src/cpu/sparc/vm/sparc.ad

Wed, 06 Aug 2014 08:47:40 +0200

author
thartmann
date
Wed, 06 Aug 2014 08:47:40 +0200
changeset 7004
85c339200299
parent 6723
0bf37f737702
child 7210
318cc6fdae90
permissions
-rw-r--r--

8029443: 'assert(klass->is_loader_alive(_is_alive)) failed: must be alive' during VM_CollectForMetadataAllocation
Summary: Added missing metadata relocation to 'loadConP_no_oop_cheap' on Sparc if the pointer is referring to a Klass. Added jtreg test.
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Header information of the source block.
   461 // Method declarations/definitions which are used outside
   462 // the ad-scope can conveniently be defined here.
   463 //
   464 // To keep related declarations/definitions/uses close together,
   465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   467 // Must be visible to the DFA in dfa_sparc.cpp
   468 extern bool can_branch_register( Node *bol, Node *cmp );
   470 extern bool use_block_zeroing(Node* count);
   472 // Macros to extract hi & lo halves from a long pair.
   473 // G0 is not part of any long pair, so assert on that.
   474 // Prevents accidentally using G1 instead of G0.
   475 #define LONG_HI_REG(x) (x)
   476 #define LONG_LO_REG(x) (x)
   478 class CallStubImpl {
   480   //--------------------------------------------------------------
   481   //---<  Used for optimization in Compile::Shorten_branches  >---
   482   //--------------------------------------------------------------
   484  public:
   485   // Size of call trampoline stub.
   486   static uint size_call_trampoline() {
   487     return 0; // no call trampolines on this platform
   488   }
   490   // number of relocations needed by a call trampoline stub
   491   static uint reloc_call_trampoline() {
   492     return 0; // no call trampolines on this platform
   493   }
   494 };
   496 class HandlerImpl {
   498  public:
   500   static int emit_exception_handler(CodeBuffer &cbuf);
   501   static int emit_deopt_handler(CodeBuffer& cbuf);
   503   static uint size_exception_handler() {
   504     if (TraceJumps) {
   505       return (400); // just a guess
   506     }
   507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
   508   }
   510   static uint size_deopt_handler() {
   511     if (TraceJumps) {
   512       return (400); // just a guess
   513     }
   514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
   515   }
   516 };
   518 %}
   520 source %{
   521 #define __ _masm.
   523 // tertiary op of a LoadP or StoreP encoding
   524 #define REGP_OP true
   526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   528 static Register reg_to_register_object(int register_encoding);
   530 // Used by the DFA in dfa_sparc.cpp.
   531 // Check for being able to use a V9 branch-on-register.  Requires a
   532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   533 // extended.  Doesn't work following an integer ADD, for example, because of
   534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   536 // replace them with zero, which could become sign-extension in a different OS
   537 // release.  There's no obvious reason why an interrupt will ever fill these
   538 // bits with non-zero junk (the registers are reloaded with standard LD
   539 // instructions which either zero-fill or sign-fill).
   540 bool can_branch_register( Node *bol, Node *cmp ) {
   541   if( !BranchOnRegister ) return false;
   542 #ifdef _LP64
   543   if( cmp->Opcode() == Op_CmpP )
   544     return true;  // No problems with pointer compares
   545 #endif
   546   if( cmp->Opcode() == Op_CmpL )
   547     return true;  // No problems with long compares
   549   if( !SparcV9RegsHiBitsZero ) return false;
   550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   551       bol->as_Bool()->_test._test != BoolTest::eq )
   552      return false;
   554   // Check for comparing against a 'safe' value.  Any operation which
   555   // clears out the high word is safe.  Thus, loads and certain shifts
   556   // are safe, as are non-negative constants.  Any operation which
   557   // preserves zero bits in the high word is safe as long as each of its
   558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   559   // inputs are safe.  At present, the only important case to recognize
   560   // seems to be loads.  Constants should fold away, and shifts &
   561   // logicals can use the 'cc' forms.
   562   Node *x = cmp->in(1);
   563   if( x->is_Load() ) return true;
   564   if( x->is_Phi() ) {
   565     for( uint i = 1; i < x->req(); i++ )
   566       if( !x->in(i)->is_Load() )
   567         return false;
   568     return true;
   569   }
   570   return false;
   571 }
   573 bool use_block_zeroing(Node* count) {
   574   // Use BIS for zeroing if count is not constant
   575   // or it is >= BlockZeroingLowLimit.
   576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   577 }
   579 // ****************************************************************************
   581 // REQUIRED FUNCTIONALITY
   583 // !!!!! Special hack to get all type of calls to specify the byte offset
   584 //       from the start of the call to the point where the return address
   585 //       will point.
   586 //       The "return address" is the address of the call instruction, plus 8.
   588 int MachCallStaticJavaNode::ret_addr_offset() {
   589   int offset = NativeCall::instruction_size;  // call; delay slot
   590   if (_method_handle_invoke)
   591     offset += 4;  // restore SP
   592   return offset;
   593 }
   595 int MachCallDynamicJavaNode::ret_addr_offset() {
   596   int vtable_index = this->_vtable_index;
   597   if (vtable_index < 0) {
   598     // must be invalid_vtable_index, not nonvirtual_vtable_index
   599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   600     return (NativeMovConstReg::instruction_size +
   601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   602   } else {
   603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   606     int klass_load_size;
   607     if (UseCompressedClassPointers) {
   608       assert(Universe::heap() != NULL, "java heap should be initialized");
   609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   610     } else {
   611       klass_load_size = 1*BytesPerInstWord;
   612     }
   613     if (Assembler::is_simm13(v_off)) {
   614       return klass_load_size +
   615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   616              NativeCall::instruction_size);  // call; delay slot
   617     } else {
   618       return klass_load_size +
   619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   620              NativeCall::instruction_size);  // call; delay slot
   621     }
   622   }
   623 }
   625 int MachCallRuntimeNode::ret_addr_offset() {
   626 #ifdef _LP64
   627   if (MacroAssembler::is_far_target(entry_point())) {
   628     return NativeFarCall::instruction_size;
   629   } else {
   630     return NativeCall::instruction_size;
   631   }
   632 #else
   633   return NativeCall::instruction_size;  // call; delay slot
   634 #endif
   635 }
   637 // Indicate if the safepoint node needs the polling page as an input.
   638 // Since Sparc does not have absolute addressing, it does.
   639 bool SafePointNode::needs_polling_address_input() {
   640   return true;
   641 }
   643 // emit an interrupt that is caught by the debugger (for debugging compiler)
   644 void emit_break(CodeBuffer &cbuf) {
   645   MacroAssembler _masm(&cbuf);
   646   __ breakpoint_trap();
   647 }
   649 #ifndef PRODUCT
   650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   651   st->print("TA");
   652 }
   653 #endif
   655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   656   emit_break(cbuf);
   657 }
   659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   660   return MachNode::size(ra_);
   661 }
   663 // Traceable jump
   664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   665   MacroAssembler _masm(&cbuf);
   666   Register rdest = reg_to_register_object(jump_target);
   667   __ JMP(rdest, 0);
   668   __ delayed()->nop();
   669 }
   671 // Traceable jump and set exception pc
   672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   673   MacroAssembler _masm(&cbuf);
   674   Register rdest = reg_to_register_object(jump_target);
   675   __ JMP(rdest, 0);
   676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   677 }
   679 void emit_nop(CodeBuffer &cbuf) {
   680   MacroAssembler _masm(&cbuf);
   681   __ nop();
   682 }
   684 void emit_illtrap(CodeBuffer &cbuf) {
   685   MacroAssembler _masm(&cbuf);
   686   __ illtrap(0);
   687 }
   690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   691   assert(n->rule() != loadUB_rule, "");
   693   intptr_t offset = 0;
   694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   695   const Node* addr = n->get_base_and_disp(offset, adr_type);
   696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   699   atype = atype->add_offset(offset);
   700   assert(disp32 == offset, "wrong disp32");
   701   return atype->_offset;
   702 }
   705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   706   assert(n->rule() != loadUB_rule, "");
   708   intptr_t offset = 0;
   709   Node* addr = n->in(2);
   710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   712     Node* a = addr->in(2/*AddPNode::Address*/);
   713     Node* o = addr->in(3/*AddPNode::Offset*/);
   714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   716     assert(atype->isa_oop_ptr(), "still an oop");
   717   }
   718   offset = atype->is_ptr()->_offset;
   719   if (offset != Type::OffsetBot)  offset += disp32;
   720   return offset;
   721 }
   723 static inline jdouble replicate_immI(int con, int count, int width) {
   724   // Load a constant replicated "count" times with width "width"
   725   assert(count*width == 8 && width <= 4, "sanity");
   726   int bit_width = width * 8;
   727   jlong val = con;
   728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   729   for (int i = 0; i < count - 1; i++) {
   730     val |= (val << bit_width);
   731   }
   732   jdouble dval = *((jdouble*) &val);  // coerce to double type
   733   return dval;
   734 }
   736 static inline jdouble replicate_immF(float con) {
   737   // Replicate float con 2 times and pack into vector.
   738   int val = *((int*)&con);
   739   jlong lval = val;
   740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   742   return dval;
   743 }
   745 // Standard Sparc opcode form2 field breakdown
   746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   748   int op = (f30 << 30) |
   749            (f29 << 29) |
   750            (f25 << 25) |
   751            (f22 << 22) |
   752            (f20 << 20) |
   753            (f19 << 19) |
   754            (f0  <<  0);
   755   cbuf.insts()->emit_int32(op);
   756 }
   758 // Standard Sparc opcode form2 field breakdown
   759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   760   f0 >>= 10;           // Drop 10 bits
   761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   762   int op = (f30 << 30) |
   763            (f25 << 25) |
   764            (f22 << 22) |
   765            (f0  <<  0);
   766   cbuf.insts()->emit_int32(op);
   767 }
   769 // Standard Sparc opcode form3 field breakdown
   770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   771   int op = (f30 << 30) |
   772            (f25 << 25) |
   773            (f19 << 19) |
   774            (f14 << 14) |
   775            (f5  <<  5) |
   776            (f0  <<  0);
   777   cbuf.insts()->emit_int32(op);
   778 }
   780 // Standard Sparc opcode form3 field breakdown
   781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   782   simm13 &= (1<<13)-1; // Mask to 13 bits
   783   int op = (f30 << 30) |
   784            (f25 << 25) |
   785            (f19 << 19) |
   786            (f14 << 14) |
   787            (1   << 13) | // bit to indicate immediate-mode
   788            (simm13<<0);
   789   cbuf.insts()->emit_int32(op);
   790 }
   792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   793   simm10 &= (1<<10)-1; // Mask to 10 bits
   794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   795 }
   797 #ifdef ASSERT
   798 // Helper function for VerifyOops in emit_form3_mem_reg
   799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   800   warning("VerifyOops encountered unexpected instruction:");
   801   n->dump(2);
   802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   803 }
   804 #endif
   807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
   808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   810 #ifdef ASSERT
   811   // The following code implements the +VerifyOops feature.
   812   // It verifies oop values which are loaded into or stored out of
   813   // the current method activation.  +VerifyOops complements techniques
   814   // like ScavengeALot, because it eagerly inspects oops in transit,
   815   // as they enter or leave the stack, as opposed to ScavengeALot,
   816   // which inspects oops "at rest", in the stack or heap, at safepoints.
   817   // For this reason, +VerifyOops can sometimes detect bugs very close
   818   // to their point of creation.  It can also serve as a cross-check
   819   // on the validity of oop maps, when used toegether with ScavengeALot.
   821   // It would be good to verify oops at other points, especially
   822   // when an oop is used as a base pointer for a load or store.
   823   // This is presently difficult, because it is hard to know when
   824   // a base address is biased or not.  (If we had such information,
   825   // it would be easy and useful to make a two-argument version of
   826   // verify_oop which unbiases the base, and performs verification.)
   828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   829   bool is_verified_oop_base  = false;
   830   bool is_verified_oop_load  = false;
   831   bool is_verified_oop_store = false;
   832   int tmp_enc = -1;
   833   if (VerifyOops && src1_enc != R_SP_enc) {
   834     // classify the op, mainly for an assert check
   835     int st_op = 0, ld_op = 0;
   836     switch (primary) {
   837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   841     case Assembler::std_op3:  st_op = Op_StoreL; break;
   842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   857     default: ShouldNotReachHere();
   858     }
   859     if (tertiary == REGP_OP) {
   860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   862       else                          ShouldNotReachHere();
   863       if (st_op) {
   864         // a store
   865         // inputs are (0:control, 1:memory, 2:address, 3:value)
   866         Node* n2 = n->in(3);
   867         if (n2 != NULL) {
   868           const Type* t = n2->bottom_type();
   869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   870         }
   871       } else {
   872         // a load
   873         const Type* t = n->bottom_type();
   874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   875       }
   876     }
   878     if (ld_op) {
   879       // a Load
   880       // inputs are (0:control, 1:memory, 2:address)
   881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   892           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   893           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   894           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   895           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   896           !(n->rule() == loadUB_rule)) {
   897         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   898       }
   899     } else if (st_op) {
   900       // a Store
   901       // inputs are (0:control, 1:memory, 2:address, 3:value)
   902       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   903           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   904           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   905           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   906           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   907           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   908           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   909         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   910       }
   911     }
   913     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   914       Node* addr = n->in(2);
   915       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   916         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   917         if (atype != NULL) {
   918           intptr_t offset = get_offset_from_base(n, atype, disp32);
   919           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   920           if (offset != offset_2) {
   921             get_offset_from_base(n, atype, disp32);
   922             get_offset_from_base_2(n, atype, disp32);
   923           }
   924           assert(offset == offset_2, "different offsets");
   925           if (offset == disp32) {
   926             // we now know that src1 is a true oop pointer
   927             is_verified_oop_base = true;
   928             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   929               if( primary == Assembler::ldd_op3 ) {
   930                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   931               } else {
   932                 tmp_enc = dst_enc;
   933                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   934                 assert(src1_enc != dst_enc, "");
   935               }
   936             }
   937           }
   938           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   939                        || offset == oopDesc::mark_offset_in_bytes())) {
   940                       // loading the mark should not be allowed either, but
   941                       // we don't check this since it conflicts with InlineObjectHash
   942                       // usage of LoadINode to get the mark. We could keep the
   943                       // check if we create a new LoadMarkNode
   944             // but do not verify the object before its header is initialized
   945             ShouldNotReachHere();
   946           }
   947         }
   948       }
   949     }
   950   }
   951 #endif
   953   uint instr;
   954   instr = (Assembler::ldst_op << 30)
   955         | (dst_enc        << 25)
   956         | (primary        << 19)
   957         | (src1_enc       << 14);
   959   uint index = src2_enc;
   960   int disp = disp32;
   962   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
   963     disp += STACK_BIAS;
   964     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
   965     if (!Assembler::is_simm13(disp)) {
   966       ra->C->record_method_not_compilable("unable to handle large constant offsets");
   967       return;
   968     }
   969   }
   971   // We should have a compiler bailout here rather than a guarantee.
   972   // Better yet would be some mechanism to handle variable-size matches correctly.
   973   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   975   if( disp == 0 ) {
   976     // use reg-reg form
   977     // bit 13 is already zero
   978     instr |= index;
   979   } else {
   980     // use reg-imm form
   981     instr |= 0x00002000;          // set bit 13 to one
   982     instr |= disp & 0x1FFF;
   983   }
   985   cbuf.insts()->emit_int32(instr);
   987 #ifdef ASSERT
   988   {
   989     MacroAssembler _masm(&cbuf);
   990     if (is_verified_oop_base) {
   991       __ verify_oop(reg_to_register_object(src1_enc));
   992     }
   993     if (is_verified_oop_store) {
   994       __ verify_oop(reg_to_register_object(dst_enc));
   995     }
   996     if (tmp_enc != -1) {
   997       __ mov(O7, reg_to_register_object(tmp_enc));
   998     }
   999     if (is_verified_oop_load) {
  1000       __ verify_oop(reg_to_register_object(dst_enc));
  1003 #endif
  1006 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
  1007   // The method which records debug information at every safepoint
  1008   // expects the call to be the first instruction in the snippet as
  1009   // it creates a PcDesc structure which tracks the offset of a call
  1010   // from the start of the codeBlob. This offset is computed as
  1011   // code_end() - code_begin() of the code which has been emitted
  1012   // so far.
  1013   // In this particular case we have skirted around the problem by
  1014   // putting the "mov" instruction in the delay slot but the problem
  1015   // may bite us again at some other point and a cleaner/generic
  1016   // solution using relocations would be needed.
  1017   MacroAssembler _masm(&cbuf);
  1018   __ set_inst_mark();
  1020   // We flush the current window just so that there is a valid stack copy
  1021   // the fact that the current window becomes active again instantly is
  1022   // not a problem there is nothing live in it.
  1024 #ifdef ASSERT
  1025   int startpos = __ offset();
  1026 #endif /* ASSERT */
  1028   __ call((address)entry_point, rtype);
  1030   if (preserve_g2)   __ delayed()->mov(G2, L7);
  1031   else __ delayed()->nop();
  1033   if (preserve_g2)   __ mov(L7, G2);
  1035 #ifdef ASSERT
  1036   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
  1037 #ifdef _LP64
  1038     // Trash argument dump slots.
  1039     __ set(0xb0b8ac0db0b8ac0d, G1);
  1040     __ mov(G1, G5);
  1041     __ stx(G1, SP, STACK_BIAS + 0x80);
  1042     __ stx(G1, SP, STACK_BIAS + 0x88);
  1043     __ stx(G1, SP, STACK_BIAS + 0x90);
  1044     __ stx(G1, SP, STACK_BIAS + 0x98);
  1045     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1046     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1047 #else // _LP64
  1048     // this is also a native call, so smash the first 7 stack locations,
  1049     // and the various registers
  1051     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1052     // while [SP+0x44..0x58] are the argument dump slots.
  1053     __ set((intptr_t)0xbaadf00d, G1);
  1054     __ mov(G1, G5);
  1055     __ sllx(G1, 32, G1);
  1056     __ or3(G1, G5, G1);
  1057     __ mov(G1, G5);
  1058     __ stx(G1, SP, 0x40);
  1059     __ stx(G1, SP, 0x48);
  1060     __ stx(G1, SP, 0x50);
  1061     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1062 #endif // _LP64
  1064 #endif /*ASSERT*/
  1067 //=============================================================================
  1068 // REQUIRED FUNCTIONALITY for encoding
  1069 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1070 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1073 //=============================================================================
  1074 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1076 int Compile::ConstantTable::calculate_table_base_offset() const {
  1077   if (UseRDPCForConstantTableBase) {
  1078     // The table base offset might be less but then it fits into
  1079     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1080     return Assembler::min_simm13();
  1081   } else {
  1082     int offset = -(size() / 2);
  1083     if (!Assembler::is_simm13(offset)) {
  1084       offset = Assembler::min_simm13();
  1086     return offset;
  1090 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1091 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1092   ShouldNotReachHere();
  1095 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1096   Compile* C = ra_->C;
  1097   Compile::ConstantTable& constant_table = C->constant_table();
  1098   MacroAssembler _masm(&cbuf);
  1100   Register r = as_Register(ra_->get_encode(this));
  1101   CodeSection* consts_section = __ code()->consts();
  1102   int consts_size = consts_section->align_at_start(consts_section->size());
  1103   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1105   if (UseRDPCForConstantTableBase) {
  1106     // For the following RDPC logic to work correctly the consts
  1107     // section must be allocated right before the insts section.  This
  1108     // assert checks for that.  The layout and the SECT_* constants
  1109     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1110     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1111     int insts_offset = __ offset();
  1113     // Layout:
  1114     //
  1115     // |----------- consts section ------------|----------- insts section -----------...
  1116     // |------ constant table -----|- padding -|------------------x----
  1117     //                                                            \ current PC (RDPC instruction)
  1118     // |<------------- consts_size ----------->|<- insts_offset ->|
  1119     //                                                            \ table base
  1120     // The table base offset is later added to the load displacement
  1121     // so it has to be negative.
  1122     int table_base_offset = -(consts_size + insts_offset);
  1123     int disp;
  1125     // If the displacement from the current PC to the constant table
  1126     // base fits into simm13 we set the constant table base to the
  1127     // current PC.
  1128     if (Assembler::is_simm13(table_base_offset)) {
  1129       constant_table.set_table_base_offset(table_base_offset);
  1130       disp = 0;
  1131     } else {
  1132       // Otherwise we set the constant table base offset to the
  1133       // maximum negative displacement of load instructions to keep
  1134       // the disp as small as possible:
  1135       //
  1136       // |<------------- consts_size ----------->|<- insts_offset ->|
  1137       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1138       //                                  \ table base
  1139       table_base_offset = Assembler::min_simm13();
  1140       constant_table.set_table_base_offset(table_base_offset);
  1141       disp = (consts_size + insts_offset) + table_base_offset;
  1144     __ rdpc(r);
  1146     if (disp != 0) {
  1147       assert(r != O7, "need temporary");
  1148       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1151   else {
  1152     // Materialize the constant table base.
  1153     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1154     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1155     AddressLiteral base(baseaddr, rspec);
  1156     __ set(base, r);
  1160 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1161   if (UseRDPCForConstantTableBase) {
  1162     // This is really the worst case but generally it's only 1 instruction.
  1163     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1164   } else {
  1165     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1169 #ifndef PRODUCT
  1170 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1171   char reg[128];
  1172   ra_->dump_register(this, reg);
  1173   if (UseRDPCForConstantTableBase) {
  1174     st->print("RDPC   %s\t! constant table base", reg);
  1175   } else {
  1176     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1179 #endif
  1182 //=============================================================================
  1184 #ifndef PRODUCT
  1185 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1186   Compile* C = ra_->C;
  1188   for (int i = 0; i < OptoPrologueNops; i++) {
  1189     st->print_cr("NOP"); st->print("\t");
  1192   if( VerifyThread ) {
  1193     st->print_cr("Verify_Thread"); st->print("\t");
  1196   size_t framesize = C->frame_size_in_bytes();
  1197   int bangsize = C->bang_size_in_bytes();
  1199   // Calls to C2R adapters often do not accept exceptional returns.
  1200   // We require that their callers must bang for them.  But be careful, because
  1201   // some VM calls (such as call site linkage) can use several kilobytes of
  1202   // stack.  But the stack safety zone should account for that.
  1203   // See bugs 4446381, 4468289, 4497237.
  1204   if (C->need_stack_bang(bangsize)) {
  1205     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
  1208   if (Assembler::is_simm13(-framesize)) {
  1209     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1210   } else {
  1211     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1212     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1213     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1217 #endif
  1219 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1220   Compile* C = ra_->C;
  1221   MacroAssembler _masm(&cbuf);
  1223   for (int i = 0; i < OptoPrologueNops; i++) {
  1224     __ nop();
  1227   __ verify_thread();
  1229   size_t framesize = C->frame_size_in_bytes();
  1230   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1231   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1232   int bangsize = C->bang_size_in_bytes();
  1234   // Calls to C2R adapters often do not accept exceptional returns.
  1235   // We require that their callers must bang for them.  But be careful, because
  1236   // some VM calls (such as call site linkage) can use several kilobytes of
  1237   // stack.  But the stack safety zone should account for that.
  1238   // See bugs 4446381, 4468289, 4497237.
  1239   if (C->need_stack_bang(bangsize)) {
  1240     __ generate_stack_overflow_check(bangsize);
  1243   if (Assembler::is_simm13(-framesize)) {
  1244     __ save(SP, -framesize, SP);
  1245   } else {
  1246     __ sethi(-framesize & ~0x3ff, G3);
  1247     __ add(G3, -framesize & 0x3ff, G3);
  1248     __ save(SP, G3, SP);
  1250   C->set_frame_complete( __ offset() );
  1252   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1253     // NOTE: We set the table base offset here because users might be
  1254     // emitted before MachConstantBaseNode.
  1255     Compile::ConstantTable& constant_table = C->constant_table();
  1256     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1260 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1261   return MachNode::size(ra_);
  1264 int MachPrologNode::reloc() const {
  1265   return 10; // a large enough number
  1268 //=============================================================================
  1269 #ifndef PRODUCT
  1270 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1271   Compile* C = ra_->C;
  1273   if(do_polling() && ra_->C->is_method_compilation()) {
  1274     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1275 #ifdef _LP64
  1276     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1277 #else
  1278     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1279 #endif
  1282   if(do_polling()) {
  1283     if (UseCBCond && !ra_->C->is_method_compilation()) {
  1284       st->print("NOP\n\t");
  1286     st->print("RET\n\t");
  1289   st->print("RESTORE");
  1291 #endif
  1293 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1294   MacroAssembler _masm(&cbuf);
  1295   Compile* C = ra_->C;
  1297   __ verify_thread();
  1299   // If this does safepoint polling, then do it here
  1300   if(do_polling() && ra_->C->is_method_compilation()) {
  1301     AddressLiteral polling_page(os::get_polling_page());
  1302     __ sethi(polling_page, L0);
  1303     __ relocate(relocInfo::poll_return_type);
  1304     __ ld_ptr(L0, 0, G0);
  1307   // If this is a return, then stuff the restore in the delay slot
  1308   if(do_polling()) {
  1309     if (UseCBCond && !ra_->C->is_method_compilation()) {
  1310       // Insert extra padding for the case when the epilogue is preceded by
  1311       // a cbcond jump, which can't be followed by a CTI instruction
  1312       __ nop();
  1314     __ ret();
  1315     __ delayed()->restore();
  1316   } else {
  1317     __ restore();
  1321 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1322   return MachNode::size(ra_);
  1325 int MachEpilogNode::reloc() const {
  1326   return 16; // a large enough number
  1329 const Pipeline * MachEpilogNode::pipeline() const {
  1330   return MachNode::pipeline_class();
  1333 int MachEpilogNode::safepoint_offset() const {
  1334   assert( do_polling(), "no return for this epilog node");
  1335   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1338 //=============================================================================
  1340 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1341 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1342 static enum RC rc_class( OptoReg::Name reg ) {
  1343   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1344   if (OptoReg::is_stack(reg)) return rc_stack;
  1345   VMReg r = OptoReg::as_VMReg(reg);
  1346   if (r->is_Register()) return rc_int;
  1347   assert(r->is_FloatRegister(), "must be");
  1348   return rc_float;
  1351 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1352   if (cbuf) {
  1353     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1355 #ifndef PRODUCT
  1356   else if (!do_size) {
  1357     if (size != 0) st->print("\n\t");
  1358     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1359     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1361 #endif
  1362   return size+4;
  1365 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1366   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1367 #ifndef PRODUCT
  1368   else if( !do_size ) {
  1369     if( size != 0 ) st->print("\n\t");
  1370     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1372 #endif
  1373   return size+4;
  1376 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1377                                         PhaseRegAlloc *ra_,
  1378                                         bool do_size,
  1379                                         outputStream* st ) const {
  1380   // Get registers to move
  1381   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1382   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1383   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1384   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1386   enum RC src_second_rc = rc_class(src_second);
  1387   enum RC src_first_rc = rc_class(src_first);
  1388   enum RC dst_second_rc = rc_class(dst_second);
  1389   enum RC dst_first_rc = rc_class(dst_first);
  1391   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1393   // Generate spill code!
  1394   int size = 0;
  1396   if( src_first == dst_first && src_second == dst_second )
  1397     return size;            // Self copy, no move
  1399   // --------------------------------------
  1400   // Check for mem-mem move.  Load into unused float registers and fall into
  1401   // the float-store case.
  1402   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1403     int offset = ra_->reg2offset(src_first);
  1404     // Further check for aligned-adjacent pair, so we can use a double load
  1405     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1406       src_second    = OptoReg::Name(R_F31_num);
  1407       src_second_rc = rc_float;
  1408       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1409     } else {
  1410       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1412     src_first    = OptoReg::Name(R_F30_num);
  1413     src_first_rc = rc_float;
  1416   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1417     int offset = ra_->reg2offset(src_second);
  1418     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1419     src_second    = OptoReg::Name(R_F31_num);
  1420     src_second_rc = rc_float;
  1423   // --------------------------------------
  1424   // Check for float->int copy; requires a trip through memory
  1425   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1426     int offset = frame::register_save_words*wordSize;
  1427     if (cbuf) {
  1428       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1429       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1430       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1431       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1433 #ifndef PRODUCT
  1434     else if (!do_size) {
  1435       if (size != 0) st->print("\n\t");
  1436       st->print(  "SUB    R_SP,16,R_SP\n");
  1437       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1438       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1439       st->print("\tADD    R_SP,16,R_SP\n");
  1441 #endif
  1442     size += 16;
  1445   // Check for float->int copy on T4
  1446   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1447     // Further check for aligned-adjacent pair, so we can use a double move
  1448     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1449       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1450     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1452   // Check for int->float copy on T4
  1453   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1454     // Further check for aligned-adjacent pair, so we can use a double move
  1455     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1456       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1457     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1460   // --------------------------------------
  1461   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1462   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1463   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1464   // there.  Misaligned sources only come from native-long-returns (handled
  1465   // special below).
  1466 #ifndef _LP64
  1467   if( src_first_rc == rc_int &&     // source is already big-endian
  1468       src_second_rc != rc_bad &&    // 64-bit move
  1469       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1470     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1471     // Do the big-endian flop.
  1472     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1473     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1475 #endif
  1477   // --------------------------------------
  1478   // Check for integer reg-reg copy
  1479   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1480 #ifndef _LP64
  1481     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1482       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1483       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1484       //       operand contains the least significant word of the 64-bit value and vice versa.
  1485       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1486       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1487       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1488       if( cbuf ) {
  1489         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1490         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1491         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1492 #ifndef PRODUCT
  1493       } else if( !do_size ) {
  1494         if( size != 0 ) st->print("\n\t");
  1495         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1496         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1497         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1498 #endif
  1500       return size+12;
  1502     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1503       // returning a long value in I0/I1
  1504       // a SpillCopy must be able to target a return instruction's reg_class
  1505       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1506       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1507       //       operand contains the least significant word of the 64-bit value and vice versa.
  1508       OptoReg::Name tdest = dst_first;
  1510       if (src_first == dst_first) {
  1511         tdest = OptoReg::Name(R_O7_num);
  1512         size += 4;
  1515       if( cbuf ) {
  1516         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1517         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1518         // ShrL_reg_imm6
  1519         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1520         // ShrR_reg_imm6  src, 0, dst
  1521         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1522         if (tdest != dst_first) {
  1523           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1526 #ifndef PRODUCT
  1527       else if( !do_size ) {
  1528         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1529         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1530         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1531         if (tdest != dst_first) {
  1532           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1535 #endif // PRODUCT
  1536       return size+8;
  1538 #endif // !_LP64
  1539     // Else normal reg-reg copy
  1540     assert( src_second != dst_first, "smashed second before evacuating it" );
  1541     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1542     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1543     // This moves an aligned adjacent pair.
  1544     // See if we are done.
  1545     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1546       return size;
  1549   // Check for integer store
  1550   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1551     int offset = ra_->reg2offset(dst_first);
  1552     // Further check for aligned-adjacent pair, so we can use a double store
  1553     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1554       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1555     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1558   // Check for integer load
  1559   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1560     int offset = ra_->reg2offset(src_first);
  1561     // Further check for aligned-adjacent pair, so we can use a double load
  1562     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1563       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1564     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1567   // Check for float reg-reg copy
  1568   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1569     // Further check for aligned-adjacent pair, so we can use a double move
  1570     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1571       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1572     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1575   // Check for float store
  1576   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1577     int offset = ra_->reg2offset(dst_first);
  1578     // Further check for aligned-adjacent pair, so we can use a double store
  1579     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1580       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1581     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1584   // Check for float load
  1585   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1586     int offset = ra_->reg2offset(src_first);
  1587     // Further check for aligned-adjacent pair, so we can use a double load
  1588     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1589       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1590     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1593   // --------------------------------------------------------------------
  1594   // Check for hi bits still needing moving.  Only happens for misaligned
  1595   // arguments to native calls.
  1596   if( src_second == dst_second )
  1597     return size;               // Self copy; no move
  1598   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1600 #ifndef _LP64
  1601   // In the LP64 build, all registers can be moved as aligned/adjacent
  1602   // pairs, so there's never any need to move the high bits separately.
  1603   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1604   // all sorts of silly alignment problems.
  1606   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1607   // 32-bits of a 64-bit register, but are needed in low bits of another
  1608   // register (else it's a hi-bits-to-hi-bits copy which should have
  1609   // happened already as part of a 64-bit move)
  1610   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1611     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1612     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1613     // Shift src_second down to dst_second's low bits.
  1614     if( cbuf ) {
  1615       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1616 #ifndef PRODUCT
  1617     } else if( !do_size ) {
  1618       if( size != 0 ) st->print("\n\t");
  1619       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1620 #endif
  1622     return size+4;
  1625   // Check for high word integer store.  Must down-shift the hi bits
  1626   // into a temp register, then fall into the case of storing int bits.
  1627   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1628     // Shift src_second down to dst_second's low bits.
  1629     if( cbuf ) {
  1630       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1631 #ifndef PRODUCT
  1632     } else if( !do_size ) {
  1633       if( size != 0 ) st->print("\n\t");
  1634       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1635 #endif
  1637     size+=4;
  1638     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1641   // Check for high word integer load
  1642   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1643     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1645   // Check for high word integer store
  1646   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1647     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1649   // Check for high word float store
  1650   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1651     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1653 #endif // !_LP64
  1655   Unimplemented();
  1658 #ifndef PRODUCT
  1659 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1660   implementation( NULL, ra_, false, st );
  1662 #endif
  1664 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1665   implementation( &cbuf, ra_, false, NULL );
  1668 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1669   return implementation( NULL, ra_, true, NULL );
  1672 //=============================================================================
  1673 #ifndef PRODUCT
  1674 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1675   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1677 #endif
  1679 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1680   MacroAssembler _masm(&cbuf);
  1681   for(int i = 0; i < _count; i += 1) {
  1682     __ nop();
  1686 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1687   return 4 * _count;
  1691 //=============================================================================
  1692 #ifndef PRODUCT
  1693 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1694   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1695   int reg = ra_->get_reg_first(this);
  1696   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1698 #endif
  1700 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1701   MacroAssembler _masm(&cbuf);
  1702   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1703   int reg = ra_->get_encode(this);
  1705   if (Assembler::is_simm13(offset)) {
  1706      __ add(SP, offset, reg_to_register_object(reg));
  1707   } else {
  1708      __ set(offset, O7);
  1709      __ add(SP, O7, reg_to_register_object(reg));
  1713 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1714   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1715   assert(ra_ == ra_->C->regalloc(), "sanity");
  1716   return ra_->C->scratch_emit_size(this);
  1719 //=============================================================================
  1720 #ifndef PRODUCT
  1721 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1722   st->print_cr("\nUEP:");
  1723 #ifdef    _LP64
  1724   if (UseCompressedClassPointers) {
  1725     assert(Universe::heap() != NULL, "java heap should be initialized");
  1726     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1727     if (Universe::narrow_klass_base() != 0) {
  1728       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1729       if (Universe::narrow_klass_shift() != 0) {
  1730         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1732       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1733       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1734     } else {
  1735       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1737   } else {
  1738     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1740   st->print_cr("\tCMP    R_G5,R_G3" );
  1741   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1742 #else  // _LP64
  1743   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1744   st->print_cr("\tCMP    R_G5,R_G3" );
  1745   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1746 #endif // _LP64
  1748 #endif
  1750 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1751   MacroAssembler _masm(&cbuf);
  1752   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1753   Register temp_reg   = G3;
  1754   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1756   // Load klass from receiver
  1757   __ load_klass(O0, temp_reg);
  1758   // Compare against expected klass
  1759   __ cmp(temp_reg, G5_ic_reg);
  1760   // Branch to miss code, checks xcc or icc depending
  1761   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1764 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1765   return MachNode::size(ra_);
  1769 //=============================================================================
  1772 // Emit exception handler code.
  1773 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
  1774   Register temp_reg = G3;
  1775   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1776   MacroAssembler _masm(&cbuf);
  1778   address base =
  1779   __ start_a_stub(size_exception_handler());
  1780   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1782   int offset = __ offset();
  1784   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1785   __ delayed()->nop();
  1787   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1789   __ end_a_stub();
  1791   return offset;
  1794 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  1795   // Can't use any of the current frame's registers as we may have deopted
  1796   // at a poll and everything (including G3) can be live.
  1797   Register temp_reg = L0;
  1798   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1799   MacroAssembler _masm(&cbuf);
  1801   address base =
  1802   __ start_a_stub(size_deopt_handler());
  1803   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1805   int offset = __ offset();
  1806   __ save_frame(0);
  1807   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1808   __ delayed()->restore();
  1810   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1812   __ end_a_stub();
  1813   return offset;
  1817 // Given a register encoding, produce a Integer Register object
  1818 static Register reg_to_register_object(int register_encoding) {
  1819   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1820   return as_Register(register_encoding);
  1823 // Given a register encoding, produce a single-precision Float Register object
  1824 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1825   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1826   return as_SingleFloatRegister(register_encoding);
  1829 // Given a register encoding, produce a double-precision Float Register object
  1830 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1831   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1832   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1833   return as_DoubleFloatRegister(register_encoding);
  1836 const bool Matcher::match_rule_supported(int opcode) {
  1837   if (!has_match_rule(opcode))
  1838     return false;
  1840   switch (opcode) {
  1841   case Op_CountLeadingZerosI:
  1842   case Op_CountLeadingZerosL:
  1843   case Op_CountTrailingZerosI:
  1844   case Op_CountTrailingZerosL:
  1845   case Op_PopCountI:
  1846   case Op_PopCountL:
  1847     if (!UsePopCountInstruction)
  1848       return false;
  1849   case Op_CompareAndSwapL:
  1850 #ifdef _LP64
  1851   case Op_CompareAndSwapP:
  1852 #endif
  1853     if (!VM_Version::supports_cx8())
  1854       return false;
  1855     break;
  1858   return true;  // Per default match rules are supported.
