src/cpu/x86/vm/interp_masm_x86_64.cpp

Tue, 23 Feb 2010 17:46:29 +0100

author
twisti
date
Tue, 23 Feb 2010 17:46:29 +0100
changeset 1712
855c5171834c
parent 1686
576e77447e3c
child 1861
2338d41fbd81
permissions
-rw-r--r--

6928839: JSR 292 typo in x86 _adapter_check_cast
Summary: There is a small typo in methodHandles_x86.cpp.
Reviewed-by: kvn

     1 /*
     2  * Copyright 2003-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_64.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    31 #ifdef CC_INTERP
    32 void InterpreterMacroAssembler::get_method(Register reg) {
    33   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
    34   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    35 }
    36 #endif // CC_INTERP
    38 #ifndef CC_INTERP
    40 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
    41                                                   int number_of_arguments) {
    42   // interpreter specific
    43   //
    44   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
    45   //       since these are callee saved registers and no blocking/
    46   //       GC can happen in leaf calls.
    47   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    48   // already saved them so that it can use esi/edi as temporaries
    49   // then a save/restore here will DESTROY the copy the caller
    50   // saved! There used to be a save_bcp() that only happened in
    51   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    52   // when jvm built with ASSERTs.
    53 #ifdef ASSERT
    54   {
    55     Label L;
    56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    57     jcc(Assembler::equal, L);
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    59          " last_sp != NULL");
    60     bind(L);
    61   }
    62 #endif
    63   // super call
    64   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    65   // interpreter specific
    66   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
    67   // but since they may not have been saved (and we don't want to
    68   // save thme here (see note above) the assert is invalid.
    69 }
    71 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
    72                                              Register java_thread,
    73                                              Register last_java_sp,
    74                                              address  entry_point,
    75                                              int      number_of_arguments,
    76                                              bool     check_exceptions) {
    77   // interpreter specific
    78   //
    79   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    80   //       really make a difference for these runtime calls, since they are
    81   //       slow anyway. Btw., bcp must be saved/restored since it may change
    82   //       due to GC.
    83   // assert(java_thread == noreg , "not expecting a precomputed java thread");
    84   save_bcp();
    85 #ifdef ASSERT
    86   {
    87     Label L;
    88     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    89     jcc(Assembler::equal, L);
    90     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    91          " last_sp != NULL");
    92     bind(L);
    93   }
    94 #endif /* ASSERT */
    95   // super call
    96   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
    97                                entry_point, number_of_arguments,
    98                                check_exceptions);
    99   // interpreter specific
   100   restore_bcp();
   101   restore_locals();
   102 }
   105 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   106   if (JvmtiExport::can_pop_frame()) {
   107     Label L;
   108     // Initiate popframe handling only if it is not already being
   109     // processed.  If the flag has the popframe_processing bit set, it
   110     // means that this code is called *during* popframe handling - we
   111     // don't want to reenter.
   112     // This method is only called just after the call into the vm in
   113     // call_VM_base, so the arg registers are available.
   114     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
   115     testl(c_rarg0, JavaThread::popframe_pending_bit);
   116     jcc(Assembler::zero, L);
   117     testl(c_rarg0, JavaThread::popframe_processing_bit);
   118     jcc(Assembler::notZero, L);
   119     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   120     // address of the same-named entrypoint in the generated interpreter code.
   121     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   122     jmp(rax);
   123     bind(L);
   124   }
   125 }
   128 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   129   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   130   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
   131   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
   132   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
   133   switch (state) {
   134     case atos: movptr(rax, oop_addr);
   135                movptr(oop_addr, (int32_t)NULL_WORD);
   136                verify_oop(rax, state);              break;
   137     case ltos: movptr(rax, val_addr);                 break;
   138     case btos:                                   // fall through
   139     case ctos:                                   // fall through
   140     case stos:                                   // fall through
   141     case itos: movl(rax, val_addr);                 break;
   142     case ftos: movflt(xmm0, val_addr);              break;
   143     case dtos: movdbl(xmm0, val_addr);              break;
   144     case vtos: /* nothing to do */                  break;
   145     default  : ShouldNotReachHere();
   146   }
   147   // Clean up tos value in the thread object
   148   movl(tos_addr,  (int) ilgl);
   149   movl(val_addr,  (int32_t) NULL_WORD);
   150 }
   153 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   154   if (JvmtiExport::can_force_early_return()) {
   155     Label L;
   156     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   157     testptr(c_rarg0, c_rarg0);
   158     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   160     // Initiate earlyret handling only if it is not already being processed.
