= size, "size inconsistency");
   482     curTL = curTL->get_better_list(this);
   484     retTC = curTL->first_available();
   485     assert((retTC != NULL) && (curTL->count() > 0),
   486       "A list in the binary tree should not be NULL");
   487     assert(retTC->size() >= size,
   488       "A chunk of the wrong size was found");
   489     remove_chunk_from_tree(retTC);
   490     assert(retTC->is_free(), "Header is not marked correctly");
   491   }
   493   if (FLSVerifyDictionary) {
   494     verify();
   495   }
   496   return retTC;
   497 }
   499 template <class Chunk_t, template <class> class FreeList_t>
   500 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
   501   TreeList<Chunk_t, FreeList_t>* curTL;
   502   for (curTL = root(); curTL != NULL;) {
   503     if (curTL->size() == size) {        // exact match
   504       break;
   505     }
   507     if (curTL->size() < size) {        // proceed to right sub-tree
   508       curTL = curTL->right();
   509     } else {                           // proceed to left sub-tree
   510       assert(curTL->size() > size, "size inconsistency");
   511       curTL = curTL->left();
   512     }
   513   }
   514   return curTL;
   515 }
   518 template <class Chunk_t, template <class> class FreeList_t>
   519 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
   520   size_t size = tc->size();
   521   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
   522   if (tl == NULL) {
   523     return false;
   524   } else {
   525     return tl->verify_chunk_in_free_list(tc);
   526   }
   527 }
   529 template <class Chunk_t, template <class> class FreeList_t>
   530 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
   531   TreeList<Chunk_t, FreeList_t> *curTL = root();
   532   if (curTL != NULL) {
   533     while(curTL->right() != NULL) curTL = curTL->right();
   534     return curTL->largest_address();
   535   } else {
   536     return NULL;
   537   }
   538 }
   540 // Remove the current chunk from the tree.  If it is not the last
   541 // chunk in a list on a tree node, just unlink it.
   542 // If it is the last chunk in the list (the next link is NULL),
   543 // remove the node and repair the tree.
   544 template <class Chunk_t, template <class> class FreeList_t>
   545 TreeChunk<Chunk_t, FreeList_t>*
   546 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
   547   assert(tc != NULL, "Should not call with a NULL chunk");
   548   assert(tc->is_free(), "Header is not marked correctly");
   550   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
   551   TreeChunk<Chunk_t, FreeList_t>* retTC;
   552   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
   553   debug_only(
   554     bool removing_only_chunk = false;
   555     if (tl == _root) {
   556       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   557         if (_root->count() == 1) {
   558           assert(_root->head() == tc, "Should only be this one chunk");
   559           removing_only_chunk = true;
   560         }
   561       }
   562     }
   563   )
   564   assert(tl != NULL, "List should be set");
   565   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   566          tl == tl->parent()->right(), "list is inconsistent");
   568   bool complicated_splice = false;
   570   retTC = tc;
   571   // Removing this chunk can have the side effect of changing the node
   572   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
   573   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
   574   assert(tc->is_free(), "Chunk should still be free");
   575   assert(replacementTL->parent() == NULL ||
   576          replacementTL == replacementTL->parent()->left() ||
   577          replacementTL == replacementTL->parent()->right(),
   578          "list is inconsistent");
   579   if (tl == root()) {
   580     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   581     set_root(replacementTL);
   582   }
   583 #ifdef ASSERT
   584     if (tl != replacementTL) {
   585       assert(replacementTL->head() != NULL,
   586         "If the tree list was replaced, it should not be a NULL list");
   587       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
   588       TreeList<Chunk_t, FreeList_t>* rtl =
   589         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
   590       assert(rhl == replacementTL, "Broken head");
   591       assert(rtl == replacementTL, "Broken tail");
   592       assert(replacementTL->size() == tc->size(),  "Broken size");
   593     }
   594 #endif
   596   // Does the tree need to be repaired?