  1861 int Matcher::regnum_to_fpu_offset(int regnum) {
  1862   return regnum - 32; // The FP registers are in the second chunk
  1865 #ifdef ASSERT
  1866 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1867 #endif
  1869 // Vector width in bytes
  1870 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1871   assert(MaxVectorSize == 8, "");
  1872   return 8;
  1875 // Vector ideal reg
  1876 const int Matcher::vector_ideal_reg(int size) {
  1877   assert(MaxVectorSize == 8, "");
  1878   return Op_RegD;
  1881 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1882   fatal("vector shift is not supported");
  1883   return Node::NotAMachineReg;
  1886 // Limits on vector size (number of elements) loaded into vector.
  1887 const int Matcher::max_vector_size(const BasicType bt) {
  1888   assert(is_java_primitive(bt), "only primitive type vectors");
  1889   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1892 const int Matcher::min_vector_size(const BasicType bt) {
  1893   return max_vector_size(bt); // Same as max.
  1896 // SPARC doesn't support misaligned vectors store/load.
  1897 const bool Matcher::misaligned_vectors_ok() {
  1898   return false;
  1901 // Current (2013) SPARC platforms need to read original key
  1902 // to construct decryption expanded key 
  1903 const bool Matcher::pass_original_key_for_aes() {
  1904   return true;
  1907 // USII supports fxtof through the whole range of number, USIII doesn't
  1908 const bool Matcher::convL2FSupported(void) {
  1909   return VM_Version::has_fast_fxtof();
  1912 // Is this branch offset short enough that a short branch can be used?
  1913 //
  1914 // NOTE: If the platform does not provide any short branch variants, then
  1915 //       this method should return false for offset 0.
  1916 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1917   // The passed offset is relative to address of the branch.
  1918   // Don't need to adjust the offset.
  1919   return UseCBCond && Assembler::is_simm12(offset);
  1922 const bool Matcher::isSimpleConstant64(jlong value) {
  1923   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1924   // Depends on optimizations in MacroAssembler::setx.
  1925   int hi = (int)(value >> 32);
  1926   int lo = (int)(value & ~0);
  1927   return (hi == 0) || (hi == -1) || (lo == 0);
  1930 // No scaling for the parameter the ClearArray node.
  1931 const bool Matcher::init_array_count_is_in_bytes = true;
  1933 // Threshold size for cleararray.
  1934 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1936 // No additional cost for CMOVL.
  1937 const int Matcher::long_cmove_cost() { return 0; }
  1939 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1940 const int Matcher::float_cmove_cost() {
  1941   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1944 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1945 const bool Matcher::require_postalloc_expand = false;
  1947 // Should the Matcher clone shifts on addressing modes, expecting them to
  1948 // be subsumed into complex addressing expressions or compute them into
  1949 // registers?  True for Intel but false for most RISCs
  1950 const bool Matcher::clone_shift_expressions = false;
  1952 // Do we need to mask the count passed to shift instructions or does
  1953 // the cpu only look at the lower 5/6 bits anyway?
  1954 const bool Matcher::need_masked_shift_count = false;
  1956 bool Matcher::narrow_oop_use_complex_address() {
  1957   NOT_LP64(ShouldNotCallThis());
  1958   assert(UseCompressedOops, "only for compressed oops code");
  1959   return false;
  1962 bool Matcher::narrow_klass_use_complex_address() {
  1963   NOT_LP64(ShouldNotCallThis());
  1964   assert(UseCompressedClassPointers, "only for compressed klass code");
  1965   return false;
  1968 // Is it better to copy float constants, or load them directly from memory?
  1969 // Intel can load a float constant from a direct address, requiring no
  1970 // extra registers.  Most RISCs will have to materialize an address into a
  1971 // register first, so they would do better to copy the constant from stack.
  1972 const bool Matcher::rematerialize_float_constants = false;
  1974 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1975 // needed.  Else we split the double into 2 integer pieces and move it
  1976 // piece-by-piece.  Only happens when passing doubles into C code as the
  1977 // Java calling convention forces doubles to be aligned.
  1978 #ifdef _LP64
  1979 const bool Matcher::misaligned_doubles_ok = true;
  1980 #else
  1981 const bool Matcher::misaligned_doubles_ok = false;
  1982 #endif
  1984 // No-op on SPARC.
  1985 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1988 // Advertise here if the CPU requires explicit rounding operations
  1989 // to implement the UseStrictFP mode.
  1990 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1992 // Are floats conerted to double when stored to stack during deoptimization?
  1993 // Sparc does not handle callee-save floats.
  1994 bool Matcher::float_in_double() { return false; }
  1996 // Do ints take an entire long register or just half?
  1997 // Note that we if-def off of _LP64.
  1998 // The relevant question is how the int is callee-saved.  In _LP64
  1999 // the whole long is written but de-opt'ing will have to extract
  2000 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  2001 #ifdef _LP64
  2002 const bool Matcher::int_in_long = true;
  2003 #else
  2004 const bool Matcher::int_in_long = false;
  2005 #endif
  2007 // Return whether or not this register is ever used as an argument.  This
  2008 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2009 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2010 // arguments in those registers not be available to the callee.
  2011 bool Matcher::can_be_java_arg( int reg ) {
  2012   // Standard sparc 6 args in registers
  2013   if( reg == R_I0_num ||
  2014       reg == R_I1_num ||
  2015       reg == R_I2_num ||
  2016       reg == R_I3_num ||
  2017       reg == R_I4_num ||
  2018       reg == R_I5_num ) return true;
  2019 #ifdef _LP64
  2020   // 64-bit builds can pass 64-bit pointers and longs in
  2021   // the high I registers
  2022   if( reg == R_I0H_num ||
  2023       reg == R_I1H_num ||
  2024       reg == R_I2H_num ||
  2025       reg == R_I3H_num ||
  2026       reg == R_I4H_num ||
  2027       reg == R_I5H_num ) return true;
  2029   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  2030     return true;
  2033 #else
  2034   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2035   // Longs cannot be passed in O regs, because O regs become I regs
  2036   // after a 'save' and I regs get their high bits chopped off on
  2037   // interrupt.
  2038   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2039   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2040 #endif
  2041   // A few float args in registers
  2042   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2044   return false;
  2047 bool Matcher::is_spillable_arg( int reg ) {
  2048   return can_be_java_arg(reg);
  2051 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2052   // Use hardware SDIVX instruction when it is
  2053   // faster than a code which use multiply.
  2054   return VM_Version::has_fast_idiv();
  2057 // Register for DIVI projection of divmodI
  2058 RegMask Matcher::divI_proj_mask() {
  2059   ShouldNotReachHere();
  2060   return RegMask();
  2063 // Register for MODI projection of divmodI
  2064 RegMask Matcher::modI_proj_mask() {
  2065   ShouldNotReachHere();
  2066   return RegMask();
  2069 // Register for DIVL projection of divmodL
  2070 RegMask Matcher::divL_proj_mask() {
  2071   ShouldNotReachHere();
  2072   return RegMask();
  2075 // Register for MODL projection of divmodL
  2076 RegMask Matcher::modL_proj_mask() {
  2077   ShouldNotReachHere();
  2078   return RegMask();
  2081 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2082   return L7_REGP_mask();
  2085 %}
  2088 // The intptr_t operand types, defined by textual substitution.
  2089 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2090 #ifdef _LP64
  2091 #define immX      immL
  2092 #define immX13    immL13
  2093 #define immX13m7  immL13m7
  2094 #define iRegX     iRegL
  2095 #define g1RegX    g1RegL
  2096 #else
  2097 #define immX      immI
  2098 #define immX13    immI13
  2099 #define immX13m7  immI13m7
  2100 #define iRegX     iRegI
  2101 #define g1RegX    g1RegI
  2102 #endif
  2104 //----------ENCODING BLOCK-----------------------------------------------------
  2105 // This block specifies the encoding classes used by the compiler to output
  2106 // byte streams.  Encoding classes are parameterized macros used by
  2107 // Machine Instruction Nodes in order to generate the bit encoding of the
  2108 // instruction.  Operands specify their base encoding interface with the
  2109 // interface keyword.  There are currently supported four interfaces,
  2110 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2111 // operand to generate a function which returns its register number when
  2112 // queried.   CONST_INTER causes an operand to generate a function which
  2113 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2114 // operand to generate four functions which return the Base Register, the
  2115 // Index Register, the Scale Value, and the Offset Value of the operand when
  2116 // queried.  COND_INTER causes an operand to generate six functions which
  2117 // return the encoding code (ie - encoding bits for the instruction)
  2118 // associated with each basic boolean condition for a conditional instruction.
  2119 //
  2120 // Instructions specify two basic values for encoding.  Again, a function
  2121 // is available to check if the constant displacement is an oop. They use the
  2122 // ins_encode keyword to specify their encoding classes (which must be
  2123 // a sequence of enc_class names, and their parameters, specified in
  2124 // the encoding block), and they use the
  2125 // opcode keyword to specify, in order, their primary, secondary, and
  2126 // tertiary opcode.  Only the opcode sections which a particular instruction
  2127 // needs for encoding need to be specified.
  2128 encode %{
  2129   enc_class enc_untested %{
  2130 #ifdef ASSERT
  2131     MacroAssembler _masm(&cbuf);
  2132     __ untested("encoding");
  2133 #endif
  2134   %}
  2136   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2137     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
  2138                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2139   %}
  2141   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2142     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2143                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2144   %}
  2146   enc_class form3_mem_prefetch_read( memory mem ) %{
  2147     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2148                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2149   %}
  2151   enc_class form3_mem_prefetch_write( memory mem ) %{
  2152     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2153                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2154   %}
  2156   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2157     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2158     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2159     guarantee($mem$$index == R_G0_enc, "double index?");
  2160     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2161     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2162     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2163     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2164   %}
  2166   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2167     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2168     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2169     guarantee($mem$$index == R_G0_enc, "double index?");
  2170     // Load long with 2 instructions
  2171     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2172     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2173   %}
  2175   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2176   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2177     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2178     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2179   %}
  2181   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2182     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2183     if( $rs2$$reg != $rd$$reg )
  2184       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2185   %}
  2187   // Target lo half of long
  2188   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2189     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2190     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2191       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2192   %}
  2194   // Source lo half of long
  2195   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2196     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2197     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2198       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2199   %}
  2201   // Target hi half of long
  2202   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2203     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2204   %}
  2206   // Source lo half of long, and leave it sign extended.
  2207   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2208     // Sign extend low half
  2209     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2210   %}
  2212   // Source hi half of long, and leave it sign extended.
  2213   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2214     // Shift high half to low half
  2215     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2216   %}
  2218   // Source hi half of long
  2219   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2220     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2221     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2222       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2223   %}
  2225   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2226     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2227   %}
  2229   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2230     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2231     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2232   %}
  2234   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2235     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2236     // clear if nothing else is happening
  2237     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2238     // blt,a,pn done
  2239     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2240     // mov dst,-1 in delay slot
  2241     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2242   %}
  2244   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2245     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2246   %}
  2248   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2249     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2250   %}
  2252   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2253     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2254   %}
  2256   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2257     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2258   %}
  2260   enc_class move_return_pc_to_o1() %{
  2261     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2262   %}
  2264 #ifdef _LP64
  2265   /* %%% merge with enc_to_bool */
  2266   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2267     MacroAssembler _masm(&cbuf);
  2269     Register   src_reg = reg_to_register_object($src$$reg);
  2270     Register   dst_reg = reg_to_register_object($dst$$reg);
  2271     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2272   %}
  2273 #endif
  2275   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2276     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2277     MacroAssembler _masm(&cbuf);
  2279     Register   p_reg = reg_to_register_object($p$$reg);
  2280     Register   q_reg = reg_to_register_object($q$$reg);
  2281     Register   y_reg = reg_to_register_object($y$$reg);
  2282     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2284     __ subcc( p_reg, q_reg,   p_reg );
  2285     __ add  ( p_reg, y_reg, tmp_reg );
  2286     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2287   %}
  2289   enc_class form_d2i_helper(regD src, regF dst) %{
  2290     // fcmp %fcc0,$src,$src
  2291     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2292     // branch %fcc0 not-nan, predict taken
  2293     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2294     // fdtoi $src,$dst
  2295     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2296     // fitos $dst,$dst (if nan)
  2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2298     // clear $dst (if nan)
  2299     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2300     // carry on here...
  2301   %}
  2303   enc_class form_d2l_helper(regD src, regD dst) %{
  2304     // fcmp %fcc0,$src,$src  check for NAN
  2305     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2306     // branch %fcc0 not-nan, predict taken
  2307     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2308     // fdtox $src,$dst   convert in delay slot
  2309     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2310     // fxtod $dst,$dst  (if nan)
  2311     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2312     // clear $dst (if nan)
  2313     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2314     // carry on here...
  2315   %}
  2317   enc_class form_f2i_helper(regF src, regF dst) %{
  2318     // fcmps %fcc0,$src,$src
  2319     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2320     // branch %fcc0 not-nan, predict taken
  2321     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2322     // fstoi $src,$dst
  2323     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2324     // fitos $dst,$dst (if nan)
  2325     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2326     // clear $dst (if nan)
  2327     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2328     // carry on here...
  2329   %}
  2331   enc_class form_f2l_helper(regF src, regD dst) %{
  2332     // fcmps %fcc0,$src,$src
  2333     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2334     // branch %fcc0 not-nan, predict taken
  2335     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2336     // fstox $src,$dst
  2337     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2338     // fxtod $dst,$dst (if nan)
  2339     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2340     // clear $dst (if nan)
  2341     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2342     // carry on here...
  2343   %}
  2345   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2346   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2347   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2348   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2350   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2352   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2353   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2355   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2356     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2357   %}
  2359   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2360     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2361   %}
  2363   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2364     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2365   %}
  2367   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2368     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2369   %}
  2371   enc_class form3_convI2F(regF rs2, regF rd) %{
  2372     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2373   %}
  2375   // Encloding class for traceable jumps
  2376   enc_class form_jmpl(g3RegP dest) %{
  2377     emit_jmpl(cbuf, $dest$$reg);
  2378   %}
  2380   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2381     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2382   %}
  2384   enc_class form2_nop() %{
  2385     emit_nop(cbuf);
  2386   %}
  2388   enc_class form2_illtrap() %{
  2389     emit_illtrap(cbuf);
  2390   %}
  2393   // Compare longs and convert into -1, 0, 1.
  2394   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2395     // CMP $src1,$src2
  2396     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2397     // blt,a,pn done
  2398     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2399     // mov dst,-1 in delay slot
  2400     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2401     // bgt,a,pn done
  2402     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2403     // mov dst,1 in delay slot
  2404     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2405     // CLR    $dst
  2406     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2407   %}
  2409   enc_class enc_PartialSubtypeCheck() %{
  2410     MacroAssembler _masm(&cbuf);
  2411     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2412     __ delayed()->nop();
  2413   %}
  2415   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2416     MacroAssembler _masm(&cbuf);
  2417     Label* L = $labl$$label;
  2418     Assembler::Predict predict_taken =
  2419       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2421     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2422     __ delayed()->nop();
  2423   %}
  2425   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2426     MacroAssembler _masm(&cbuf);
  2427     Label* L = $labl$$label;
  2428     Assembler::Predict predict_taken =
  2429       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2431     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2432     __ delayed()->nop();
  2433   %}
  2435   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2436     int op = (Assembler::arith_op << 30) |
  2437              ($dst$$reg << 25) |
  2438              (Assembler::movcc_op3 << 19) |
  2439              (1 << 18) |                    // cc2 bit for 'icc'
  2440              ($cmp$$cmpcode << 14) |
  2441              (0 << 13) |                    // select register move
  2442              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2443              ($src$$reg << 0);
  2444     cbuf.insts()->emit_int32(op);
  2445   %}
  2447   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2448     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2449     int op = (Assembler::arith_op << 30) |
  2450              ($dst$$reg << 25) |
  2451              (Assembler::movcc_op3 << 19) |
  2452              (1 << 18) |                    // cc2 bit for 'icc'
  2453              ($cmp$$cmpcode << 14) |
  2454              (1 << 13) |                    // select immediate move
  2455              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2456              (simm11 << 0);
  2457     cbuf.insts()->emit_int32(op);
  2458   %}
  2460   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2461     int op = (Assembler::arith_op << 30) |
  2462              ($dst$$reg << 25) |
  2463              (Assembler::movcc_op3 << 19) |
  2464              (0 << 18) |                    // cc2 bit for 'fccX'
  2465              ($cmp$$cmpcode << 14) |
  2466              (0 << 13) |                    // select register move
  2467              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2468              ($src$$reg << 0);
  2469     cbuf.insts()->emit_int32(op);
  2470   %}
  2472   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2473     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2474     int op = (Assembler::arith_op << 30) |
  2475              ($dst$$reg << 25) |
  2476              (Assembler::movcc_op3 << 19) |
  2477              (0 << 18) |                    // cc2 bit for 'fccX'
  2478              ($cmp$$cmpcode << 14) |
  2479              (1 << 13) |                    // select immediate move
  2480              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2481              (simm11 << 0);
  2482     cbuf.insts()->emit_int32(op);
  2483   %}
  2485   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2486     int op = (Assembler::arith_op << 30) |
  2487              ($dst$$reg << 25) |
  2488              (Assembler::fpop2_op3 << 19) |
  2489              (0 << 18) |
  2490              ($cmp$$cmpcode << 14) |
  2491              (1 << 13) |                    // select register move
  2492              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2493              ($primary << 5) |              // select single, double or quad
  2494              ($src$$reg << 0);
  2495     cbuf.insts()->emit_int32(op);
  2496   %}
  2498   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2499     int op = (Assembler::arith_op << 30) |
  2500              ($dst$$reg << 25) |
  2501              (Assembler::fpop2_op3 << 19) |
  2502              (0 << 18) |
  2503              ($cmp$$cmpcode << 14) |
  2504              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2505              ($primary << 5) |              // select single, double or quad
  2506              ($src$$reg << 0);
  2507     cbuf.insts()->emit_int32(op);
  2508   %}
  2510   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2511   // the condition comes from opcode-field instead of an argument.
  2512   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2513     int op = (Assembler::arith_op << 30) |
  2514              ($dst$$reg << 25) |
  2515              (Assembler::movcc_op3 << 19) |
  2516              (1 << 18) |                    // cc2 bit for 'icc'
  2517              ($primary << 14) |
  2518              (0 << 13) |                    // select register move
  2519              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2520              ($src$$reg << 0);
  2521     cbuf.insts()->emit_int32(op);
  2522   %}
  2524   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2525     int op = (Assembler::arith_op << 30) |
  2526              ($dst$$reg << 25) |
  2527              (Assembler::movcc_op3 << 19) |
  2528              (6 << 16) |                    // cc2 bit for 'xcc'
  2529              ($primary << 14) |
  2530              (0 << 13) |                    // select register move
  2531              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2532              ($src$$reg << 0);
  2533     cbuf.insts()->emit_int32(op);
  2534   %}
  2536   enc_class Set13( immI13 src, iRegI rd ) %{
  2537     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2538   %}
  2540   enc_class SetHi22( immI src, iRegI rd ) %{
  2541     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2542   %}
  2544   enc_class Set32( immI src, iRegI rd ) %{
  2545     MacroAssembler _masm(&cbuf);
  2546     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2547   %}
  2549   enc_class call_epilog %{
  2550     if( VerifyStackAtCalls ) {
  2551       MacroAssembler _masm(&cbuf);
  2552       int framesize = ra_->C->frame_size_in_bytes();
  2553       Register temp_reg = G3;
  2554       __ add(SP, framesize, temp_reg);
  2555       __ cmp(temp_reg, FP);
  2556       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2558   %}
  2560   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2561   // to G1 so the register allocator will not have to deal with the misaligned register
  2562   // pair.
  2563   enc_class adjust_long_from_native_call %{
  2564 #ifndef _LP64
  2565     if (returns_long()) {
  2566       //    sllx  O0,32,O0
  2567       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2568       //    srl   O1,0,O1
  2569       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2570       //    or    O0,O1,G1
  2571       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2573 #endif
  2574   %}
  2576   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2577     // CALL directly to the runtime
  2578     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2579     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2580                     /*preserve_g2=*/true);
  2581   %}
  2583   enc_class preserve_SP %{
  2584     MacroAssembler _masm(&cbuf);
  2585     __ mov(SP, L7_mh_SP_save);
  2586   %}
  2588   enc_class restore_SP %{
  2589     MacroAssembler _masm(&cbuf);
  2590     __ mov(L7_mh_SP_save, SP);
  2591   %}
  2593   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2594     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2595     // who we intended to call.
  2596     if (!_method) {
  2597       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2598     } else if (_optimized_virtual) {
  2599       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2600     } else {
  2601       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2603     if (_method) {  // Emit stub for static call.
  2604       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2606   %}
  2608   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2609     MacroAssembler _masm(&cbuf);
  2610     __ set_inst_mark();
  2611     int vtable_index = this->_vtable_index;
  2612     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2613     if (vtable_index < 0) {
  2614       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2615       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2616       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2617       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2618       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2619       __ ic_call((address)$meth$$method);
  2620     } else {
  2621       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2622       // Just go thru the vtable
  2623       // get receiver klass (receiver already checked for non-null)
  2624       // If we end up going thru a c2i adapter interpreter expects method in G5
  2625       int off = __ offset();
  2626       __ load_klass(O0, G3_scratch);
  2627       int klass_load_size;
  2628       if (UseCompressedClassPointers) {
  2629         assert(Universe::heap() != NULL, "java heap should be initialized");
  2630         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2631       } else {
  2632         klass_load_size = 1*BytesPerInstWord;
  2634       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2635       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2636       if (Assembler::is_simm13(v_off)) {
  2637         __ ld_ptr(G3, v_off, G5_method);
  2638       } else {
  2639         // Generate 2 instructions
  2640         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2641         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2642         // ld_ptr, set_hi, set
  2643         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2644                "Unexpected instruction size(s)");
  2645         __ ld_ptr(G3, G5_method, G5_method);
  2647       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2648       // However it may very well end up in handle_wrong_method if the
  2649       // method is abstract for the particular class.
  2650       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2651       // jump to target (either compiled code or c2iadapter)
  2652       __ jmpl(G3_scratch, G0, O7);
  2653       __ delayed()->nop();
  2655   %}
  2657   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2658     MacroAssembler _masm(&cbuf);
  2660     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2661     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2662                               // we might be calling a C2I adapter which needs it.
  2664     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2665     // Load nmethod
  2666     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2668     // CALL to compiled java, indirect the contents of G3
  2669     __ set_inst_mark();
  2670     __ callr(temp_reg, G0);
  2671     __ delayed()->nop();
  2672   %}
  2674 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2675     MacroAssembler _masm(&cbuf);
  2676     Register Rdividend = reg_to_register_object($src1$$reg);
  2677     Register Rdivisor = reg_to_register_object($src2$$reg);
  2678     Register Rresult = reg_to_register_object($dst$$reg);
  2680     __ sra(Rdivisor, 0, Rdivisor);
  2681     __ sra(Rdividend, 0, Rdividend);
  2682     __ sdivx(Rdividend, Rdivisor, Rresult);
  2683 %}
  2685 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2686     MacroAssembler _masm(&cbuf);
  2688     Register Rdividend = reg_to_register_object($src1$$reg);
  2689     int divisor = $imm$$constant;
  2690     Register Rresult = reg_to_register_object($dst$$reg);
  2692     __ sra(Rdividend, 0, Rdividend);
  2693     __ sdivx(Rdividend, divisor, Rresult);
  2694 %}
  2696 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2697     MacroAssembler _masm(&cbuf);
  2698     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2699     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2700     Register Rdst  = reg_to_register_object($dst$$reg);
  2702     __ sra( Rsrc1, 0, Rsrc1 );
  2703     __ sra( Rsrc2, 0, Rsrc2 );
  2704     __ mulx( Rsrc1, Rsrc2, Rdst );
  2705     __ srlx( Rdst, 32, Rdst );
  2706 %}
  2708 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2709     MacroAssembler _masm(&cbuf);
  2710     Register Rdividend = reg_to_register_object($src1$$reg);
  2711     Register Rdivisor = reg_to_register_object($src2$$reg);
  2712     Register Rresult = reg_to_register_object($dst$$reg);
  2713     Register Rscratch = reg_to_register_object($scratch$$reg);
  2715     assert(Rdividend != Rscratch, "");
  2716     assert(Rdivisor  != Rscratch, "");
  2718     __ sra(Rdividend, 0, Rdividend);
  2719     __ sra(Rdivisor, 0, Rdivisor);
  2720     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2721     __ mulx(Rscratch, Rdivisor, Rscratch);
  2722     __ sub(Rdividend, Rscratch, Rresult);
  2723 %}
  2725 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2726     MacroAssembler _masm(&cbuf);
  2728     Register Rdividend = reg_to_register_object($src1$$reg);
  2729     int divisor = $imm$$constant;
  2730     Register Rresult = reg_to_register_object($dst$$reg);
  2731     Register Rscratch = reg_to_register_object($scratch$$reg);
  2733     assert(Rdividend != Rscratch, "");
  2735     __ sra(Rdividend, 0, Rdividend);
  2736     __ sdivx(Rdividend, divisor, Rscratch);
  2737     __ mulx(Rscratch, divisor, Rscratch);
  2738     __ sub(Rdividend, Rscratch, Rresult);
  2739 %}
  2741 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2742     MacroAssembler _masm(&cbuf);
  2744     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2745     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2747     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2748 %}
  2750 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2751     MacroAssembler _masm(&cbuf);
  2753     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2754     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2756     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2757 %}
  2759 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2760     MacroAssembler _masm(&cbuf);
  2762     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2763     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2765     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2766 %}
  2768 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2769     MacroAssembler _masm(&cbuf);
  2771     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2772     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2774     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2775 %}
  2777 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2778     MacroAssembler _masm(&cbuf);
  2780     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2781     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2783     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2784 %}
  2786 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2787     MacroAssembler _masm(&cbuf);
  2789     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2790     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2792     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2793 %}
  2795 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2796     MacroAssembler _masm(&cbuf);
  2798     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2799     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2801     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2802 %}
  2804 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2805     MacroAssembler _masm(&cbuf);
  2807     Register Roop  = reg_to_register_object($oop$$reg);
  2808     Register Rbox  = reg_to_register_object($box$$reg);
  2809     Register Rscratch = reg_to_register_object($scratch$$reg);
  2810     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2812     assert(Roop  != Rscratch, "");
  2813     assert(Roop  != Rmark, "");
  2814     assert(Rbox  != Rscratch, "");
  2815     assert(Rbox  != Rmark, "");
  2817     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2818 %}
  2820 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2821     MacroAssembler _masm(&cbuf);
  2823     Register Roop  = reg_to_register_object($oop$$reg);
  2824     Register Rbox  = reg_to_register_object($box$$reg);
  2825     Register Rscratch = reg_to_register_object($scratch$$reg);
  2826     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2828     assert(Roop  != Rscratch, "");
  2829     assert(Roop  != Rmark, "");
  2830     assert(Rbox  != Rscratch, "");
  2831     assert(Rbox  != Rmark, "");
  2833     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2834   %}
  2836   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2837     MacroAssembler _masm(&cbuf);
  2838     Register Rmem = reg_to_register_object($mem$$reg);
  2839     Register Rold = reg_to_register_object($old$$reg);
  2840     Register Rnew = reg_to_register_object($new$$reg);
  2842     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2843     __ cmp( Rold, Rnew );
  2844   %}
  2846   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2847     Register Rmem = reg_to_register_object($mem$$reg);
  2848     Register Rold = reg_to_register_object($old$$reg);
  2849     Register Rnew = reg_to_register_object($new$$reg);
  2851     MacroAssembler _masm(&cbuf);
  2852     __ mov(Rnew, O7);
  2853     __ casx(Rmem, Rold, O7);
  2854     __ cmp( Rold, O7 );
  2855   %}
  2857   // raw int cas, used for compareAndSwap
  2858   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2859     Register Rmem = reg_to_register_object($mem$$reg);
  2860     Register Rold = reg_to_register_object($old$$reg);
  2861     Register Rnew = reg_to_register_object($new$$reg);
  2863     MacroAssembler _masm(&cbuf);
  2864     __ mov(Rnew, O7);
  2865     __ cas(Rmem, Rold, O7);
  2866     __ cmp( Rold, O7 );
  2867   %}
  2869   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2870     Register Rres = reg_to_register_object($res$$reg);
  2872     MacroAssembler _masm(&cbuf);
  2873     __ mov(1, Rres);
  2874     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2875   %}
  2877   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2878     Register Rres = reg_to_register_object($res$$reg);
  2880     MacroAssembler _masm(&cbuf);
  2881     __ mov(1, Rres);
  2882     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2883   %}
  2885   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2886     MacroAssembler _masm(&cbuf);
  2887     Register Rdst = reg_to_register_object($dst$$reg);
  2888     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2889                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2890     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2891                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2893     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2894     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2895   %}
  2898   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2899     Label Ldone, Lloop;
  2900     MacroAssembler _masm(&cbuf);
  2902     Register   str1_reg = reg_to_register_object($str1$$reg);
  2903     Register   str2_reg = reg_to_register_object($str2$$reg);
  2904     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2905     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2906     Register result_reg = reg_to_register_object($result$$reg);
  2908     assert(result_reg != str1_reg &&
  2909            result_reg != str2_reg &&
  2910            result_reg != cnt1_reg &&
  2911            result_reg != cnt2_reg ,
  2912            "need different registers");
  2914     // Compute the minimum of the string lengths(str1_reg) and the
  2915     // difference of the string lengths (stack)
  2917     // See if the lengths are different, and calculate min in str1_reg.
  2918     // Stash diff in O7 in case we need it for a tie-breaker.
  2919     Label Lskip;
  2920     __ subcc(cnt1_reg, cnt2_reg, O7);
  2921     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2922     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2923     // cnt2 is shorter, so use its count:
  2924     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2925     __ bind(Lskip);
  2927     // reallocate cnt1_reg, cnt2_reg, result_reg
  2928     // Note:  limit_reg holds the string length pre-scaled by 2
  2929     Register limit_reg =   cnt1_reg;
  2930     Register  chr2_reg =   cnt2_reg;
  2931     Register  chr1_reg = result_reg;
  2932     // str{12} are the base pointers
  2934     // Is the minimum length zero?
  2935     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2936     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2937     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2939     // Load first characters
  2940     __ lduh(str1_reg, 0, chr1_reg);
  2941     __ lduh(str2_reg, 0, chr2_reg);
  2943     // Compare first characters
  2944     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2945     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2946     assert(chr1_reg == result_reg, "result must be pre-placed");
  2947     __ delayed()->nop();
  2950       // Check after comparing first character to see if strings are equivalent
  2951       Label LSkip2;
  2952       // Check if the strings start at same location
  2953       __ cmp(str1_reg, str2_reg);
  2954       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2955       __ delayed()->nop();
  2957       // Check if the length difference is zero (in O7)
  2958       __ cmp(G0, O7);
  2959       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2960       __ delayed()->mov(G0, result_reg);  // result is zero
  2962       // Strings might not be equal
  2963       __ bind(LSkip2);
  2966     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2967     __ signx(limit_reg);
  2969     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2970     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2971     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2973     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2974     __ add(str1_reg, limit_reg, str1_reg);
  2975     __ add(str2_reg, limit_reg, str2_reg);
  2976     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2978     // Compare the rest of the characters
  2979     __ lduh(str1_reg, limit_reg, chr1_reg);
  2980     __ bind(Lloop);
  2981     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2982     __ lduh(str2_reg, limit_reg, chr2_reg);
  2983     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2984     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2985     assert(chr1_reg == result_reg, "result must be pre-placed");
  2986     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2987     // annul LDUH if branch is not taken to prevent access past end of string
  2988     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2989     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2991     // If strings are equal up to min length, return the length difference.
  2992     __ mov(O7, result_reg);
  2994     // Otherwise, return the difference between the first mismatched chars.
  2995     __ bind(Ldone);
  2996   %}
  2998 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2999     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  3000     MacroAssembler _masm(&cbuf);
  3002     Register   str1_reg = reg_to_register_object($str1$$reg);
  3003     Register   str2_reg = reg_to_register_object($str2$$reg);
  3004     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  3005     Register   tmp1_reg = O7;
  3006     Register result_reg = reg_to_register_object($result$$reg);
  3008     assert(result_reg != str1_reg &&
  3009            result_reg != str2_reg &&
  3010            result_reg !=  cnt_reg &&
  3011            result_reg != tmp1_reg ,
  3012            "need different registers");
  3014     __ cmp(str1_reg, str2_reg); //same char[] ?
  3015     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3016     __ delayed()->add(G0, 1, result_reg);
  3018     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  3019     __ delayed()->add(G0, 1, result_reg); // count == 0
  3021     //rename registers
  3022     Register limit_reg =    cnt_reg;
  3023     Register  chr1_reg = result_reg;
  3024     Register  chr2_reg =   tmp1_reg;
  3026     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  3027     __ signx(limit_reg);
  3029     //check for alignment and position the pointers to the ends
  3030     __ or3(str1_reg, str2_reg, chr1_reg);
  3031     __ andcc(chr1_reg, 0x3, chr1_reg);
  3032     // notZero means at least one not 4-byte aligned.
  3033     // We could optimize the case when both arrays are not aligned
  3034     // but it is not frequent case and it requires additional checks.
  3035     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3036     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3038     // Compare char[] arrays aligned to 4 bytes.
  3039     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3040                           chr1_reg, chr2_reg, Ldone);
  3041     __ ba(Ldone);
  3042     __ delayed()->add(G0, 1, result_reg);
  3044     // char by char compare
  3045     __ bind(Lchar);
  3046     __ add(str1_reg, limit_reg, str1_reg);
  3047     __ add(str2_reg, limit_reg, str2_reg);
  3048     __ neg(limit_reg); //negate count
  3050     __ lduh(str1_reg, limit_reg, chr1_reg);
  3051     // Lchar_loop
  3052     __ bind(Lchar_loop);
  3053     __ lduh(str2_reg, limit_reg, chr2_reg);
  3054     __ cmp(chr1_reg, chr2_reg);
  3055     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3056     __ delayed()->mov(G0, result_reg); //not equal
  3057     __ inccc(limit_reg, sizeof(jchar));
  3058     // annul LDUH if branch is not taken to prevent access past end of string
  3059     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3060     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3062     __ add(G0, 1, result_reg);  //equal
  3064     __ bind(Ldone);
  3065   %}
  3067 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3068     Label Lvector, Ldone, Lloop;
  3069     MacroAssembler _masm(&cbuf);
  3071     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3072     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3073     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3074     Register   tmp2_reg = O7;
  3075     Register result_reg = reg_to_register_object($result$$reg);
  3077     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3078     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3080     // return true if the same array
  3081     __ cmp(ary1_reg, ary2_reg);
  3082     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3083     __ delayed()->add(G0, 1, result_reg); // equal
  3085     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3086     __ delayed()->mov(G0, result_reg);    // not equal
  3088     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3089     __ delayed()->mov(G0, result_reg);    // not equal
  3091     //load the lengths of arrays
  3092     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3093     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3095     // return false if the two arrays are not equal length
  3096     __ cmp(tmp1_reg, tmp2_reg);
  3097     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3098     __ delayed()->mov(G0, result_reg);     // not equal
  3100     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3101     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3103     // load array addresses
  3104     __ add(ary1_reg, base_offset, ary1_reg);
  3105     __ add(ary2_reg, base_offset, ary2_reg);
  3107     // renaming registers
  3108     Register chr1_reg  =  result_reg; // for characters in ary1
  3109     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3110     Register limit_reg =  tmp1_reg;   // length
  3112     // set byte count
  3113     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3115     // Compare char[] arrays aligned to 4 bytes.
  3116     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3117                           chr1_reg, chr2_reg, Ldone);
  3118     __ add(G0, 1, result_reg); // equals
  3120     __ bind(Ldone);
  3121   %}
  3123   enc_class enc_rethrow() %{
  3124     cbuf.set_insts_mark();
  3125     Register temp_reg = G3;
  3126     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3127     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3128     MacroAssembler _masm(&cbuf);
  3129 #ifdef ASSERT
  3130     __ save_frame(0);
  3131     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3132     __ sethi(last_rethrow_addrlit, L1);
  3133     Address addr(L1, last_rethrow_addrlit.low10());
  3134     __ rdpc(L2);
  3135     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3136     __ st_ptr(L2, addr);
  3137     __ restore();
  3138 #endif
  3139     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3140     __ delayed()->nop();
  3141   %}
  3143   enc_class emit_mem_nop() %{
  3144     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3145     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3146   %}
  3148   enc_class emit_fadd_nop() %{
  3149     // Generates the instruction FMOVS f31,f31
  3150     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3151   %}
  3153   enc_class emit_br_nop() %{
  3154     // Generates the instruction BPN,PN .
  3155     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3156   %}
  3158   enc_class enc_membar_acquire %{
  3159     MacroAssembler _masm(&cbuf);
  3160     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3161   %}
  3163   enc_class enc_membar_release %{
  3164     MacroAssembler _masm(&cbuf);
  3165     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3166   %}
  3168   enc_class enc_membar_volatile %{
  3169     MacroAssembler _masm(&cbuf);
  3170     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3171   %}
  3173 %}
  3175 //----------FRAME--------------------------------------------------------------
  3176 // Definition of frame structure and management information.
  3177 //
  3178 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3179 //                             |   (to get allocators register number
  3180 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3181 //  r   CALLER     |        |
  3182 //  o     |        +--------+      pad to even-align allocators stack-slot
  3183 //  w     V        |  pad0  |        numbers; owned by CALLER
  3184 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3185 //  h     ^        |   in   |  5
  3186 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3187 //  |     |        |        |  3
  3188 //  |     |        +--------+
  3189 //  V     |        | old out|      Empty on Intel, window on Sparc
  3190 //        |    old |preserve|      Must be even aligned.
  3191 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3192 //        |        |   in   |  3   area for Intel ret address
  3193 //     Owned by    |preserve|      Empty on Sparc.
