src/cpu/x86/vm/vm_version_x86.hpp

Tue, 23 Feb 2010 17:46:29 +0100

author
twisti
date
Tue, 23 Feb 2010 17:46:29 +0100
changeset 1712
855c5171834c
parent 1210
93c14e5562c4
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6928839: JSR 292 typo in x86 _adapter_check_cast
Summary: There is a small typo in methodHandles_x86.cpp.
Reviewed-by: kvn

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class VM_Version : public Abstract_VM_Version {
    26 public:
    27   // cpuid result register layouts.  These are all unions of a uint32_t
    28   // (in case anyone wants access to the register as a whole) and a bitfield.
    30   union StdCpuid1Eax {
    31     uint32_t value;
    32     struct {
    33       uint32_t stepping   : 4,
    34                model      : 4,
    35                family     : 4,
    36                proc_type  : 2,
    37                           : 2,
    38                ext_model  : 4,
    39                ext_family : 8,
    40                           : 4;
    41     } bits;
    42   };
    44   union StdCpuid1Ebx { // example, unused
    45     uint32_t value;
    46     struct {
    47       uint32_t brand_id         : 8,
    48                clflush_size     : 8,
    49                threads_per_cpu  : 8,
    50                apic_id          : 8;
    51     } bits;
    52   };
    54   union StdCpuid1Ecx {
    55     uint32_t value;
    56     struct {
    57       uint32_t sse3     : 1,
    58                         : 2,
    59                monitor  : 1,
    60                         : 1,
    61                vmx      : 1,
    62                         : 1,
    63                est      : 1,
    64                         : 1,
    65                ssse3    : 1,
    66                cid      : 1,
    67                         : 2,
    68                cmpxchg16: 1,
    69                         : 4,
    70                dca      : 1,
    71                sse4_1   : 1,
    72                sse4_2   : 1,
    73                         : 2,
    74                popcnt   : 1,
    75                         : 8;
    76     } bits;
    77   };
    79   union StdCpuid1Edx {
    80     uint32_t value;
    81     struct {
    82       uint32_t          : 4,
    83                tsc      : 1,
    84                         : 3,
    85                cmpxchg8 : 1,
    86                         : 6,
    87                cmov     : 1,
    88                         : 7,
    89                mmx      : 1,
    90                fxsr     : 1,
    91                sse      : 1,
    92                sse2     : 1,
    93                         : 1,
    94                ht       : 1,
    95                         : 3;
    96     } bits;
    97   };
    99   union DcpCpuid4Eax {
   100     uint32_t value;
   101     struct {
   102       uint32_t cache_type    : 5,
   103                              : 21,
   104                cores_per_cpu : 6;
   105     } bits;
   106   };
   108   union DcpCpuid4Ebx {
   109     uint32_t value;
   110     struct {
   111       uint32_t L1_line_size  : 12,
   112                partitions    : 10,
   113                associativity : 10;
   114     } bits;
   115   };
   117   union ExtCpuid1Ecx {
   118     uint32_t value;
   119     struct {
   120       uint32_t LahfSahf     : 1,
   121                CmpLegacy    : 1,
   122                             : 4,
   123                lzcnt        : 1,
   124                sse4a        : 1,
   125                misalignsse  : 1,
   126                prefetchw    : 1,
   127                             : 22;
   128     } bits;
   129   };
   131   union ExtCpuid1Edx {
   132     uint32_t value;
   133     struct {
   134       uint32_t           : 22,
   135                mmx_amd   : 1,
   136                mmx       : 1,
   137                fxsr      : 1,
   138                          : 4,
   139                long_mode : 1,
   140                tdnow2    : 1,
   141                tdnow     : 1;
   142     } bits;
   143   };
   145   union ExtCpuid5Ex {
   146     uint32_t value;
   147     struct {
   148       uint32_t L1_line_size : 8,
   149                L1_tag_lines : 8,
   150                L1_assoc     : 8,
   151                L1_size      : 8;
   152     } bits;
   153   };
   155   union ExtCpuid8Ecx {
   156     uint32_t value;
   157     struct {
   158       uint32_t cores_per_cpu : 8,
   159                              : 24;
   160     } bits;
   161   };
   163 protected:
   164    static int _cpu;
   165    static int _model;
   166    static int _stepping;
   167    static int _cpuFeatures;     // features returned by the "cpuid" instruction
   168                                 // 0 if this instruction is not available
   169    static const char* _features_str;
   171    enum {
   172      CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   173      CPU_CMOV   = (1 << 1),
   174      CPU_FXSR   = (1 << 2),
   175      CPU_HT     = (1 << 3),
   176      CPU_MMX    = (1 << 4),
   177      CPU_3DNOW  = (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
   178      CPU_SSE    = (1 << 6),
   179      CPU_SSE2   = (1 << 7),
   180      CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   181      CPU_SSSE3  = (1 << 9),
   182      CPU_SSE4A  = (1 << 10),
   183      CPU_SSE4_1 = (1 << 11),
   184      CPU_SSE4_2 = (1 << 12),
   185      CPU_POPCNT = (1 << 13),
   186      CPU_LZCNT  = (1 << 14)
   187    } cpuFeatureFlags;
   189   // cpuid information block.  All info derived from executing cpuid with
   190   // various function numbers is stored here.  Intel and AMD info is
   191   // merged in this block: accessor methods disentangle it.