   597   if (replacementTL->count() == 0) {
   598     assert(replacementTL->head() == NULL &&
   599            replacementTL->tail() == NULL, "list count is incorrect");
   600     // Find the replacement node for the (soon to be empty) node being removed.
   601     // if we have a single (or no) child, splice child in our stead
   602     if (replacementTL->left() == NULL) {
   603       // left is NULL so pick right.  right may also be NULL.
   604       newTL = replacementTL->right();
   605       debug_only(replacementTL->clear_right();)
   606     } else if (replacementTL->right() == NULL) {
   607       // right is NULL
   608       newTL = replacementTL->left();
   609       debug_only(replacementTL->clear_left();)
   610     } else {  // we have both children, so, by patriarchal convention,
   611               // my replacement is least node in right sub-tree
   612       complicated_splice = true;
   613       newTL = remove_tree_minimum(replacementTL->right());
   614       assert(newTL != NULL && newTL->left() == NULL &&
   615              newTL->right() == NULL, "sub-tree minimum exists");
   616     }
   617     // newTL is the replacement for the (soon to be empty) node.
   618     // newTL may be NULL.
   619     // should verify; we just cleanly excised our replacement
   620     if (FLSVerifyDictionary) {
   621       verify_tree();
   622     }
   623     // first make newTL my parent's child
   624     if ((parentTL = replacementTL->parent()) == NULL) {
   625       // newTL should be root
   626       assert(tl == root(), "Incorrectly replacing root");
   627       set_root(newTL);
   628       if (newTL != NULL) {
   629         newTL->clear_parent();
   630       }
   631     } else if (parentTL->right() == replacementTL) {
   632       // replacementTL is a right child
   633       parentTL->set_right(newTL);
   634     } else {                                // replacementTL is a left child
   635       assert(parentTL->left() == replacementTL, "should be left child");
   636       parentTL->set_left(newTL);
   637     }
   638     debug_only(replacementTL->clear_parent();)
   639     if (complicated_splice) {  // we need newTL to get replacementTL's
   640                               // two children
   641       assert(newTL != NULL &&
   642              newTL->left() == NULL && newTL->right() == NULL,
   643             "newTL should not have encumbrances from the past");
   644       // we'd like to assert as below:
   645       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   646       //       "else !complicated_splice");
   647       // ... however, the above assertion is too strong because we aren't
   648       // guaranteed that replacementTL->right() is still NULL.
   649       // Recall that we removed
   650       // the right sub-tree minimum from replacementTL.
   651       // That may well have been its right
   652       // child! So we'll just assert half of the above:
   653       assert(replacementTL->left() != NULL, "else !complicated_splice");
   654       newTL->set_left(replacementTL->left());
   655       newTL->set_right(replacementTL->right());
   656       debug_only(
   657         replacementTL->clear_right();
   658         replacementTL->clear_left();
   659       )
   660     }
   661     assert(replacementTL->right() == NULL &&
   662            replacementTL->left() == NULL &&
   663            replacementTL->parent() == NULL,
   664         "delete without encumbrances");
   665   }
   667   assert(total_size() >= retTC->size(), "Incorrect total size");
   668   dec_total_size(retTC->size());     // size book-keeping
   669   assert(total_free_blocks() > 0, "Incorrect total count");
   670   set_total_free_blocks(total_free_blocks() - 1);
   672   assert(retTC != NULL, "null chunk?");
   673   assert(retTC->prev() == NULL && retTC->next() == NULL,
   674          "should return without encumbrances");
   675   if (FLSVerifyDictionary) {
   676     verify_tree();
   677   }
   678   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   679   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
   680 }
   682 // Remove the leftmost node (lm) in the tree and return it.
   683 // If lm has a right child, link it to the left node of
   684 // the parent of lm.