  3194 //       SELF      +--------+
  3195 //        |        |  pad2  |  2   pad to align old SP
  3196 //        |        +--------+  1
  3197 //        |        | locks  |  0
  3198 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3199 //        |        |  pad1  | 11   pad to align new SP
  3200 //        |        +--------+
  3201 //        |        |        | 10
  3202 //        |        | spills |  9   spills
  3203 //        V        |        |  8   (pad0 slot for callee)
  3204 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3205 //        ^        |  out   |  7
  3206 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3207 //     Owned by    +--------+
  3208 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3209 //        |    new |preserve|      Must be even-aligned.
  3210 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3211 //        |        |        |
  3212 //
  3213 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3214 //         known from SELF's arguments and the Java calling convention.
  3215 //         Region 6-7 is determined per call site.
  3216 // Note 2: If the calling convention leaves holes in the incoming argument
  3217 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3218 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3219 //         incoming area, as the Java calling convention is completely under
  3220 //         the control of the AD file.  Doubles can be sorted and packed to
  3221 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3222 //         varargs C calling conventions.
  3223 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3224 //         even aligned with pad0 as needed.
  3225 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3226 //         region 6-11 is even aligned; it may be padded out more so that
  3227 //         the region from SP to FP meets the minimum stack alignment.
  3229 frame %{
  3230   // What direction does stack grow in (assumed to be same for native & Java)
  3231   stack_direction(TOWARDS_LOW);
  3233   // These two registers define part of the calling convention
  3234   // between compiled code and the interpreter.
  3235   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3236   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3238   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3239   cisc_spilling_operand_name(indOffset);
  3241   // Number of stack slots consumed by a Monitor enter
  3242 #ifdef _LP64
  3243   sync_stack_slots(2);
  3244 #else
  3245   sync_stack_slots(1);
  3246 #endif
  3248   // Compiled code's Frame Pointer
  3249   frame_pointer(R_SP);
  3251   // Stack alignment requirement
  3252   stack_alignment(StackAlignmentInBytes);
  3253   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3254   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3256   // Number of stack slots between incoming argument block and the start of
  3257   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3258   // EPILOG must remove this many slots.
  3259   in_preserve_stack_slots(0);
  3261   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3262   // for calls to C.  Supports the var-args backing area for register parms.
  3263   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3264 #ifdef _LP64
  3265   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3266   varargs_C_out_slots_killed(12);
  3267 #else
  3268   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3269   varargs_C_out_slots_killed( 7);
  3270 #endif
  3272   // The after-PROLOG location of the return address.  Location of
  3273   // return address specifies a type (REG or STACK) and a number
  3274   // representing the register number (i.e. - use a register name) or
  3275   // stack slot.
  3276   return_addr(REG R_I7);          // Ret Addr is in register I7
  3278   // Body of function which returns an OptoRegs array locating
  3279   // arguments either in registers or in stack slots for calling
  3280   // java
  3281   calling_convention %{
  3282     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3284   %}
  3286   // Body of function which returns an OptoRegs array locating
  3287   // arguments either in registers or in stack slots for callin
  3288   // C.
  3289   c_calling_convention %{
  3290     // This is obviously always outgoing
  3291     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3292   %}
  3294   // Location of native (C/C++) and interpreter return values.  This is specified to
  3295   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3296   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3297   // to and from the register pairs is done by the appropriate call and epilog
  3298   // opcodes.  This simplifies the register allocator.
  3299   c_return_value %{
  3300     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3301 #ifdef     _LP64
  3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3306 #else  // !_LP64
  3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3311 #endif
  3312     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3313                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3314   %}
  3316   // Location of compiled Java return values.  Same as C
  3317   return_value %{
  3318     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3319 #ifdef     _LP64
  3320     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3321     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3322     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3323     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3324 #else  // !_LP64
  3325     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3326     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3327     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3328     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3329 #endif
  3330     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3331                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3332   %}
  3334 %}
  3337 //----------ATTRIBUTES---------------------------------------------------------
  3338 //----------Operand Attributes-------------------------------------------------
  3339 op_attrib op_cost(1);          // Required cost attribute
  3341 //----------Instruction Attributes---------------------------------------------
  3342 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3343 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3345 // avoid_back_to_back attribute is an expression that must return
  3346 // one of the following values defined in MachNode:
  3347 // AVOID_NONE   - instruction can be placed anywhere
  3348 // AVOID_BEFORE - instruction cannot be placed after an
  3349 //                instruction with MachNode::AVOID_AFTER
  3350 // AVOID_AFTER  - the next instruction cannot be the one 
  3351 //                with MachNode::AVOID_BEFORE
  3352 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at 
  3353 //                          the same time                                
  3354 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
  3356 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3357                                    // non-matching short branch variant of some
  3358                                                             // long branch?
  3360 //----------OPERANDS-----------------------------------------------------------
  3361 // Operand definitions must precede instruction definitions for correct parsing
  3362 // in the ADLC because operands constitute user defined types which are used in
  3363 // instruction definitions.
  3365 //----------Simple Operands----------------------------------------------------
  3366 // Immediate Operands
  3367 // Integer Immediate: 32-bit
  3368 operand immI() %{
  3369   match(ConI);
  3371   op_cost(0);
  3372   // formats are generated automatically for constants and base registers
  3373   format %{ %}
  3374   interface(CONST_INTER);
  3375 %}
  3377 // Integer Immediate: 8-bit
  3378 operand immI8() %{
  3379   predicate(Assembler::is_simm8(n->get_int()));
  3380   match(ConI);
  3381   op_cost(0);
  3382   format %{ %}
  3383   interface(CONST_INTER);
  3384 %}
  3386 // Integer Immediate: 13-bit
  3387 operand immI13() %{
  3388   predicate(Assembler::is_simm13(n->get_int()));
  3389   match(ConI);
  3390   op_cost(0);
  3392   format %{ %}
  3393   interface(CONST_INTER);
  3394 %}
  3396 // Integer Immediate: 13-bit minus 7
  3397 operand immI13m7() %{
  3398   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3399   match(ConI);
  3400   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Integer Immediate: 16-bit
  3407 operand immI16() %{
  3408   predicate(Assembler::is_simm16(n->get_int()));
  3409   match(ConI);
  3410   op_cost(0);
  3411   format %{ %}
  3412   interface(CONST_INTER);
  3413 %}
  3415 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
  3416 operand immU12() %{
  3417   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3418   match(ConI);
  3419   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 // Integer Immediate: 6-bit
  3426 operand immU6() %{
  3427   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3428   match(ConI);
  3429   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 // Integer Immediate: 11-bit
  3435 operand immI11() %{
  3436   predicate(Assembler::is_simm11(n->get_int()));
  3437   match(ConI);
  3438   op_cost(0);
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 // Integer Immediate: 5-bit
  3444 operand immI5() %{
  3445   predicate(Assembler::is_simm5(n->get_int()));
  3446   match(ConI);
  3447   op_cost(0);
  3448   format %{ %}
  3449   interface(CONST_INTER);
  3450 %}
  3452 // Int Immediate non-negative
  3453 operand immU31()
  3454 %{
  3455   predicate(n->get_int() >= 0);
  3456   match(ConI);
  3458   op_cost(0);
  3459   format %{ %}
  3460   interface(CONST_INTER);
  3461 %}
  3463 // Integer Immediate: 0-bit
  3464 operand immI0() %{
  3465   predicate(n->get_int() == 0);
  3466   match(ConI);
  3467   op_cost(0);
  3469   format %{ %}
  3470   interface(CONST_INTER);
  3471 %}
  3473 // Integer Immediate: the value 10
  3474 operand immI10() %{
  3475   predicate(n->get_int() == 10);
  3476   match(ConI);
  3477   op_cost(0);
  3479   format %{ %}
  3480   interface(CONST_INTER);
  3481 %}
  3483 // Integer Immediate: the values 0-31
  3484 operand immU5() %{
  3485   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3486   match(ConI);
  3487   op_cost(0);
  3489   format %{ %}
  3490   interface(CONST_INTER);
  3491 %}
  3493 // Integer Immediate: the values 1-31
  3494 operand immI_1_31() %{
  3495   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3496   match(ConI);
  3497   op_cost(0);
  3499   format %{ %}
  3500   interface(CONST_INTER);
  3501 %}
  3503 // Integer Immediate: the values 32-63
  3504 operand immI_32_63() %{
  3505   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3506   match(ConI);
  3507   op_cost(0);
  3509   format %{ %}
  3510   interface(CONST_INTER);
  3511 %}
  3513 // Immediates for special shifts (sign extend)
  3515 // Integer Immediate: the value 16
  3516 operand immI_16() %{
  3517   predicate(n->get_int() == 16);
  3518   match(ConI);
  3519   op_cost(0);
  3521   format %{ %}
  3522   interface(CONST_INTER);
  3523 %}
  3525 // Integer Immediate: the value 24
  3526 operand immI_24() %{
  3527   predicate(n->get_int() == 24);
  3528   match(ConI);
  3529   op_cost(0);
  3531   format %{ %}
  3532   interface(CONST_INTER);
  3533 %}
  3535 // Integer Immediate: the value 255
  3536 operand immI_255() %{
  3537   predicate( n->get_int() == 255 );
  3538   match(ConI);
  3539   op_cost(0);
  3541   format %{ %}
  3542   interface(CONST_INTER);
  3543 %}
  3545 // Integer Immediate: the value 65535
  3546 operand immI_65535() %{
  3547   predicate(n->get_int() == 65535);
  3548   match(ConI);
  3549   op_cost(0);
  3551   format %{ %}
  3552   interface(CONST_INTER);
  3553 %}
  3555 // Long Immediate: the value FF
  3556 operand immL_FF() %{
  3557   predicate( n->get_long() == 0xFFL );
  3558   match(ConL);
  3559   op_cost(0);
  3561   format %{ %}
  3562   interface(CONST_INTER);
  3563 %}
  3565 // Long Immediate: the value FFFF
  3566 operand immL_FFFF() %{
  3567   predicate( n->get_long() == 0xFFFFL );
  3568   match(ConL);
  3569   op_cost(0);
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 // Pointer Immediate: 32 or 64-bit
  3576 operand immP() %{
  3577   match(ConP);
  3579   op_cost(5);
  3580   // formats are generated automatically for constants and base registers
  3581   format %{ %}
  3582   interface(CONST_INTER);
  3583 %}
  3585 #ifdef _LP64
  3586 // Pointer Immediate: 64-bit
  3587 operand immP_set() %{
  3588   predicate(!VM_Version::is_niagara_plus());
  3589   match(ConP);
  3591   op_cost(5);
  3592   // formats are generated automatically for constants and base registers
  3593   format %{ %}
  3594   interface(CONST_INTER);
  3595 %}
  3597 // Pointer Immediate: 64-bit
  3598 // From Niagara2 processors on a load should be better than materializing.
  3599 operand immP_load() %{
  3600   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3601   match(ConP);
  3603   op_cost(5);
  3604   // formats are generated automatically for constants and base registers
  3605   format %{ %}
  3606   interface(CONST_INTER);
  3607 %}
  3609 // Pointer Immediate: 64-bit
  3610 operand immP_no_oop_cheap() %{
  3611   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3612   match(ConP);
  3614   op_cost(5);
  3615   // formats are generated automatically for constants and base registers
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3619 #endif
  3621 operand immP13() %{
  3622   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3623   match(ConP);
  3624   op_cost(0);
  3626   format %{ %}
  3627   interface(CONST_INTER);
  3628 %}
  3630 operand immP0() %{
  3631   predicate(n->get_ptr() == 0);
  3632   match(ConP);
  3633   op_cost(0);
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 operand immP_poll() %{
  3640   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3641   match(ConP);
  3643   // formats are generated automatically for constants and base registers
  3644   format %{ %}
  3645   interface(CONST_INTER);
  3646 %}
  3648 // Pointer Immediate
  3649 operand immN()
  3650 %{
  3651   match(ConN);
  3653   op_cost(10);
  3654   format %{ %}
  3655   interface(CONST_INTER);
  3656 %}
  3658 operand immNKlass()
  3659 %{
  3660   match(ConNKlass);
  3662   op_cost(10);
  3663   format %{ %}
  3664   interface(CONST_INTER);
  3665 %}
  3667 // NULL Pointer Immediate
  3668 operand immN0()
  3669 %{
  3670   predicate(n->get_narrowcon() == 0);
  3671   match(ConN);
  3673   op_cost(0);
  3674   format %{ %}
  3675   interface(CONST_INTER);
  3676 %}
  3678 operand immL() %{
  3679   match(ConL);
  3680   op_cost(40);
  3681   // formats are generated automatically for constants and base registers
  3682   format %{ %}
  3683   interface(CONST_INTER);
  3684 %}
  3686 operand immL0() %{
  3687   predicate(n->get_long() == 0L);
  3688   match(ConL);
  3689   op_cost(0);
  3690   // formats are generated automatically for constants and base registers
  3691   format %{ %}
  3692   interface(CONST_INTER);
  3693 %}
  3695 // Integer Immediate: 5-bit
  3696 operand immL5() %{
  3697   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3698   match(ConL);
  3699   op_cost(0);
  3700   format %{ %}
  3701   interface(CONST_INTER);
  3702 %}
  3704 // Long Immediate: 13-bit
  3705 operand immL13() %{
  3706   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3707   match(ConL);
  3708   op_cost(0);
  3710   format %{ %}
  3711   interface(CONST_INTER);
  3712 %}
  3714 // Long Immediate: 13-bit minus 7
  3715 operand immL13m7() %{
  3716   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3717   match(ConL);
  3718   op_cost(0);
  3720   format %{ %}
  3721   interface(CONST_INTER);
  3722 %}
  3724 // Long Immediate: low 32-bit mask
  3725 operand immL_32bits() %{
  3726   predicate(n->get_long() == 0xFFFFFFFFL);
  3727   match(ConL);
  3728   op_cost(0);
  3730   format %{ %}
  3731   interface(CONST_INTER);
  3732 %}
  3734 // Long Immediate: cheap (materialize in <= 3 instructions)
  3735 operand immL_cheap() %{
  3736   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3737   match(ConL);
  3738   op_cost(0);
  3740   format %{ %}
  3741   interface(CONST_INTER);
  3742 %}
  3744 // Long Immediate: expensive (materialize in > 3 instructions)
  3745 operand immL_expensive() %{
  3746   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3747   match(ConL);
  3748   op_cost(0);
  3750   format %{ %}
  3751   interface(CONST_INTER);
  3752 %}
  3754 // Double Immediate
  3755 operand immD() %{
  3756   match(ConD);
  3758   op_cost(40);
  3759   format %{ %}
  3760   interface(CONST_INTER);
  3761 %}
  3763 operand immD0() %{
  3764 #ifdef _LP64
  3765   // on 64-bit architectures this comparision is faster
  3766   predicate(jlong_cast(n->getd()) == 0);
  3767 #else
  3768   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3769 #endif
  3770   match(ConD);
  3772   op_cost(0);
  3773   format %{ %}
  3774   interface(CONST_INTER);
  3775 %}
  3777 // Float Immediate
  3778 operand immF() %{
  3779   match(ConF);
  3781   op_cost(20);
  3782   format %{ %}
  3783   interface(CONST_INTER);
  3784 %}
  3786 // Float Immediate: 0
  3787 operand immF0() %{
  3788   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3789   match(ConF);
  3791   op_cost(0);
  3792   format %{ %}
  3793   interface(CONST_INTER);
  3794 %}
  3796 // Integer Register Operands
  3797 // Integer Register
  3798 operand iRegI() %{
  3799   constraint(ALLOC_IN_RC(int_reg));
  3800   match(RegI);
  3802   match(notemp_iRegI);
  3803   match(g1RegI);
  3804   match(o0RegI);
  3805   match(iRegIsafe);
  3807   format %{ %}
  3808   interface(REG_INTER);
  3809 %}
  3811 operand notemp_iRegI() %{
  3812   constraint(ALLOC_IN_RC(notemp_int_reg));
  3813   match(RegI);
  3815   match(o0RegI);
  3817   format %{ %}
  3818   interface(REG_INTER);
  3819 %}
  3821 operand o0RegI() %{
  3822   constraint(ALLOC_IN_RC(o0_regI));
  3823   match(iRegI);
  3825   format %{ %}
  3826   interface(REG_INTER);
  3827 %}
  3829 // Pointer Register
  3830 operand iRegP() %{
  3831   constraint(ALLOC_IN_RC(ptr_reg));
  3832   match(RegP);
  3834   match(lock_ptr_RegP);
  3835   match(g1RegP);
  3836   match(g2RegP);
  3837   match(g3RegP);
  3838   match(g4RegP);
  3839   match(i0RegP);
  3840   match(o0RegP);
  3841   match(o1RegP);
  3842   match(l7RegP);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand sp_ptr_RegP() %{
  3849   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3850   match(RegP);
  3851   match(iRegP);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand lock_ptr_RegP() %{
  3858   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3859   match(RegP);
  3860   match(i0RegP);
  3861   match(o0RegP);
  3862   match(o1RegP);
  3863   match(l7RegP);
  3865   format %{ %}
  3866   interface(REG_INTER);
  3867 %}
  3869 operand g1RegP() %{
  3870   constraint(ALLOC_IN_RC(g1_regP));
  3871   match(iRegP);
  3873   format %{ %}
  3874   interface(REG_INTER);
  3875 %}
  3877 operand g2RegP() %{
  3878   constraint(ALLOC_IN_RC(g2_regP));
  3879   match(iRegP);
  3881   format %{ %}
  3882   interface(REG_INTER);
  3883 %}
  3885 operand g3RegP() %{
  3886   constraint(ALLOC_IN_RC(g3_regP));
  3887   match(iRegP);
  3889   format %{ %}
  3890   interface(REG_INTER);
  3891 %}
  3893 operand g1RegI() %{
  3894   constraint(ALLOC_IN_RC(g1_regI));
  3895   match(iRegI);
  3897   format %{ %}
  3898   interface(REG_INTER);
  3899 %}
  3901 operand g3RegI() %{
  3902   constraint(ALLOC_IN_RC(g3_regI));
  3903   match(iRegI);
  3905   format %{ %}
  3906   interface(REG_INTER);
  3907 %}
  3909 operand g4RegI() %{
  3910   constraint(ALLOC_IN_RC(g4_regI));
  3911   match(iRegI);
  3913   format %{ %}
  3914   interface(REG_INTER);
  3915 %}
  3917 operand g4RegP() %{
  3918   constraint(ALLOC_IN_RC(g4_regP));
  3919   match(iRegP);
  3921   format %{ %}
  3922   interface(REG_INTER);
  3923 %}
  3925 operand i0RegP() %{
  3926   constraint(ALLOC_IN_RC(i0_regP));
  3927   match(iRegP);
  3929   format %{ %}
  3930   interface(REG_INTER);
  3931 %}
  3933 operand o0RegP() %{
  3934   constraint(ALLOC_IN_RC(o0_regP));
  3935   match(iRegP);
  3937   format %{ %}
  3938   interface(REG_INTER);
  3939 %}
  3941 operand o1RegP() %{
  3942   constraint(ALLOC_IN_RC(o1_regP));
  3943   match(iRegP);
  3945   format %{ %}
  3946   interface(REG_INTER);
  3947 %}
  3949 operand o2RegP() %{
  3950   constraint(ALLOC_IN_RC(o2_regP));
  3951   match(iRegP);
  3953   format %{ %}
  3954   interface(REG_INTER);
  3955 %}
  3957 operand o7RegP() %{
  3958   constraint(ALLOC_IN_RC(o7_regP));
  3959   match(iRegP);
  3961   format %{ %}
  3962   interface(REG_INTER);
  3963 %}
  3965 operand l7RegP() %{
  3966   constraint(ALLOC_IN_RC(l7_regP));
  3967   match(iRegP);
  3969   format %{ %}
  3970   interface(REG_INTER);
  3971 %}
  3973 operand o7RegI() %{
  3974   constraint(ALLOC_IN_RC(o7_regI));
  3975   match(iRegI);
  3977   format %{ %}
  3978   interface(REG_INTER);
  3979 %}
  3981 operand iRegN() %{
  3982   constraint(ALLOC_IN_RC(int_reg));
  3983   match(RegN);
  3985   format %{ %}
  3986   interface(REG_INTER);
  3987 %}
  3989 // Long Register
  3990 operand iRegL() %{
  3991   constraint(ALLOC_IN_RC(long_reg));
  3992   match(RegL);
  3994   format %{ %}
  3995   interface(REG_INTER);
  3996 %}
  3998 operand o2RegL() %{
  3999   constraint(ALLOC_IN_RC(o2_regL));
  4000   match(iRegL);
  4002   format %{ %}
  4003   interface(REG_INTER);
  4004 %}
  4006 operand o7RegL() %{
  4007   constraint(ALLOC_IN_RC(o7_regL));
  4008   match(iRegL);
  4010   format %{ %}
  4011   interface(REG_INTER);
  4012 %}
  4014 operand g1RegL() %{
  4015   constraint(ALLOC_IN_RC(g1_regL));
  4016   match(iRegL);
  4018   format %{ %}
  4019   interface(REG_INTER);
  4020 %}
  4022 operand g3RegL() %{
  4023   constraint(ALLOC_IN_RC(g3_regL));
  4024   match(iRegL);
  4026   format %{ %}
  4027   interface(REG_INTER);
  4028 %}
  4030 // Int Register safe
  4031 // This is 64bit safe
  4032 operand iRegIsafe() %{
  4033   constraint(ALLOC_IN_RC(long_reg));
  4035   match(iRegI);
  4037   format %{ %}
  4038   interface(REG_INTER);
  4039 %}
  4041 // Condition Code Flag Register
  4042 operand flagsReg() %{
  4043   constraint(ALLOC_IN_RC(int_flags));
  4044   match(RegFlags);
  4046   format %{ "ccr" %} // both ICC and XCC
  4047   interface(REG_INTER);
  4048 %}
  4050 // Condition Code Register, unsigned comparisons.
  4051 operand flagsRegU() %{
  4052   constraint(ALLOC_IN_RC(int_flags));
  4053   match(RegFlags);
  4055   format %{ "icc_U" %}
  4056   interface(REG_INTER);
  4057 %}
  4059 // Condition Code Register, pointer comparisons.
  4060 operand flagsRegP() %{
  4061   constraint(ALLOC_IN_RC(int_flags));
  4062   match(RegFlags);
  4064 #ifdef _LP64
  4065   format %{ "xcc_P" %}
  4066 #else
  4067   format %{ "icc_P" %}
  4068 #endif
  4069   interface(REG_INTER);
  4070 %}
  4072 // Condition Code Register, long comparisons.
  4073 operand flagsRegL() %{
  4074   constraint(ALLOC_IN_RC(int_flags));
  4075   match(RegFlags);
  4077   format %{ "xcc_L" %}
  4078   interface(REG_INTER);
  4079 %}
  4081 // Condition Code Register, floating comparisons, unordered same as "less".
  4082 operand flagsRegF() %{
  4083   constraint(ALLOC_IN_RC(float_flags));
  4084   match(RegFlags);
  4085   match(flagsRegF0);
  4087   format %{ %}
  4088   interface(REG_INTER);
  4089 %}
  4091 operand flagsRegF0() %{
  4092   constraint(ALLOC_IN_RC(float_flag0));
  4093   match(RegFlags);
  4095   format %{ %}
  4096   interface(REG_INTER);
  4097 %}
  4100 // Condition Code Flag Register used by long compare
  4101 operand flagsReg_long_LTGE() %{
  4102   constraint(ALLOC_IN_RC(int_flags));
  4103   match(RegFlags);
  4104   format %{ "icc_LTGE" %}
  4105   interface(REG_INTER);
  4106 %}
  4107 operand flagsReg_long_EQNE() %{
  4108   constraint(ALLOC_IN_RC(int_flags));
  4109   match(RegFlags);
  4110   format %{ "icc_EQNE" %}
  4111   interface(REG_INTER);
  4112 %}
  4113 operand flagsReg_long_LEGT() %{
  4114   constraint(ALLOC_IN_RC(int_flags));
  4115   match(RegFlags);
  4116   format %{ "icc_LEGT" %}
  4117   interface(REG_INTER);
  4118 %}
  4121 operand regD() %{
  4122   constraint(ALLOC_IN_RC(dflt_reg));
  4123   match(RegD);
  4125   match(regD_low);
  4127   format %{ %}
  4128   interface(REG_INTER);
  4129 %}
  4131 operand regF() %{
  4132   constraint(ALLOC_IN_RC(sflt_reg));
  4133   match(RegF);
  4135   format %{ %}
  4136   interface(REG_INTER);
  4137 %}
  4139 operand regD_low() %{
  4140   constraint(ALLOC_IN_RC(dflt_low_reg));
  4141   match(regD);
  4143   format %{ %}
  4144   interface(REG_INTER);
  4145 %}
  4147 // Special Registers
  4149 // Method Register
  4150 operand inline_cache_regP(iRegP reg) %{
  4151   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4152   match(reg);
  4153   format %{ %}
  4154   interface(REG_INTER);
  4155 %}
  4157 operand interpreter_method_oop_regP(iRegP reg) %{
  4158   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4159   match(reg);
  4160   format %{ %}
  4161   interface(REG_INTER);
  4162 %}
  4165 //----------Complex Operands---------------------------------------------------
  4166 // Indirect Memory Reference
  4167 operand indirect(sp_ptr_RegP reg) %{
  4168   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4169   match(reg);
  4171   op_cost(100);
  4172   format %{ "[$reg]" %}
  4173   interface(MEMORY_INTER) %{
  4174     base($reg);
  4175     index(0x0);
  4176     scale(0x0);
  4177     disp(0x0);
  4178   %}
  4179 %}
  4181 // Indirect with simm13 Offset
  4182 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4183   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4184   match(AddP reg offset);
  4186   op_cost(100);
  4187   format %{ "[$reg + $offset]" %}
  4188   interface(MEMORY_INTER) %{
  4189     base($reg);
  4190     index(0x0);
  4191     scale(0x0);
  4192     disp($offset);
  4193   %}
  4194 %}
  4196 // Indirect with simm13 Offset minus 7
  4197 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4198   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4199   match(AddP reg offset);
  4201   op_cost(100);
  4202   format %{ "[$reg + $offset]" %}
  4203   interface(MEMORY_INTER) %{
  4204     base($reg);
  4205     index(0x0);
  4206     scale(0x0);
  4207     disp($offset);
  4208   %}
  4209 %}
  4211 // Note:  Intel has a swapped version also, like this:
  4212 //operand indOffsetX(iRegI reg, immP offset) %{
  4213 //  constraint(ALLOC_IN_RC(int_reg));
  4214 //  match(AddP offset reg);
  4215 //
  4216 //  op_cost(100);
  4217 //  format %{ "[$reg + $offset]" %}
  4218 //  interface(MEMORY_INTER) %{
  4219 //    base($reg);
  4220 //    index(0x0);
  4221 //    scale(0x0);
  4222 //    disp($offset);
  4223 //  %}
  4224 //%}
  4225 //// However, it doesn't make sense for SPARC, since
  4226 // we have no particularly good way to embed oops in
  4227 // single instructions.
  4229 // Indirect with Register Index
  4230 operand indIndex(iRegP addr, iRegX index) %{
  4231   constraint(ALLOC_IN_RC(ptr_reg));
  4232   match(AddP addr index);
  4234   op_cost(100);
  4235   format %{ "[$addr + $index]" %}
  4236   interface(MEMORY_INTER) %{
  4237     base($addr);
  4238     index($index);
  4239     scale(0x0);
  4240     disp(0x0);
  4241   %}
  4242 %}
  4244 //----------Special Memory Operands--------------------------------------------
  4245 // Stack Slot Operand - This operand is used for loading and storing temporary
  4246 //                      values on the stack where a match requires a value to
  4247 //                      flow through memory.
  4248 operand stackSlotI(sRegI reg) %{
  4249   constraint(ALLOC_IN_RC(stack_slots));
  4250   op_cost(100);
  4251   //match(RegI);
  4252   format %{ "[$reg]" %}
  4253   interface(MEMORY_INTER) %{
  4254     base(0xE);   // R_SP
  4255     index(0x0);
  4256     scale(0x0);
  4257     disp($reg);  // Stack Offset
  4258   %}
  4259 %}
  4261 operand stackSlotP(sRegP reg) %{
  4262   constraint(ALLOC_IN_RC(stack_slots));
  4263   op_cost(100);
  4264   //match(RegP);
  4265   format %{ "[$reg]" %}
  4266   interface(MEMORY_INTER) %{
  4267     base(0xE);   // R_SP
  4268     index(0x0);
  4269     scale(0x0);
  4270     disp($reg);  // Stack Offset
  4271   %}
  4272 %}
  4274 operand stackSlotF(sRegF reg) %{
  4275   constraint(ALLOC_IN_RC(stack_slots));
  4276   op_cost(100);
  4277   //match(RegF);
  4278   format %{ "[$reg]" %}
  4279   interface(MEMORY_INTER) %{
  4280     base(0xE);   // R_SP
  4281     index(0x0);
  4282     scale(0x0);
  4283     disp($reg);  // Stack Offset
  4284   %}
  4285 %}
  4286 operand stackSlotD(sRegD reg) %{
  4287   constraint(ALLOC_IN_RC(stack_slots));
  4288   op_cost(100);
  4289   //match(RegD);
  4290   format %{ "[$reg]" %}
  4291   interface(MEMORY_INTER) %{
  4292     base(0xE);   // R_SP
  4293     index(0x0);
  4294     scale(0x0);
  4295     disp($reg);  // Stack Offset
  4296   %}
  4297 %}
  4298 operand stackSlotL(sRegL reg) %{
  4299   constraint(ALLOC_IN_RC(stack_slots));
  4300   op_cost(100);
  4301   //match(RegL);
  4302   format %{ "[$reg]" %}
  4303   interface(MEMORY_INTER) %{
  4304     base(0xE);   // R_SP
  4305     index(0x0);
  4306     scale(0x0);
  4307     disp($reg);  // Stack Offset
  4308   %}
  4309 %}
  4311 // Operands for expressing Control Flow
  4312 // NOTE:  Label is a predefined operand which should not be redefined in
  4313 //        the AD file.  It is generically handled within the ADLC.
  4315 //----------Conditional Branch Operands----------------------------------------
  4316 // Comparison Op  - This is the operation of the comparison, and is limited to
  4317 //                  the following set of codes:
  4318 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4319 //
  4320 // Other attributes of the comparison, such as unsignedness, are specified
  4321 // by the comparison instruction that sets a condition code flags register.
  4322 // That result is represented by a flags operand whose subtype is appropriate
  4323 // to the unsignedness (etc.) of the comparison.
  4324 //
  4325 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4326 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4327 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4329 operand cmpOp() %{
  4330   match(Bool);
  4332   format %{ "" %}
  4333   interface(COND_INTER) %{
  4334     equal(0x1);
  4335     not_equal(0x9);
  4336     less(0x3);
  4337     greater_equal(0xB);
  4338     less_equal(0x2);
  4339     greater(0xA);
  4340     overflow(0x7);
  4341     no_overflow(0xF);
  4342   %}
  4343 %}
  4345 // Comparison Op, unsigned
  4346 operand cmpOpU() %{
  4347   match(Bool);
  4348   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4349             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4351   format %{ "u" %}
  4352   interface(COND_INTER) %{
  4353     equal(0x1);
  4354     not_equal(0x9);
  4355     less(0x5);
  4356     greater_equal(0xD);
  4357     less_equal(0x4);
  4358     greater(0xC);
  4359     overflow(0x7);
  4360     no_overflow(0xF);
  4361   %}
  4362 %}
  4364 // Comparison Op, pointer (same as unsigned)
  4365 operand cmpOpP() %{
  4366   match(Bool);
  4367   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4368             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4370   format %{ "p" %}
  4371   interface(COND_INTER) %{
  4372     equal(0x1);
  4373     not_equal(0x9);
  4374     less(0x5);
  4375     greater_equal(0xD);
  4376     less_equal(0x4);
  4377     greater(0xC);
  4378     overflow(0x7);
  4379     no_overflow(0xF);
  4380   %}
  4381 %}
  4383 // Comparison Op, branch-register encoding
  4384 operand cmpOp_reg() %{
  4385   match(Bool);
  4386   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4387             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4389   format %{ "" %}
  4390   interface(COND_INTER) %{
  4391     equal        (0x1);
  4392     not_equal    (0x5);
  4393     less         (0x3);
  4394     greater_equal(0x7);
  4395     less_equal   (0x2);
  4396     greater      (0x6);
  4397     overflow(0x7); // not supported
  4398     no_overflow(0xF); // not supported
  4399   %}
  4400 %}
  4402 // Comparison Code, floating, unordered same as less
  4403 operand cmpOpF() %{
  4404   match(Bool);
  4405   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4406             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4408   format %{ "fl" %}
  4409   interface(COND_INTER) %{
  4410     equal(0x9);
  4411     not_equal(0x1);
  4412     less(0x3);
  4413     greater_equal(0xB);
  4414     less_equal(0xE);
  4415     greater(0x6);
  4417     overflow(0x7); // not supported
  4418     no_overflow(0xF); // not supported
  4419   %}
  4420 %}
  4422 // Used by long compare
  4423 operand cmpOp_commute() %{
  4424   match(Bool);
  4425   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4426             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4428   format %{ "" %}
  4429   interface(COND_INTER) %{
  4430     equal(0x1);
  4431     not_equal(0x9);
  4432     less(0xA);
  4433     greater_equal(0x2);
  4434     less_equal(0xB);
  4435     greater(0x3);
  4436     overflow(0x7);
  4437     no_overflow(0xF);
  4438   %}
  4439 %}
  4441 //----------OPERAND CLASSES----------------------------------------------------
  4442 // Operand Classes are groups of operands that are used to simplify
  4443 // instruction definitions by not requiring the AD writer to specify separate
  4444 // instructions for every form of operand when the instruction accepts
  4445 // multiple operand types with the same basic encoding and format.  The classic
  4446 // case of this is memory operands.
  4447 opclass memory( indirect, indOffset13, indIndex );
  4448 opclass indIndexMemory( indIndex );
  4450 //----------PIPELINE-----------------------------------------------------------
  4451 pipeline %{
  4453 //----------ATTRIBUTES---------------------------------------------------------
  4454 attributes %{
  4455   fixed_size_instructions;           // Fixed size instructions
  4456   branch_has_delay_slot;             // Branch has delay slot following
  4457   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4458   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4459   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4460   instruction_fetch_units = 1;       // of 16 bytes
  4462   // List of nop instructions
  4463   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4464 %}
  4466 //----------RESOURCES----------------------------------------------------------
  4467 // Resources are the functional units available to the machine
  4468 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4470 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4471 // Pipeline Description specifies the stages in the machine's pipeline
  4473 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4475 //----------PIPELINE CLASSES---------------------------------------------------
  4476 // Pipeline Classes describe the stages in which input and output are
  4477 // referenced by the hardware pipeline.
  4479 // Integer ALU reg-reg operation
  4480 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4481     single_instruction;
  4482     dst   : E(write);
  4483     src1  : R(read);
  4484     src2  : R(read);
  4485     IALU  : R;
  4486 %}
  4488 // Integer ALU reg-reg long operation
  4489 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4490     instruction_count(2);
  4491     dst   : E(write);
  4492     src1  : R(read);
  4493     src2  : R(read);
  4494     IALU  : R;
  4495     IALU  : R;
  4496 %}
  4498 // Integer ALU reg-reg long dependent operation
  4499 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4500     instruction_count(1); multiple_bundles;
  4501     dst   : E(write);
  4502     src1  : R(read);
  4503     src2  : R(read);
  4504     cr    : E(write);
  4505     IALU  : R(2);
  4506 %}
  4508 // Integer ALU reg-imm operaion
  4509 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4510     single_instruction;
  4511     dst   : E(write);
  4512     src1  : R(read);
  4513     IALU  : R;
  4514 %}
  4516 // Integer ALU reg-reg operation with condition code
  4517 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4518     single_instruction;
  4519     dst   : E(write);
  4520     cr    : E(write);
  4521     src1  : R(read);
  4522     src2  : R(read);
  4523     IALU  : R;
  4524 %}
  4526 // Integer ALU reg-imm operation with condition code
  4527 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4528     single_instruction;
  4529     dst   : E(write);
  4530     cr    : E(write);
  4531     src1  : R(read);
  4532     IALU  : R;
  4533 %}
  4535 // Integer ALU zero-reg operation
  4536 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4537     single_instruction;
  4538     dst   : E(write);
  4539     src2  : R(read);
  4540     IALU  : R;
  4541 %}
  4543 // Integer ALU zero-reg operation with condition code only
  4544 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4545     single_instruction;
  4546     cr    : E(write);
  4547     src   : R(read);
  4548     IALU  : R;
  4549 %}
  4551 // Integer ALU reg-reg operation with condition code only
  4552 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4553     single_instruction;
  4554     cr    : E(write);
  4555     src1  : R(read);
  4556     src2  : R(read);
  4557     IALU  : R;
  4558 %}
  4560 // Integer ALU reg-imm operation with condition code only
  4561 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4562     single_instruction;
  4563     cr    : E(write);
  4564     src1  : R(read);
  4565     IALU  : R;
  4566 %}
  4568 // Integer ALU reg-reg-zero operation with condition code only
  4569 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4570     single_instruction;
  4571     cr    : E(write);
  4572     src1  : R(read);
  4573     src2  : R(read);
  4574     IALU  : R;
  4575 %}
  4577 // Integer ALU reg-imm-zero operation with condition code only
  4578 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4579     single_instruction;
  4580     cr    : E(write);
  4581     src1  : R(read);
  4582     IALU  : R;
  4583 %}
  4585 // Integer ALU reg-reg operation with condition code, src1 modified
  4586 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4587     single_instruction;
  4588     cr    : E(write);
  4589     src1  : E(write);
  4590     src1  : R(read);
  4591     src2  : R(read);
  4592     IALU  : R;
  4593 %}
  4595 // Integer ALU reg-imm operation with condition code, src1 modified
  4596 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4597     single_instruction;
  4598     cr    : E(write);
  4599     src1  : E(write);
  4600     src1  : R(read);
  4601     IALU  : R;
  4602 %}
  4604 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4605     multiple_bundles;
  4606     dst   : E(write)+4;
  4607     cr    : E(write);
  4608     src1  : R(read);
  4609     src2  : R(read);
  4610     IALU  : R(3);
  4611     BR    : R(2);
  4612 %}
  4614 // Integer ALU operation
  4615 pipe_class ialu_none(iRegI dst) %{
  4616     single_instruction;
  4617     dst   : E(write);
  4618     IALU  : R;
  4619 %}
  4621 // Integer ALU reg operation
  4622 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4623     single_instruction; may_have_no_code;
  4624     dst   : E(write);
  4625     src   : R(read);
  4626     IALU  : R;
  4627 %}
  4629 // Integer ALU reg conditional operation
  4630 // This instruction has a 1 cycle stall, and cannot execute
  4631 // in the same cycle as the instruction setting the condition
  4632 // code. We kludge this by pretending to read the condition code
  4633 // 1 cycle earlier, and by marking the functional units as busy
  4634 // for 2 cycles with the result available 1 cycle later than
  4635 // is really the case.