   192   //
   193   // The info block is laid out in subblocks of 4 dwords corresponding to
   194   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   195   struct CpuidInfo {
   196     // cpuid function 0
   197     uint32_t std_max_function;
   198     uint32_t std_vendor_name_0;
   199     uint32_t std_vendor_name_1;
   200     uint32_t std_vendor_name_2;
   202     // cpuid function 1
   203     StdCpuid1Eax std_cpuid1_eax;
   204     StdCpuid1Ebx std_cpuid1_ebx;
   205     StdCpuid1Ecx std_cpuid1_ecx;
   206     StdCpuid1Edx std_cpuid1_edx;
   208     // cpuid function 4 (deterministic cache parameters)
   209     DcpCpuid4Eax dcp_cpuid4_eax;
   210     DcpCpuid4Ebx dcp_cpuid4_ebx;
   211     uint32_t     dcp_cpuid4_ecx; // unused currently
   212     uint32_t     dcp_cpuid4_edx; // unused currently
   214     // cpuid function 0x80000000 // example, unused
   215     uint32_t ext_max_function;
   216     uint32_t ext_vendor_name_0;
   217     uint32_t ext_vendor_name_1;
   218     uint32_t ext_vendor_name_2;
   220     // cpuid function 0x80000001
   221     uint32_t     ext_cpuid1_eax; // reserved
   222     uint32_t     ext_cpuid1_ebx; // reserved
   223     ExtCpuid1Ecx ext_cpuid1_ecx;
   224     ExtCpuid1Edx ext_cpuid1_edx;
   226     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   227     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   228     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   229     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   231     // cpuid function 0x80000005 //AMD L1, Intel reserved
   232     uint32_t     ext_cpuid5_eax; // unused currently
   233     uint32_t     ext_cpuid5_ebx; // reserved
   234     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   235     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   237     // cpuid function 0x80000008
   238     uint32_t     ext_cpuid8_eax; // unused currently
   239     uint32_t     ext_cpuid8_ebx; // reserved
   240     ExtCpuid8Ecx ext_cpuid8_ecx;
   241     uint32_t     ext_cpuid8_edx; // reserved
   242   };
   244   // The actual cpuid info block
   245   static CpuidInfo _cpuid_info;
   247   // Extractors and predicates
   248   static uint32_t extended_cpu_family() {
   249     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   250     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   251     return result;
   252   }
   253   static uint32_t extended_cpu_model() {
   254     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   255     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   256     return result;
   257   }
   258   static uint32_t cpu_stepping() {
   259     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   260     return result;
   261   }
   262   static uint logical_processor_count() {
   263     uint result = threads_per_core();
   264     return result;
   265   }
   266   static uint32_t feature_flags() {
   267     uint32_t result = 0;
   268     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   269       result |= CPU_CX8;
   270     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   271       result |= CPU_CMOV;
   272     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || is_amd() &&
   273         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0)
   274       result |= CPU_FXSR;
   275     // HT flag is set for multi-core processors also.
   276     if (threads_per_core() > 1)
   277       result |= CPU_HT;
   278     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || is_amd() &&
   279         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0)
   280       result |= CPU_MMX;
   281     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   282       result |= CPU_SSE;
   283     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   284       result |= CPU_SSE2;
   285     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   286       result |= CPU_SSE3;
   287     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   288       result |= CPU_SSSE3;
   289     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   290       result |= CPU_SSE4_1;
   291     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   292       result |= CPU_SSE4_2;
   293     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   294       result |= CPU_POPCNT;
   296     // AMD features.