   685 template <class Chunk_t, template <class> class FreeList_t>
   686 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
   687   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   688   // locate the subtree minimum by walking down left branches
   689   TreeList<Chunk_t, FreeList_t>* curTL = tl;
   690   for (; curTL->left() != NULL; curTL = curTL->left());
   691   // obviously curTL now has at most one child, a right child
   692   if (curTL != root()) {  // Should this test just be removed?
   693     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
   694     if (parentTL->left() == curTL) { // curTL is a left child
   695       parentTL->set_left(curTL->right());
   696     } else {
   697       // If the list tl has no left child, then curTL may be
   698       // the right child of parentTL.
   699       assert(parentTL->right() == curTL, "should be a right child");
   700       parentTL->set_right(curTL->right());
   701     }
   702   } else {
   703     // The only use of this method would not pass the root of the
   704     // tree (as indicated by the assertion above that the tree list
   705     // has a parent) but the specification does not explicitly exclude the
   706     // passing of the root so accomodate it.
   707     set_root(NULL);
   708   }
   709   debug_only(
   710     curTL->clear_parent();  // Test if this needs to be cleared
   711     curTL->clear_right();    // recall, above, left child is already null
   712   )
   713   // we just excised a (non-root) node, we should still verify all tree invariants
   714   if (FLSVerifyDictionary) {
   715     verify_tree();
   716   }
   717   return curTL;
   718 }
   720 template <class Chunk_t, template <class> class FreeList_t>
   721 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
   722   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   723   size_t size = fc->size();
   725   assert((size >= min_size()),
   726     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
   727       size, min_size()));
   728   if (FLSVerifyDictionary) {
   729     verify_tree();
   730   }
   732   fc->clear_next();
   733   fc->link_prev(NULL);
   735   // work down from the _root, looking for insertion point
   736   for (prevTL = curTL = root(); curTL != NULL;) {
   737     if (curTL->size() == size)  // exact match
   738       break;
   739     prevTL = curTL;
   740     if (curTL->size() > size) { // follow left branch
   741       curTL = curTL->left();
   742     } else {                    // follow right branch
   743       assert(curTL->size() < size, "size inconsistency");
   744       curTL = curTL->right();
   745     }
   746   }
   747   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   748   // This chunk is being returned to the binary tree.  Its embedded
   749   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
   750   tc->initialize();
   751   if (curTL != NULL) {          // exact match
   752     tc->set_list(curTL);
   753     curTL->return_chunk_at_tail(tc);
   754   } else {                     // need a new node in tree
   755     tc->clear_next();
   756     tc->link_prev(NULL);
   757     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   758     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
   759       "List was not initialized correctly");
   760     if (prevTL == NULL) {      // we are the only tree node
   761       assert(root() == NULL, "control point invariant");
   762       set_root(newTL);
   763     } else {                   // insert under prevTL ...
   764       if (prevTL->size() < size) {   // am right child
   765         assert(prevTL->right() == NULL, "control point invariant");
   766         prevTL->set_right(newTL);
   767       } else {                       // am left child
   768         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   769         prevTL->set_left(newTL);
   770       }
   771     }
   772   }
   773   assert(tc->list() != NULL, "Tree list should be set");
   775   inc_total_size(size);
   776   // Method 'total_size_in_tree' walks through the every block in the
   777   // tree, so it can cause significant performance loss if there are
   778   // many blocks in the tree
   779   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
   780   set_total_free_blocks(total_free_blocks() + 1);
   781   if (FLSVerifyDictionary) {
   782     verify_tree();
   783   }
   784 }
   786 template <class Chunk_t, template <class> class FreeList_t>
   787 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
   788   FreeBlockDictionary<Chunk_t>::verify_par_locked();
   789   TreeList<Chunk_t, FreeList_t>* tc = root();
   790   if (tc == NULL) return 0;
   791   for (; tc->right() != NULL; tc = tc->right());
   792   return tc->size();
   793 }
   795 template <class Chunk_t, template <class> class FreeList_t>