  4636 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4637     single_instruction;
  4638     op2_out : C(write);
  4639     op1     : R(read);
  4640     cr      : R(read);       // This is really E, with a 1 cycle stall
  4641     BR      : R(2);
  4642     MS      : R(2);
  4643 %}
  4645 #ifdef _LP64
  4646 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4647     instruction_count(1); multiple_bundles;
  4648     dst     : C(write)+1;
  4649     src     : R(read)+1;
  4650     IALU    : R(1);
  4651     BR      : E(2);
  4652     MS      : E(2);
  4653 %}
  4654 #endif
  4656 // Integer ALU reg operation
  4657 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4658     single_instruction; may_have_no_code;
  4659     dst   : E(write);
  4660     src   : R(read);
  4661     IALU  : R;
  4662 %}
  4663 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4664     single_instruction; may_have_no_code;
  4665     dst   : E(write);
  4666     src   : R(read);
  4667     IALU  : R;
  4668 %}
  4670 // Two integer ALU reg operations
  4671 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4672     instruction_count(2);
  4673     dst   : E(write);
  4674     src   : R(read);
  4675     A0    : R;
  4676     A1    : R;
  4677 %}
  4679 // Two integer ALU reg operations
  4680 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4681     instruction_count(2); may_have_no_code;
  4682     dst   : E(write);
  4683     src   : R(read);
  4684     A0    : R;
  4685     A1    : R;
  4686 %}
  4688 // Integer ALU imm operation
  4689 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4690     single_instruction;
  4691     dst   : E(write);
  4692     IALU  : R;
  4693 %}
  4695 // Integer ALU reg-reg with carry operation
  4696 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4697     single_instruction;
  4698     dst   : E(write);
  4699     src1  : R(read);
  4700     src2  : R(read);
  4701     IALU  : R;
  4702 %}
  4704 // Integer ALU cc operation
  4705 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4706     single_instruction;
  4707     dst   : E(write);
  4708     cc    : R(read);
  4709     IALU  : R;
  4710 %}
  4712 // Integer ALU cc / second IALU operation
  4713 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4714     instruction_count(1); multiple_bundles;
  4715     dst   : E(write)+1;
  4716     src   : R(read);
  4717     IALU  : R;
  4718 %}
  4720 // Integer ALU cc / second IALU operation
  4721 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4722     instruction_count(1); multiple_bundles;
  4723     dst   : E(write)+1;
  4724     p     : R(read);
  4725     q     : R(read);
  4726     IALU  : R;
  4727 %}
  4729 // Integer ALU hi-lo-reg operation
  4730 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4731     instruction_count(1); multiple_bundles;
  4732     dst   : E(write)+1;
  4733     IALU  : R(2);
  4734 %}
  4736 // Float ALU hi-lo-reg operation (with temp)
  4737 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4738     instruction_count(1); multiple_bundles;
  4739     dst   : E(write)+1;
  4740     IALU  : R(2);
  4741 %}
  4743 // Long Constant
  4744 pipe_class loadConL( iRegL dst, immL src ) %{
  4745     instruction_count(2); multiple_bundles;
  4746     dst   : E(write)+1;
  4747     IALU  : R(2);
  4748     IALU  : R(2);
  4749 %}
  4751 // Pointer Constant
  4752 pipe_class loadConP( iRegP dst, immP src ) %{
  4753     instruction_count(0); multiple_bundles;
  4754     fixed_latency(6);
  4755 %}
  4757 // Polling Address
  4758 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4759 #ifdef _LP64
  4760     instruction_count(0); multiple_bundles;
  4761     fixed_latency(6);
  4762 #else
  4763     dst   : E(write);
  4764     IALU  : R;
  4765 #endif
  4766 %}
  4768 // Long Constant small
  4769 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4770     instruction_count(2);
  4771     dst   : E(write);
  4772     IALU  : R;
  4773     IALU  : R;
  4774 %}
  4776 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4777 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4778     instruction_count(1); multiple_bundles;
  4779     src   : R(read);
  4780     dst   : M(write)+1;
  4781     IALU  : R;
  4782     MS    : E;
  4783 %}
  4785 // Integer ALU nop operation
  4786 pipe_class ialu_nop() %{
  4787     single_instruction;
  4788     IALU  : R;
  4789 %}
  4791 // Integer ALU nop operation
  4792 pipe_class ialu_nop_A0() %{
  4793     single_instruction;
  4794     A0    : R;
  4795 %}
  4797 // Integer ALU nop operation
  4798 pipe_class ialu_nop_A1() %{
  4799     single_instruction;
  4800     A1    : R;
  4801 %}
  4803 // Integer Multiply reg-reg operation
  4804 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4805     single_instruction;
  4806     dst   : E(write);
  4807     src1  : R(read);
  4808     src2  : R(read);
  4809     MS    : R(5);
  4810 %}
  4812 // Integer Multiply reg-imm operation
  4813 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4814     single_instruction;
  4815     dst   : E(write);
  4816     src1  : R(read);
  4817     MS    : R(5);
  4818 %}
  4820 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4821     single_instruction;
  4822     dst   : E(write)+4;
  4823     src1  : R(read);
  4824     src2  : R(read);
  4825     MS    : R(6);
  4826 %}
  4828 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4829     single_instruction;
  4830     dst   : E(write)+4;
  4831     src1  : R(read);
  4832     MS    : R(6);
  4833 %}
  4835 // Integer Divide reg-reg
  4836 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4837     instruction_count(1); multiple_bundles;
  4838     dst   : E(write);
  4839     temp  : E(write);
  4840     src1  : R(read);
  4841     src2  : R(read);
  4842     temp  : R(read);
  4843     MS    : R(38);
  4844 %}
  4846 // Integer Divide reg-imm
  4847 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4848     instruction_count(1); multiple_bundles;
  4849     dst   : E(write);
  4850     temp  : E(write);
  4851     src1  : R(read);
  4852     temp  : R(read);
  4853     MS    : R(38);
  4854 %}
  4856 // Long Divide
  4857 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4858     dst  : E(write)+71;
  4859     src1 : R(read);
  4860     src2 : R(read)+1;
  4861     MS   : R(70);
  4862 %}
  4864 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4865     dst  : E(write)+71;
  4866     src1 : R(read);
  4867     MS   : R(70);
  4868 %}
  4870 // Floating Point Add Float
  4871 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4872     single_instruction;
  4873     dst   : X(write);
  4874     src1  : E(read);
  4875     src2  : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Add Double
  4880 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src1  : E(read);
  4884     src2  : E(read);
  4885     FA    : R;
  4886 %}
  4888 // Floating Point Conditional Move based on integer flags
  4889 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4890     single_instruction;
  4891     dst   : X(write);
  4892     src   : E(read);
  4893     cr    : R(read);
  4894     FA    : R(2);
  4895     BR    : R(2);
  4896 %}
  4898 // Floating Point Conditional Move based on integer flags
  4899 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4900     single_instruction;
  4901     dst   : X(write);
  4902     src   : E(read);
  4903     cr    : R(read);
  4904     FA    : R(2);
  4905     BR    : R(2);
  4906 %}
  4908 // Floating Point Multiply Float
  4909 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4910     single_instruction;
  4911     dst   : X(write);
  4912     src1  : E(read);
  4913     src2  : E(read);
  4914     FM    : R;
  4915 %}
  4917 // Floating Point Multiply Double
  4918 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4919     single_instruction;
  4920     dst   : X(write);
  4921     src1  : E(read);
  4922     src2  : E(read);
  4923     FM    : R;
  4924 %}
  4926 // Floating Point Divide Float
  4927 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4928     single_instruction;
  4929     dst   : X(write);
  4930     src1  : E(read);
  4931     src2  : E(read);
  4932     FM    : R;
  4933     FDIV  : C(14);
  4934 %}
  4936 // Floating Point Divide Double
  4937 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4938     single_instruction;
  4939     dst   : X(write);
  4940     src1  : E(read);
  4941     src2  : E(read);
  4942     FM    : R;
  4943     FDIV  : C(17);
  4944 %}
  4946 // Floating Point Move/Negate/Abs Float
  4947 pipe_class faddF_reg(regF dst, regF src) %{
  4948     single_instruction;
  4949     dst   : W(write);
  4950     src   : E(read);
  4951     FA    : R(1);
  4952 %}
  4954 // Floating Point Move/Negate/Abs Double
  4955 pipe_class faddD_reg(regD dst, regD src) %{
  4956     single_instruction;
  4957     dst   : W(write);
  4958     src   : E(read);
  4959     FA    : R;
  4960 %}
  4962 // Floating Point Convert F->D
  4963 pipe_class fcvtF2D(regD dst, regF src) %{
  4964     single_instruction;
  4965     dst   : X(write);
  4966     src   : E(read);
  4967     FA    : R;
  4968 %}
  4970 // Floating Point Convert I->D
  4971 pipe_class fcvtI2D(regD dst, regF src) %{
  4972     single_instruction;
  4973     dst   : X(write);
  4974     src   : E(read);
  4975     FA    : R;
  4976 %}
  4978 // Floating Point Convert LHi->D
  4979 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4980     single_instruction;
  4981     dst   : X(write);
  4982     src   : E(read);
  4983     FA    : R;
  4984 %}
  4986 // Floating Point Convert L->D
  4987 pipe_class fcvtL2D(regD dst, regF src) %{
  4988     single_instruction;
  4989     dst   : X(write);
  4990     src   : E(read);
  4991     FA    : R;
  4992 %}
  4994 // Floating Point Convert L->F
  4995 pipe_class fcvtL2F(regD dst, regF src) %{
  4996     single_instruction;
  4997     dst   : X(write);
  4998     src   : E(read);
  4999     FA    : R;
  5000 %}
  5002 // Floating Point Convert D->F
  5003 pipe_class fcvtD2F(regD dst, regF src) %{
  5004     single_instruction;
  5005     dst   : X(write);
  5006     src   : E(read);
  5007     FA    : R;
  5008 %}
  5010 // Floating Point Convert I->L
  5011 pipe_class fcvtI2L(regD dst, regF src) %{
  5012     single_instruction;
  5013     dst   : X(write);
  5014     src   : E(read);
  5015     FA    : R;
  5016 %}
  5018 // Floating Point Convert D->F
  5019 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  5020     instruction_count(1); multiple_bundles;
  5021     dst   : X(write)+6;
  5022     src   : E(read);
  5023     FA    : R;
  5024 %}
  5026 // Floating Point Convert D->L
  5027 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  5028     instruction_count(1); multiple_bundles;
  5029     dst   : X(write)+6;
  5030     src   : E(read);
  5031     FA    : R;
  5032 %}
  5034 // Floating Point Convert F->I
  5035 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  5036     instruction_count(1); multiple_bundles;
  5037     dst   : X(write)+6;
  5038     src   : E(read);
  5039     FA    : R;
  5040 %}
  5042 // Floating Point Convert F->L
  5043 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  5044     instruction_count(1); multiple_bundles;
  5045     dst   : X(write)+6;
  5046     src   : E(read);
  5047     FA    : R;
  5048 %}
  5050 // Floating Point Convert I->F
  5051 pipe_class fcvtI2F(regF dst, regF src) %{
  5052     single_instruction;
  5053     dst   : X(write);
  5054     src   : E(read);
  5055     FA    : R;
  5056 %}
  5058 // Floating Point Compare
  5059 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  5060     single_instruction;
  5061     cr    : X(write);
  5062     src1  : E(read);
  5063     src2  : E(read);
  5064     FA    : R;
  5065 %}
  5067 // Floating Point Compare
  5068 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5069     single_instruction;
  5070     cr    : X(write);
  5071     src1  : E(read);
  5072     src2  : E(read);
  5073     FA    : R;
  5074 %}
  5076 // Floating Add Nop
  5077 pipe_class fadd_nop() %{
  5078     single_instruction;
  5079     FA  : R;
  5080 %}
  5082 // Integer Store to Memory
  5083 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5084     single_instruction;
  5085     mem   : R(read);
  5086     src   : C(read);
  5087     MS    : R;
  5088 %}
  5090 // Integer Store to Memory
  5091 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5092     single_instruction;
  5093     mem   : R(read);
  5094     src   : C(read);
  5095     MS    : R;
  5096 %}
  5098 // Integer Store Zero to Memory
  5099 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5100     single_instruction;
  5101     mem   : R(read);
  5102     MS    : R;
  5103 %}
  5105 // Special Stack Slot Store
  5106 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5107     single_instruction;
  5108     stkSlot : R(read);
  5109     src     : C(read);
  5110     MS      : R;
  5111 %}
  5113 // Special Stack Slot Store
  5114 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5115     instruction_count(2); multiple_bundles;
  5116     stkSlot : R(read);
  5117     src     : C(read);
  5118     MS      : R(2);
  5119 %}
  5121 // Float Store
  5122 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5123     single_instruction;
  5124     mem : R(read);
  5125     src : C(read);
  5126     MS  : R;
  5127 %}
  5129 // Float Store
  5130 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5131     single_instruction;
  5132     mem : R(read);
  5133     MS  : R;
  5134 %}
  5136 // Double Store
  5137 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5138     instruction_count(1);
  5139     mem : R(read);
  5140     src : C(read);
  5141     MS  : R;
  5142 %}
  5144 // Double Store
  5145 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5146     single_instruction;
  5147     mem : R(read);
  5148     MS  : R;
  5149 %}
  5151 // Special Stack Slot Float Store
  5152 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5153     single_instruction;
  5154     stkSlot : R(read);
  5155     src     : C(read);
  5156     MS      : R;
  5157 %}
  5159 // Special Stack Slot Double Store
  5160 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5161     single_instruction;
  5162     stkSlot : R(read);
  5163     src     : C(read);
  5164     MS      : R;
  5165 %}
  5167 // Integer Load (when sign bit propagation not needed)
  5168 pipe_class iload_mem(iRegI dst, memory mem) %{
  5169     single_instruction;
  5170     mem : R(read);
  5171     dst : C(write);
  5172     MS  : R;
  5173 %}
  5175 // Integer Load from stack operand
  5176 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5177     single_instruction;
  5178     mem : R(read);
  5179     dst : C(write);
  5180     MS  : R;
  5181 %}
  5183 // Integer Load (when sign bit propagation or masking is needed)
  5184 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5185     single_instruction;
  5186     mem : R(read);
  5187     dst : M(write);
  5188     MS  : R;
  5189 %}
  5191 // Float Load
  5192 pipe_class floadF_mem(regF dst, memory mem) %{
  5193     single_instruction;
  5194     mem : R(read);
  5195     dst : M(write);
  5196     MS  : R;
  5197 %}
  5199 // Float Load
  5200 pipe_class floadD_mem(regD dst, memory mem) %{
  5201     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5202     mem : R(read);
  5203     dst : M(write);
  5204     MS  : R;
  5205 %}
  5207 // Float Load
  5208 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5209     single_instruction;
  5210     stkSlot : R(read);
  5211     dst : M(write);
  5212     MS  : R;
  5213 %}
  5215 // Float Load
  5216 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5217     single_instruction;
  5218     stkSlot : R(read);
  5219     dst : M(write);
  5220     MS  : R;
  5221 %}
  5223 // Memory Nop
  5224 pipe_class mem_nop() %{
  5225     single_instruction;
  5226     MS  : R;
  5227 %}
  5229 pipe_class sethi(iRegP dst, immI src) %{
  5230     single_instruction;
  5231     dst  : E(write);
  5232     IALU : R;
  5233 %}
  5235 pipe_class loadPollP(iRegP poll) %{
  5236     single_instruction;
  5237     poll : R(read);
  5238     MS   : R;
  5239 %}
  5241 pipe_class br(Universe br, label labl) %{
  5242     single_instruction_with_delay_slot;
  5243     BR  : R;
  5244 %}
  5246 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5247     single_instruction_with_delay_slot;
  5248     cr    : E(read);
  5249     BR    : R;
  5250 %}
  5252 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5253     single_instruction_with_delay_slot;
  5254     op1 : E(read);
  5255     BR  : R;
  5256     MS  : R;
  5257 %}
  5259 // Compare and branch
  5260 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5261     instruction_count(2); has_delay_slot;
  5262     cr    : E(write);
  5263     src1  : R(read);
  5264     src2  : R(read);
  5265     IALU  : R;
  5266     BR    : R;
  5267 %}
  5269 // Compare and branch
  5270 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5271     instruction_count(2); has_delay_slot;
  5272     cr    : E(write);
  5273     src1  : R(read);
  5274     IALU  : R;
  5275     BR    : R;
  5276 %}
  5278 // Compare and branch using cbcond
  5279 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5280     single_instruction;
  5281     src1  : E(read);
  5282     src2  : E(read);
  5283     IALU  : R;
  5284     BR    : R;
  5285 %}
  5287 // Compare and branch using cbcond
  5288 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5289     single_instruction;
  5290     src1  : E(read);
  5291     IALU  : R;
  5292     BR    : R;
  5293 %}
  5295 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5296     single_instruction_with_delay_slot;
  5297     cr    : E(read);
  5298     BR    : R;
  5299 %}
  5301 pipe_class br_nop() %{
  5302     single_instruction;
  5303     BR  : R;
  5304 %}
  5306 pipe_class simple_call(method meth) %{
  5307     instruction_count(2); multiple_bundles; force_serialization;
  5308     fixed_latency(100);
  5309     BR  : R(1);
  5310     MS  : R(1);
  5311     A0  : R(1);
  5312 %}
  5314 pipe_class compiled_call(method meth) %{
  5315     instruction_count(1); multiple_bundles; force_serialization;
  5316     fixed_latency(100);
  5317     MS  : R(1);
  5318 %}
  5320 pipe_class call(method meth) %{
  5321     instruction_count(0); multiple_bundles; force_serialization;
  5322     fixed_latency(100);
  5323 %}
  5325 pipe_class tail_call(Universe ignore, label labl) %{
  5326     single_instruction; has_delay_slot;
  5327     fixed_latency(100);
  5328     BR  : R(1);
  5329     MS  : R(1);
  5330 %}
  5332 pipe_class ret(Universe ignore) %{
  5333     single_instruction; has_delay_slot;
  5334     BR  : R(1);
  5335     MS  : R(1);
  5336 %}
  5338 pipe_class ret_poll(g3RegP poll) %{
  5339     instruction_count(3); has_delay_slot;
  5340     poll : E(read);
  5341     MS   : R;
  5342 %}
  5344 // The real do-nothing guy
  5345 pipe_class empty( ) %{
  5346     instruction_count(0);
  5347 %}
  5349 pipe_class long_memory_op() %{
  5350     instruction_count(0); multiple_bundles; force_serialization;
  5351     fixed_latency(25);
  5352     MS  : R(1);
  5353 %}
  5355 // Check-cast
  5356 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5357     array : R(read);
  5358     match  : R(read);
  5359     IALU   : R(2);
  5360     BR     : R(2);
  5361     MS     : R;
  5362 %}
  5364 // Convert FPU flags into +1,0,-1
  5365 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5366     src1  : E(read);
  5367     src2  : E(read);
  5368     dst   : E(write);
  5369     FA    : R;
  5370     MS    : R(2);
  5371     BR    : R(2);
  5372 %}
  5374 // Compare for p < q, and conditionally add y
  5375 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5376     p     : E(read);
  5377     q     : E(read);
  5378     y     : E(read);
  5379     IALU  : R(3)
  5380 %}
  5382 // Perform a compare, then move conditionally in a branch delay slot.
  5383 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5384     src2   : E(read);
  5385     srcdst : E(read);
  5386     IALU   : R;
  5387     BR     : R;
  5388 %}
  5390 // Define the class for the Nop node
  5391 define %{
  5392    MachNop = ialu_nop;
  5393 %}
  5395 %}
  5397 //----------INSTRUCTIONS-------------------------------------------------------
  5399 //------------Special Stack Slot instructions - no match rules-----------------
  5400 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5401   // No match rule to avoid chain rule match.
  5402   effect(DEF dst, USE src);
  5403   ins_cost(MEMORY_REF_COST);
  5404   size(4);
  5405   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5406   opcode(Assembler::ldf_op3);
  5407   ins_encode(simple_form3_mem_reg(src, dst));
  5408   ins_pipe(floadF_stk);
  5409 %}
  5411 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5412   // No match rule to avoid chain rule match.
  5413   effect(DEF dst, USE src);
  5414   ins_cost(MEMORY_REF_COST);
  5415   size(4);
  5416   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5417   opcode(Assembler::lddf_op3);
  5418   ins_encode(simple_form3_mem_reg(src, dst));
  5419   ins_pipe(floadD_stk);
  5420 %}
  5422 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5423   // No match rule to avoid chain rule match.
  5424   effect(DEF dst, USE src);
  5425   ins_cost(MEMORY_REF_COST);
  5426   size(4);
  5427   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5428   opcode(Assembler::stf_op3);
  5429   ins_encode(simple_form3_mem_reg(dst, src));
  5430   ins_pipe(fstoreF_stk_reg);
  5431 %}
  5433 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5434   // No match rule to avoid chain rule match.
  5435   effect(DEF dst, USE src);
  5436   ins_cost(MEMORY_REF_COST);
  5437   size(4);
  5438   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5439   opcode(Assembler::stdf_op3);
  5440   ins_encode(simple_form3_mem_reg(dst, src));
  5441   ins_pipe(fstoreD_stk_reg);
  5442 %}
  5444 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5445   effect(DEF dst, USE src);
  5446   ins_cost(MEMORY_REF_COST*2);
  5447   size(8);
  5448   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5449             "STW    R_G0,$dst.lo" %}
  5450   opcode(Assembler::stw_op3);
  5451   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5452   ins_pipe(lstoreI_stk_reg);
  5453 %}
  5455 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5456   // No match rule to avoid chain rule match.
  5457   effect(DEF dst, USE src);
  5458   ins_cost(MEMORY_REF_COST);
  5459   size(4);
  5460   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5461   opcode(Assembler::stx_op3);
  5462   ins_encode(simple_form3_mem_reg( dst, src ) );
  5463   ins_pipe(istore_stk_reg);
  5464 %}
  5466 //---------- Chain stack slots between similar types --------
  5468 // Load integer from stack slot
  5469 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5470   match(Set dst src);
  5471   ins_cost(MEMORY_REF_COST);
  5473   size(4);
  5474   format %{ "LDUW   $src,$dst\t!stk" %}
  5475   opcode(Assembler::lduw_op3);
  5476   ins_encode(simple_form3_mem_reg( src, dst ) );
  5477   ins_pipe(iload_mem);
  5478 %}
  5480 // Store integer to stack slot
  5481 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5482   match(Set dst src);
  5483   ins_cost(MEMORY_REF_COST);
  5485   size(4);
  5486   format %{ "STW    $src,$dst\t!stk" %}
  5487   opcode(Assembler::stw_op3);
  5488   ins_encode(simple_form3_mem_reg( dst, src ) );
  5489   ins_pipe(istore_mem_reg);
  5490 %}
  5492 // Load long from stack slot
  5493 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5494   match(Set dst src);
  5496   ins_cost(MEMORY_REF_COST);
  5497   size(4);
  5498   format %{ "LDX    $src,$dst\t! long" %}
  5499   opcode(Assembler::ldx_op3);
  5500   ins_encode(simple_form3_mem_reg( src, dst ) );
  5501   ins_pipe(iload_mem);
  5502 %}
  5504 // Store long to stack slot
  5505 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5506   match(Set dst src);
  5508   ins_cost(MEMORY_REF_COST);
  5509   size(4);
  5510   format %{ "STX    $src,$dst\t! long" %}
  5511   opcode(Assembler::stx_op3);
  5512   ins_encode(simple_form3_mem_reg( dst, src ) );
  5513   ins_pipe(istore_mem_reg);
  5514 %}
  5516 #ifdef _LP64
  5517 // Load pointer from stack slot, 64-bit encoding
  5518 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5519   match(Set dst src);
  5520   ins_cost(MEMORY_REF_COST);
  5521   size(4);
  5522   format %{ "LDX    $src,$dst\t!ptr" %}
  5523   opcode(Assembler::ldx_op3);
  5524   ins_encode(simple_form3_mem_reg( src, dst ) );
  5525   ins_pipe(iload_mem);
  5526 %}
  5528 // Store pointer to stack slot
  5529 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5530   match(Set dst src);
  5531   ins_cost(MEMORY_REF_COST);
  5532   size(4);
  5533   format %{ "STX    $src,$dst\t!ptr" %}
  5534   opcode(Assembler::stx_op3);
  5535   ins_encode(simple_form3_mem_reg( dst, src ) );
  5536   ins_pipe(istore_mem_reg);
  5537 %}
  5538 #else // _LP64
  5539 // Load pointer from stack slot, 32-bit encoding
  5540 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5541   match(Set dst src);
  5542   ins_cost(MEMORY_REF_COST);
  5543   format %{ "LDUW   $src,$dst\t!ptr" %}
  5544   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5545   ins_encode(simple_form3_mem_reg( src, dst ) );
  5546   ins_pipe(iload_mem);
  5547 %}
  5549 // Store pointer to stack slot
  5550 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5551   match(Set dst src);
  5552   ins_cost(MEMORY_REF_COST);
  5553   format %{ "STW    $src,$dst\t!ptr" %}
  5554   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5555   ins_encode(simple_form3_mem_reg( dst, src ) );
  5556   ins_pipe(istore_mem_reg);
  5557 %}
  5558 #endif // _LP64
  5560 //------------Special Nop instructions for bundling - no match rules-----------
  5561 // Nop using the A0 functional unit
  5562 instruct Nop_A0() %{
  5563   ins_cost(0);
  5565   format %{ "NOP    ! Alu Pipeline" %}
  5566   opcode(Assembler::or_op3, Assembler::arith_op);
  5567   ins_encode( form2_nop() );
  5568   ins_pipe(ialu_nop_A0);
  5569 %}
  5571 // Nop using the A1 functional unit
  5572 instruct Nop_A1( ) %{
  5573   ins_cost(0);
  5575   format %{ "NOP    ! Alu Pipeline" %}
  5576   opcode(Assembler::or_op3, Assembler::arith_op);
  5577   ins_encode( form2_nop() );
  5578   ins_pipe(ialu_nop_A1);
  5579 %}
  5581 // Nop using the memory functional unit
  5582 instruct Nop_MS( ) %{
  5583   ins_cost(0);
  5585   format %{ "NOP    ! Memory Pipeline" %}
  5586   ins_encode( emit_mem_nop );
  5587   ins_pipe(mem_nop);
  5588 %}
  5590 // Nop using the floating add functional unit
  5591 instruct Nop_FA( ) %{
  5592   ins_cost(0);
  5594   format %{ "NOP    ! Floating Add Pipeline" %}
  5595   ins_encode( emit_fadd_nop );
  5596   ins_pipe(fadd_nop);
  5597 %}
  5599 // Nop using the branch functional unit
  5600 instruct Nop_BR( ) %{
  5601   ins_cost(0);
  5603   format %{ "NOP    ! Branch Pipeline" %}
  5604   ins_encode( emit_br_nop );
  5605   ins_pipe(br_nop);
  5606 %}
  5608 //----------Load/Store/Move Instructions---------------------------------------
  5609 //----------Load Instructions--------------------------------------------------
  5610 // Load Byte (8bit signed)
  5611 instruct loadB(iRegI dst, memory mem) %{
  5612   match(Set dst (LoadB mem));
  5613   ins_cost(MEMORY_REF_COST);
  5615   size(4);
  5616   format %{ "LDSB   $mem,$dst\t! byte" %}
  5617   ins_encode %{
  5618     __ ldsb($mem$$Address, $dst$$Register);
  5619   %}
  5620   ins_pipe(iload_mask_mem);
  5621 %}
  5623 // Load Byte (8bit signed) into a Long Register
  5624 instruct loadB2L(iRegL dst, memory mem) %{
  5625   match(Set dst (ConvI2L (LoadB mem)));
  5626   ins_cost(MEMORY_REF_COST);
  5628   size(4);
  5629   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5630   ins_encode %{
  5631     __ ldsb($mem$$Address, $dst$$Register);
  5632   %}
  5633   ins_pipe(iload_mask_mem);
  5634 %}
  5636 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5637 instruct loadUB(iRegI dst, memory mem) %{
  5638   match(Set dst (LoadUB mem));
  5639   ins_cost(MEMORY_REF_COST);
  5641   size(4);
  5642   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5643   ins_encode %{
  5644     __ ldub($mem$$Address, $dst$$Register);
  5645   %}
  5646   ins_pipe(iload_mem);
  5647 %}
  5649 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5650 instruct loadUB2L(iRegL dst, memory mem) %{
  5651   match(Set dst (ConvI2L (LoadUB mem)));
  5652   ins_cost(MEMORY_REF_COST);
  5654   size(4);
  5655   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5656   ins_encode %{
  5657     __ ldub($mem$$Address, $dst$$Register);
  5658   %}
  5659   ins_pipe(iload_mem);
  5660 %}
  5662 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5663 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5664   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5665   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5667   size(2*4);
  5668   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5669             "AND    $dst,$mask,$dst" %}
  5670   ins_encode %{
  5671     __ ldub($mem$$Address, $dst$$Register);
  5672     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5673   %}
  5674   ins_pipe(iload_mem);
  5675 %}
  5677 // Load Short (16bit signed)
  5678 instruct loadS(iRegI dst, memory mem) %{
  5679   match(Set dst (LoadS mem));
  5680   ins_cost(MEMORY_REF_COST);
  5682   size(4);
  5683   format %{ "LDSH   $mem,$dst\t! short" %}
  5684   ins_encode %{
  5685     __ ldsh($mem$$Address, $dst$$Register);
  5686   %}
  5687   ins_pipe(iload_mask_mem);
  5688 %}
  5690 // Load Short (16 bit signed) to Byte (8 bit signed)
  5691 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5692   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5693   ins_cost(MEMORY_REF_COST);
  5695   size(4);
  5697   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5698   ins_encode %{
  5699     __ ldsb($mem$$Address, $dst$$Register, 1);
  5700   %}
  5701   ins_pipe(iload_mask_mem);
  5702 %}
  5704 // Load Short (16bit signed) into a Long Register
  5705 instruct loadS2L(iRegL dst, memory mem) %{
  5706   match(Set dst (ConvI2L (LoadS mem)));
  5707   ins_cost(MEMORY_REF_COST);
  5709   size(4);
  5710   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5711   ins_encode %{
  5712     __ ldsh($mem$$Address, $dst$$Register);
  5713   %}
  5714   ins_pipe(iload_mask_mem);
  5715 %}
  5717 // Load Unsigned Short/Char (16bit UNsigned)
  5718 instruct loadUS(iRegI dst, memory mem) %{
  5719   match(Set dst (LoadUS mem));
  5720   ins_cost(MEMORY_REF_COST);
  5722   size(4);
  5723   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5724   ins_encode %{
  5725     __ lduh($mem$$Address, $dst$$Register);
  5726   %}
  5727   ins_pipe(iload_mem);
  5728 %}
  5730 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5731 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5732   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5733   ins_cost(MEMORY_REF_COST);
  5735   size(4);
  5736   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5737   ins_encode %{
  5738     __ ldsb($mem$$Address, $dst$$Register, 1);
  5739   %}
  5740   ins_pipe(iload_mask_mem);
  5741 %}
  5743 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5744 instruct loadUS2L(iRegL dst, memory mem) %{
  5745   match(Set dst (ConvI2L (LoadUS mem)));
  5746   ins_cost(MEMORY_REF_COST);
  5748   size(4);
  5749   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5750   ins_encode %{
  5751     __ lduh($mem$$Address, $dst$$Register);
  5752   %}
  5753   ins_pipe(iload_mem);
  5754 %}
  5756 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5757 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5758   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5759   ins_cost(MEMORY_REF_COST);
  5761   size(4);
  5762   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5763   ins_encode %{
  5764     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5765   %}
  5766   ins_pipe(iload_mem);
  5767 %}
  5769 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5770 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5771   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5772   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5774   size(2*4);
  5775   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5776             "AND    $dst,$mask,$dst" %}
  5777   ins_encode %{
  5778     Register Rdst = $dst$$Register;
  5779     __ lduh($mem$$Address, Rdst);
  5780     __ and3(Rdst, $mask$$constant, Rdst);
  5781   %}
  5782   ins_pipe(iload_mem);
  5783 %}
  5785 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5786 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5787   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5788   effect(TEMP dst, TEMP tmp);
  5789   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5791   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5792             "SET    $mask,$tmp\n\t"
  5793             "AND    $dst,$tmp,$dst" %}
  5794   ins_encode %{
  5795     Register Rdst = $dst$$Register;
  5796     Register Rtmp = $tmp$$Register;
  5797     __ lduh($mem$$Address, Rdst);
  5798     __ set($mask$$constant, Rtmp);
  5799     __ and3(Rdst, Rtmp, Rdst);
  5800   %}
  5801   ins_pipe(iload_mem);
  5802 %}
  5804 // Load Integer
  5805 instruct loadI(iRegI dst, memory mem) %{
  5806   match(Set dst (LoadI mem));
  5807   ins_cost(MEMORY_REF_COST);
  5809   size(4);
  5810   format %{ "LDUW   $mem,$dst\t! int" %}
  5811   ins_encode %{
  5812     __ lduw($mem$$Address, $dst$$Register);
  5813   %}
  5814   ins_pipe(iload_mem);
  5815 %}
  5817 // Load Integer to Byte (8 bit signed)
  5818 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5819   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5820   ins_cost(MEMORY_REF_COST);
  5822   size(4);
  5824   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5825   ins_encode %{
  5826     __ ldsb($mem$$Address, $dst$$Register, 3);
  5827   %}
  5828   ins_pipe(iload_mask_mem);
  5829 %}
  5831 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5832 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5833   match(Set dst (AndI (LoadI mem) mask));
  5834   ins_cost(MEMORY_REF_COST);
  5836   size(4);
  5838   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5839   ins_encode %{
  5840     __ ldub($mem$$Address, $dst$$Register, 3);
  5841   %}
  5842   ins_pipe(iload_mask_mem);
  5843 %}
  5845 // Load Integer to Short (16 bit signed)
  5846 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5847   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5848   ins_cost(MEMORY_REF_COST);
  5850   size(4);
  5852   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5853   ins_encode %{
  5854     __ ldsh($mem$$Address, $dst$$Register, 2);
  5855   %}
  5856   ins_pipe(iload_mask_mem);
  5857 %}
  5859 // Load Integer to Unsigned Short (16 bit UNsigned)
  5860 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5861   match(Set dst (AndI (LoadI mem) mask));
  5862   ins_cost(MEMORY_REF_COST);
  5864   size(4);
  5866   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5867   ins_encode %{
  5868     __ lduh($mem$$Address, $dst$$Register, 2);
  5869   %}
  5870   ins_pipe(iload_mask_mem);
  5871 %}
  5873 // Load Integer into a Long Register
  5874 instruct loadI2L(iRegL dst, memory mem) %{
  5875   match(Set dst (ConvI2L (LoadI mem)));
  5876   ins_cost(MEMORY_REF_COST);
  5878   size(4);
  5879   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5880   ins_encode %{
  5881     __ ldsw($mem$$Address, $dst$$Register);
  5882   %}
  5883   ins_pipe(iload_mask_mem);
  5884 %}
  5886 // Load Integer with mask 0xFF into a Long Register
  5887 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5888   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5889   ins_cost(MEMORY_REF_COST);
  5891   size(4);
  5892   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5893   ins_encode %{
  5894     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5895   %}
  5896   ins_pipe(iload_mem);
  5897 %}
  5899 // Load Integer with mask 0xFFFF into a Long Register
  5900 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5901   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5902   ins_cost(MEMORY_REF_COST);
  5904   size(4);
  5905   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5906   ins_encode %{
  5907     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5908   %}
  5909   ins_pipe(iload_mem);
  5910 %}
  5912 // Load Integer with a 12-bit mask into a Long Register
  5913 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
  5914   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5915   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5917   size(2*4);
  5918   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
  5919             "AND    $dst,$mask,$dst" %}
  5920   ins_encode %{
  5921     Register Rdst = $dst$$Register;
  5922     __ lduw($mem$$Address, Rdst);
  5923     __ and3(Rdst, $mask$$constant, Rdst);
  5924   %}
  5925   ins_pipe(iload_mem);
  5926 %}
  5928 // Load Integer with a 31-bit mask into a Long Register
  5929 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
  5930   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5931   effect(TEMP dst, TEMP tmp);
  5932   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5934   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
  5935             "SET    $mask,$tmp\n\t"
  5936             "AND    $dst,$tmp,$dst" %}
  5937   ins_encode %{
  5938     Register Rdst = $dst$$Register;
  5939     Register Rtmp = $tmp$$Register;
  5940     __ lduw($mem$$Address, Rdst);
  5941     __ set($mask$$constant, Rtmp);
  5942     __ and3(Rdst, Rtmp, Rdst);
  5943   %}
  5944   ins_pipe(iload_mem);
  5945 %}
  5947 // Load Unsigned Integer into a Long Register
  5948 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5949   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5950   ins_cost(MEMORY_REF_COST);
  5952   size(4);
  5953   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5954   ins_encode %{
  5955     __ lduw($mem$$Address, $dst$$Register);
  5956   %}
  5957   ins_pipe(iload_mem);
  5958 %}
  5960 // Load Long - aligned
  5961 instruct loadL(iRegL dst, memory mem ) %{
  5962   match(Set dst (LoadL mem));
  5963   ins_cost(MEMORY_REF_COST);
  5965   size(4);
  5966   format %{ "LDX    $mem,$dst\t! long" %}
  5967   ins_encode %{
  5968     __ ldx($mem$$Address, $dst$$Register);
  5969   %}
  5970   ins_pipe(iload_mem);
  5971 %}
  5973 // Load Long - UNaligned
  5974 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5975   match(Set dst (LoadL_unaligned mem));
  5976   effect(KILL tmp);
  5977   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5978   size(16);
  5979   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5980           "\tLDUW   $mem  ,$dst\n"
  5981           "\tSLLX   #32, $dst, $dst\n"
  5982           "\tOR     $dst, R_O7, $dst" %}
  5983   opcode(Assembler::lduw_op3);
  5984   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5985   ins_pipe(iload_mem);
  5986 %}
  5988 // Load Range
  5989 instruct loadRange(iRegI dst, memory mem) %{
  5990   match(Set dst (LoadRange mem));
  5991   ins_cost(MEMORY_REF_COST);
  5993   size(4);
  5994   format %{ "LDUW   $mem,$dst\t! range" %}
  5995   opcode(Assembler::lduw_op3);
  5996   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5997   ins_pipe(iload_mem);
  5998 %}
  6000 // Load Integer into %f register (for fitos/fitod)
  6001 instruct loadI_freg(regF dst, memory mem) %{
  6002   match(Set dst (LoadI mem));
  6003   ins_cost(MEMORY_REF_COST);
  6004   size(4);
  6006   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  6007   opcode(Assembler::ldf_op3);
  6008   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6009   ins_pipe(floadF_mem);
  6010 %}
  6012 // Load Pointer
  6013 instruct loadP(iRegP dst, memory mem) %{
  6014   match(Set dst (LoadP mem));
  6015   ins_cost(MEMORY_REF_COST);
  6016   size(4);
  6018 #ifndef _LP64
  6019   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6020   ins_encode %{
  6021     __ lduw($mem$$Address, $dst$$Register);
  6022   %}
  6023 #else
  6024   format %{ "LDX    $mem,$dst\t! ptr" %}
  6025   ins_encode %{
  6026     __ ldx($mem$$Address, $dst$$Register);
  6027   %}
  6028 #endif
  6029   ins_pipe(iload_mem);
  6030 %}
  6032 // Load Compressed Pointer
  6033 instruct loadN(iRegN dst, memory mem) %{
  6034   match(Set dst (LoadN mem));
  6035   ins_cost(MEMORY_REF_COST);
  6036   size(4);
  6038   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6039   ins_encode %{
  6040     __ lduw($mem$$Address, $dst$$Register);
  6041   %}
  6042   ins_pipe(iload_mem);
  6043 %}
  6045 // Load Klass Pointer
  6046 instruct loadKlass(iRegP dst, memory mem) %{
  6047   match(Set dst (LoadKlass mem));
  6048   ins_cost(MEMORY_REF_COST);
  6049   size(4);
  6051 #ifndef _LP64
  6052   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6053   ins_encode %{
  6054     __ lduw($mem$$Address, $dst$$Register);
  6055   %}
  6056 #else
  6057   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6058   ins_encode %{
  6059     __ ldx($mem$$Address, $dst$$Register);
  6060   %}
  6061 #endif
  6062   ins_pipe(iload_mem);
  6063 %}
  6065 // Load narrow Klass Pointer
  6066 instruct loadNKlass(iRegN dst, memory mem) %{
  6067   match(Set dst (LoadNKlass mem));
  6068   ins_cost(MEMORY_REF_COST);
  6069   size(4);
  6071   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6072   ins_encode %{
  6073     __ lduw($mem$$Address, $dst$$Register);
  6074   %}
  6075   ins_pipe(iload_mem);
  6076 %}
  6078 // Load Double
  6079 instruct loadD(regD dst, memory mem) %{
  6080   match(Set dst (LoadD mem));
  6081   ins_cost(MEMORY_REF_COST);
  6083   size(4);
  6084   format %{ "LDDF   $mem,$dst" %}
  6085   opcode(Assembler::lddf_op3);
  6086   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6087   ins_pipe(floadD_mem);
  6088 %}
  6090 // Load Double - UNaligned
  6091 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6092   match(Set dst (LoadD_unaligned mem));
  6093   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6094   size(8);
  6095   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6096           "\tLDF    $mem+4,$dst.lo\t!" %}
  6097   opcode(Assembler::ldf_op3);
  6098   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6099   ins_pipe(iload_mem);
  6100 %}
  6102 // Load Float
  6103 instruct loadF(regF dst, memory mem) %{
  6104   match(Set dst (LoadF mem));
  6105   ins_cost(MEMORY_REF_COST);
  6107   size(4);
  6108   format %{ "LDF    $mem,$dst" %}
  6109   opcode(Assembler::ldf_op3);
  6110   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6111   ins_pipe(floadF_mem);
  6112 %}
  6114 // Load Constant
  6115 instruct loadConI( iRegI dst, immI src ) %{
  6116   match(Set dst src);
  6117   ins_cost(DEFAULT_COST * 3/2);
  6118   format %{ "SET    $src,$dst" %}
  6119   ins_encode( Set32(src, dst) );
  6120   ins_pipe(ialu_hi_lo_reg);
  6121 %}
  6123 instruct loadConI13( iRegI dst, immI13 src ) %{
  6124   match(Set dst src);
  6126   size(4);
  6127   format %{ "MOV    $src,$dst" %}
  6128   ins_encode( Set13( src, dst ) );
  6129   ins_pipe(ialu_imm);
  6130 %}
  6132 #ifndef _LP64
  6133 instruct loadConP(iRegP dst, immP con) %{
  6134   match(Set dst con);
  6135   ins_cost(DEFAULT_COST * 3/2);
  6136   format %{ "SET    $con,$dst\t!ptr" %}
  6137   ins_encode %{
  6138     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6139       intptr_t val = $con$$constant;
  6140     if (constant_reloc == relocInfo::oop_type) {
  6141       __ set_oop_constant((jobject) val, $dst$$Register);
  6142     } else if (constant_reloc == relocInfo::metadata_type) {
  6143       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6144     } else {          // non-oop pointers, e.g. card mark base, heap top
  6145       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6146       __ set(val, $dst$$Register);
  6148   %}
  6149   ins_pipe(loadConP);
  6150 %}
  6151 #else
  6152 instruct loadConP_set(iRegP dst, immP_set con) %{
  6153   match(Set dst con);
  6154   ins_cost(DEFAULT_COST * 3/2);
  6155   format %{ "SET    $con,$dst\t! ptr" %}
  6156   ins_encode %{
  6157     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6158       intptr_t val = $con$$constant;
  6159     if (constant_reloc == relocInfo::oop_type) {
  6160       __ set_oop_constant((jobject) val, $dst$$Register);
  6161     } else if (constant_reloc == relocInfo::metadata_type) {
  6162       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6163     } else {          // non-oop pointers, e.g. card mark base, heap top
  6164       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6165       __ set(val, $dst$$Register);
  6167   %}
  6168   ins_pipe(loadConP);
  6169 %}
  6171 instruct loadConP_load(iRegP dst, immP_load con) %{
  6172   match(Set dst con);
  6173   ins_cost(MEMORY_REF_COST);
  6174   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6175   ins_encode %{
  6176     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6177     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6178   %}
  6179   ins_pipe(loadConP);
  6180 %}
  6182 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6183   match(Set dst con);
  6184   ins_cost(DEFAULT_COST * 3/2);
  6185   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6186   ins_encode %{
  6187     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
  6188       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
  6189     } else {
  6190       __ set($con$$constant, $dst$$Register);
  6192   %}
  6193   ins_pipe(loadConP);
  6194 %}
  6195 #endif // _LP64
  6197 instruct loadConP0(iRegP dst, immP0 src) %{
  6198   match(Set dst src);
  6200   size(4);
  6201   format %{ "CLR    $dst\t!ptr" %}
  6202   ins_encode %{
  6203     __ clr($dst$$Register);
  6204   %}
  6205   ins_pipe(ialu_imm);
  6206 %}
  6208 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6209   match(Set dst src);
  6210   ins_cost(DEFAULT_COST);
  6211   format %{ "SET    $src,$dst\t!ptr" %}
  6212   ins_encode %{
  6213     AddressLiteral polling_page(os::get_polling_page());
  6214     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6215   %}
  6216   ins_pipe(loadConP_poll);
  6217 %}
  6219 instruct loadConN0(iRegN dst, immN0 src) %{
  6220   match(Set dst src);
  6222   size(4);
  6223   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6224   ins_encode %{
  6225     __ clr($dst$$Register);
  6226   %}
  6227   ins_pipe(ialu_imm);
  6228 %}
  6230 instruct loadConN(iRegN dst, immN src) %{
  6231   match(Set dst src);
  6232   ins_cost(DEFAULT_COST * 3/2);
  6233   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6234   ins_encode %{
  6235     Register dst = $dst$$Register;
  6236     __ set_narrow_oop((jobject)$src$$constant, dst);
  6237   %}
  6238   ins_pipe(ialu_hi_lo_reg);
  6239 %}
  6241 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6242   match(Set dst src);
  6243   ins_cost(DEFAULT_COST * 3/2);
  6244   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6245   ins_encode %{
  6246     Register dst = $dst$$Register;
  6247     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6248   %}
  6249   ins_pipe(ialu_hi_lo_reg);
  6250 %}
  6252 // Materialize long value (predicated by immL_cheap).