   161     // If the flag has the earlyret_processing bit set, it means that this code
   162     // is called *during* earlyret handling - we don't want to reenter.
   163     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
   164     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
   165     jcc(Assembler::notEqual, L);
   167     // Call Interpreter::remove_activation_early_entry() to get the address of the
   168     // same-named entrypoint in the generated interpreter code.
   169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   170     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
   171     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
   172     jmp(rax);
   173     bind(L);
   174   }
   175 }
   178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
   179   Register reg,
   180   int bcp_offset) {
   181   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   182   movl(reg, Address(r13, bcp_offset));
   183   bswapl(reg);
   184   shrl(reg, 16);
   185 }
   188 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
   189                                                        int bcp_offset,
   190                                                        bool giant_index) {
   191   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   192   if (!giant_index) {
   193     load_unsigned_short(index, Address(r13, bcp_offset));
   194   } else {
   195     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
   196     movl(index, Address(r13, bcp_offset));
   197     // Check if the secondary index definition is still ~x, otherwise
   198     // we have to change the following assembler code to calculate the
   199     // plain index.
   200     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   201     notl(index);  // convert to plain index
   202   }
   203 }
   206 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
   207                                                            Register index,
   208                                                            int bcp_offset,
   209                                                            bool giant_index) {
   210   assert(cache != index, "must use different registers");
   211   get_cache_index_at_bcp(index, bcp_offset, giant_index);
   212   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   213   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   214   // convert from field index to ConstantPoolCacheEntry index
   215   shll(index, 2);
   216 }
   219 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
   220                                                                Register tmp,
   221                                                                int bcp_offset,
   222                                                                bool giant_index) {
   223   assert(cache != tmp, "must use different register");
   224   get_cache_index_at_bcp(tmp, bcp_offset, giant_index);
   225   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   226   // convert from field index to ConstantPoolCacheEntry index
   227   // and from word offset to byte offset
   228   shll(tmp, 2 + LogBytesPerWord);
   229   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   230   // skip past the header
   231   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   232   addptr(cache, tmp);  // construct pointer to cache entry
   233 }
   236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
   237 // subtype of super_klass.
   238 //
   239 // Args:
   240 //      rax: superklass
   241 //      Rsub_klass: subklass
   242 //
   243 // Kills:
   244 //      rcx, rdi
   245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   246                                                   Label& ok_is_subtype) {
   247   assert(Rsub_klass != rax, "rax holds superklass");
   248   assert(Rsub_klass != r14, "r14 holds locals");
   249   assert(Rsub_klass != r13, "r13 holds bcp");
   250   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
   251   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
   253   // Profile the not-null value's klass.
   254   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   256   // Do the check.
   257   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   259   // Profile the failure of the check.
   260   profile_typecheck_failed(rcx); // blows rcx
   261 }
   265 // Java Expression Stack
   267 #ifdef ASSERT
   268 // Verifies that the stack tag matches.  Must be called before the stack
   269 // value is popped off the stack.
   270 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
   271   if (TaggedStackInterpreter) {
   272     frame::Tag tag = t;
   273     if (t == frame::TagCategory2) {
   274       tag = frame::TagValue;
   275       Label hokay;
   276       cmpptr(Address(rsp, 3*wordSize), (int32_t)tag);
   277       jcc(Assembler::equal, hokay);
   278       stop("Java Expression stack tag high value is bad");
   279       bind(hokay);
   280     }
   281     Label okay;
   282     cmpptr(Address(rsp, wordSize), (int32_t)tag);
   283     jcc(Assembler::equal, okay);
   284     // Also compare if the stack value is zero, then the tag might
   285     // not have been set coming from deopt.