   796 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
   797   size_t res;
   798   res = tl->count();
   799 #ifdef ASSERT
   800   size_t cnt;
   801   Chunk_t* tc = tl->head();
   802   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   803   assert(res == cnt, "The count is not being maintained correctly");
   804 #endif
   805   return res;
   806 }
   808 template <class Chunk_t, template <class> class FreeList_t>
   809 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   810   if (tl == NULL)
   811     return 0;
   812   return (tl->size() * total_list_length(tl)) +
   813          total_size_in_tree(tl->left())    +
   814          total_size_in_tree(tl->right());
   815 }
   817 template <class Chunk_t, template <class> class FreeList_t>
   818 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
   819   if (tl == NULL) {
   820     return 0.0;
   821   }
   822   double size = (double)(tl->size());
   823   double curr = size * size * total_list_length(tl);
   824   curr += sum_of_squared_block_sizes(tl->left());
   825   curr += sum_of_squared_block_sizes(tl->right());
   826   return curr;
   827 }
   829 template <class Chunk_t, template <class> class FreeList_t>
   830 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   831   if (tl == NULL)
   832     return 0;
   833   return total_list_length(tl) +
   834          total_free_blocks_in_tree(tl->left()) +
   835          total_free_blocks_in_tree(tl->right());
   836 }
   838 template <class Chunk_t, template <class> class FreeList_t>
   839 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
   840   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
   841          "_total_free_blocks inconsistency");
   842   return total_free_blocks();
   843 }
   845 template <class Chunk_t, template <class> class FreeList_t>
   846 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   847   if (tl == NULL)
   848     return 0;
   849   return 1 + MAX2(tree_height_helper(tl->left()),
   850                   tree_height_helper(tl->right()));
   851 }
   853 template <class Chunk_t, template <class> class FreeList_t>
   854 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
   855   return tree_height_helper(root());
   856 }
   858 template <class Chunk_t, template <class> class FreeList_t>
   859 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   860   if (tl == NULL) {
   861     return 0;
   862   }
   863   return 1 + total_nodes_helper(tl->left()) +
   864     total_nodes_helper(tl->right());
   865 }
   867 template <class Chunk_t, template <class> class FreeList_t>
   868 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   869   return total_nodes_helper(root());
   870 }
   872 template <class Chunk_t, template <class> class FreeList_t>
   873 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
   875 #if INCLUDE_ALL_GCS
   876 template <>
   877 void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth){
   878   TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
   879   if (nd) {
   880     if (split) {
   881       if (birth) {
   882         nd->increment_split_births();
   883         nd->increment_surplus();
   884       }  else {
   885         nd->increment_split_deaths();
   886         nd->decrement_surplus();
   887       }
   888     } else {
   889       if (birth) {
   890         nd->increment_coal_births();
   891         nd->increment_surplus();
   892       } else {
   893         nd->increment_coal_deaths();
   894         nd->decrement_surplus();
   895       }
   896     }
   897   }
   898   // A list for this size may not be found (nd == 0) if
   899   //   This is a death where the appropriate list is now
   900   //     empty and has been removed from the list.
   901   //   This is a birth associated with a LinAB.  The chunk
   902   //     for the LinAB is not in the dictionary.
   903 }
   904 #endif // INCLUDE_ALL_GCS
   906 template <class Chunk_t, template <class> class FreeList_t>
   907 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
   908   // For the general type of freelists, encourage coalescing by
   909   // returning true.
   910   return true;
   911 }
   913 #if INCLUDE_ALL_GCS
   914 template <>
   915 bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
   916   if (FLSAlwaysCoalesceLarge) return true;
   918   TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
   919   // None of requested size implies overpopulated.
   920   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
   921          list_of_size->count() > list_of_size->coal_desired();
   922 }
   923 #endif // INCLUDE_ALL_GCS
   925 // Closures for walking the binary tree.
   926 //   do_list() walks the free list in a node applying the closure
   927 //     to each free chunk in the list
   928 //   do_tree() walks the nodes in the binary tree applying do_list()
   929 //     to each list at each node.