   297     if (is_amd()) {
   298       if (_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0)
   299         result |= CPU_3DNOW;
   300       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   301         result |= CPU_LZCNT;
   302       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   303         result |= CPU_SSE4A;
   304     }
   306     return result;
   307   }
   309   static void get_processor_features();
   311 public:
   312   // Offsets for cpuid asm stub
   313   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   314   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   315   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   316   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   317   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   318   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   320   // Initialization
   321   static void initialize();
   323   // Asserts
   324   static void assert_is_initialized() {
   325     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   326   }
   328   //
   329   // Processor family:
   330   //       3   -  386
   331   //       4   -  486
   332   //       5   -  Pentium
   333   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   334   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   335   //    family 6 model:   9,        13,       14,        15
   336   //    0x0f   -  Pentium 4, Opteron
   337   //
   338   // Note: The cpu family should be used to select between
   339   //       instruction sequences which are valid on all Intel
   340   //       processors.  Use the feature test functions below to
   341   //       determine whether a particular instruction is supported.
   342   //
   343   static int  cpu_family()        { return _cpu;}
   344   static bool is_P6()             { return cpu_family() >= 6; }
   346   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   347   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   349   static uint cores_per_cpu()  {
   350     uint result = 1;
   351     if (is_intel()) {
   352       result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   353     } else if (is_amd()) {
   354       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   355     }
   356     return result;
   357   }
   359   static uint threads_per_core()  {
   360     uint result = 1;
   361     if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   362       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   363                cores_per_cpu();
   364     }
   365     return result;
   366   }
   368   static intx L1_data_cache_line_size()  {
   369     intx result = 0;
   370     if (is_intel()) {
   371       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   372     } else if (is_amd()) {
   373       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   374     }
   375     if (result < 32) // not defined ?
   376       result = 32;   // 32 bytes by default on x86 and other x64
   377     return result;
   378   }
   380   //
   381   // Feature identification
   382   //
   383   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   384   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   385   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   386   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   387   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   388   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   389   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   390   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   391   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   392   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   393   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   394   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   395   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   396   //
   397   // AMD features
   398   //
   399   static bool supports_3dnow()    { return (_cpuFeatures & CPU_3DNOW) != 0; }
   400   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   401   static bool supports_3dnow2()   { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.tdnow2 != 0; }
   402   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   403   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   405   static bool supports_compare_and_exchange() { return true; }
   407   static const char* cpu_features()           { return _features_str; }
   409   static intx allocate_prefetch_distance() {
   410     // This method should be called before allocate_prefetch_style().
   411     //
   412     // Hardware prefetching (distance/size in bytes):
   413     // Pentium 3 -  64 /  32
   414     // Pentium 4 - 256 / 128
   415     // Athlon    -  64 /  32 ????
   416     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   417     // Core      - 128 /  64
   418     //
   419     // Software prefetching (distance in bytes / instruction with best score):
   420     // Pentium 3 - 128 / prefetchnta
   421     // Pentium 4 - 512 / prefetchnta
   422     // Athlon    - 128 / prefetchnta
   423     // Opteron   - 256 / prefetchnta
   424     // Core      - 256 / prefetchnta
   425     // It will be used only when AllocatePrefetchStyle > 0
   427     intx count = AllocatePrefetchDistance;
   428     if (count < 0) {   // default ?
   429       if (is_amd()) {  // AMD
   430         if (supports_sse2())
   431           count = 256; // Opteron
   432         else
   433           count = 128; // Athlon
   434       } else {         // Intel
   435         if (supports_sse2())
   436           if (cpu_family() == 6) {
   437             count = 256; // Pentium M, Core, Core2
   438           } else {
   439             count = 512; // Pentium 4
   440           }
   441         else
   442           count = 128; // Pentium 3 (and all other old CPUs)
   443       }
   444     }
   445     return count;
   446   }
   447   static intx allocate_prefetch_style() {
   448     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   449     // Return 0 if AllocatePrefetchDistance was not defined.
   450     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   451   }
   453   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   454   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   455   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   456   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   458   // gc copy/scan is disabled if prefetchw isn't supported, because
   459   // Prefetch::write emits an inlined prefetchw on Linux.
   460   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   461   // The used prefetcht0 instruction works for both amd64 and em64t.
   462   static intx prefetch_copy_interval_in_bytes() {
   463     intx interval = PrefetchCopyIntervalInBytes;
   464     return interval >= 0 ? interval : 576;
   465   }
   466   static intx prefetch_scan_interval_in_bytes() {
   467     intx interval = PrefetchScanIntervalInBytes;
   468     return interval >= 0 ? interval : 576;
   469   }
   470   static intx prefetch_fields_ahead() {
   471     intx count = PrefetchFieldsAhead;
   472     return count >= 0 ? count : 1;
   473   }
   474 };

mercurial