   286     cmpptr(Address(rsp, 0), 0);
   287     jcc(Assembler::equal, okay);
   288     stop("Java Expression stack tag value is bad");
   289     bind(okay);
   290   }
   291 }
   292 #endif // ASSERT
   294 void InterpreterMacroAssembler::pop_ptr(Register r) {
   295   debug_only(verify_stack_tag(frame::TagReference));
   296   pop(r);
   297   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   298 }
   300 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
   301   pop(r);
   302   if (TaggedStackInterpreter) pop(tag);
   303 }
   305 void InterpreterMacroAssembler::pop_i(Register r) {
   306   // XXX can't use pop currently, upper half non clean
   307   debug_only(verify_stack_tag(frame::TagValue));
   308   movl(r, Address(rsp, 0));
   309   addptr(rsp, wordSize);
   310   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   311 }
   313 void InterpreterMacroAssembler::pop_l(Register r) {
   314   debug_only(verify_stack_tag(frame::TagCategory2));
   315   movq(r, Address(rsp, 0));
   316   addptr(rsp, 2 * Interpreter::stackElementSize());
   317 }
   319 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
   320   debug_only(verify_stack_tag(frame::TagValue));
   321   movflt(r, Address(rsp, 0));
   322   addptr(rsp, wordSize);
   323   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   324 }
   326 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
   327   debug_only(verify_stack_tag(frame::TagCategory2));
   328   movdbl(r, Address(rsp, 0));
   329   addptr(rsp, 2 * Interpreter::stackElementSize());
   330 }
   332 void InterpreterMacroAssembler::push_ptr(Register r) {
   333   if (TaggedStackInterpreter) push(frame::TagReference);
   334   push(r);
   335 }
   337 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   338   if (TaggedStackInterpreter) push(tag);
   339   push(r);
   340 }
   342 void InterpreterMacroAssembler::push_i(Register r) {
   343   if (TaggedStackInterpreter) push(frame::TagValue);
   344   push(r);
   345 }
   347 void InterpreterMacroAssembler::push_l(Register r) {
   348   if (TaggedStackInterpreter) {
   349     push(frame::TagValue);
   350     subptr(rsp, 1 * wordSize);
   351     push(frame::TagValue);
   352     subptr(rsp, 1 * wordSize);
   353   } else {
   354     subptr(rsp, 2 * wordSize);
   355   }
   356   movq(Address(rsp, 0), r);
   357 }
   359 void InterpreterMacroAssembler::push_f(XMMRegister r) {
   360   if (TaggedStackInterpreter) push(frame::TagValue);
   361   subptr(rsp, wordSize);
   362   movflt(Address(rsp, 0), r);
   363 }
   365 void InterpreterMacroAssembler::push_d(XMMRegister r) {
   366   if (TaggedStackInterpreter) {
   367     push(frame::TagValue);
   368     subptr(rsp, 1 * wordSize);
   369     push(frame::TagValue);
   370     subptr(rsp, 1 * wordSize);
   371   } else {
   372     subptr(rsp, 2 * wordSize);
   373   }
   374   movdbl(Address(rsp, 0), r);
   375 }
   377 void InterpreterMacroAssembler::pop(TosState state) {
   378   switch (state) {
   379   case atos: pop_ptr();                 break;
   380   case btos:
   381   case ctos:
   382   case stos:
   383   case itos: pop_i();                   break;
   384   case ltos: pop_l();                   break;
   385   case ftos: pop_f();                   break;
   386   case dtos: pop_d();                   break;
   387   case vtos: /* nothing to do */        break;
   388   default:   ShouldNotReachHere();
   389   }
   390   verify_oop(rax, state);
   391 }
   393 void InterpreterMacroAssembler::push(TosState state) {
   394   verify_oop(rax, state);
   395   switch (state) {
   396   case atos: push_ptr();                break;
   397   case btos:
   398   case ctos:
   399   case stos:
   400   case itos: push_i();                  break;
   401   case ltos: push_l();                  break;
   402   case ftos: push_f();                  break;
   403   case dtos: push_d();                  break;
   404   case vtos: /* nothing to do */        break;
   405   default  : ShouldNotReachHere();
   406   }
   407 }
   412 // Tagged stack helpers for swap and dup
   413 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   414                                                  Register tag) {
   415   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   416   if (TaggedStackInterpreter) {
   417     movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
   418   }
   419 }
   421 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   422                                                   Register tag) {
   423   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   424   if (TaggedStackInterpreter) {
   425     movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
   426   }
   427 }
   430 // Tagged local support
   431 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
   432   if (TaggedStackInterpreter) {
   433     if (tag == frame::TagCategory2) {
   434       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
   435            (int32_t)frame::TagValue);
   436       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