   931 template <class Chunk_t, template <class> class FreeList_t>
   932 class TreeCensusClosure : public StackObj {
   933  protected:
   934   virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
   935  public:
   936   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
   937 };
   939 template <class Chunk_t, template <class> class FreeList_t>
   940 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   941  public:
   942   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   943     if (tl != NULL) {
   944       do_tree(tl->left());
   945       this->do_list(tl);
   946       do_tree(tl->right());
   947     }
   948   }
   949 };
   951 template <class Chunk_t, template <class> class FreeList_t>
   952 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   953  public:
   954   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   955     if (tl != NULL) {
   956       do_tree(tl->right());
   957       this->do_list(tl);
   958       do_tree(tl->left());
   959     }
   960   }
   961 };
   963 // For each list in the tree, calculate the desired, desired
   964 // coalesce, count before sweep, and surplus before sweep.
   965 template <class Chunk_t, template <class> class FreeList_t>
   966 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   967   double _percentage;
   968   float _inter_sweep_current;
   969   float _inter_sweep_estimate;
   970   float _intra_sweep_estimate;
   972  public:
   973   BeginSweepClosure(double p, float inter_sweep_current,
   974                               float inter_sweep_estimate,
   975                               float intra_sweep_estimate) :
   976    _percentage(p),
   977    _inter_sweep_current(inter_sweep_current),
   978    _inter_sweep_estimate(inter_sweep_estimate),
   979    _intra_sweep_estimate(intra_sweep_estimate) { }
   981   void do_list(FreeList<Chunk_t>* fl) {}
   983 #if INCLUDE_ALL_GCS
   984   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
   985     double coalSurplusPercent = _percentage;
   986     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
   987     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   988     fl->set_before_sweep(fl->count());
   989     fl->set_bfr_surp(fl->surplus());
   990   }
   991 #endif // INCLUDE_ALL_GCS
   992 };
   994 // Used to search the tree until a condition is met.
   995 // Similar to TreeCensusClosure but searches the
   996 // tree and returns promptly when found.
   998 template <class Chunk_t, template <class> class FreeList_t>
   999 class TreeSearchClosure : public StackObj {
  1000  protected:
  1001   virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
  1002  public:
  1003   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
  1004 };
  1006 #if 0 //  Don't need this yet but here for symmetry.
  1007 template <class Chunk_t, template <class> class FreeList_t>
  1008 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
  1009  public:
  1010   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1011     if (tl != NULL) {
  1012       if (do_tree(tl->left())) return true;
  1013       if (do_list(tl)) return true;
  1014       if (do_tree(tl->right())) return true;
  1016     return false;
  1018 };
  1019 #endif
  1021 template <class Chunk_t, template <class> class FreeList_t>
  1022 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
  1023  public:
  1024   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1025     if (tl != NULL) {
  1026       if (do_tree(tl->right())) return true;
  1027       if (this->do_list(tl)) return true;
  1028       if (do_tree(tl->left())) return true;
  1030     return false;
  1032 };
  1034 // Searches the tree for a chunk that ends at the
  1035 // specified address.
  1036 template <class Chunk_t, template <class> class FreeList_t>
  1037 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
  1038   HeapWord* _target;
  1039   Chunk_t* _found;
  1041  public:
  1042   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  1043   bool do_list(FreeList_t<Chunk_t>* fl) {
  1044     Chunk_t* item = fl->head();
  1045     while (item != NULL) {
  1046       if (item->end() == (uintptr_t*) _target) {
  1047         _found = item;
  1048         return true;
  1050       item = item->next();
  1052     return false;
  1054   Chunk_t* found() { return _found; }
  1055 };
  1057 template <class Chunk_t, template <class> class FreeList_t>
  1058 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
  1059   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
  1060   bool found_target = etsc.do_tree(root());
  1061   assert(found_target || etsc.found() == NULL, "Consistency check");
  1062   assert(!found_target || etsc.found() != NULL, "Consistency check");
  1063   return etsc.found();
  1066 template <class Chunk_t, template <class> class FreeList_t>
  1067 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
  1068   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  1069   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
  1070                                             inter_sweep_estimate,
  1071                                             intra_sweep_estimate);
  1072   bsc.do_tree(root());
  1075 // Closures and methods for calculating total bytes returned to the
  1076 // free lists in the tree.