  6253 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6254   match(Set dst con);
  6255   effect(KILL tmp);
  6256   ins_cost(DEFAULT_COST * 3);
  6257   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6258   ins_encode %{
  6259     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6260   %}
  6261   ins_pipe(loadConL);
  6262 %}
  6264 // Load long value from constant table (predicated by immL_expensive).
  6265 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6266   match(Set dst con);
  6267   ins_cost(MEMORY_REF_COST);
  6268   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6269   ins_encode %{
  6270       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6271     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6272   %}
  6273   ins_pipe(loadConL);
  6274 %}
  6276 instruct loadConL0( iRegL dst, immL0 src ) %{
  6277   match(Set dst src);
  6278   ins_cost(DEFAULT_COST);
  6279   size(4);
  6280   format %{ "CLR    $dst\t! long" %}
  6281   ins_encode( Set13( src, dst ) );
  6282   ins_pipe(ialu_imm);
  6283 %}
  6285 instruct loadConL13( iRegL dst, immL13 src ) %{
  6286   match(Set dst src);
  6287   ins_cost(DEFAULT_COST * 2);
  6289   size(4);
  6290   format %{ "MOV    $src,$dst\t! long" %}
  6291   ins_encode( Set13( src, dst ) );
  6292   ins_pipe(ialu_imm);
  6293 %}
  6295 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6296   match(Set dst con);
  6297   effect(KILL tmp);
  6298   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6299   ins_encode %{
  6300       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6301     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6302   %}
  6303   ins_pipe(loadConFD);
  6304 %}
  6306 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6307   match(Set dst con);
  6308   effect(KILL tmp);
  6309   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6310   ins_encode %{
  6311     // XXX This is a quick fix for 6833573.
  6312     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6313     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6314     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6315   %}
  6316   ins_pipe(loadConFD);
  6317 %}
  6319 // Prefetch instructions.
  6320 // Must be safe to execute with invalid address (cannot fault).
  6322 instruct prefetchr( memory mem ) %{
  6323   match( PrefetchRead mem );
  6324   ins_cost(MEMORY_REF_COST);
  6325   size(4);
  6327   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6328   opcode(Assembler::prefetch_op3);
  6329   ins_encode( form3_mem_prefetch_read( mem ) );
  6330   ins_pipe(iload_mem);
  6331 %}
  6333 instruct prefetchw( memory mem ) %{
  6334   match( PrefetchWrite mem );
  6335   ins_cost(MEMORY_REF_COST);
  6336   size(4);
  6338   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6339   opcode(Assembler::prefetch_op3);
  6340   ins_encode( form3_mem_prefetch_write( mem ) );
  6341   ins_pipe(iload_mem);
  6342 %}
  6344 // Prefetch instructions for allocation.
  6346 instruct prefetchAlloc( memory mem ) %{
  6347   predicate(AllocatePrefetchInstr == 0);
  6348   match( PrefetchAllocation mem );
  6349   ins_cost(MEMORY_REF_COST);
  6350   size(4);
  6352   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6353   opcode(Assembler::prefetch_op3);
  6354   ins_encode( form3_mem_prefetch_write( mem ) );
  6355   ins_pipe(iload_mem);
  6356 %}
  6358 // Use BIS instruction to prefetch for allocation.
  6359 // Could fault, need space at the end of TLAB.
  6360 instruct prefetchAlloc_bis( iRegP dst ) %{
  6361   predicate(AllocatePrefetchInstr == 1);
  6362   match( PrefetchAllocation dst );
  6363   ins_cost(MEMORY_REF_COST);
  6364   size(4);
  6366   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6367   ins_encode %{
  6368     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6369   %}
  6370   ins_pipe(istore_mem_reg);
  6371 %}
  6373 // Next code is used for finding next cache line address to prefetch.
  6374 #ifndef _LP64
  6375 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6376   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6377   ins_cost(DEFAULT_COST);
  6378   size(4);
  6380   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6381   ins_encode %{
  6382     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6383   %}
  6384   ins_pipe(ialu_reg_imm);
  6385 %}
  6386 #else
  6387 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6388   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6389   ins_cost(DEFAULT_COST);
  6390   size(4);
  6392   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6393   ins_encode %{
  6394     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6395   %}
  6396   ins_pipe(ialu_reg_imm);
  6397 %}
  6398 #endif
  6400 //----------Store Instructions-------------------------------------------------
  6401 // Store Byte
  6402 instruct storeB(memory mem, iRegI src) %{
  6403   match(Set mem (StoreB mem src));
  6404   ins_cost(MEMORY_REF_COST);
  6406   size(4);
  6407   format %{ "STB    $src,$mem\t! byte" %}
  6408   opcode(Assembler::stb_op3);
  6409   ins_encode(simple_form3_mem_reg( mem, src ) );
  6410   ins_pipe(istore_mem_reg);
  6411 %}
  6413 instruct storeB0(memory mem, immI0 src) %{
  6414   match(Set mem (StoreB mem src));
  6415   ins_cost(MEMORY_REF_COST);
  6417   size(4);
  6418   format %{ "STB    $src,$mem\t! byte" %}
  6419   opcode(Assembler::stb_op3);
  6420   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6421   ins_pipe(istore_mem_zero);
  6422 %}
  6424 instruct storeCM0(memory mem, immI0 src) %{
  6425   match(Set mem (StoreCM mem src));
  6426   ins_cost(MEMORY_REF_COST);
  6428   size(4);
  6429   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6430   opcode(Assembler::stb_op3);
  6431   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6432   ins_pipe(istore_mem_zero);
  6433 %}
  6435 // Store Char/Short
  6436 instruct storeC(memory mem, iRegI src) %{
  6437   match(Set mem (StoreC mem src));
  6438   ins_cost(MEMORY_REF_COST);
  6440   size(4);
  6441   format %{ "STH    $src,$mem\t! short" %}
  6442   opcode(Assembler::sth_op3);
  6443   ins_encode(simple_form3_mem_reg( mem, src ) );
  6444   ins_pipe(istore_mem_reg);
  6445 %}
  6447 instruct storeC0(memory mem, immI0 src) %{
  6448   match(Set mem (StoreC mem src));
  6449   ins_cost(MEMORY_REF_COST);
  6451   size(4);
  6452   format %{ "STH    $src,$mem\t! short" %}
  6453   opcode(Assembler::sth_op3);
  6454   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6455   ins_pipe(istore_mem_zero);
  6456 %}
  6458 // Store Integer
  6459 instruct storeI(memory mem, iRegI src) %{
  6460   match(Set mem (StoreI mem src));
  6461   ins_cost(MEMORY_REF_COST);
  6463   size(4);
  6464   format %{ "STW    $src,$mem" %}
  6465   opcode(Assembler::stw_op3);
  6466   ins_encode(simple_form3_mem_reg( mem, src ) );
  6467   ins_pipe(istore_mem_reg);
  6468 %}
  6470 // Store Long
  6471 instruct storeL(memory mem, iRegL src) %{
  6472   match(Set mem (StoreL mem src));
  6473   ins_cost(MEMORY_REF_COST);
  6474   size(4);
  6475   format %{ "STX    $src,$mem\t! long" %}
  6476   opcode(Assembler::stx_op3);
  6477   ins_encode(simple_form3_mem_reg( mem, src ) );
  6478   ins_pipe(istore_mem_reg);
  6479 %}
  6481 instruct storeI0(memory mem, immI0 src) %{
  6482   match(Set mem (StoreI mem src));
  6483   ins_cost(MEMORY_REF_COST);
  6485   size(4);
  6486   format %{ "STW    $src,$mem" %}
  6487   opcode(Assembler::stw_op3);
  6488   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6489   ins_pipe(istore_mem_zero);
  6490 %}
  6492 instruct storeL0(memory mem, immL0 src) %{
  6493   match(Set mem (StoreL mem src));
  6494   ins_cost(MEMORY_REF_COST);
  6496   size(4);
  6497   format %{ "STX    $src,$mem" %}
  6498   opcode(Assembler::stx_op3);
  6499   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6500   ins_pipe(istore_mem_zero);
  6501 %}
  6503 // Store Integer from float register (used after fstoi)
  6504 instruct storeI_Freg(memory mem, regF src) %{
  6505   match(Set mem (StoreI mem src));
  6506   ins_cost(MEMORY_REF_COST);
  6508   size(4);
  6509   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6510   opcode(Assembler::stf_op3);
  6511   ins_encode(simple_form3_mem_reg( mem, src ) );
  6512   ins_pipe(fstoreF_mem_reg);
  6513 %}
  6515 // Store Pointer
  6516 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6517   match(Set dst (StoreP dst src));
  6518   ins_cost(MEMORY_REF_COST);
  6519   size(4);
  6521 #ifndef _LP64
  6522   format %{ "STW    $src,$dst\t! ptr" %}
  6523   opcode(Assembler::stw_op3, 0, REGP_OP);
  6524 #else
  6525   format %{ "STX    $src,$dst\t! ptr" %}
  6526   opcode(Assembler::stx_op3, 0, REGP_OP);
  6527 #endif
  6528   ins_encode( form3_mem_reg( dst, src ) );
  6529   ins_pipe(istore_mem_spORreg);
  6530 %}
  6532 instruct storeP0(memory dst, immP0 src) %{
  6533   match(Set dst (StoreP dst src));
  6534   ins_cost(MEMORY_REF_COST);
  6535   size(4);
  6537 #ifndef _LP64
  6538   format %{ "STW    $src,$dst\t! ptr" %}
  6539   opcode(Assembler::stw_op3, 0, REGP_OP);
  6540 #else
  6541   format %{ "STX    $src,$dst\t! ptr" %}
  6542   opcode(Assembler::stx_op3, 0, REGP_OP);
  6543 #endif
  6544   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6545   ins_pipe(istore_mem_zero);
  6546 %}
  6548 // Store Compressed Pointer
  6549 instruct storeN(memory dst, iRegN src) %{
  6550    match(Set dst (StoreN dst src));
  6551    ins_cost(MEMORY_REF_COST);
  6552    size(4);
  6554    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6555    ins_encode %{
  6556      Register base = as_Register($dst$$base);
  6557      Register index = as_Register($dst$$index);
  6558      Register src = $src$$Register;
  6559      if (index != G0) {
  6560        __ stw(src, base, index);
  6561      } else {
  6562        __ stw(src, base, $dst$$disp);
  6564    %}
  6565    ins_pipe(istore_mem_spORreg);
  6566 %}
  6568 instruct storeNKlass(memory dst, iRegN src) %{
  6569    match(Set dst (StoreNKlass dst src));
  6570    ins_cost(MEMORY_REF_COST);
  6571    size(4);
  6573    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6574    ins_encode %{
  6575      Register base = as_Register($dst$$base);
  6576      Register index = as_Register($dst$$index);
  6577      Register src = $src$$Register;
  6578      if (index != G0) {
  6579        __ stw(src, base, index);
  6580      } else {
  6581        __ stw(src, base, $dst$$disp);
  6583    %}
  6584    ins_pipe(istore_mem_spORreg);
  6585 %}
  6587 instruct storeN0(memory dst, immN0 src) %{
  6588    match(Set dst (StoreN dst src));
  6589    ins_cost(MEMORY_REF_COST);
  6590    size(4);
  6592    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6593    ins_encode %{
  6594      Register base = as_Register($dst$$base);
  6595      Register index = as_Register($dst$$index);
  6596      if (index != G0) {
  6597        __ stw(0, base, index);
  6598      } else {
  6599        __ stw(0, base, $dst$$disp);
  6601    %}
  6602    ins_pipe(istore_mem_zero);
  6603 %}
  6605 // Store Double
  6606 instruct storeD( memory mem, regD src) %{
  6607   match(Set mem (StoreD mem src));
  6608   ins_cost(MEMORY_REF_COST);
  6610   size(4);
  6611   format %{ "STDF   $src,$mem" %}
  6612   opcode(Assembler::stdf_op3);
  6613   ins_encode(simple_form3_mem_reg( mem, src ) );
  6614   ins_pipe(fstoreD_mem_reg);
  6615 %}
  6617 instruct storeD0( memory mem, immD0 src) %{
  6618   match(Set mem (StoreD mem src));
  6619   ins_cost(MEMORY_REF_COST);
  6621   size(4);
  6622   format %{ "STX    $src,$mem" %}
  6623   opcode(Assembler::stx_op3);
  6624   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6625   ins_pipe(fstoreD_mem_zero);
  6626 %}
  6628 // Store Float
  6629 instruct storeF( memory mem, regF src) %{
  6630   match(Set mem (StoreF mem src));
  6631   ins_cost(MEMORY_REF_COST);
  6633   size(4);
  6634   format %{ "STF    $src,$mem" %}
  6635   opcode(Assembler::stf_op3);
  6636   ins_encode(simple_form3_mem_reg( mem, src ) );
  6637   ins_pipe(fstoreF_mem_reg);
  6638 %}
  6640 instruct storeF0( memory mem, immF0 src) %{
  6641   match(Set mem (StoreF mem src));
  6642   ins_cost(MEMORY_REF_COST);
  6644   size(4);
  6645   format %{ "STW    $src,$mem\t! storeF0" %}
  6646   opcode(Assembler::stw_op3);
  6647   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6648   ins_pipe(fstoreF_mem_zero);
  6649 %}
  6651 // Convert oop pointer into compressed form
  6652 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6653   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6654   match(Set dst (EncodeP src));
  6655   format %{ "encode_heap_oop $src, $dst" %}
  6656   ins_encode %{
  6657     __ encode_heap_oop($src$$Register, $dst$$Register);
  6658   %}
  6659   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
  6660   ins_pipe(ialu_reg);
  6661 %}
  6663 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6664   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6665   match(Set dst (EncodeP src));
  6666   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6667   ins_encode %{
  6668     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6669   %}
  6670   ins_pipe(ialu_reg);
  6671 %}
  6673 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6674   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6675             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6676   match(Set dst (DecodeN src));
  6677   format %{ "decode_heap_oop $src, $dst" %}
  6678   ins_encode %{
  6679     __ decode_heap_oop($src$$Register, $dst$$Register);
  6680   %}
  6681   ins_pipe(ialu_reg);
  6682 %}
  6684 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6685   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6686             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6687   match(Set dst (DecodeN src));
  6688   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6689   ins_encode %{
  6690     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6691   %}
  6692   ins_pipe(ialu_reg);
  6693 %}
  6695 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6696   match(Set dst (EncodePKlass src));
  6697   format %{ "encode_klass_not_null $src, $dst" %}
  6698   ins_encode %{
  6699     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6700   %}
  6701   ins_pipe(ialu_reg);
  6702 %}
  6704 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6705   match(Set dst (DecodeNKlass src));
  6706   format %{ "decode_klass_not_null $src, $dst" %}
  6707   ins_encode %{
  6708     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6709   %}
  6710   ins_pipe(ialu_reg);
  6711 %}
  6713 //----------MemBar Instructions-----------------------------------------------
  6714 // Memory barrier flavors
  6716 instruct membar_acquire() %{
  6717   match(MemBarAcquire);
  6718   match(LoadFence);
  6719   ins_cost(4*MEMORY_REF_COST);
  6721   size(0);
  6722   format %{ "MEMBAR-acquire" %}
  6723   ins_encode( enc_membar_acquire );
  6724   ins_pipe(long_memory_op);
  6725 %}
  6727 instruct membar_acquire_lock() %{
  6728   match(MemBarAcquireLock);
  6729   ins_cost(0);
  6731   size(0);
  6732   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6733   ins_encode( );
  6734   ins_pipe(empty);
  6735 %}
  6737 instruct membar_release() %{
  6738   match(MemBarRelease);
  6739   match(StoreFence);
  6740   ins_cost(4*MEMORY_REF_COST);
  6742   size(0);
  6743   format %{ "MEMBAR-release" %}
  6744   ins_encode( enc_membar_release );
  6745   ins_pipe(long_memory_op);
  6746 %}
  6748 instruct membar_release_lock() %{
  6749   match(MemBarReleaseLock);
  6750   ins_cost(0);
  6752   size(0);
  6753   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6754   ins_encode( );
  6755   ins_pipe(empty);
  6756 %}
  6758 instruct membar_volatile() %{
  6759   match(MemBarVolatile);
  6760   ins_cost(4*MEMORY_REF_COST);
  6762   size(4);
  6763   format %{ "MEMBAR-volatile" %}
  6764   ins_encode( enc_membar_volatile );
  6765   ins_pipe(long_memory_op);
  6766 %}
  6768 instruct unnecessary_membar_volatile() %{
  6769   match(MemBarVolatile);
  6770   predicate(Matcher::post_store_load_barrier(n));
  6771   ins_cost(0);
  6773   size(0);
  6774   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6775   ins_encode( );
  6776   ins_pipe(empty);
  6777 %}
  6779 instruct membar_storestore() %{
  6780   match(MemBarStoreStore);
  6781   ins_cost(0);
  6783   size(0);
  6784   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6785   ins_encode( );
  6786   ins_pipe(empty);
  6787 %}
  6789 //----------Register Move Instructions-----------------------------------------
  6790 instruct roundDouble_nop(regD dst) %{
  6791   match(Set dst (RoundDouble dst));
  6792   ins_cost(0);
  6793   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6794   ins_encode( );
  6795   ins_pipe(empty);
  6796 %}
  6799 instruct roundFloat_nop(regF dst) %{
  6800   match(Set dst (RoundFloat dst));
  6801   ins_cost(0);
  6802   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6803   ins_encode( );
  6804   ins_pipe(empty);
  6805 %}
  6808 // Cast Index to Pointer for unsafe natives
  6809 instruct castX2P(iRegX src, iRegP dst) %{
  6810   match(Set dst (CastX2P src));
  6812   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6813   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6814   ins_pipe(ialu_reg);
  6815 %}
  6817 // Cast Pointer to Index for unsafe natives
  6818 instruct castP2X(iRegP src, iRegX dst) %{
  6819   match(Set dst (CastP2X src));
  6821   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6822   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6823   ins_pipe(ialu_reg);
  6824 %}
  6826 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6827   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6828   match(Set stkSlot src);   // chain rule
  6829   ins_cost(MEMORY_REF_COST);
  6830   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6831   opcode(Assembler::stdf_op3);
  6832   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6833   ins_pipe(fstoreD_stk_reg);
  6834 %}
  6836 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6837   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6838   match(Set dst stkSlot);   // chain rule
  6839   ins_cost(MEMORY_REF_COST);
  6840   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6841   opcode(Assembler::lddf_op3);
  6842   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6843   ins_pipe(floadD_stk);
  6844 %}
  6846 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6847   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6848   match(Set stkSlot src);   // chain rule
  6849   ins_cost(MEMORY_REF_COST);
  6850   format %{ "STF   $src,$stkSlot\t!stk" %}
  6851   opcode(Assembler::stf_op3);
  6852   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6853   ins_pipe(fstoreF_stk_reg);
  6854 %}
  6856 //----------Conditional Move---------------------------------------------------
  6857 // Conditional move
  6858 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6859   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6860   ins_cost(150);
  6861   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6862   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6863   ins_pipe(ialu_reg);
  6864 %}
  6866 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6867   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6868   ins_cost(140);
  6869   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6870   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6871   ins_pipe(ialu_imm);
  6872 %}
  6874 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6875   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6876   ins_cost(150);
  6877   size(4);
  6878   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6879   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6880   ins_pipe(ialu_reg);
  6881 %}
  6883 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6884   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6885   ins_cost(140);
  6886   size(4);
  6887   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6888   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6889   ins_pipe(ialu_imm);
  6890 %}
  6892 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6893   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6894   ins_cost(150);
  6895   size(4);
  6896   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6897   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6898   ins_pipe(ialu_reg);
  6899 %}
  6901 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6902   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6903   ins_cost(140);
  6904   size(4);
  6905   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6906   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6907   ins_pipe(ialu_imm);
  6908 %}
  6910 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6911   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6912   ins_cost(150);
  6913   size(4);
  6914   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6915   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6916   ins_pipe(ialu_reg);
  6917 %}
  6919 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6920   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6921   ins_cost(140);
  6922   size(4);
  6923   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6924   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6925   ins_pipe(ialu_imm);
  6926 %}
  6928 // Conditional move for RegN. Only cmov(reg,reg).
  6929 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6930   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6931   ins_cost(150);
  6932   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6933   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6934   ins_pipe(ialu_reg);
  6935 %}
  6937 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6938 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6939   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6940   ins_cost(150);
  6941   size(4);
  6942   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6943   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6944   ins_pipe(ialu_reg);
  6945 %}
  6947 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6948 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6949   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6950   ins_cost(150);
  6951   size(4);
  6952   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6953   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6954   ins_pipe(ialu_reg);
  6955 %}
  6957 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6958   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6959   ins_cost(150);
  6960   size(4);
  6961   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6962   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6963   ins_pipe(ialu_reg);
  6964 %}
  6966 // Conditional move
  6967 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6968   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6969   ins_cost(150);
  6970   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6971   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6972   ins_pipe(ialu_reg);
  6973 %}
  6975 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6976   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6977   ins_cost(140);
  6978   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6979   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6980   ins_pipe(ialu_imm);
  6981 %}
  6983 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6984 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6985   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6986   ins_cost(150);
  6988   size(4);
  6989   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6990   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6991   ins_pipe(ialu_reg);
  6992 %}
  6994 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6995   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6996   ins_cost(150);
  6998   size(4);
  6999   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7000   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7001   ins_pipe(ialu_reg);
  7002 %}
  7004 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  7005   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7006   ins_cost(140);
  7008   size(4);
  7009   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7010   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7011   ins_pipe(ialu_imm);
  7012 %}
  7014 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  7015   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7016   ins_cost(140);
  7018   size(4);
  7019   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7020   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7021   ins_pipe(ialu_imm);
  7022 %}
  7024 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  7025   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7026   ins_cost(150);
  7027   size(4);
  7028   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7029   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7030   ins_pipe(ialu_imm);
  7031 %}
  7033 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  7034   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7035   ins_cost(140);
  7036   size(4);
  7037   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7038   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  7039   ins_pipe(ialu_imm);
  7040 %}
  7042 // Conditional move
  7043 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  7044   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  7045   ins_cost(150);
  7046   opcode(0x101);
  7047   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7048   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7049   ins_pipe(int_conditional_float_move);
  7050 %}
  7052 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7053   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7054   ins_cost(150);
  7056   size(4);
  7057   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7058   opcode(0x101);
  7059   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7060   ins_pipe(int_conditional_float_move);
  7061 %}
  7063 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7064   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7065   ins_cost(150);
  7067   size(4);
  7068   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7069   opcode(0x101);
  7070   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7071   ins_pipe(int_conditional_float_move);
  7072 %}
  7074 // Conditional move,
  7075 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7076   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7077   ins_cost(150);
  7078   size(4);
  7079   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7080   opcode(0x1);
  7081   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7082   ins_pipe(int_conditional_double_move);
  7083 %}
  7085 // Conditional move
  7086 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7087   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7088   ins_cost(150);
  7089   size(4);
  7090   opcode(0x102);
  7091   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7092   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7093   ins_pipe(int_conditional_double_move);
  7094 %}
  7096 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7097   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7098   ins_cost(150);
  7100   size(4);
  7101   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7102   opcode(0x102);
  7103   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7104   ins_pipe(int_conditional_double_move);
  7105 %}
  7107 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7108   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7109   ins_cost(150);
  7111   size(4);
  7112   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7113   opcode(0x102);
  7114   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7115   ins_pipe(int_conditional_double_move);
  7116 %}
  7118 // Conditional move,
  7119 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7120   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7121   ins_cost(150);
  7122   size(4);
  7123   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7124   opcode(0x2);
  7125   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7126   ins_pipe(int_conditional_double_move);
  7127 %}
  7129 // Conditional move
  7130 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7131   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7132   ins_cost(150);
  7133   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7134   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7135   ins_pipe(ialu_reg);
  7136 %}
  7138 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7139   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7140   ins_cost(140);
  7141   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7142   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7143   ins_pipe(ialu_imm);
  7144 %}
  7146 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7147   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7148   ins_cost(150);
  7150   size(4);
  7151   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7152   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7153   ins_pipe(ialu_reg);
  7154 %}
  7157 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7158   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7159   ins_cost(150);
  7161   size(4);
  7162   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7163   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7164   ins_pipe(ialu_reg);
  7165 %}
  7168 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7169   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7170   ins_cost(150);
  7172   size(4);
  7173   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7174   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7175   ins_pipe(ialu_reg);
  7176 %}
  7180 //----------OS and Locking Instructions----------------------------------------
  7182 // This name is KNOWN by the ADLC and cannot be changed.
  7183 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7184 // for this guy.
  7185 instruct tlsLoadP(g2RegP dst) %{
  7186   match(Set dst (ThreadLocal));
  7188   size(0);
  7189   ins_cost(0);
  7190   format %{ "# TLS is in G2" %}
  7191   ins_encode( /*empty encoding*/ );
  7192   ins_pipe(ialu_none);
  7193 %}
  7195 instruct checkCastPP( iRegP dst ) %{
  7196   match(Set dst (CheckCastPP dst));
  7198   size(0);
  7199   format %{ "# checkcastPP of $dst" %}
  7200   ins_encode( /*empty encoding*/ );
  7201   ins_pipe(empty);
  7202 %}
  7205 instruct castPP( iRegP dst ) %{
  7206   match(Set dst (CastPP dst));
  7207   format %{ "# castPP of $dst" %}
  7208   ins_encode( /*empty encoding*/ );
  7209   ins_pipe(empty);
  7210 %}
  7212 instruct castII( iRegI dst ) %{
  7213   match(Set dst (CastII dst));
  7214   format %{ "# castII of $dst" %}
  7215   ins_encode( /*empty encoding*/ );
  7216   ins_cost(0);
  7217   ins_pipe(empty);
  7218 %}
  7220 //----------Arithmetic Instructions--------------------------------------------
  7221 // Addition Instructions
  7222 // Register Addition
  7223 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7224   match(Set dst (AddI src1 src2));
  7226   size(4);
  7227   format %{ "ADD    $src1,$src2,$dst" %}
  7228   ins_encode %{
  7229     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7230   %}
  7231   ins_pipe(ialu_reg_reg);
  7232 %}
  7234 // Immediate Addition
  7235 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7236   match(Set dst (AddI src1 src2));
  7238   size(4);
  7239   format %{ "ADD    $src1,$src2,$dst" %}
  7240   opcode(Assembler::add_op3, Assembler::arith_op);
  7241   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7242   ins_pipe(ialu_reg_imm);
  7243 %}
  7245 // Pointer Register Addition
  7246 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7247   match(Set dst (AddP src1 src2));
  7249   size(4);
  7250   format %{ "ADD    $src1,$src2,$dst" %}
  7251   opcode(Assembler::add_op3, Assembler::arith_op);
  7252   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7253   ins_pipe(ialu_reg_reg);
  7254 %}
  7256 // Pointer Immediate Addition
  7257 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7258   match(Set dst (AddP src1 src2));
  7260   size(4);
  7261   format %{ "ADD    $src1,$src2,$dst" %}
  7262   opcode(Assembler::add_op3, Assembler::arith_op);
  7263   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7264   ins_pipe(ialu_reg_imm);
  7265 %}
  7267 // Long Addition
  7268 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7269   match(Set dst (AddL src1 src2));
  7271   size(4);
  7272   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7273   opcode(Assembler::add_op3, Assembler::arith_op);
  7274   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7275   ins_pipe(ialu_reg_reg);
  7276 %}
  7278 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7279   match(Set dst (AddL src1 con));
  7281   size(4);
  7282   format %{ "ADD    $src1,$con,$dst" %}
  7283   opcode(Assembler::add_op3, Assembler::arith_op);
  7284   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7285   ins_pipe(ialu_reg_imm);
  7286 %}
  7288 //----------Conditional_store--------------------------------------------------
  7289 // Conditional-store of the updated heap-top.
  7290 // Used during allocation of the shared heap.