  1077 #ifndef PRODUCT
  1078 template <class Chunk_t, template <class> class FreeList_t>
  1079 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1080    public:
  1081   void do_list(FreeList_t<Chunk_t>* fl) {
  1082     fl->set_returned_bytes(0);
  1084 };
  1086 template <class Chunk_t, template <class> class FreeList_t>
  1087 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
  1088   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
  1089   idrb.do_tree(root());
  1092 template <class Chunk_t, template <class> class FreeList_t>
  1093 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1094   size_t _dict_returned_bytes;
  1095  public:
  1096   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
  1097   void do_list(FreeList_t<Chunk_t>* fl) {
  1098     _dict_returned_bytes += fl->returned_bytes();
  1100   size_t dict_returned_bytes() { return _dict_returned_bytes; }
  1101 };
  1103 template <class Chunk_t, template <class> class FreeList_t>
  1104 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
  1105   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
  1106   rbc.do_tree(root());
  1108   return rbc.dict_returned_bytes();
  1111 // Count the number of entries in the tree.
  1112 template <class Chunk_t, template <class> class FreeList_t>
  1113 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1114  public:
  1115   uint count;
  1116   treeCountClosure(uint c) { count = c; }
  1117   void do_list(FreeList_t<Chunk_t>* fl) {
  1118     count++;
  1120 };
  1122 template <class Chunk_t, template <class> class FreeList_t>
  1123 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
  1124   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
  1125   ctc.do_tree(root());
  1126   return ctc.count;
  1128 #endif // PRODUCT
  1130 // Calculate surpluses for the lists in the tree.
  1131 template <class Chunk_t, template <class> class FreeList_t>
  1132 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1133   double percentage;
  1134  public:
  1135   setTreeSurplusClosure(double v) { percentage = v; }
  1136   void do_list(FreeList<Chunk_t>* fl) {}
  1138 #if INCLUDE_ALL_GCS
  1139   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1140     double splitSurplusPercent = percentage;
  1141     fl->set_surplus(fl->count() -
  1142                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1144 #endif // INCLUDE_ALL_GCS
  1145 };
  1147 template <class Chunk_t, template <class> class FreeList_t>
  1148 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
  1149   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
  1150   sts.do_tree(root());
  1153 // Set hints for the lists in the tree.
  1154 template <class Chunk_t, template <class> class FreeList_t>
  1155 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1156   size_t hint;
  1157  public:
  1158   setTreeHintsClosure(size_t v) { hint = v; }
  1159   void do_list(FreeList<Chunk_t>* fl) {}
  1161 #if INCLUDE_ALL_GCS
  1162   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1163     fl->set_hint(hint);
  1164     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1165       "Current hint is inconsistent");
  1166     if (fl->surplus() > 0) {
  1167       hint = fl->size();
  1170 #endif // INCLUDE_ALL_GCS
  1171 };
  1173 template <class Chunk_t, template <class> class FreeList_t>
  1174 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
  1175   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
  1176   sth.do_tree(root());
  1179 // Save count before previous sweep and splits and coalesces.