  7291 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7293 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7294 instruct loadPLocked(iRegP dst, memory mem) %{
  7295   match(Set dst (LoadPLocked mem));
  7296   ins_cost(MEMORY_REF_COST);
  7298 #ifndef _LP64
  7299   size(4);
  7300   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7301   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7302 #else
  7303   format %{ "LDX    $mem,$dst\t! ptr" %}
  7304   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7305 #endif
  7306   ins_encode( form3_mem_reg( mem, dst ) );
  7307   ins_pipe(iload_mem);
  7308 %}
  7310 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7311   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7312   effect( KILL newval );
  7313   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7314             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7315   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7316   ins_pipe( long_memory_op );
  7317 %}
  7319 // Conditional-store of an int value.
  7320 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7321   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7322   effect( KILL newval );
  7323   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7324             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7325   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7326   ins_pipe( long_memory_op );
  7327 %}
  7329 // Conditional-store of a long value.
  7330 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7331   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7332   effect( KILL newval );
  7333   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7334             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7335   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7336   ins_pipe( long_memory_op );
  7337 %}
  7339 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7341 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7342   predicate(VM_Version::supports_cx8());
  7343   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7344   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7345   format %{
  7346             "MOV    $newval,O7\n\t"
  7347             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7348             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7349             "MOV    1,$res\n\t"
  7350             "MOVne  xcc,R_G0,$res"
  7351   %}
  7352   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7353               enc_lflags_ne_to_boolean(res) );
  7354   ins_pipe( long_memory_op );
  7355 %}
  7358 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7359   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7360   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7361   format %{
  7362             "MOV    $newval,O7\n\t"
  7363             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7364             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7365             "MOV    1,$res\n\t"
  7366             "MOVne  icc,R_G0,$res"
  7367   %}
  7368   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7369               enc_iflags_ne_to_boolean(res) );
  7370   ins_pipe( long_memory_op );
  7371 %}
  7373 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7374 #ifdef _LP64
  7375   predicate(VM_Version::supports_cx8());
  7376 #endif
  7377   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7378   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7379   format %{
  7380             "MOV    $newval,O7\n\t"
  7381             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7382             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7383             "MOV    1,$res\n\t"
  7384             "MOVne  xcc,R_G0,$res"
  7385   %}
  7386 #ifdef _LP64
  7387   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7388               enc_lflags_ne_to_boolean(res) );
  7389 #else
  7390   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7391               enc_iflags_ne_to_boolean(res) );
  7392 #endif
  7393   ins_pipe( long_memory_op );
  7394 %}
  7396 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7397   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7398   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7399   format %{
  7400             "MOV    $newval,O7\n\t"
  7401             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7402             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7403             "MOV    1,$res\n\t"
  7404             "MOVne  icc,R_G0,$res"
  7405   %}
  7406   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7407               enc_iflags_ne_to_boolean(res) );
  7408   ins_pipe( long_memory_op );
  7409 %}
  7411 instruct xchgI( memory mem, iRegI newval) %{
  7412   match(Set newval (GetAndSetI mem newval));
  7413   format %{ "SWAP  [$mem],$newval" %}
  7414   size(4);
  7415   ins_encode %{
  7416     __ swap($mem$$Address, $newval$$Register);
  7417   %}
  7418   ins_pipe( long_memory_op );
  7419 %}
  7421 #ifndef _LP64
  7422 instruct xchgP( memory mem, iRegP newval) %{
  7423   match(Set newval (GetAndSetP mem newval));
  7424   format %{ "SWAP  [$mem],$newval" %}
  7425   size(4);
  7426   ins_encode %{
  7427     __ swap($mem$$Address, $newval$$Register);
  7428   %}
  7429   ins_pipe( long_memory_op );
  7430 %}
  7431 #endif
  7433 instruct xchgN( memory mem, iRegN newval) %{
  7434   match(Set newval (GetAndSetN mem newval));
  7435   format %{ "SWAP  [$mem],$newval" %}
  7436   size(4);
  7437   ins_encode %{
  7438     __ swap($mem$$Address, $newval$$Register);
  7439   %}
  7440   ins_pipe( long_memory_op );
  7441 %}
  7443 //---------------------
  7444 // Subtraction Instructions
  7445 // Register Subtraction
  7446 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7447   match(Set dst (SubI src1 src2));
  7449   size(4);
  7450   format %{ "SUB    $src1,$src2,$dst" %}
  7451   opcode(Assembler::sub_op3, Assembler::arith_op);
  7452   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7453   ins_pipe(ialu_reg_reg);
  7454 %}
  7456 // Immediate Subtraction
  7457 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7458   match(Set dst (SubI src1 src2));
  7460   size(4);
  7461   format %{ "SUB    $src1,$src2,$dst" %}
  7462   opcode(Assembler::sub_op3, Assembler::arith_op);
  7463   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7464   ins_pipe(ialu_reg_imm);
  7465 %}
  7467 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7468   match(Set dst (SubI zero src2));
  7470   size(4);
  7471   format %{ "NEG    $src2,$dst" %}
  7472   opcode(Assembler::sub_op3, Assembler::arith_op);
  7473   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7474   ins_pipe(ialu_zero_reg);
  7475 %}
  7477 // Long subtraction
  7478 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7479   match(Set dst (SubL src1 src2));
  7481   size(4);
  7482   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7483   opcode(Assembler::sub_op3, Assembler::arith_op);
  7484   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7485   ins_pipe(ialu_reg_reg);
  7486 %}
  7488 // Immediate Subtraction
  7489 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7490   match(Set dst (SubL src1 con));
  7492   size(4);
  7493   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7494   opcode(Assembler::sub_op3, Assembler::arith_op);
  7495   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7496   ins_pipe(ialu_reg_imm);
  7497 %}
  7499 // Long negation
  7500 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7501   match(Set dst (SubL zero src2));
  7503   size(4);
  7504   format %{ "NEG    $src2,$dst\t! long" %}
  7505   opcode(Assembler::sub_op3, Assembler::arith_op);
  7506   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7507   ins_pipe(ialu_zero_reg);
  7508 %}
  7510 // Multiplication Instructions
  7511 // Integer Multiplication
  7512 // Register Multiplication
  7513 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7514   match(Set dst (MulI src1 src2));
  7516   size(4);
  7517   format %{ "MULX   $src1,$src2,$dst" %}
  7518   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7519   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7520   ins_pipe(imul_reg_reg);
  7521 %}
  7523 // Immediate Multiplication
  7524 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7525   match(Set dst (MulI src1 src2));
  7527   size(4);
  7528   format %{ "MULX   $src1,$src2,$dst" %}
  7529   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7530   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7531   ins_pipe(imul_reg_imm);
  7532 %}
  7534 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7535   match(Set dst (MulL src1 src2));
  7536   ins_cost(DEFAULT_COST * 5);
  7537   size(4);
  7538   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7539   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7540   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7541   ins_pipe(mulL_reg_reg);
  7542 %}
  7544 // Immediate Multiplication
  7545 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7546   match(Set dst (MulL src1 src2));
  7547   ins_cost(DEFAULT_COST * 5);
  7548   size(4);
  7549   format %{ "MULX   $src1,$src2,$dst" %}
  7550   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7551   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7552   ins_pipe(mulL_reg_imm);
  7553 %}
  7555 // Integer Division
  7556 // Register Division
  7557 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7558   match(Set dst (DivI src1 src2));
  7559   ins_cost((2+71)*DEFAULT_COST);
  7561   format %{ "SRA     $src2,0,$src2\n\t"
  7562             "SRA     $src1,0,$src1\n\t"
  7563             "SDIVX   $src1,$src2,$dst" %}
  7564   ins_encode( idiv_reg( src1, src2, dst ) );
  7565   ins_pipe(sdiv_reg_reg);
  7566 %}
  7568 // Immediate Division
  7569 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7570   match(Set dst (DivI src1 src2));
  7571   ins_cost((2+71)*DEFAULT_COST);
  7573   format %{ "SRA     $src1,0,$src1\n\t"
  7574             "SDIVX   $src1,$src2,$dst" %}
  7575   ins_encode( idiv_imm( src1, src2, dst ) );
  7576   ins_pipe(sdiv_reg_imm);
  7577 %}
  7579 //----------Div-By-10-Expansion------------------------------------------------
  7580 // Extract hi bits of a 32x32->64 bit multiply.
  7581 // Expand rule only, not matched
  7582 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7583   effect( DEF dst, USE src1, USE src2 );
  7584   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7585             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7586   ins_encode( enc_mul_hi(dst,src1,src2));
  7587   ins_pipe(sdiv_reg_reg);
  7588 %}
  7590 // Magic constant, reciprocal of 10
  7591 instruct loadConI_x66666667(iRegIsafe dst) %{
  7592   effect( DEF dst );
  7594   size(8);
  7595   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7596   ins_encode( Set32(0x66666667, dst) );
  7597   ins_pipe(ialu_hi_lo_reg);
  7598 %}
  7600 // Register Shift Right Arithmetic Long by 32-63
  7601 instruct sra_31( iRegI dst, iRegI src ) %{
  7602   effect( DEF dst, USE src );
  7603   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7604   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7605   ins_pipe(ialu_reg_reg);
  7606 %}
  7608 // Arithmetic Shift Right by 8-bit immediate
  7609 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7610   effect( DEF dst, USE src );
  7611   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7612   opcode(Assembler::sra_op3, Assembler::arith_op);
  7613   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7614   ins_pipe(ialu_reg_imm);
  7615 %}
  7617 // Integer DIV with 10
  7618 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7619   match(Set dst (DivI src div));
  7620   ins_cost((6+6)*DEFAULT_COST);
  7621   expand %{
  7622     iRegIsafe tmp1;               // Killed temps;
  7623     iRegIsafe tmp2;               // Killed temps;
  7624     iRegI tmp3;                   // Killed temps;
  7625     iRegI tmp4;                   // Killed temps;
  7626     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7627     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7628     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7629     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7630     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7631   %}
  7632 %}
  7634 // Register Long Division
  7635 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7636   match(Set dst (DivL src1 src2));
  7637   ins_cost(DEFAULT_COST*71);
  7638   size(4);
  7639   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7640   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7641   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7642   ins_pipe(divL_reg_reg);
  7643 %}
  7645 // Register Long Division
  7646 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7647   match(Set dst (DivL src1 src2));
  7648   ins_cost(DEFAULT_COST*71);
  7649   size(4);
  7650   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7651   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7652   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7653   ins_pipe(divL_reg_imm);
  7654 %}
  7656 // Integer Remainder
  7657 // Register Remainder
  7658 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7659   match(Set dst (ModI src1 src2));
  7660   effect( KILL ccr, KILL temp);
  7662   format %{ "SREM   $src1,$src2,$dst" %}
  7663   ins_encode( irem_reg(src1, src2, dst, temp) );
  7664   ins_pipe(sdiv_reg_reg);
  7665 %}
  7667 // Immediate Remainder
  7668 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7669   match(Set dst (ModI src1 src2));
  7670   effect( KILL ccr, KILL temp);
  7672   format %{ "SREM   $src1,$src2,$dst" %}
  7673   ins_encode( irem_imm(src1, src2, dst, temp) );
  7674   ins_pipe(sdiv_reg_imm);
  7675 %}
  7677 // Register Long Remainder
  7678 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7679   effect(DEF dst, USE src1, USE src2);
  7680   size(4);
  7681   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7682   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7683   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7684   ins_pipe(divL_reg_reg);
  7685 %}
  7687 // Register Long Division
  7688 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7689   effect(DEF dst, USE src1, USE src2);
  7690   size(4);
  7691   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7692   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7693   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7694   ins_pipe(divL_reg_imm);
  7695 %}
  7697 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7698   effect(DEF dst, USE src1, USE src2);
  7699   size(4);
  7700   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7701   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7702   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7703   ins_pipe(mulL_reg_reg);
  7704 %}
  7706 // Immediate Multiplication
  7707 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7708   effect(DEF dst, USE src1, USE src2);
  7709   size(4);
  7710   format %{ "MULX   $src1,$src2,$dst" %}
  7711   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7712   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7713   ins_pipe(mulL_reg_imm);
  7714 %}
  7716 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7717   effect(DEF dst, USE src1, USE src2);
  7718   size(4);
  7719   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7720   opcode(Assembler::sub_op3, Assembler::arith_op);
  7721   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7722   ins_pipe(ialu_reg_reg);
  7723 %}
  7725 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7726   effect(DEF dst, USE src1, USE src2);
  7727   size(4);
  7728   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7729   opcode(Assembler::sub_op3, Assembler::arith_op);
  7730   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7731   ins_pipe(ialu_reg_reg);
  7732 %}
  7734 // Register Long Remainder
  7735 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7736   match(Set dst (ModL src1 src2));
  7737   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7738   expand %{
  7739     iRegL tmp1;
  7740     iRegL tmp2;
  7741     divL_reg_reg_1(tmp1, src1, src2);
  7742     mulL_reg_reg_1(tmp2, tmp1, src2);
  7743     subL_reg_reg_1(dst,  src1, tmp2);
  7744   %}
  7745 %}
  7747 // Register Long Remainder
  7748 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7749   match(Set dst (ModL src1 src2));
  7750   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7751   expand %{
  7752     iRegL tmp1;
  7753     iRegL tmp2;
  7754     divL_reg_imm13_1(tmp1, src1, src2);
  7755     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7756     subL_reg_reg_2  (dst,  src1, tmp2);
  7757   %}
  7758 %}
  7760 // Integer Shift Instructions
  7761 // Register Shift Left
  7762 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7763   match(Set dst (LShiftI src1 src2));
  7765   size(4);
  7766   format %{ "SLL    $src1,$src2,$dst" %}
  7767   opcode(Assembler::sll_op3, Assembler::arith_op);
  7768   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7769   ins_pipe(ialu_reg_reg);
  7770 %}
  7772 // Register Shift Left Immediate
  7773 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7774   match(Set dst (LShiftI src1 src2));
  7776   size(4);
  7777   format %{ "SLL    $src1,$src2,$dst" %}
  7778   opcode(Assembler::sll_op3, Assembler::arith_op);
  7779   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7780   ins_pipe(ialu_reg_imm);
  7781 %}
  7783 // Register Shift Left
  7784 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7785   match(Set dst (LShiftL src1 src2));
  7787   size(4);
  7788   format %{ "SLLX   $src1,$src2,$dst" %}
  7789   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7790   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7791   ins_pipe(ialu_reg_reg);
  7792 %}
  7794 // Register Shift Left Immediate
  7795 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7796   match(Set dst (LShiftL src1 src2));
  7798   size(4);
  7799   format %{ "SLLX   $src1,$src2,$dst" %}
  7800   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7801   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7802   ins_pipe(ialu_reg_imm);
  7803 %}
  7805 // Register Arithmetic Shift Right
  7806 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7807   match(Set dst (RShiftI src1 src2));
  7808   size(4);
  7809   format %{ "SRA    $src1,$src2,$dst" %}
  7810   opcode(Assembler::sra_op3, Assembler::arith_op);
  7811   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7812   ins_pipe(ialu_reg_reg);
  7813 %}
  7815 // Register Arithmetic Shift Right Immediate
  7816 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7817   match(Set dst (RShiftI src1 src2));
  7819   size(4);
  7820   format %{ "SRA    $src1,$src2,$dst" %}
  7821   opcode(Assembler::sra_op3, Assembler::arith_op);
  7822   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7823   ins_pipe(ialu_reg_imm);
  7824 %}
  7826 // Register Shift Right Arithmatic Long
  7827 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7828   match(Set dst (RShiftL src1 src2));
  7830   size(4);
  7831   format %{ "SRAX   $src1,$src2,$dst" %}
  7832   opcode(Assembler::srax_op3, Assembler::arith_op);
  7833   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7834   ins_pipe(ialu_reg_reg);
  7835 %}
  7837 // Register Shift Left Immediate
  7838 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7839   match(Set dst (RShiftL src1 src2));
  7841   size(4);
  7842   format %{ "SRAX   $src1,$src2,$dst" %}
  7843   opcode(Assembler::srax_op3, Assembler::arith_op);
  7844   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7845   ins_pipe(ialu_reg_imm);
  7846 %}
  7848 // Register Shift Right
  7849 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7850   match(Set dst (URShiftI src1 src2));
  7852   size(4);
  7853   format %{ "SRL    $src1,$src2,$dst" %}
  7854   opcode(Assembler::srl_op3, Assembler::arith_op);
  7855   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7856   ins_pipe(ialu_reg_reg);
  7857 %}
  7859 // Register Shift Right Immediate
  7860 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7861   match(Set dst (URShiftI src1 src2));
  7863   size(4);
  7864   format %{ "SRL    $src1,$src2,$dst" %}
  7865   opcode(Assembler::srl_op3, Assembler::arith_op);
  7866   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7867   ins_pipe(ialu_reg_imm);
  7868 %}
  7870 // Register Shift Right
  7871 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7872   match(Set dst (URShiftL src1 src2));
  7874   size(4);
  7875   format %{ "SRLX   $src1,$src2,$dst" %}
  7876   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7877   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7878   ins_pipe(ialu_reg_reg);
  7879 %}
  7881 // Register Shift Right Immediate
  7882 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7883   match(Set dst (URShiftL src1 src2));
  7885   size(4);
  7886   format %{ "SRLX   $src1,$src2,$dst" %}
  7887   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7888   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7889   ins_pipe(ialu_reg_imm);
  7890 %}
  7892 // Register Shift Right Immediate with a CastP2X
  7893 #ifdef _LP64
  7894 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7895   match(Set dst (URShiftL (CastP2X src1) src2));
  7896   size(4);
  7897   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7898   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7899   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7900   ins_pipe(ialu_reg_imm);
  7901 %}
  7902 #else
  7903 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7904   match(Set dst (URShiftI (CastP2X src1) src2));
  7905   size(4);
  7906   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7907   opcode(Assembler::srl_op3, Assembler::arith_op);
  7908   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7909   ins_pipe(ialu_reg_imm);
  7910 %}
  7911 #endif
  7914 //----------Floating Point Arithmetic Instructions-----------------------------
  7916 //  Add float single precision
  7917 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7918   match(Set dst (AddF src1 src2));
  7920   size(4);
  7921   format %{ "FADDS  $src1,$src2,$dst" %}
  7922   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7923   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7924   ins_pipe(faddF_reg_reg);
  7925 %}
  7927 //  Add float double precision
  7928 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7929   match(Set dst (AddD src1 src2));
  7931   size(4);
  7932   format %{ "FADDD  $src1,$src2,$dst" %}
  7933   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7934   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7935   ins_pipe(faddD_reg_reg);
  7936 %}
  7938 //  Sub float single precision
  7939 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7940   match(Set dst (SubF src1 src2));
  7942   size(4);
  7943   format %{ "FSUBS  $src1,$src2,$dst" %}
  7944   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7945   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7946   ins_pipe(faddF_reg_reg);
  7947 %}
  7949 //  Sub float double precision
  7950 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7951   match(Set dst (SubD src1 src2));
  7953   size(4);
  7954   format %{ "FSUBD  $src1,$src2,$dst" %}
  7955   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7956   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7957   ins_pipe(faddD_reg_reg);
  7958 %}
  7960 //  Mul float single precision
  7961 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7962   match(Set dst (MulF src1 src2));
  7964   size(4);
  7965   format %{ "FMULS  $src1,$src2,$dst" %}
  7966   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7967   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7968   ins_pipe(fmulF_reg_reg);
  7969 %}
  7971 //  Mul float double precision
  7972 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7973   match(Set dst (MulD src1 src2));
  7975   size(4);
  7976   format %{ "FMULD  $src1,$src2,$dst" %}
  7977   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7978   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7979   ins_pipe(fmulD_reg_reg);
  7980 %}
  7982 //  Div float single precision
  7983 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7984   match(Set dst (DivF src1 src2));
  7986   size(4);
  7987   format %{ "FDIVS  $src1,$src2,$dst" %}
  7988   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7989   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7990   ins_pipe(fdivF_reg_reg);
  7991 %}
  7993 //  Div float double precision
  7994 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7995   match(Set dst (DivD src1 src2));
  7997   size(4);
  7998   format %{ "FDIVD  $src1,$src2,$dst" %}
  7999   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  8000   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8001   ins_pipe(fdivD_reg_reg);
  8002 %}
  8004 //  Absolute float double precision
  8005 instruct absD_reg(regD dst, regD src) %{
  8006   match(Set dst (AbsD src));
  8008   format %{ "FABSd  $src,$dst" %}
  8009   ins_encode(fabsd(dst, src));
  8010   ins_pipe(faddD_reg);
  8011 %}
  8013 //  Absolute float single precision
  8014 instruct absF_reg(regF dst, regF src) %{
  8015   match(Set dst (AbsF src));
  8017   format %{ "FABSs  $src,$dst" %}
  8018   ins_encode(fabss(dst, src));
  8019   ins_pipe(faddF_reg);
  8020 %}
  8022 instruct negF_reg(regF dst, regF src) %{
  8023   match(Set dst (NegF src));
  8025   size(4);
  8026   format %{ "FNEGs  $src,$dst" %}
  8027   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  8028   ins_encode(form3_opf_rs2F_rdF(src, dst));
  8029   ins_pipe(faddF_reg);
  8030 %}
  8032 instruct negD_reg(regD dst, regD src) %{
  8033   match(Set dst (NegD src));
  8035   format %{ "FNEGd  $src,$dst" %}
  8036   ins_encode(fnegd(dst, src));
  8037   ins_pipe(faddD_reg);
  8038 %}
  8040 //  Sqrt float double precision
  8041 instruct sqrtF_reg_reg(regF dst, regF src) %{
  8042   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8044   size(4);
  8045   format %{ "FSQRTS $src,$dst" %}
  8046   ins_encode(fsqrts(dst, src));
  8047   ins_pipe(fdivF_reg_reg);
  8048 %}
  8050 //  Sqrt float double precision
  8051 instruct sqrtD_reg_reg(regD dst, regD src) %{
  8052   match(Set dst (SqrtD src));
  8054   size(4);
  8055   format %{ "FSQRTD $src,$dst" %}
  8056   ins_encode(fsqrtd(dst, src));
  8057   ins_pipe(fdivD_reg_reg);
  8058 %}
  8060 //----------Logical Instructions-----------------------------------------------
  8061 // And Instructions
  8062 // Register And
  8063 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8064   match(Set dst (AndI src1 src2));
  8066   size(4);
  8067   format %{ "AND    $src1,$src2,$dst" %}
  8068   opcode(Assembler::and_op3, Assembler::arith_op);
  8069   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8070   ins_pipe(ialu_reg_reg);
  8071 %}
  8073 // Immediate And
  8074 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8075   match(Set dst (AndI src1 src2));
  8077   size(4);
  8078   format %{ "AND    $src1,$src2,$dst" %}
  8079   opcode(Assembler::and_op3, Assembler::arith_op);
  8080   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8081   ins_pipe(ialu_reg_imm);
  8082 %}
  8084 // Register And Long
  8085 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8086   match(Set dst (AndL src1 src2));
  8088   ins_cost(DEFAULT_COST);
  8089   size(4);
  8090   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8091   opcode(Assembler::and_op3, Assembler::arith_op);
  8092   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8093   ins_pipe(ialu_reg_reg);
  8094 %}
  8096 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8097   match(Set dst (AndL src1 con));
  8099   ins_cost(DEFAULT_COST);
  8100   size(4);
  8101   format %{ "AND    $src1,$con,$dst\t! long" %}
  8102   opcode(Assembler::and_op3, Assembler::arith_op);
  8103   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8104   ins_pipe(ialu_reg_imm);
  8105 %}
  8107 // Or Instructions
  8108 // Register Or
  8109 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8110   match(Set dst (OrI src1 src2));
  8112   size(4);
  8113   format %{ "OR     $src1,$src2,$dst" %}
  8114   opcode(Assembler::or_op3, Assembler::arith_op);
  8115   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8116   ins_pipe(ialu_reg_reg);
  8117 %}
  8119 // Immediate Or
  8120 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8121   match(Set dst (OrI src1 src2));
  8123   size(4);
  8124   format %{ "OR     $src1,$src2,$dst" %}
  8125   opcode(Assembler::or_op3, Assembler::arith_op);
  8126   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8127   ins_pipe(ialu_reg_imm);
  8128 %}
  8130 // Register Or Long
  8131 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8132   match(Set dst (OrL src1 src2));
  8134   ins_cost(DEFAULT_COST);
  8135   size(4);
  8136   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8137   opcode(Assembler::or_op3, Assembler::arith_op);
  8138   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8139   ins_pipe(ialu_reg_reg);
  8140 %}
  8142 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8143   match(Set dst (OrL src1 con));
  8144   ins_cost(DEFAULT_COST*2);
  8146   ins_cost(DEFAULT_COST);
  8147   size(4);
  8148   format %{ "OR     $src1,$con,$dst\t! long" %}
  8149   opcode(Assembler::or_op3, Assembler::arith_op);
  8150   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8151   ins_pipe(ialu_reg_imm);
  8152 %}
  8154 #ifndef _LP64
  8156 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8157 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8158   match(Set dst (OrI src1 (CastP2X src2)));
  8160   size(4);
  8161   format %{ "OR     $src1,$src2,$dst" %}
  8162   opcode(Assembler::or_op3, Assembler::arith_op);
  8163   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8164   ins_pipe(ialu_reg_reg);
  8165 %}
  8167 #else
  8169 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8170   match(Set dst (OrL src1 (CastP2X src2)));
  8172   ins_cost(DEFAULT_COST);
  8173   size(4);
  8174   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8175   opcode(Assembler::or_op3, Assembler::arith_op);
  8176   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8177   ins_pipe(ialu_reg_reg);
  8178 %}
  8180 #endif
  8182 // Xor Instructions
  8183 // Register Xor
  8184 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8185   match(Set dst (XorI src1 src2));
  8187   size(4);
  8188   format %{ "XOR    $src1,$src2,$dst" %}
  8189   opcode(Assembler::xor_op3, Assembler::arith_op);
  8190   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8191   ins_pipe(ialu_reg_reg);
  8192 %}
  8194 // Immediate Xor
  8195 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8196   match(Set dst (XorI src1 src2));
  8198   size(4);
  8199   format %{ "XOR    $src1,$src2,$dst" %}
  8200   opcode(Assembler::xor_op3, Assembler::arith_op);
  8201   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8202   ins_pipe(ialu_reg_imm);
  8203 %}
  8205 // Register Xor Long
  8206 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8207   match(Set dst (XorL src1 src2));
  8209   ins_cost(DEFAULT_COST);
  8210   size(4);
  8211   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8212   opcode(Assembler::xor_op3, Assembler::arith_op);
  8213   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8214   ins_pipe(ialu_reg_reg);
  8215 %}
  8217 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8218   match(Set dst (XorL src1 con));
  8220   ins_cost(DEFAULT_COST);
  8221   size(4);
  8222   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8223   opcode(Assembler::xor_op3, Assembler::arith_op);
  8224   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8225   ins_pipe(ialu_reg_imm);
  8226 %}
  8228 //----------Convert to Boolean-------------------------------------------------
  8229 // Nice hack for 32-bit tests but doesn't work for
  8230 // 64-bit pointers.
  8231 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8232   match(Set dst (Conv2B src));
  8233   effect( KILL ccr );
  8234   ins_cost(DEFAULT_COST*2);
  8235   format %{ "CMP    R_G0,$src\n\t"
  8236             "ADDX   R_G0,0,$dst" %}
  8237   ins_encode( enc_to_bool( src, dst ) );
  8238   ins_pipe(ialu_reg_ialu);
  8239 %}
  8241 #ifndef _LP64
  8242 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8243   match(Set dst (Conv2B src));
  8244   effect( KILL ccr );
  8245   ins_cost(DEFAULT_COST*2);
  8246   format %{ "CMP    R_G0,$src\n\t"
  8247             "ADDX   R_G0,0,$dst" %}
  8248   ins_encode( enc_to_bool( src, dst ) );
  8249   ins_pipe(ialu_reg_ialu);
  8250 %}
  8251 #else
  8252 instruct convP2B( iRegI dst, iRegP src ) %{
  8253   match(Set dst (Conv2B src));
  8254   ins_cost(DEFAULT_COST*2);
  8255   format %{ "MOV    $src,$dst\n\t"
  8256             "MOVRNZ $src,1,$dst" %}
  8257   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8258   ins_pipe(ialu_clr_and_mover);
  8259 %}
  8260 #endif
  8262 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8263   match(Set dst (CmpLTMask src zero));
  8264   effect(KILL ccr);
  8265   size(4);
  8266   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8267   ins_encode %{
  8268     __ sra($src$$Register, 31, $dst$$Register);
  8269   %}
  8270   ins_pipe(ialu_reg_imm);
  8271 %}
  8273 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8274   match(Set dst (CmpLTMask p q));
  8275   effect( KILL ccr );
  8276   ins_cost(DEFAULT_COST*4);
  8277   format %{ "CMP    $p,$q\n\t"
  8278             "MOV    #0,$dst\n\t"
  8279             "BLT,a  .+8\n\t"
  8280             "MOV    #-1,$dst" %}
  8281   ins_encode( enc_ltmask(p,q,dst) );
  8282   ins_pipe(ialu_reg_reg_ialu);
  8283 %}
  8285 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8286   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8287   effect(KILL ccr, TEMP tmp);
  8288   ins_cost(DEFAULT_COST*3);
  8290   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8291             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8292             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8293   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8294   ins_pipe(cadd_cmpltmask);
  8295 %}
  8297 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8298   match(Set p (AndI (CmpLTMask p q) y));
  8299   effect(KILL ccr);
  8300   ins_cost(DEFAULT_COST*3);
  8302   format %{ "CMP  $p,$q\n\t"
  8303             "MOV  $y,$p\n\t"
  8304             "MOVge G0,$p" %}
  8305   ins_encode %{
  8306     __ cmp($p$$Register, $q$$Register);
  8307     __ mov($y$$Register, $p$$Register);
  8308     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8309   %}
  8310   ins_pipe(ialu_reg_reg_ialu);
  8311 %}
  8313 //-----------------------------------------------------------------
  8314 // Direct raw moves between float and general registers using VIS3.
  8316 //  ins_pipe(faddF_reg);
  8317 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8318   predicate(UseVIS >= 3);
  8319   match(Set dst (MoveF2I src));
  8321   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8322   ins_encode %{
  8323     __ movstouw($src$$FloatRegister, $dst$$Register);
  8324   %}
  8325   ins_pipe(ialu_reg_reg);
  8326 %}
  8328 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8329   predicate(UseVIS >= 3);
  8330   match(Set dst (MoveI2F src));
  8332   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8333   ins_encode %{
  8334     __ movwtos($src$$Register, $dst$$FloatRegister);
  8335   %}
  8336   ins_pipe(ialu_reg_reg);
  8337 %}
  8339 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8340   predicate(UseVIS >= 3);
  8341   match(Set dst (MoveD2L src));
  8343   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8344   ins_encode %{
  8345     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8346   %}
  8347   ins_pipe(ialu_reg_reg);
  8348 %}
  8350 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8351   predicate(UseVIS >= 3);
  8352   match(Set dst (MoveL2D src));
  8354   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8355   ins_encode %{
  8356     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8357   %}
  8358   ins_pipe(ialu_reg_reg);
  8359 %}
  8362 // Raw moves between float and general registers using stack.
  8364 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8365   match(Set dst (MoveF2I src));
  8366   effect(DEF dst, USE src);
  8367   ins_cost(MEMORY_REF_COST);
  8369   size(4);
  8370   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8371   opcode(Assembler::lduw_op3);
  8372   ins_encode(simple_form3_mem_reg( src, dst ) );
  8373   ins_pipe(iload_mem);
  8374 %}
  8376 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8377   match(Set dst (MoveI2F src));
  8378   effect(DEF dst, USE src);
  8379   ins_cost(MEMORY_REF_COST);
  8381   size(4);
  8382   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8383   opcode(Assembler::ldf_op3);
  8384   ins_encode(simple_form3_mem_reg(src, dst));
  8385   ins_pipe(floadF_stk);
  8386 %}
  8388 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8389   match(Set dst (MoveD2L src));
  8390   effect(DEF dst, USE src);
  8391   ins_cost(MEMORY_REF_COST);
  8393   size(4);
  8394   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8395   opcode(Assembler::ldx_op3);
  8396   ins_encode(simple_form3_mem_reg( src, dst ) );
  8397   ins_pipe(iload_mem);
  8398 %}
  8400 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8401   match(Set dst (MoveL2D src));
  8402   effect(DEF dst, USE src);
  8403   ins_cost(MEMORY_REF_COST);
  8405   size(4);
  8406   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8407   opcode(Assembler::lddf_op3);
  8408   ins_encode(simple_form3_mem_reg(src, dst));
  8409   ins_pipe(floadD_stk);
  8410 %}
  8412 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8413   match(Set dst (MoveF2I src));
  8414   effect(DEF dst, USE src);
  8415   ins_cost(MEMORY_REF_COST);
  8417   size(4);
  8418   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8419   opcode(Assembler::stf_op3);
  8420   ins_encode(simple_form3_mem_reg(dst, src));
  8421   ins_pipe(fstoreF_stk_reg);
  8422 %}
  8424 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8425   match(Set dst (MoveI2F src));
  8426   effect(DEF dst, USE src);
  8427   ins_cost(MEMORY_REF_COST);
  8429   size(4);
  8430   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8431   opcode(Assembler::stw_op3);
  8432   ins_encode(simple_form3_mem_reg( dst, src ) );
  8433   ins_pipe(istore_mem_reg);
  8434 %}
  8436 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8437   match(Set dst (MoveD2L src));
  8438   effect(DEF dst, USE src);
  8439   ins_cost(MEMORY_REF_COST);
  8441   size(4);
  8442   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8443   opcode(Assembler::stdf_op3);
  8444   ins_encode(simple_form3_mem_reg(dst, src));
  8445   ins_pipe(fstoreD_stk_reg);
  8446 %}
  8448 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8449   match(Set dst (MoveL2D src));
  8450   effect(DEF dst, USE src);
  8451   ins_cost(MEMORY_REF_COST);
  8453   size(4);
  8454   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8455   opcode(Assembler::stx_op3);
  8456   ins_encode(simple_form3_mem_reg( dst, src ) );
  8457   ins_pipe(istore_mem_reg);
  8458 %}
  8461 //----------Arithmetic Conversion Instructions---------------------------------
  8462 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8464 instruct convD2F_reg(regF dst, regD src) %{
  8465   match(Set dst (ConvD2F src));
  8466   size(4);
  8467   format %{ "FDTOS  $src,$dst" %}
  8468   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8469   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8470   ins_pipe(fcvtD2F);
  8471 %}
  8474 // Convert a double to an int in a float register.
  8475 // If the double is a NAN, stuff a zero in instead.
  8476 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8477   effect(DEF dst, USE src, KILL fcc0);
  8478   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8479             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8480             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8481             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8482             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8483       "skip:" %}
  8484   ins_encode(form_d2i_helper(src,dst));
  8485   ins_pipe(fcvtD2I);
  8486 %}
  8488 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8489   match(Set dst (ConvD2I src));
  8490   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8491   expand %{
  8492     regF tmp;
  8493     convD2I_helper(tmp, src);
  8494     regF_to_stkI(dst, tmp);
  8495   %}
  8496 %}
  8498 instruct convD2I_reg(iRegI dst, regD src) %{
  8499   predicate(UseVIS >= 3);
  8500   match(Set dst (ConvD2I src));
  8501   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8502   expand %{
  8503     regF tmp;
  8504     convD2I_helper(tmp, src);
  8505     MoveF2I_reg_reg(dst, tmp);
  8506   %}
  8507 %}
  8510 // Convert a double to a long in a double register.
  8511 // If the double is a NAN, stuff a zero in instead.
  8512 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8513   effect(DEF dst, USE src, KILL fcc0);
  8514   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8515             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8516             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8517             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8518             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8519       "skip:" %}
  8520   ins_encode(form_d2l_helper(src,dst));
  8521   ins_pipe(fcvtD2L);
  8522 %}
  8524 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8525   match(Set dst (ConvD2L src));
  8526   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8527   expand %{
  8528     regD tmp;
  8529     convD2L_helper(tmp, src);
  8530     regD_to_stkL(dst, tmp);
  8531   %}
  8532 %}
  8534 instruct convD2L_reg(iRegL dst, regD src) %{
  8535   predicate(UseVIS >= 3);
  8536   match(Set dst (ConvD2L src));
  8537   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8538   expand %{
  8539     regD tmp;
  8540     convD2L_helper(tmp, src);
  8541     MoveD2L_reg_reg(dst, tmp);
  8542   %}
  8543 %}
  8546 instruct convF2D_reg(regD dst, regF src) %{
  8547   match(Set dst (ConvF2D src));
  8548   format %{ "FSTOD  $src,$dst" %}
  8549   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8550   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8551   ins_pipe(fcvtF2D);
  8552 %}
  8555 // Convert a float to an int in a float register.
  8556 // If the float is a NAN, stuff a zero in instead.
  8557 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8558   effect(DEF dst, USE src, KILL fcc0);
  8559   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8560             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8561             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8562             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8563             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8564       "skip:" %}
  8565   ins_encode(form_f2i_helper(src,dst));
  8566   ins_pipe(fcvtF2I);
  8567 %}
  8569 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8570   match(Set dst (ConvF2I src));
  8571   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8572   expand %{
  8573     regF tmp;
  8574     convF2I_helper(tmp, src);
  8575     regF_to_stkI(dst, tmp);
  8576   %}
  8577 %}
  8579 instruct convF2I_reg(iRegI dst, regF src) %{
  8580   predicate(UseVIS >= 3);
  8581   match(Set dst (ConvF2I src));
  8582   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8583   expand %{
  8584     regF tmp;
  8585     convF2I_helper(tmp, src);
  8586     MoveF2I_reg_reg(dst, tmp);
  8587   %}
  8588 %}
  8591 // Convert a float to a long in a float register.
  8592 // If the float is a NAN, stuff a zero in instead.
  8593 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8594   effect(DEF dst, USE src, KILL fcc0);
  8595   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8596             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8597             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8598             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8599             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8600       "skip:" %}
  8601   ins_encode(form_f2l_helper(src,dst));
  8602   ins_pipe(fcvtF2L);
  8603 %}
  8605 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8606   match(Set dst (ConvF2L src));
  8607   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8608   expand %{
  8609     regD tmp;
  8610     convF2L_helper(tmp, src);
  8611     regD_to_stkL(dst, tmp);
  8612   %}
  8613 %}
  8615 instruct convF2L_reg(iRegL dst, regF src) %{
  8616   predicate(UseVIS >= 3);
  8617   match(Set dst (ConvF2L src));
  8618   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8619   expand %{
  8620     regD tmp;
  8621     convF2L_helper(tmp, src);
  8622     MoveD2L_reg_reg(dst, tmp);
  8623   %}
  8624 %}
  8627 instruct convI2D_helper(regD dst, regF tmp) %{
  8628   effect(USE tmp, DEF dst);
  8629   format %{ "FITOD  $tmp,$dst" %}
  8630   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8631   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8632   ins_pipe(fcvtI2D);
  8633 %}
  8635 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8636   match(Set dst (ConvI2D src));
  8637   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8638   expand %{
  8639     regF tmp;
  8640     stkI_to_regF(tmp, src);
  8641     convI2D_helper(dst, tmp);
  8642   %}
  8643 %}
  8645 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8646   predicate(UseVIS >= 3);
  8647   match(Set dst (ConvI2D src));
  8648   expand %{
  8649     regF tmp;
  8650     MoveI2F_reg_reg(tmp, src);
  8651     convI2D_helper(dst, tmp);
  8652   %}
  8653 %}
  8655 instruct convI2D_mem(regD_low dst, memory mem) %{
  8656   match(Set dst (ConvI2D (LoadI mem)));
  8657   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8658   size(8);
  8659   format %{ "LDF    $mem,$dst\n\t"
  8660             "FITOD  $dst,$dst" %}
  8661   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8662   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8663   ins_pipe(floadF_mem);
  8664 %}
  8667 instruct convI2F_helper(regF dst, regF tmp) %{
  8668   effect(DEF dst, USE tmp);
  8669   format %{ "FITOS  $tmp,$dst" %}
  8670   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8671   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8672   ins_pipe(fcvtI2F);
  8673 %}
  8675 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8676   match(Set dst (ConvI2F src));
  8677   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8678   expand %{
  8679     regF tmp;
  8680     stkI_to_regF(tmp,src);
  8681     convI2F_helper(dst, tmp);
  8682   %}
  8683 %}
  8685 instruct convI2F_reg(regF dst, iRegI src) %{
  8686   predicate(UseVIS >= 3);
  8687   match(Set dst (ConvI2F src));
  8688   ins_cost(DEFAULT_COST);
  8689   expand %{
  8690     regF tmp;
  8691     MoveI2F_reg_reg(tmp, src);
  8692     convI2F_helper(dst, tmp);
  8693   %}
  8694 %}
  8696 instruct convI2F_mem( regF dst, memory mem ) %{
  8697   match(Set dst (ConvI2F (LoadI mem)));
  8698   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8699   size(8);
  8700   format %{ "LDF    $mem,$dst\n\t"
  8701             "FITOS  $dst,$dst" %}
  8702   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8703   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8704   ins_pipe(floadF_mem);
  8705 %}
  8708 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8709   match(Set dst (ConvI2L src));
  8710   size(4);
  8711   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8712   opcode(Assembler::sra_op3, Assembler::arith_op);
  8713   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8714   ins_pipe(ialu_reg_reg);
  8715 %}
  8717 // Zero-extend convert int to long
  8718 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8719   match(Set dst (AndL (ConvI2L src) mask) );
  8720   size(4);
  8721   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8722   opcode(Assembler::srl_op3, Assembler::arith_op);
  8723   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8724   ins_pipe(ialu_reg_reg);
  8725 %}
  8727 // Zero-extend long
  8728 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8729   match(Set dst (AndL src mask) );
  8730   size(4);
  8731   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8732   opcode(Assembler::srl_op3, Assembler::arith_op);
  8733   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8734   ins_pipe(ialu_reg_reg);
  8735 %}
  8738 //-----------
  8739 // Long to Double conversion using V8 opcodes.
  8740 // Still useful because cheetah traps and becomes
  8741 // amazingly slow for some common numbers.
  8743 // Magic constant, 0x43300000
  8744 instruct loadConI_x43300000(iRegI dst) %{
  8745   effect(DEF dst);
  8746   size(4);
  8747   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8748   ins_encode(SetHi22(0x43300000, dst));
  8749   ins_pipe(ialu_none);
  8750 %}
  8752 // Magic constant, 0x41f00000
  8753 instruct loadConI_x41f00000(iRegI dst) %{
  8754   effect(DEF dst);
  8755   size(4);
  8756   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8757   ins_encode(SetHi22(0x41f00000, dst));
  8758   ins_pipe(ialu_none);
  8759 %}
  8761 // Construct a double from two float halves
  8762 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8763   effect(DEF dst, USE src1, USE src2);
  8764   size(8);
  8765   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8766             "FMOVS  $src2.lo,$dst.lo" %}
  8767   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8768   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8769   ins_pipe(faddD_reg_reg);
  8770 %}
  8772 // Convert integer in high half of a double register (in the lower half of
  8773 // the double register file) to double
  8774 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8775   effect(DEF dst, USE src);
  8776   size(4);
  8777   format %{ "FITOD  $src,$dst" %}
  8778   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8779   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8780   ins_pipe(fcvtLHi2D);
  8781 %}
  8783 // Add float double precision
  8784 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8785   effect(DEF dst, USE src1, USE src2);
  8786   size(4);
  8787   format %{ "FADDD  $src1,$src2,$dst" %}
  8788   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8789   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8790   ins_pipe(faddD_reg_reg);
  8791 %}
  8793 // Sub float double precision
  8794 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8795   effect(DEF dst, USE src1, USE src2);
  8796   size(4);
  8797   format %{ "FSUBD  $src1,$src2,$dst" %}
  8798   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8799   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8800   ins_pipe(faddD_reg_reg);
  8801 %}
  8803 // Mul float double precision
  8804 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8805   effect(DEF dst, USE src1, USE src2);
  8806   size(4);
  8807   format %{ "FMULD  $src1,$src2,$dst" %}
  8808   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8809   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8810   ins_pipe(fmulD_reg_reg);
  8811 %}
  8813 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8814   match(Set dst (ConvL2D src));
  8815   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8817   expand %{
  8818     regD_low   tmpsrc;
  8819     iRegI      ix43300000;
  8820     iRegI      ix41f00000;
  8821     stackSlotL lx43300000;
  8822     stackSlotL lx41f00000;
  8823     regD_low   dx43300000;
  8824     regD       dx41f00000;
  8825     regD       tmp1;
  8826     regD_low   tmp2;
  8827     regD       tmp3;
  8828     regD       tmp4;
  8830     stkL_to_regD(tmpsrc, src);
  8832     loadConI_x43300000(ix43300000);
  8833     loadConI_x41f00000(ix41f00000);
  8834     regI_to_stkLHi(lx43300000, ix43300000);
  8835     regI_to_stkLHi(lx41f00000, ix41f00000);
  8836     stkL_to_regD(dx43300000, lx43300000);
  8837     stkL_to_regD(dx41f00000, lx41f00000);
  8839     convI2D_regDHi_regD(tmp1, tmpsrc);
  8840     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8841     subD_regD_regD(tmp3, tmp2, dx43300000);
  8842     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8843     addD_regD_regD(dst, tmp3, tmp4);
  8844   %}
  8845 %}
  8847 // Long to Double conversion using fast fxtof
  8848 instruct convL2D_helper(regD dst, regD tmp) %{
  8849   effect(DEF dst, USE tmp);
  8850   size(4);
  8851   format %{ "FXTOD  $tmp,$dst" %}
  8852   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8853   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8854   ins_pipe(fcvtL2D);
  8855 %}
  8857 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8858   predicate(VM_Version::has_fast_fxtof());
  8859   match(Set dst (ConvL2D src));
  8860   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8861   expand %{
  8862     regD tmp;
  8863     stkL_to_regD(tmp, src);
  8864     convL2D_helper(dst, tmp);
  8865   %}
  8866 %}
  8868 instruct convL2D_reg(regD dst, iRegL src) %{
  8869   predicate(UseVIS >= 3);
  8870   match(Set dst (ConvL2D src));
  8871   expand %{
  8872     regD tmp;
  8873     MoveL2D_reg_reg(tmp, src);
  8874     convL2D_helper(dst, tmp);
  8875   %}
  8876 %}
  8878 // Long to Float conversion using fast fxtof
  8879 instruct convL2F_helper(regF dst, regD tmp) %{
  8880   effect(DEF dst, USE tmp);
  8881   size(4);
  8882   format %{ "FXTOS  $tmp,$dst" %}
  8883   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8884   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8885   ins_pipe(fcvtL2F);
  8886 %}
  8888 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8889   match(Set dst (ConvL2F src));
  8890   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8891   expand %{
  8892     regD tmp;
  8893     stkL_to_regD(tmp, src);
  8894     convL2F_helper(dst, tmp);
  8895   %}
  8896 %}
  8898 instruct convL2F_reg(regF dst, iRegL src) %{
  8899   predicate(UseVIS >= 3);
  8900   match(Set dst (ConvL2F src));
  8901   ins_cost(DEFAULT_COST);
  8902   expand %{
  8903     regD tmp;
  8904     MoveL2D_reg_reg(tmp, src);
  8905     convL2F_helper(dst, tmp);
  8906   %}
  8907 %}
  8909 //-----------
  8911 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8912   match(Set dst (ConvL2I src));
  8913 #ifndef _LP64
  8914   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8915   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8916   ins_pipe(ialu_move_reg_I_to_L);
  8917 #else
  8918   size(4);
  8919   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8920   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8921   ins_pipe(ialu_reg);
  8922 #endif
  8923 %}
  8925 // Register Shift Right Immediate
  8926 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8927   match(Set dst (ConvL2I (RShiftL src cnt)));
  8929   size(4);
  8930   format %{ "SRAX   $src,$cnt,$dst" %}
  8931   opcode(Assembler::srax_op3, Assembler::arith_op);
  8932   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8933   ins_pipe(ialu_reg_imm);
  8934 %}
  8936 //----------Control Flow Instructions------------------------------------------
  8937 // Compare Instructions
  8938 // Compare Integers
  8939 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8940   match(Set icc (CmpI op1 op2));
  8941   effect( DEF icc, USE op1, USE op2 );
  8943   size(4);
  8944   format %{ "CMP    $op1,$op2" %}
  8945   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8946   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8947   ins_pipe(ialu_cconly_reg_reg);
  8948 %}
  8950 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8951   match(Set icc (CmpU op1 op2));
  8953   size(4);
  8954   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8955   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8956   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8957   ins_pipe(ialu_cconly_reg_reg);
  8958 %}
  8960 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8961   match(Set icc (CmpI op1 op2));
  8962   effect( DEF icc, USE op1 );
  8964   size(4);
  8965   format %{ "CMP    $op1,$op2" %}
  8966   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8967   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8968   ins_pipe(ialu_cconly_reg_imm);
  8969 %}
  8971 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8972   match(Set icc (CmpI (AndI op1 op2) zero));
  8974   size(4);
  8975   format %{ "BTST   $op2,$op1" %}
  8976   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8977   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8978   ins_pipe(ialu_cconly_reg_reg_zero);
  8979 %}
  8981 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8982   match(Set icc (CmpI (AndI op1 op2) zero));
  8984   size(4);
  8985   format %{ "BTST   $op2,$op1" %}
  8986   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8987   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8988   ins_pipe(ialu_cconly_reg_imm_zero);
  8989 %}
  8991 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8992   match(Set xcc (CmpL op1 op2));
  8993   effect( DEF xcc, USE op1, USE op2 );
  8995   size(4);
  8996   format %{ "CMP    $op1,$op2\t\t! long" %}
  8997   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8998   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8999   ins_pipe(ialu_cconly_reg_reg);
  9000 %}
  9002 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  9003   match(Set xcc (CmpL op1 con));
  9004   effect( DEF xcc, USE op1, USE con );
  9006   size(4);
  9007   format %{ "CMP    $op1,$con\t\t! long" %}
  9008   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9009   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9010   ins_pipe(ialu_cconly_reg_reg);
  9011 %}
  9013 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9014   match(Set xcc (CmpL (AndL op1 op2) zero));
  9015   effect( DEF xcc, USE op1, USE op2 );
  9017   size(4);
  9018   format %{ "BTST   $op1,$op2\t\t! long" %}
  9019   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9020   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9021   ins_pipe(ialu_cconly_reg_reg);
  9022 %}
  9024 // useful for checking the alignment of a pointer:
  9025 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9026   match(Set xcc (CmpL (AndL op1 con) zero));
  9027   effect( DEF xcc, USE op1, USE con );
  9029   size(4);
  9030   format %{ "BTST   $op1,$con\t\t! long" %}
  9031   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9032   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9033   ins_pipe(ialu_cconly_reg_reg);
  9034 %}
  9036 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
  9037   match(Set icc (CmpU op1 op2));
  9039   size(4);
  9040   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9041   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9042   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9043   ins_pipe(ialu_cconly_reg_imm);
  9044 %}
  9046 // Compare Pointers
  9047 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9048   match(Set pcc (CmpP op1 op2));
  9050   size(4);
  9051   format %{ "CMP    $op1,$op2\t! ptr" %}
  9052   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9053   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9054   ins_pipe(ialu_cconly_reg_reg);
  9055 %}
  9057 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9058   match(Set pcc (CmpP op1 op2));
  9060   size(4);
  9061   format %{ "CMP    $op1,$op2\t! ptr" %}
  9062   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9063   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9064   ins_pipe(ialu_cconly_reg_imm);
  9065 %}
  9067 // Compare Narrow oops
  9068 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9069   match(Set icc (CmpN op1 op2));
  9071   size(4);
  9072   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9073   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9074   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9075   ins_pipe(ialu_cconly_reg_reg);
  9076 %}
  9078 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9079   match(Set icc (CmpN op1 op2));
  9081   size(4);
  9082   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9083   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9084   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9085   ins_pipe(ialu_cconly_reg_imm);
  9086 %}
  9088 //----------Max and Min--------------------------------------------------------
  9089 // Min Instructions
  9090 // Conditional move for min
  9091 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9092   effect( USE_DEF op2, USE op1, USE icc );
  9094   size(4);
  9095   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9096   opcode(Assembler::less);
  9097   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9098   ins_pipe(ialu_reg_flags);
  9099 %}
  9101 // Min Register with Register.
  9102 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9103   match(Set op2 (MinI op1 op2));
  9104   ins_cost(DEFAULT_COST*2);
  9105   expand %{
  9106     flagsReg icc;
  9107     compI_iReg(icc,op1,op2);
  9108     cmovI_reg_lt(op2,op1,icc);
  9109   %}
  9110 %}
  9112 // Max Instructions
  9113 // Conditional move for max
  9114 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9115   effect( USE_DEF op2, USE op1, USE icc );
  9116   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9117   opcode(Assembler::greater);
  9118   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9119   ins_pipe(ialu_reg_flags);
  9120 %}
  9122 // Max Register with Register
  9123 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9124   match(Set op2 (MaxI op1 op2));
  9125   ins_cost(DEFAULT_COST*2);
  9126   expand %{
  9127     flagsReg icc;
  9128     compI_iReg(icc,op1,op2);
  9129     cmovI_reg_gt(op2,op1,icc);
  9130   %}
  9131 %}
  9134 //----------Float Compares----------------------------------------------------
  9135 // Compare floating, generate condition code
  9136 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9137   match(Set fcc (CmpF src1 src2));
  9139   size(4);
  9140   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9141   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9142   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9143   ins_pipe(faddF_fcc_reg_reg_zero);
  9144 %}
  9146 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9147   match(Set fcc (CmpD src1 src2));
  9149   size(4);
  9150   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9151   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9152   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9153   ins_pipe(faddD_fcc_reg_reg_zero);
  9154 %}
  9157 // Compare floating, generate -1,0,1
  9158 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9159   match(Set dst (CmpF3 src1 src2));
  9160   effect(KILL fcc0);
  9161   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9162   format %{ "fcmpl  $dst,$src1,$src2" %}
  9163   // Primary = float
  9164   opcode( true );
  9165   ins_encode( floating_cmp( dst, src1, src2 ) );
  9166   ins_pipe( floating_cmp );
  9167 %}
  9169 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9170   match(Set dst (CmpD3 src1 src2));
  9171   effect(KILL fcc0);
  9172   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9173   format %{ "dcmpl  $dst,$src1,$src2" %}
  9174   // Primary = double (not float)
  9175   opcode( false );
  9176   ins_encode( floating_cmp( dst, src1, src2 ) );
  9177   ins_pipe( floating_cmp );
  9178 %}
  9180 //----------Branches---------------------------------------------------------
  9181 // Jump
  9182 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9183 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9184   match(Jump switch_val);
  9185   effect(TEMP table);
  9187   ins_cost(350);
  9189   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9190              "LD     [O7 + $switch_val], O7\n\t"
  9191              "JUMP   O7" %}
  9192   ins_encode %{
  9193     // Calculate table address into a register.
  9194     Register table_reg;
  9195     Register label_reg = O7;
  9196     // If we are calculating the size of this instruction don't trust
  9197     // zero offsets because they might change when
  9198     // MachConstantBaseNode decides to optimize the constant table
  9199     // base.
  9200     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9201       table_reg = $constanttablebase;
  9202     } else {
  9203       table_reg = O7;
  9204       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9205       __ add($constanttablebase, con_offset, table_reg);
  9208     // Jump to base address + switch value
  9209     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9210     __ jmp(label_reg, G0);
  9211     __ delayed()->nop();
  9212   %}
  9213   ins_pipe(ialu_reg_reg);
  9214 %}
  9216 // Direct Branch.  Use V8 version with longer range.
  9217 instruct branch(label labl) %{
  9218   match(Goto);
  9219   effect(USE labl);
  9221   size(8);
  9222   ins_cost(BRANCH_COST);
  9223   format %{ "BA     $labl" %}
  9224   ins_encode %{
  9225     Label* L = $labl$$label;
  9226     __ ba(*L);
  9227     __ delayed()->nop();
  9228   %}
  9229   ins_avoid_back_to_back(AVOID_BEFORE);
  9230   ins_pipe(br);
  9231 %}
  9233 // Direct Branch, short with no delay slot
  9234 instruct branch_short(label labl) %{
  9235   match(Goto);
  9236   predicate(UseCBCond);
  9237   effect(USE labl);
  9239   size(4);
  9240   ins_cost(BRANCH_COST);
  9241   format %{ "BA     $labl\t! short branch" %}
  9242   ins_encode %{
  9243     Label* L = $labl$$label;
  9244     assert(__ use_cbcond(*L), "back to back cbcond");
  9245     __ ba_short(*L);
  9246   %}
  9247   ins_short_branch(1);
  9248   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9249   ins_pipe(cbcond_reg_imm);
  9250 %}
  9252 // Conditional Direct Branch
  9253 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9254   match(If cmp icc);
  9255   effect(USE labl);
  9257   size(8);
  9258   ins_cost(BRANCH_COST);
  9259   format %{ "BP$cmp   $icc,$labl" %}
  9260   // Prim = bits 24-22, Secnd = bits 31-30
  9261   ins_encode( enc_bp( labl, cmp, icc ) );
  9262   ins_avoid_back_to_back(AVOID_BEFORE);
  9263   ins_pipe(br_cc);
  9264 %}
  9266 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9267   match(If cmp icc);
  9268   effect(USE labl);
  9270   ins_cost(BRANCH_COST);
  9271   format %{ "BP$cmp  $icc,$labl" %}
  9272   // Prim = bits 24-22, Secnd = bits 31-30
  9273   ins_encode( enc_bp( labl, cmp, icc ) );
  9274   ins_avoid_back_to_back(AVOID_BEFORE);
  9275   ins_pipe(br_cc);
  9276 %}
  9278 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9279   match(If cmp pcc);
  9280   effect(USE labl);
  9282   size(8);
  9283   ins_cost(BRANCH_COST);
  9284   format %{ "BP$cmp  $pcc,$labl" %}
  9285   ins_encode %{
  9286     Label* L = $labl$$label;
  9287     Assembler::Predict predict_taken =
  9288       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9290     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9291     __ delayed()->nop();
  9292   %}
  9293   ins_avoid_back_to_back(AVOID_BEFORE);
  9294   ins_pipe(br_cc);
  9295 %}
  9297 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9298   match(If cmp fcc);
  9299   effect(USE labl);
  9301   size(8);
  9302   ins_cost(BRANCH_COST);
  9303   format %{ "FBP$cmp $fcc,$labl" %}
  9304   ins_encode %{
  9305     Label* L = $labl$$label;
  9306     Assembler::Predict predict_taken =
  9307       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9309     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9310     __ delayed()->nop();
  9311   %}
  9312   ins_avoid_back_to_back(AVOID_BEFORE);
  9313   ins_pipe(br_fcc);
  9314 %}
  9316 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9317   match(CountedLoopEnd cmp icc);
  9318   effect(USE labl);
  9320   size(8);
  9321   ins_cost(BRANCH_COST);
  9322   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9323   // Prim = bits 24-22, Secnd = bits 31-30
  9324   ins_encode( enc_bp( labl, cmp, icc ) );
  9325   ins_avoid_back_to_back(AVOID_BEFORE);
  9326   ins_pipe(br_cc);
  9327 %}
  9329 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9330   match(CountedLoopEnd cmp icc);
  9331   effect(USE labl);
  9333   size(8);
  9334   ins_cost(BRANCH_COST);
  9335   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9336   // Prim = bits 24-22, Secnd = bits 31-30
  9337   ins_encode( enc_bp( labl, cmp, icc ) );
  9338   ins_avoid_back_to_back(AVOID_BEFORE);
  9339   ins_pipe(br_cc);
  9340 %}
  9342 // Compare and branch instructions
  9343 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9344   match(If cmp (CmpI op1 op2));
  9345   effect(USE labl, KILL icc);
  9347   size(12);
  9348   ins_cost(BRANCH_COST);
  9349   format %{ "CMP    $op1,$op2\t! int\n\t"
  9350             "BP$cmp   $labl" %}
  9351   ins_encode %{
  9352     Label* L = $labl$$label;
  9353     Assembler::Predict predict_taken =
  9354       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9355     __ cmp($op1$$Register, $op2$$Register);
  9356     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9357     __ delayed()->nop();
  9358   %}
  9359   ins_pipe(cmp_br_reg_reg);
  9360 %}
  9362 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9363   match(If cmp (CmpI op1 op2));
  9364   effect(USE labl, KILL icc);
  9366   size(12);
  9367   ins_cost(BRANCH_COST);
  9368   format %{ "CMP    $op1,$op2\t! int\n\t"
  9369             "BP$cmp   $labl" %}
  9370   ins_encode %{
  9371     Label* L = $labl$$label;
  9372     Assembler::Predict predict_taken =
  9373       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9374     __ cmp($op1$$Register, $op2$$constant);
  9375     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9376     __ delayed()->nop();
  9377   %}
  9378   ins_pipe(cmp_br_reg_imm);
  9379 %}
  9381 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9382   match(If cmp (CmpU op1 op2));
  9383   effect(USE labl, KILL icc);
  9385   size(12);
  9386   ins_cost(BRANCH_COST);
  9387   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9388             "BP$cmp  $labl" %}
  9389   ins_encode %{
  9390     Label* L = $labl$$label;
  9391     Assembler::Predict predict_taken =
  9392       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9393     __ cmp($op1$$Register, $op2$$Register);
  9394     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9395     __ delayed()->nop();
  9396   %}
  9397   ins_pipe(cmp_br_reg_reg);
  9398 %}
  9400 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9401   match(If cmp (CmpU op1 op2));
  9402   effect(USE labl, KILL icc);
  9404   size(12);
  9405   ins_cost(BRANCH_COST);
  9406   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9407             "BP$cmp  $labl" %}
  9408   ins_encode %{
  9409     Label* L = $labl$$label;
  9410     Assembler::Predict predict_taken =
  9411       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9412     __ cmp($op1$$Register, $op2$$constant);
  9413     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9414     __ delayed()->nop();
  9415   %}
  9416   ins_pipe(cmp_br_reg_imm);
  9417 %}
  9419 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9420   match(If cmp (CmpL op1 op2));
  9421   effect(USE labl, KILL xcc);
  9423   size(12);
  9424   ins_cost(BRANCH_COST);
  9425   format %{ "CMP    $op1,$op2\t! long\n\t"
  9426             "BP$cmp   $labl" %}
  9427   ins_encode %{
  9428     Label* L = $labl$$label;
  9429     Assembler::Predict predict_taken =
  9430       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9431     __ cmp($op1$$Register, $op2$$Register);
  9432     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9433     __ delayed()->nop();
  9434   %}
  9435   ins_pipe(cmp_br_reg_reg);
  9436 %}
  9438 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9439   match(If cmp (CmpL op1 op2));
  9440   effect(USE labl, KILL xcc);
  9442   size(12);
  9443   ins_cost(BRANCH_COST);
  9444   format %{ "CMP    $op1,$op2\t! long\n\t"
  9445             "BP$cmp   $labl" %}
  9446   ins_encode %{
  9447     Label* L = $labl$$label;
  9448     Assembler::Predict predict_taken =
  9449       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9450     __ cmp($op1$$Register, $op2$$constant);
  9451     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9452     __ delayed()->nop();
  9453   %}
  9454   ins_pipe(cmp_br_reg_imm);
  9455 %}
  9457 // Compare Pointers and branch
  9458 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9459   match(If cmp (CmpP op1 op2));
  9460   effect(USE labl, KILL pcc);
  9462   size(12);
  9463   ins_cost(BRANCH_COST);
  9464   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9465             "B$cmp   $labl" %}
  9466   ins_encode %{
  9467     Label* L = $labl$$label;
  9468     Assembler::Predict predict_taken =
  9469       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9470     __ cmp($op1$$Register, $op2$$Register);
  9471     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9472     __ delayed()->nop();
  9473   %}
  9474   ins_pipe(cmp_br_reg_reg);
  9475 %}
  9477 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9478   match(If cmp (CmpP op1 null));
  9479   effect(USE labl, KILL pcc);
  9481   size(12);
  9482   ins_cost(BRANCH_COST);
  9483   format %{ "CMP    $op1,0\t! ptr\n\t"
  9484             "B$cmp   $labl" %}
  9485   ins_encode %{
  9486     Label* L = $labl$$label;
  9487     Assembler::Predict predict_taken =
  9488       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9489     __ cmp($op1$$Register, G0);
  9490     // bpr() is not used here since it has shorter distance.
  9491     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9492     __ delayed()->nop();
  9493   %}
  9494   ins_pipe(cmp_br_reg_reg);
  9495 %}
  9497 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9498   match(If cmp (CmpN op1 op2));
  9499   effect(USE labl, KILL icc);
  9501   size(12);
  9502   ins_cost(BRANCH_COST);
  9503   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9504             "BP$cmp   $labl" %}
  9505   ins_encode %{
  9506     Label* L = $labl$$label;
  9507     Assembler::Predict predict_taken =
  9508       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9509     __ cmp($op1$$Register, $op2$$Register);
  9510     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9511     __ delayed()->nop();
  9512   %}
  9513   ins_pipe(cmp_br_reg_reg);
  9514 %}
  9516 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9517   match(If cmp (CmpN op1 null));
  9518   effect(USE labl, KILL icc);
  9520   size(12);
  9521   ins_cost(BRANCH_COST);
  9522   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9523             "BP$cmp   $labl" %}
  9524   ins_encode %{
  9525     Label* L = $labl$$label;
  9526     Assembler::Predict predict_taken =
  9527       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9528     __ cmp($op1$$Register, G0);
  9529     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9530     __ delayed()->nop();
  9531   %}
  9532   ins_pipe(cmp_br_reg_reg);
  9533 %}
  9535 // Loop back branch
  9536 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9537   match(CountedLoopEnd cmp (CmpI op1 op2));
  9538   effect(USE labl, KILL icc);
  9540   size(12);
  9541   ins_cost(BRANCH_COST);
  9542   format %{ "CMP    $op1,$op2\t! int\n\t"
  9543             "BP$cmp   $labl\t! Loop end" %}
  9544   ins_encode %{
  9545     Label* L = $labl$$label;
  9546     Assembler::Predict predict_taken =
  9547       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9548     __ cmp($op1$$Register, $op2$$Register);
  9549     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9550     __ delayed()->nop();
  9551   %}
  9552   ins_pipe(cmp_br_reg_reg);
  9553 %}
  9555 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9556   match(CountedLoopEnd cmp (CmpI op1 op2));
  9557   effect(USE labl, KILL icc);
  9559   size(12);
  9560   ins_cost(BRANCH_COST);
  9561   format %{ "CMP    $op1,$op2\t! int\n\t"
  9562             "BP$cmp   $labl\t! Loop end" %}
  9563   ins_encode %{
  9564     Label* L = $labl$$label;
  9565     Assembler::Predict predict_taken =
  9566       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9567     __ cmp($op1$$Register, $op2$$constant);
  9568     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9569     __ delayed()->nop();
  9570   %}
  9571   ins_pipe(cmp_br_reg_imm);
  9572 %}
  9574 // Short compare and branch instructions
  9575 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9576   match(If cmp (CmpI op1 op2));
  9577   predicate(UseCBCond);
  9578   effect(USE labl, KILL icc);
  9580   size(4);
  9581   ins_cost(BRANCH_COST);
  9582   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9583   ins_encode %{
  9584     Label* L = $labl$$label;
  9585     assert(__ use_cbcond(*L), "back to back cbcond");
  9586     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9587   %}
  9588   ins_short_branch(1);
  9589   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9590   ins_pipe(cbcond_reg_reg);
  9591 %}
  9593 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9594   match(If cmp (CmpI op1 op2));
  9595   predicate(UseCBCond);
  9596   effect(USE labl, KILL icc);
  9598   size(4);
  9599   ins_cost(BRANCH_COST);
  9600   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9601   ins_encode %{
  9602     Label* L = $labl$$label;
  9603     assert(__ use_cbcond(*L), "back to back cbcond");
  9604     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9605   %}
  9606   ins_short_branch(1);
  9607   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9608   ins_pipe(cbcond_reg_imm);
  9609 %}
  9611 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9612   match(If cmp (CmpU op1 op2));
  9613   predicate(UseCBCond);
  9614   effect(USE labl, KILL icc);
  9616   size(4);
  9617   ins_cost(BRANCH_COST);
  9618   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9619   ins_encode %{
  9620     Label* L = $labl$$label;
  9621     assert(__ use_cbcond(*L), "back to back cbcond");
  9622     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9623   %}
  9624   ins_short_branch(1);
  9625   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9626   ins_pipe(cbcond_reg_reg);
  9627 %}
  9629 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9630   match(If cmp (CmpU op1 op2));
  9631   predicate(UseCBCond);
  9632   effect(USE labl, KILL icc);
  9634   size(4);
  9635   ins_cost(BRANCH_COST);
  9636   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9637   ins_encode %{
  9638     Label* L = $labl$$label;
  9639     assert(__ use_cbcond(*L), "back to back cbcond");
  9640     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9641   %}
  9642   ins_short_branch(1);
  9643   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9644   ins_pipe(cbcond_reg_imm);
  9645 %}
  9647 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9648   match(If cmp (CmpL op1 op2));
  9649   predicate(UseCBCond);
  9650   effect(USE labl, KILL xcc);
  9652   size(4);
  9653   ins_cost(BRANCH_COST);
  9654   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9655   ins_encode %{
  9656     Label* L = $labl$$label;
  9657     assert(__ use_cbcond(*L), "back to back cbcond");
  9658     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9659   %}
  9660   ins_short_branch(1);
  9661   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9662   ins_pipe(cbcond_reg_reg);
  9663 %}
  9665 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9666   match(If cmp (CmpL op1 op2));
  9667   predicate(UseCBCond);
  9668   effect(USE labl, KILL xcc);
  9670   size(4);
  9671   ins_cost(BRANCH_COST);
  9672   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9673   ins_encode %{
  9674     Label* L = $labl$$label;
  9675     assert(__ use_cbcond(*L), "back to back cbcond");
  9676     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9677   %}
  9678   ins_short_branch(1);
  9679   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9680   ins_pipe(cbcond_reg_imm);
  9681 %}
  9683 // Compare Pointers and branch
  9684 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9685   match(If cmp (CmpP op1 op2));
  9686   predicate(UseCBCond);
  9687   effect(USE labl, KILL pcc);
  9689   size(4);
  9690   ins_cost(BRANCH_COST);
  9691 #ifdef _LP64
  9692   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9693 #else
  9694   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9695 #endif
  9696   ins_encode %{
  9697     Label* L = $labl$$label;
  9698     assert(__ use_cbcond(*L), "back to back cbcond");
  9699     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9700   %}
  9701   ins_short_branch(1);
  9702   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9703   ins_pipe(cbcond_reg_reg);
  9704 %}
  9706 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9707   match(If cmp (CmpP op1 null));
  9708   predicate(UseCBCond);
  9709   effect(USE labl, KILL pcc);
  9711   size(4);
  9712   ins_cost(BRANCH_COST);
  9713 #ifdef _LP64
  9714   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9715 #else
  9716   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9717 #endif
  9718   ins_encode %{
  9719     Label* L = $labl$$label;
  9720     assert(__ use_cbcond(*L), "back to back cbcond");
  9721     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9722   %}
  9723   ins_short_branch(1);
  9724   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9725   ins_pipe(cbcond_reg_reg);
  9726 %}
  9728 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9729   match(If cmp (CmpN op1 op2));
  9730   predicate(UseCBCond);
  9731   effect(USE labl, KILL icc);
  9733   size(4);
  9734   ins_cost(BRANCH_COST);
  9735   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9736   ins_encode %{
  9737     Label* L = $labl$$label;
  9738     assert(__ use_cbcond(*L), "back to back cbcond");
  9739     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9740   %}
  9741   ins_short_branch(1);
  9742   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9743   ins_pipe(cbcond_reg_reg);
  9744 %}
  9746 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9747   match(If cmp (CmpN op1 null));
  9748   predicate(UseCBCond);
  9749   effect(USE labl, KILL icc);
  9751   size(4);
  9752   ins_cost(BRANCH_COST);
  9753   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9754   ins_encode %{
  9755     Label* L = $labl$$label;
  9756     assert(__ use_cbcond(*L), "back to back cbcond");
  9757     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9758   %}
  9759   ins_short_branch(1);
  9760   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9761   ins_pipe(cbcond_reg_reg);
  9762 %}
  9764 // Loop back branch
  9765 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9766   match(CountedLoopEnd cmp (CmpI op1 op2));
  9767   predicate(UseCBCond);
  9768   effect(USE labl, KILL icc);
  9770   size(4);
  9771   ins_cost(BRANCH_COST);
  9772   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9773   ins_encode %{
  9774     Label* L = $labl$$label;
  9775     assert(__ use_cbcond(*L), "back to back cbcond");
  9776     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9777   %}
  9778   ins_short_branch(1);
  9779   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9780   ins_pipe(cbcond_reg_reg);
  9781 %}
  9783 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9784   match(CountedLoopEnd cmp (CmpI op1 op2));
  9785   predicate(UseCBCond);
  9786   effect(USE labl, KILL icc);
  9788   size(4);
  9789   ins_cost(BRANCH_COST);
  9790   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9791   ins_encode %{
  9792     Label* L = $labl$$label;
  9793     assert(__ use_cbcond(*L), "back to back cbcond");
  9794     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9795   %}
  9796   ins_short_branch(1);
  9797   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9798   ins_pipe(cbcond_reg_imm);
  9799 %}
  9801 // Branch-on-register tests all 64 bits.  We assume that values
  9802 // in 64-bit registers always remains zero or sign extended
  9803 // unless our code munges the high bits.  Interrupts can chop
  9804 // the high order bits to zero or sign at any time.
  9805 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9806   match(If cmp (CmpI op1 zero));
  9807   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9808   effect(USE labl);
  9810   size(8);
  9811   ins_cost(BRANCH_COST);
  9812   format %{ "BR$cmp   $op1,$labl" %}
  9813   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9814   ins_avoid_back_to_back(AVOID_BEFORE);
  9815   ins_pipe(br_reg);
  9816 %}
  9818 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9819   match(If cmp (CmpP op1 null));
  9820   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9821   effect(USE labl);
  9823   size(8);
  9824   ins_cost(BRANCH_COST);
  9825   format %{ "BR$cmp   $op1,$labl" %}
  9826   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9827   ins_avoid_back_to_back(AVOID_BEFORE);
  9828   ins_pipe(br_reg);
  9829 %}
  9831 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9832   match(If cmp (CmpL op1 zero));
  9833   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9834   effect(USE labl);
  9836   size(8);
  9837   ins_cost(BRANCH_COST);
  9838   format %{ "BR$cmp   $op1,$labl" %}
  9839   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9840   ins_avoid_back_to_back(AVOID_BEFORE);
  9841   ins_pipe(br_reg);
  9842 %}
  9845 // ============================================================================
  9846 // Long Compare
  9847 //
  9848 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9849 // is tricky.  The flavor of compare used depends on whether we are testing
  9850 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9851 // The GE test is the negated LT test.  The LE test can be had by commuting
  9852 // the operands (yielding a GE test) and then negating; negate again for the
  9853 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9854 // NE test is negated from that.
  9856 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9857 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9858 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9859 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9860 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9861 // foo match ends up with the wrong leaf.  One fix is to not match both
  9862 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9863 // both forms beat the trinary form of long-compare and both are very useful
  9864 // on Intel which has so few registers.
  9866 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9867   match(If cmp xcc);
  9868   effect(USE labl);
  9870   size(8);
  9871   ins_cost(BRANCH_COST);
  9872   format %{ "BP$cmp   $xcc,$labl" %}
  9873   ins_encode %{
  9874     Label* L = $labl$$label;
  9875     Assembler::Predict predict_taken =
  9876       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9878     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9879     __ delayed()->nop();
  9880   %}
  9881   ins_avoid_back_to_back(AVOID_BEFORE);
  9882   ins_pipe(br_cc);
  9883 %}
  9885 // Manifest a CmpL3 result in an integer register.  Very painful.