  1180 template <class Chunk_t, template <class> class FreeList_t>
  1181 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1182   void do_list(FreeList<Chunk_t>* fl) {}
  1184 #if INCLUDE_ALL_GCS
  1185   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1186     fl->set_prev_sweep(fl->count());
  1187     fl->set_coal_births(0);
  1188     fl->set_coal_deaths(0);
  1189     fl->set_split_births(0);
  1190     fl->set_split_deaths(0);
  1192 #endif // INCLUDE_ALL_GCS
  1193 };
  1195 template <class Chunk_t, template <class> class FreeList_t>
  1196 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
  1197   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
  1198   ctc.do_tree(root());
  1201 // Do reporting and post sweep clean up.
  1202 template <class Chunk_t, template <class> class FreeList_t>
  1203 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
  1204   // Does walking the tree 3 times hurt?
  1205   set_tree_surplus(splitSurplusPercent);
  1206   set_tree_hints();
  1207   if (PrintGC && Verbose) {
  1208     report_statistics();
  1210   clear_tree_census();
  1213 // Print summary statistics
  1214 template <class Chunk_t, template <class> class FreeList_t>
  1215 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
  1216   FreeBlockDictionary<Chunk_t>::verify_par_locked();
  1217   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1218          "------------------------------------\n");
  1219   size_t total_size = total_chunk_size(debug_only(NULL));
  1220   size_t    free_blocks = num_free_blocks();
  1221   gclog_or_tty->print("Total Free Space: %d\n", total_size);
  1222   gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
  1223   gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
  1224   if (free_blocks > 0) {
  1225     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
  1227   gclog_or_tty->print("Tree      Height: %d\n", tree_height());
  1230 // Print census information - counts, births, deaths, etc.
  1231 // for each list in the tree.  Also print some summary
  1232 // information.
  1233 template <class Chunk_t, template <class> class FreeList_t>
  1234 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1235   int _print_line;
  1236   size_t _total_free;
  1237   FreeList_t<Chunk_t> _total;
  1239  public:
  1240   PrintTreeCensusClosure() {
  1241     _print_line = 0;
  1242     _total_free = 0;
  1244   FreeList_t<Chunk_t>* total() { return &_total; }
  1245   size_t total_free() { return _total_free; }
  1246   void do_list(FreeList<Chunk_t>* fl) {
  1247     if (++_print_line >= 40) {
  1248       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1249       _print_line = 0;
  1251     fl->print_on(gclog_or_tty);
  1252     _total_free +=            fl->count()            * fl->size()        ;
  1253     total()->set_count(      total()->count()       + fl->count()      );
  1256 #if INCLUDE_ALL_GCS
  1257   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1258     if (++_print_line >= 40) {
  1259       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1260       _print_line = 0;
  1262     fl->print_on(gclog_or_tty);
  1263     _total_free +=           fl->count()             * fl->size()        ;
  1264     total()->set_count(      total()->count()        + fl->count()      );
  1265     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
  1266     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
  1267     total()->set_desired(    total()->desired()      + fl->desired()    );
  1268     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
  1269     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
  1270     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
  1271     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
  1272     total()->set_split_births(total()->split_births() + fl->split_births());
  1273     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
  1275 #endif // INCLUDE_ALL_GCS
  1276 };
  1278 template <class Chunk_t, template <class> class FreeList_t>
  1279 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
  1281   gclog_or_tty->print("\nBinaryTree\n");
  1282   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1283   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
  1284   ptc.do_tree(root());
  1286   FreeList_t<Chunk_t>* total = ptc.total();
  1287   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
  1290 #if INCLUDE_ALL_GCS
  1291 template <>
  1292 void AFLBinaryTreeDictionary::print_dict_census(void) const {
  1294   gclog_or_tty->print("\nBinaryTree\n");
  1295   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
  1296   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
  1297   ptc.do_tree(root());
  1299   AdaptiveFreeList<FreeChunk>* total = ptc.total();
  1300   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
  1301   total->print_on(gclog_or_tty, "TOTAL\t");
  1302   gclog_or_tty->print(
  1303               "total_free(words): " SIZE_FORMAT_W(16)
  1304               " growth: %8.5f  deficit: %8.5f\n",
  1305               ptc.total_free(),
  1306               (double)(total->split_births() + total->coal_births()
  1307                      - total->split_deaths() - total->coal_deaths())
  1308               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
  1309              (double)(total->desired() - total->count())
  1310              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1312 #endif // INCLUDE_ALL_GCS
  1314 template <class Chunk_t, template <class> class FreeList_t>
  1315 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1316   outputStream* _st;
  1317   int _print_line;
  1319  public:
  1320   PrintFreeListsClosure(outputStream* st) {
  1321     _st = st;
  1322     _print_line = 0;
  1324   void do_list(FreeList_t<Chunk_t>* fl) {
  1325     if (++_print_line >= 40) {
  1326       FreeList_t<Chunk_t>::print_labels_on(_st, "size");
  1327       _print_line = 0;
  1329     fl->print_on(gclog_or_tty);
  1330     size_t sz = fl->size();
  1331     for (Chunk_t* fc = fl->head(); fc != NULL;
  1332          fc = fc->next()) {
  1333       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
  1334                     fc, (HeapWord*)fc + sz,
  1335                     fc->cantCoalesce() ? "\t CC" : "");
  1338 };
  1340 template <class Chunk_t, template <class> class FreeList_t>
  1341 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
  1343   FreeList_t<Chunk_t>::print_labels_on(st, "size");
  1344   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
  1345   pflc.do_tree(root());
  1348 // Verify the following tree invariants:
  1349 // . _root has no parent
  1350 // . parent and child point to each other
  1351 // . each node's key correctly related to that of its child(ren)
  1352 template <class Chunk_t, template <class> class FreeList_t>
  1353 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
  1354   guarantee(root() == NULL || total_free_blocks() == 0 ||
  1355     total_size() != 0, "_total_size should't be 0?");
  1356   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1357   verify_tree_helper(root());
  1360 template <class Chunk_t, template <class> class FreeList_t>
  1361 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
  1362   size_t ct = 0;
  1363   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1364     ct++;
  1365     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
  1366       "Chunk should be free");
  1368   return ct;
  1371 // Note: this helper is recursive rather than iterative, so use with
  1372 // caution on very deep trees; and watch out for stack overflow errors;
  1373 // In general, to be used only for debugging.
  1374 template <class Chunk_t, template <class> class FreeList_t>
  1375 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  1376   if (tl == NULL)
  1377     return;
  1378   guarantee(tl->size() != 0, "A list must has a size");
  1379   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1380          "parent<-/->left");
  1381   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1382          "parent<-/->right");;
  1383   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1384          "parent !> left");
  1385   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1386          "parent !< left");
  1387   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
  1388   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1389     "list inconsistency");
  1390   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1391     "list count is inconsistent");
  1392   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1393     "list is incorrectly constructed");
  1394   size_t count = verify_prev_free_ptrs(tl);
  1395   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1396   if (tl->head() != NULL) {
  1397     tl->head_as_TreeChunk()->verify_tree_chunk_list();
  1399   verify_tree_helper(tl->left());
  1400   verify_tree_helper(tl->right());
  1403 template <class Chunk_t, template <class> class FreeList_t>
  1404 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
  1405   verify_tree();
  1406   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
  1409 template class TreeList<Metablock, FreeList>;
  1410 template class BinaryTreeDictionary<Metablock, FreeList>;
  1411 template class TreeChunk<Metablock, FreeList>;
  1413 template class TreeList<Metachunk, FreeList>;
  1414 template class BinaryTreeDictionary<Metachunk, FreeList>;
  1415 template class TreeChunk<Metachunk, FreeList>;
  1418 #if INCLUDE_ALL_GCS
  1419 // Explicitly instantiate these types for FreeChunk.
  1420 template class TreeList<FreeChunk, AdaptiveFreeList>;
  1421 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
  1422 template class TreeChunk<FreeChunk, AdaptiveFreeList>;
  1424 #endif // INCLUDE_ALL_GCS

mercurial