  9886 // This is the test to avoid.
  9887 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9888   match(Set dst (CmpL3 src1 src2) );
  9889   effect( KILL ccr );
  9890   ins_cost(6*DEFAULT_COST);
  9891   size(24);
  9892   format %{ "CMP    $src1,$src2\t\t! long\n"
  9893           "\tBLT,a,pn done\n"
  9894           "\tMOV    -1,$dst\t! delay slot\n"
  9895           "\tBGT,a,pn done\n"
  9896           "\tMOV    1,$dst\t! delay slot\n"
  9897           "\tCLR    $dst\n"
  9898     "done:"     %}
  9899   ins_encode( cmpl_flag(src1,src2,dst) );
  9900   ins_pipe(cmpL_reg);
  9901 %}
  9903 // Conditional move
  9904 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9905   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9906   ins_cost(150);
  9907   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9908   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9909   ins_pipe(ialu_reg);
  9910 %}
  9912 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9913   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9914   ins_cost(140);
  9915   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9916   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9917   ins_pipe(ialu_imm);
  9918 %}
  9920 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9921   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9922   ins_cost(150);
  9923   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9924   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9925   ins_pipe(ialu_reg);
  9926 %}
  9928 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9929   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9930   ins_cost(140);
  9931   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9932   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9933   ins_pipe(ialu_imm);
  9934 %}
  9936 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9937   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9938   ins_cost(150);
  9939   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9940   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9941   ins_pipe(ialu_reg);
  9942 %}
  9944 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9945   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9946   ins_cost(150);
  9947   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9948   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9949   ins_pipe(ialu_reg);
  9950 %}
  9952 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9953   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9954   ins_cost(140);
  9955   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9956   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9957   ins_pipe(ialu_imm);
  9958 %}
  9960 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9961   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9962   ins_cost(150);
  9963   opcode(0x101);
  9964   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9965   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9966   ins_pipe(int_conditional_float_move);
  9967 %}
  9969 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9970   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9971   ins_cost(150);
  9972   opcode(0x102);
  9973   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9975   ins_pipe(int_conditional_float_move);
  9976 %}
  9978 // ============================================================================
  9979 // Safepoint Instruction
  9980 instruct safePoint_poll(iRegP poll) %{
  9981   match(SafePoint poll);
  9982   effect(USE poll);
  9984   size(4);
  9985 #ifdef _LP64
  9986   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9987 #else
  9988   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9989 #endif
  9990   ins_encode %{
  9991     __ relocate(relocInfo::poll_type);
  9992     __ ld_ptr($poll$$Register, 0, G0);
  9993   %}
  9994   ins_pipe(loadPollP);
  9995 %}
  9997 // ============================================================================
  9998 // Call Instructions
  9999 // Call Java Static Instruction
 10000 instruct CallStaticJavaDirect( method meth ) %{
 10001   match(CallStaticJava);
 10002   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10003   effect(USE meth);
 10005   size(8);
 10006   ins_cost(CALL_COST);
 10007   format %{ "CALL,static  ; NOP ==> " %}
 10008   ins_encode( Java_Static_Call( meth ), call_epilog );
 10009   ins_avoid_back_to_back(AVOID_BEFORE);
 10010   ins_pipe(simple_call);
 10011 %}
 10013 // Call Java Static Instruction (method handle version)
 10014 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10015   match(CallStaticJava);
 10016   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10017   effect(USE meth, KILL l7_mh_SP_save);
 10019   size(16);
 10020   ins_cost(CALL_COST);
 10021   format %{ "CALL,static/MethodHandle" %}
 10022   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10023   ins_pipe(simple_call);
 10024 %}
 10026 // Call Java Dynamic Instruction
 10027 instruct CallDynamicJavaDirect( method meth ) %{
 10028   match(CallDynamicJava);
 10029   effect(USE meth);
 10031   ins_cost(CALL_COST);
 10032   format %{ "SET    (empty),R_G5\n\t"
 10033             "CALL,dynamic  ; NOP ==> " %}
 10034   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10035   ins_pipe(call);
 10036 %}
 10038 // Call Runtime Instruction
 10039 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10040   match(CallRuntime);
 10041   effect(USE meth, KILL l7);
 10042   ins_cost(CALL_COST);
 10043   format %{ "CALL,runtime" %}
 10044   ins_encode( Java_To_Runtime( meth ),
 10045               call_epilog, adjust_long_from_native_call );
 10046   ins_avoid_back_to_back(AVOID_BEFORE);
 10047   ins_pipe(simple_call);
 10048 %}
 10050 // Call runtime without safepoint - same as CallRuntime
 10051 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10052   match(CallLeaf);
 10053   effect(USE meth, KILL l7);
 10054   ins_cost(CALL_COST);
 10055   format %{ "CALL,runtime leaf" %}
 10056   ins_encode( Java_To_Runtime( meth ),
 10057               call_epilog,
 10058               adjust_long_from_native_call );
 10059   ins_avoid_back_to_back(AVOID_BEFORE);
 10060   ins_pipe(simple_call);
 10061 %}
 10063 // Call runtime without safepoint - same as CallLeaf
 10064 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10065   match(CallLeafNoFP);
 10066   effect(USE meth, KILL l7);
 10067   ins_cost(CALL_COST);
 10068   format %{ "CALL,runtime leaf nofp" %}
 10069   ins_encode( Java_To_Runtime( meth ),
 10070               call_epilog,
 10071               adjust_long_from_native_call );
 10072   ins_avoid_back_to_back(AVOID_BEFORE);
 10073   ins_pipe(simple_call);
 10074 %}
 10076 // Tail Call; Jump from runtime stub to Java code.
 10077 // Also known as an 'interprocedural jump'.
 10078 // Target of jump will eventually return to caller.
 10079 // TailJump below removes the return address.
 10080 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10081   match(TailCall jump_target method_oop );
 10083   ins_cost(CALL_COST);
 10084   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10085   ins_encode(form_jmpl(jump_target));
 10086   ins_avoid_back_to_back(AVOID_BEFORE);
 10087   ins_pipe(tail_call);
 10088 %}
 10091 // Return Instruction
 10092 instruct Ret() %{
 10093   match(Return);
 10095   // The epilogue node did the ret already.
 10096   size(0);
 10097   format %{ "! return" %}
 10098   ins_encode();
 10099   ins_pipe(empty);
 10100 %}
 10103 // Tail Jump; remove the return address; jump to target.
 10104 // TailCall above leaves the return address around.
 10105 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10106 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10107 // "restore" before this instruction (in Epilogue), we need to materialize it
 10108 // in %i0.
 10109 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10110   match( TailJump jump_target ex_oop );
 10111   ins_cost(CALL_COST);
 10112   format %{ "! discard R_O7\n\t"
 10113             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10114   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10115   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10116   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10117   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10118   ins_avoid_back_to_back(AVOID_BEFORE);
 10119   ins_pipe(tail_call);
 10120 %}
 10122 // Create exception oop: created by stack-crawling runtime code.
 10123 // Created exception is now available to this handler, and is setup
 10124 // just prior to jumping to this handler.  No code emitted.
 10125 instruct CreateException( o0RegP ex_oop )
 10126 %{
 10127   match(Set ex_oop (CreateEx));
 10128   ins_cost(0);
 10130   size(0);
 10131   // use the following format syntax
 10132   format %{ "! exception oop is in R_O0; no code emitted" %}
 10133   ins_encode();
 10134   ins_pipe(empty);
 10135 %}
 10138 // Rethrow exception:
 10139 // The exception oop will come in the first argument position.
 10140 // Then JUMP (not call) to the rethrow stub code.
 10141 instruct RethrowException()
 10142 %{
 10143   match(Rethrow);
 10144   ins_cost(CALL_COST);
 10146   // use the following format syntax
 10147   format %{ "Jmp    rethrow_stub" %}
 10148   ins_encode(enc_rethrow);
 10149   ins_avoid_back_to_back(AVOID_BEFORE);
 10150   ins_pipe(tail_call);
 10151 %}
 10154 // Die now
 10155 instruct ShouldNotReachHere( )
 10156 %{
 10157   match(Halt);
 10158   ins_cost(CALL_COST);
 10160   size(4);
 10161   // Use the following format syntax
 10162   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10163   ins_encode( form2_illtrap() );
 10164   ins_pipe(tail_call);
 10165 %}
 10167 // ============================================================================
 10168 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10169 // array for an instance of the superklass.  Set a hidden internal cache on a
 10170 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10171 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10172 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10173   match(Set index (PartialSubtypeCheck sub super));
 10174   effect( KILL pcc, KILL o7 );
 10175   ins_cost(DEFAULT_COST*10);
 10176   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10177   ins_encode( enc_PartialSubtypeCheck() );
 10178   ins_avoid_back_to_back(AVOID_BEFORE);
 10179   ins_pipe(partial_subtype_check_pipe);
 10180 %}
 10182 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10183   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10184   effect( KILL idx, KILL o7 );
 10185   ins_cost(DEFAULT_COST*10);
 10186   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10187   ins_encode( enc_PartialSubtypeCheck() );
 10188   ins_avoid_back_to_back(AVOID_BEFORE);
 10189   ins_pipe(partial_subtype_check_pipe);
 10190 %}
 10193 // ============================================================================
 10194 // inlined locking and unlocking
 10196 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10197   match(Set pcc (FastLock object box));
 10199   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10200   ins_cost(100);
 10202   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10203   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10204   ins_pipe(long_memory_op);
 10205 %}
 10208 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10209   match(Set pcc (FastUnlock object box));
 10210   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10211   ins_cost(100);
 10213   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10214   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10215   ins_pipe(long_memory_op);
 10216 %}
 10218 // The encodings are generic.
 10219 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10220   predicate(!use_block_zeroing(n->in(2)) );
 10221   match(Set dummy (ClearArray cnt base));
 10222   effect(TEMP temp, KILL ccr);
 10223   ins_cost(300);
 10224   format %{ "MOV    $cnt,$temp\n"
 10225     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10226     "        BRge   loop\t\t! Clearing loop\n"
 10227     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10229   ins_encode %{
 10230     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10231     Register nof_bytes_arg    = $cnt$$Register;
 10232     Register nof_bytes_tmp    = $temp$$Register;
 10233     Register base_pointer_arg = $base$$Register;
 10235     Label loop;
 10236     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10238     // Loop and clear, walking backwards through the array.
 10239     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10240     __ bind(loop);
 10241     __ deccc(nof_bytes_tmp, 8);
 10242     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10243     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10244     // %%%% this mini-loop must not cross a cache boundary!
 10245   %}
 10246   ins_pipe(long_memory_op);
 10247 %}
 10249 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10250   predicate(use_block_zeroing(n->in(2)));
 10251   match(Set dummy (ClearArray cnt base));
 10252   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10253   ins_cost(300);
 10254   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10256   ins_encode %{
 10258     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10259     Register to    = $base$$Register;
 10260     Register count = $cnt$$Register;
 10262     Label Ldone;
 10263     __ nop(); // Separate short branches
 10264     // Use BIS for zeroing (temp is not used).
 10265     __ bis_zeroing(to, count, G0, Ldone);
 10266     __ bind(Ldone);
 10268   %}
 10269   ins_pipe(long_memory_op);
 10270 %}
 10272 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10273   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10274   match(Set dummy (ClearArray cnt base));
 10275   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10276   ins_cost(300);
 10277   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10279   ins_encode %{
 10281     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10282     Register to    = $base$$Register;
 10283     Register count = $cnt$$Register;
 10284     Register temp  = $tmp$$Register;
 10286     Label Ldone;
 10287     __ nop(); // Separate short branches
 10288     // Use BIS for zeroing
 10289     __ bis_zeroing(to, count, temp, Ldone);
 10290     __ bind(Ldone);
 10292   %}
 10293   ins_pipe(long_memory_op);
 10294 %}
 10296 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10297                         o7RegI tmp, flagsReg ccr) %{
 10298   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10299   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10300   ins_cost(300);
 10301   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10302   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10303   ins_pipe(long_memory_op);
 10304 %}
 10306 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10307                        o7RegI tmp, flagsReg ccr) %{
 10308   match(Set result (StrEquals (Binary str1 str2) cnt));
 10309   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10310   ins_cost(300);
 10311   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10312   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10313   ins_pipe(long_memory_op);
 10314 %}
 10316 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10317                       o7RegI tmp2, flagsReg ccr) %{
 10318   match(Set result (AryEq ary1 ary2));
 10319   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10320   ins_cost(300);
 10321   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10322   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10323   ins_pipe(long_memory_op);
 10324 %}
 10327 //---------- Zeros Count Instructions ------------------------------------------
 10329 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10330   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10331   match(Set dst (CountLeadingZerosI src));
 10332   effect(TEMP dst, TEMP tmp, KILL cr);
 10334   // x |= (x >> 1);
 10335   // x |= (x >> 2);
 10336   // x |= (x >> 4);
 10337   // x |= (x >> 8);
 10338   // x |= (x >> 16);
 10339   // return (WORDBITS - popc(x));
 10340   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10341             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10342             "OR      $dst,$tmp,$dst\n\t"
 10343             "SRL     $dst,2,$tmp\n\t"
 10344             "OR      $dst,$tmp,$dst\n\t"
 10345             "SRL     $dst,4,$tmp\n\t"
 10346             "OR      $dst,$tmp,$dst\n\t"
 10347             "SRL     $dst,8,$tmp\n\t"
 10348             "OR      $dst,$tmp,$dst\n\t"
 10349             "SRL     $dst,16,$tmp\n\t"
 10350             "OR      $dst,$tmp,$dst\n\t"
 10351             "POPC    $dst,$dst\n\t"
 10352             "MOV     32,$tmp\n\t"
 10353             "SUB     $tmp,$dst,$dst" %}
 10354   ins_encode %{
 10355     Register Rdst = $dst$$Register;
 10356     Register Rsrc = $src$$Register;
 10357     Register Rtmp = $tmp$$Register;
 10358     __ srl(Rsrc, 1,    Rtmp);
 10359     __ srl(Rsrc, 0,    Rdst);
 10360     __ or3(Rdst, Rtmp, Rdst);
 10361     __ srl(Rdst, 2,    Rtmp);
 10362     __ or3(Rdst, Rtmp, Rdst);
 10363     __ srl(Rdst, 4,    Rtmp);
 10364     __ or3(Rdst, Rtmp, Rdst);
 10365     __ srl(Rdst, 8,    Rtmp);
 10366     __ or3(Rdst, Rtmp, Rdst);
 10367     __ srl(Rdst, 16,   Rtmp);
 10368     __ or3(Rdst, Rtmp, Rdst);
 10369     __ popc(Rdst, Rdst);
 10370     __ mov(BitsPerInt, Rtmp);
 10371     __ sub(Rtmp, Rdst, Rdst);
 10372   %}
 10373   ins_pipe(ialu_reg);
 10374 %}
 10376 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10377   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10378   match(Set dst (CountLeadingZerosL src));
 10379   effect(TEMP dst, TEMP tmp, KILL cr);
 10381   // x |= (x >> 1);
 10382   // x |= (x >> 2);
 10383   // x |= (x >> 4);
 10384   // x |= (x >> 8);
 10385   // x |= (x >> 16);
 10386   // x |= (x >> 32);
 10387   // return (WORDBITS - popc(x));
 10388   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10389             "OR      $src,$tmp,$dst\n\t"
 10390             "SRLX    $dst,2,$tmp\n\t"
 10391             "OR      $dst,$tmp,$dst\n\t"
 10392             "SRLX    $dst,4,$tmp\n\t"
 10393             "OR      $dst,$tmp,$dst\n\t"
 10394             "SRLX    $dst,8,$tmp\n\t"
 10395             "OR      $dst,$tmp,$dst\n\t"
 10396             "SRLX    $dst,16,$tmp\n\t"
 10397             "OR      $dst,$tmp,$dst\n\t"
 10398             "SRLX    $dst,32,$tmp\n\t"
 10399             "OR      $dst,$tmp,$dst\n\t"
 10400             "POPC    $dst,$dst\n\t"
 10401             "MOV     64,$tmp\n\t"
 10402             "SUB     $tmp,$dst,$dst" %}
 10403   ins_encode %{
 10404     Register Rdst = $dst$$Register;
 10405     Register Rsrc = $src$$Register;
 10406     Register Rtmp = $tmp$$Register;
 10407     __ srlx(Rsrc, 1,    Rtmp);
 10408     __ or3( Rsrc, Rtmp, Rdst);
 10409     __ srlx(Rdst, 2,    Rtmp);
 10410     __ or3( Rdst, Rtmp, Rdst);
 10411     __ srlx(Rdst, 4,    Rtmp);
 10412     __ or3( Rdst, Rtmp, Rdst);
 10413     __ srlx(Rdst, 8,    Rtmp);
 10414     __ or3( Rdst, Rtmp, Rdst);
 10415     __ srlx(Rdst, 16,   Rtmp);
 10416     __ or3( Rdst, Rtmp, Rdst);
 10417     __ srlx(Rdst, 32,   Rtmp);
 10418     __ or3( Rdst, Rtmp, Rdst);
 10419     __ popc(Rdst, Rdst);
 10420     __ mov(BitsPerLong, Rtmp);
 10421     __ sub(Rtmp, Rdst, Rdst);
 10422   %}
 10423   ins_pipe(ialu_reg);
 10424 %}
 10426 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10427   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10428   match(Set dst (CountTrailingZerosI src));
 10429   effect(TEMP dst, KILL cr);
 10431   // return popc(~x & (x - 1));
 10432   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10433             "ANDN    $dst,$src,$dst\n\t"
 10434             "SRL     $dst,R_G0,$dst\n\t"
 10435             "POPC    $dst,$dst" %}
 10436   ins_encode %{
 10437     Register Rdst = $dst$$Register;
 10438     Register Rsrc = $src$$Register;
 10439     __ sub(Rsrc, 1, Rdst);
 10440     __ andn(Rdst, Rsrc, Rdst);
 10441     __ srl(Rdst, G0, Rdst);
 10442     __ popc(Rdst, Rdst);
 10443   %}
 10444   ins_pipe(ialu_reg);
 10445 %}
 10447 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10448   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10449   match(Set dst (CountTrailingZerosL src));
 10450   effect(TEMP dst, KILL cr);
 10452   // return popc(~x & (x - 1));
 10453   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10454             "ANDN    $dst,$src,$dst\n\t"
 10455             "POPC    $dst,$dst" %}
 10456   ins_encode %{
 10457     Register Rdst = $dst$$Register;
 10458     Register Rsrc = $src$$Register;
 10459     __ sub(Rsrc, 1, Rdst);
 10460     __ andn(Rdst, Rsrc, Rdst);
 10461     __ popc(Rdst, Rdst);
 10462   %}
 10463   ins_pipe(ialu_reg);
 10464 %}
 10467 //---------- Population Count Instructions -------------------------------------
 10469 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10470   predicate(UsePopCountInstruction);
 10471   match(Set dst (PopCountI src));
 10473   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10474             "POPC   $dst, $dst" %}
 10475   ins_encode %{
 10476     __ srl($src$$Register, G0, $dst$$Register);
 10477     __ popc($dst$$Register, $dst$$Register);
 10478   %}
 10479   ins_pipe(ialu_reg);
 10480 %}
 10482 // Note: Long.bitCount(long) returns an int.
 10483 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10484   predicate(UsePopCountInstruction);
 10485   match(Set dst (PopCountL src));
 10487   format %{ "POPC   $src, $dst" %}
 10488   ins_encode %{
 10489     __ popc($src$$Register, $dst$$Register);
 10490   %}
 10491   ins_pipe(ialu_reg);
 10492 %}
 10495 // ============================================================================
 10496 //------------Bytes reverse--------------------------------------------------
 10498 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10499   match(Set dst (ReverseBytesI src));
 10501   // Op cost is artificially doubled to make sure that load or store
 10502   // instructions are preferred over this one which requires a spill
 10503   // onto a stack slot.
 10504   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10505   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10507   ins_encode %{
 10508     __ set($src$$disp + STACK_BIAS, O7);
 10509     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10510   %}
 10511   ins_pipe( iload_mem );
 10512 %}
 10514 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10515   match(Set dst (ReverseBytesL src));
 10517   // Op cost is artificially doubled to make sure that load or store
 10518   // instructions are preferred over this one which requires a spill
 10519   // onto a stack slot.
 10520   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10521   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10523   ins_encode %{
 10524     __ set($src$$disp + STACK_BIAS, O7);
 10525     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10526   %}
 10527   ins_pipe( iload_mem );
 10528 %}
 10530 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10531   match(Set dst (ReverseBytesUS src));
 10533   // Op cost is artificially doubled to make sure that load or store
 10534   // instructions are preferred over this one which requires a spill
 10535   // onto a stack slot.
 10536   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10537   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10539   ins_encode %{
 10540     // the value was spilled as an int so bias the load
 10541     __ set($src$$disp + STACK_BIAS + 2, O7);
 10542     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10543   %}
 10544   ins_pipe( iload_mem );
 10545 %}
 10547 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10548   match(Set dst (ReverseBytesS src));
 10550   // Op cost is artificially doubled to make sure that load or store
 10551   // instructions are preferred over this one which requires a spill
 10552   // onto a stack slot.
 10553   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10554   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10556   ins_encode %{
 10557     // the value was spilled as an int so bias the load
 10558     __ set($src$$disp + STACK_BIAS + 2, O7);
 10559     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10560   %}
 10561   ins_pipe( iload_mem );
 10562 %}
 10564 // Load Integer reversed byte order
 10565 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10566   match(Set dst (ReverseBytesI (LoadI src)));
 10568   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10569   size(4);
 10570   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10572   ins_encode %{
 10573     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10574   %}
 10575   ins_pipe(iload_mem);
 10576 %}
 10578 // Load Long - aligned and reversed
 10579 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10580   match(Set dst (ReverseBytesL (LoadL src)));
 10582   ins_cost(MEMORY_REF_COST);
 10583   size(4);
 10584   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10586   ins_encode %{
 10587     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10588   %}
 10589   ins_pipe(iload_mem);
 10590 %}
 10592 // Load unsigned short / char reversed byte order
 10593 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10594   match(Set dst (ReverseBytesUS (LoadUS src)));
 10596   ins_cost(MEMORY_REF_COST);
 10597   size(4);
 10598   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10600   ins_encode %{
 10601     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10602   %}
 10603   ins_pipe(iload_mem);
 10604 %}
 10606 // Load short reversed byte order
 10607 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10608   match(Set dst (ReverseBytesS (LoadS src)));
 10610   ins_cost(MEMORY_REF_COST);
 10611   size(4);
 10612   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10614   ins_encode %{
 10615     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10616   %}
 10617   ins_pipe(iload_mem);
 10618 %}
 10620 // Store Integer reversed byte order
 10621 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10622   match(Set dst (StoreI dst (ReverseBytesI src)));
 10624   ins_cost(MEMORY_REF_COST);
 10625   size(4);
 10626   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10628   ins_encode %{
 10629     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10630   %}
 10631   ins_pipe(istore_mem_reg);
 10632 %}
 10634 // Store Long reversed byte order
 10635 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10636   match(Set dst (StoreL dst (ReverseBytesL src)));
 10638   ins_cost(MEMORY_REF_COST);
 10639   size(4);
 10640   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10642   ins_encode %{
 10643     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10644   %}
 10645   ins_pipe(istore_mem_reg);
 10646 %}
 10648 // Store unsighed short/char reversed byte order
 10649 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10650   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10652   ins_cost(MEMORY_REF_COST);
 10653   size(4);
 10654   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10656   ins_encode %{
 10657     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10658   %}
 10659   ins_pipe(istore_mem_reg);
 10660 %}
 10662 // Store short reversed byte order
 10663 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10664   match(Set dst (StoreC dst (ReverseBytesS src)));
 10666   ins_cost(MEMORY_REF_COST);
 10667   size(4);
 10668   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10670   ins_encode %{
 10671     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10672   %}
 10673   ins_pipe(istore_mem_reg);
 10674 %}
 10676 // ====================VECTOR INSTRUCTIONS=====================================
 10678 // Load Aligned Packed values into a Double Register
 10679 instruct loadV8(regD dst, memory mem) %{
 10680   predicate(n->as_LoadVector()->memory_size() == 8);
 10681   match(Set dst (LoadVector mem));
 10682   ins_cost(MEMORY_REF_COST);
 10683   size(4);
 10684   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10685   ins_encode %{
 10686     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10687   %}
 10688   ins_pipe(floadD_mem);
 10689 %}
 10691 // Store Vector in Double register to memory
 10692 instruct storeV8(memory mem, regD src) %{
 10693   predicate(n->as_StoreVector()->memory_size() == 8);
 10694   match(Set mem (StoreVector mem src));
 10695   ins_cost(MEMORY_REF_COST);
 10696   size(4);
 10697   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10698   ins_encode %{
 10699     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10700   %}
 10701   ins_pipe(fstoreD_mem_reg);
 10702 %}
 10704 // Store Zero into vector in memory
 10705 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10706   predicate(n->as_StoreVector()->memory_size() == 8);
 10707   match(Set mem (StoreVector mem (ReplicateB zero)));
 10708   ins_cost(MEMORY_REF_COST);
 10709   size(4);
 10710   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10711   ins_encode %{
 10712     __ stx(G0, $mem$$Address);
 10713   %}
 10714   ins_pipe(fstoreD_mem_zero);
 10715 %}
 10717 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10718   predicate(n->as_StoreVector()->memory_size() == 8);
 10719   match(Set mem (StoreVector mem (ReplicateS zero)));
 10720   ins_cost(MEMORY_REF_COST);
 10721   size(4);
 10722   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10723   ins_encode %{
 10724     __ stx(G0, $mem$$Address);
 10725   %}
 10726   ins_pipe(fstoreD_mem_zero);
 10727 %}
 10729 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10730   predicate(n->as_StoreVector()->memory_size() == 8);
 10731   match(Set mem (StoreVector mem (ReplicateI zero)));
 10732   ins_cost(MEMORY_REF_COST);
 10733   size(4);
 10734   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10735   ins_encode %{
 10736     __ stx(G0, $mem$$Address);
 10737   %}
 10738   ins_pipe(fstoreD_mem_zero);
 10739 %}
 10741 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10742   predicate(n->as_StoreVector()->memory_size() == 8);
 10743   match(Set mem (StoreVector mem (ReplicateF zero)));
 10744   ins_cost(MEMORY_REF_COST);
 10745   size(4);
 10746   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10747   ins_encode %{
 10748     __ stx(G0, $mem$$Address);
 10749   %}
 10750   ins_pipe(fstoreD_mem_zero);
 10751 %}
 10753 // Replicate scalar to packed byte values into Double register
 10754 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10755   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10756   match(Set dst (ReplicateB src));
 10757   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10758   format %{ "SLLX  $src,56,$tmp\n\t"
 10759             "SRLX  $tmp, 8,$tmp2\n\t"
 10760             "OR    $tmp,$tmp2,$tmp\n\t"
 10761             "SRLX  $tmp,16,$tmp2\n\t"
 10762             "OR    $tmp,$tmp2,$tmp\n\t"
 10763             "SRLX  $tmp,32,$tmp2\n\t"
 10764             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10765             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10766   ins_encode %{
 10767     Register Rsrc = $src$$Register;
 10768     Register Rtmp = $tmp$$Register;
 10769     Register Rtmp2 = $tmp2$$Register;
 10770     __ sllx(Rsrc,    56, Rtmp);
 10771     __ srlx(Rtmp,     8, Rtmp2);
 10772     __ or3 (Rtmp, Rtmp2, Rtmp);
 10773     __ srlx(Rtmp,    16, Rtmp2);
 10774     __ or3 (Rtmp, Rtmp2, Rtmp);
 10775     __ srlx(Rtmp,    32, Rtmp2);
 10776     __ or3 (Rtmp, Rtmp2, Rtmp);
 10777     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10778   %}
 10779   ins_pipe(ialu_reg);
 10780 %}
 10782 // Replicate scalar to packed byte values into Double stack
 10783 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10784   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10785   match(Set dst (ReplicateB src));
 10786   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10787   format %{ "SLLX  $src,56,$tmp\n\t"
 10788             "SRLX  $tmp, 8,$tmp2\n\t"
 10789             "OR    $tmp,$tmp2,$tmp\n\t"
 10790             "SRLX  $tmp,16,$tmp2\n\t"
 10791             "OR    $tmp,$tmp2,$tmp\n\t"
 10792             "SRLX  $tmp,32,$tmp2\n\t"
 10793             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10794             "STX   $tmp,$dst\t! regL to stkD" %}
 10795   ins_encode %{
 10796     Register Rsrc = $src$$Register;
 10797     Register Rtmp = $tmp$$Register;
 10798     Register Rtmp2 = $tmp2$$Register;
 10799     __ sllx(Rsrc,    56, Rtmp);
 10800     __ srlx(Rtmp,     8, Rtmp2);
 10801     __ or3 (Rtmp, Rtmp2, Rtmp);
 10802     __ srlx(Rtmp,    16, Rtmp2);
 10803     __ or3 (Rtmp, Rtmp2, Rtmp);
 10804     __ srlx(Rtmp,    32, Rtmp2);
 10805     __ or3 (Rtmp, Rtmp2, Rtmp);
 10806     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10807     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10808   %}
 10809   ins_pipe(ialu_reg);
 10810 %}
 10812 // Replicate scalar constant to packed byte values in Double register
 10813 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10814   predicate(n->as_Vector()->length() == 8);
 10815   match(Set dst (ReplicateB con));
 10816   effect(KILL tmp);
 10817   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10818   ins_encode %{
 10819     // XXX This is a quick fix for 6833573.
 10820     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10821     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10822     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10823   %}
 10824   ins_pipe(loadConFD);
 10825 %}
 10827 // Replicate scalar to packed char/short values into Double register
 10828 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10829   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10830   match(Set dst (ReplicateS src));
 10831   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10832   format %{ "SLLX  $src,48,$tmp\n\t"
 10833             "SRLX  $tmp,16,$tmp2\n\t"
 10834             "OR    $tmp,$tmp2,$tmp\n\t"
 10835             "SRLX  $tmp,32,$tmp2\n\t"
 10836             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10837             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10838   ins_encode %{
 10839     Register Rsrc = $src$$Register;
 10840     Register Rtmp = $tmp$$Register;
 10841     Register Rtmp2 = $tmp2$$Register;
 10842     __ sllx(Rsrc,    48, Rtmp);
 10843     __ srlx(Rtmp,    16, Rtmp2);
 10844     __ or3 (Rtmp, Rtmp2, Rtmp);
 10845     __ srlx(Rtmp,    32, Rtmp2);
 10846     __ or3 (Rtmp, Rtmp2, Rtmp);
 10847     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10848   %}
 10849   ins_pipe(ialu_reg);
 10850 %}
 10852 // Replicate scalar to packed char/short values into Double stack
 10853 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10854   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10855   match(Set dst (ReplicateS src));
 10856   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10857   format %{ "SLLX  $src,48,$tmp\n\t"
 10858             "SRLX  $tmp,16,$tmp2\n\t"
 10859             "OR    $tmp,$tmp2,$tmp\n\t"
 10860             "SRLX  $tmp,32,$tmp2\n\t"
 10861             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10862             "STX   $tmp,$dst\t! regL to stkD" %}
 10863   ins_encode %{
 10864     Register Rsrc = $src$$Register;
 10865     Register Rtmp = $tmp$$Register;
 10866     Register Rtmp2 = $tmp2$$Register;
 10867     __ sllx(Rsrc,    48, Rtmp);
 10868     __ srlx(Rtmp,    16, Rtmp2);
 10869     __ or3 (Rtmp, Rtmp2, Rtmp);
 10870     __ srlx(Rtmp,    32, Rtmp2);
 10871     __ or3 (Rtmp, Rtmp2, Rtmp);
 10872     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10873     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10874   %}
 10875   ins_pipe(ialu_reg);
 10876 %}
 10878 // Replicate scalar constant to packed char/short values in Double register
 10879 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10880   predicate(n->as_Vector()->length() == 4);
 10881   match(Set dst (ReplicateS con));
 10882   effect(KILL tmp);
 10883   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10884   ins_encode %{
 10885     // XXX This is a quick fix for 6833573.
 10886     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10887     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10888     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10889   %}
 10890   ins_pipe(loadConFD);
 10891 %}
 10893 // Replicate scalar to packed int values into Double register
 10894 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10895   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10896   match(Set dst (ReplicateI src));
 10897   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10898   format %{ "SLLX  $src,32,$tmp\n\t"
 10899             "SRLX  $tmp,32,$tmp2\n\t"
 10900             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10901             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10902   ins_encode %{
 10903     Register Rsrc = $src$$Register;
 10904     Register Rtmp = $tmp$$Register;
 10905     Register Rtmp2 = $tmp2$$Register;
 10906     __ sllx(Rsrc,    32, Rtmp);
 10907     __ srlx(Rtmp,    32, Rtmp2);
 10908     __ or3 (Rtmp, Rtmp2, Rtmp);
 10909     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10910   %}
 10911   ins_pipe(ialu_reg);
 10912 %}
 10914 // Replicate scalar to packed int values into Double stack
 10915 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10916   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10917   match(Set dst (ReplicateI src));
 10918   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10919   format %{ "SLLX  $src,32,$tmp\n\t"
 10920             "SRLX  $tmp,32,$tmp2\n\t"
 10921             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10922             "STX   $tmp,$dst\t! regL to stkD" %}
 10923   ins_encode %{
 10924     Register Rsrc = $src$$Register;
 10925     Register Rtmp = $tmp$$Register;
 10926     Register Rtmp2 = $tmp2$$Register;
 10927     __ sllx(Rsrc,    32, Rtmp);
 10928     __ srlx(Rtmp,    32, Rtmp2);
 10929     __ or3 (Rtmp, Rtmp2, Rtmp);
 10930     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10931     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10932   %}
 10933   ins_pipe(ialu_reg);
 10934 %}
 10936 // Replicate scalar zero constant to packed int values in Double register
 10937 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10938   predicate(n->as_Vector()->length() == 2);
 10939   match(Set dst (ReplicateI con));
 10940   effect(KILL tmp);
 10941   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10942   ins_encode %{
 10943     // XXX This is a quick fix for 6833573.
 10944     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10945     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10946     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10947   %}
 10948   ins_pipe(loadConFD);
 10949 %}
 10951 // Replicate scalar to packed float values into Double stack
 10952 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10953   predicate(n->as_Vector()->length() == 2);
 10954   match(Set dst (ReplicateF src));
 10955   ins_cost(MEMORY_REF_COST*2);
 10956   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10957             "STF    $src,$dst.lo" %}
 10958   opcode(Assembler::stf_op3);
 10959   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10960   ins_pipe(fstoreF_stk_reg);
 10961 %}
 10963 // Replicate scalar zero constant to packed float values in Double register
 10964 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10965   predicate(n->as_Vector()->length() == 2);
 10966   match(Set dst (ReplicateF con));
 10967   effect(KILL tmp);
 10968   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10969   ins_encode %{
 10970     // XXX This is a quick fix for 6833573.
 10971     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10972     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10973     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10974   %}
 10975   ins_pipe(loadConFD);
 10976 %}
 10978 //----------PEEPHOLE RULES-----------------------------------------------------
 10979 // These must follow all instruction definitions as they use the names
 10980 // defined in the instructions definitions.
 10981 //
 10982 // peepmatch ( root_instr_name [preceding_instruction]* );
 10983 //
 10984 // peepconstraint %{
 10985 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10986 //  [, ...] );
 10987 // // instruction numbers are zero-based using left to right order in peepmatch
 10988 //
 10989 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10990 // // provide an instruction_number.operand_name for each operand that appears
 10991 // // in the replacement instruction's match rule
 10992 //
 10993 // ---------VM FLAGS---------------------------------------------------------
 10994 //
 10995 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10996 //
 10997 // Each peephole rule is given an identifying number starting with zero and
 10998 // increasing by one in the order seen by the parser.  An individual peephole
 10999 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 11000 // on the command-line.
 11001 //
 11002 // ---------CURRENT LIMITATIONS----------------------------------------------
 11003 //
 11004 // Only match adjacent instructions in same basic block
 11005 // Only equality constraints
 11006 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 11007 // Only one replacement instruction
 11008 //
 11009 // ---------EXAMPLE----------------------------------------------------------
 11010 //
 11011 // // pertinent parts of existing instructions in architecture description
 11012 // instruct movI(eRegI dst, eRegI src) %{
 11013 //   match(Set dst (CopyI src));
 11014 // %}
 11015 //
 11016 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 11017 //   match(Set dst (AddI dst src));
 11018 //   effect(KILL cr);
 11019 // %}
 11020 //
 11021 // // Change (inc mov) to lea
 11022 // peephole %{
 11023 //   // increment preceeded by register-register move
 11024 //   peepmatch ( incI_eReg movI );
 11025 //   // require that the destination register of the increment
 11026 //   // match the destination register of the move
 11027 //   peepconstraint ( 0.dst == 1.dst );
 11028 //   // construct a replacement instruction that sets
 11029 //   // the destination to ( move's source register + one )
 11030 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 11031 // %}
 11032 //
 11034 // // Change load of spilled value to only a spill
 11035 // instruct storeI(memory mem, eRegI src) %{
 11036 //   match(Set mem (StoreI mem src));
 11037 // %}
 11038 //
 11039 // instruct loadI(eRegI dst, memory mem) %{
 11040 //   match(Set dst (LoadI mem));
 11041 // %}
 11042 //
 11043 // peephole %{
 11044 //   peepmatch ( loadI storeI );
 11045 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 11046 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 11047 // %}
 11049 //----------SMARTSPILL RULES---------------------------------------------------
 11050 // These must follow all instruction definitions as they use the names
 11051 // defined in the instructions definitions.
 11052 //
 11053 // SPARC will probably not have any of these rules due to RISC instruction set.
 11055 //----------PIPELINE-----------------------------------------------------------
 11056 // Rules which define the behavior of the target architectures pipeline.

mercurial