   437            (int32_t)frame::TagValue);
   438     } else {
   439       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
   440     }
   441   }
   442 }
   444 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
   445   if (TaggedStackInterpreter) {
   446     if (tag == frame::TagCategory2) {
   447       movptr(Address(r14, idx, Address::times_8,
   448                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
   449       movptr(Address(r14, idx, Address::times_8,
   450                   Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
   451     } else {
   452       movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
   453            (int32_t)tag);
   454     }
   455   }
   456 }
   458 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
   459   if (TaggedStackInterpreter) {
   460     // can only be TagValue or TagReference
   461     movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
   462   }
   463 }
   466 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
   467   if (TaggedStackInterpreter) {
   468     // can only be TagValue or TagReference
   469     movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
   470   }
   471 }
   473 #ifdef ASSERT
   474 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
   475   if (TaggedStackInterpreter) {
   476      frame::Tag t = tag;
   477     if (tag == frame::TagCategory2) {
   478       Label nbl;
   479       t = frame::TagValue;  // change to what is stored in locals
   480       cmpptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
   481       jcc(Assembler::equal, nbl);
   482       stop("Local tag is bad for long/double");
   483       bind(nbl);
   484     }
   485     Label notBad;
   486     cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
   487     jcc(Assembler::equal, notBad);
   488     // Also compare if the local value is zero, then the tag might
   489     // not have been set coming from deopt.
   490     cmpptr(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
   491     jcc(Assembler::equal, notBad);
   492     stop("Local tag is bad");
   493     bind(notBad);
   494   }
   495 }
   497 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
   498   if (TaggedStackInterpreter) {
   499     frame::Tag t = tag;
   500     if (tag == frame::TagCategory2) {
   501       Label nbl;
   502       t = frame::TagValue;  // change to what is stored in locals
   503       cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
   504       jcc(Assembler::equal, nbl);
   505       stop("Local tag is bad for long/double");
   506       bind(nbl);
   507     }
   508     Label notBad;
   509     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
   510     jcc(Assembler::equal, notBad);
   511     // Also compare if the local value is zero, then the tag might
   512     // not have been set coming from deopt.
   513     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
   514     jcc(Assembler::equal, notBad);
   515     stop("Local tag is bad");
   516     bind(notBad);
   517   }
   518 }
   519 #endif // ASSERT
   522 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   523   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   524 }
   527 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   528                                                    Register arg_1) {
   529   if (c_rarg0 != arg_1) {
   530     mov(c_rarg0, arg_1);
   531   }
   532   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   533 }
   536 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   537                                                    Register arg_1,
   538                                                    Register arg_2) {
   539   assert(c_rarg0 != arg_2, "smashed argument");
   540   assert(c_rarg1 != arg_1, "smashed argument");
   541   if (c_rarg0 != arg_1) {
   542     mov(c_rarg0, arg_1);
   543   }
   544   if (c_rarg1 != arg_2) {
   545     mov(c_rarg1, arg_2);
   546   }
   547   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   548 }
   550 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   551                                                    Register arg_1,
   552                                                    Register arg_2,
   553                                                    Register arg_3) {
   554   assert(c_rarg0 != arg_2, "smashed argument");
   555   assert(c_rarg0 != arg_3, "smashed argument");
   556   assert(c_rarg1 != arg_1, "smashed argument");
   557   assert(c_rarg1 != arg_3, "smashed argument");
   558   assert(c_rarg2 != arg_1, "smashed argument");
   559   assert(c_rarg2 != arg_2, "smashed argument");
   560   if (c_rarg0 != arg_1) {
   561     mov(c_rarg0, arg_1);
   562   }
   563   if (c_rarg1 != arg_2) {
   564     mov(c_rarg1, arg_2);
   565   }
   566   if (c_rarg2 != arg_3) {
   567     mov(c_rarg2, arg_3);
   568   }
   569   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   570 }
   572 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   573   // set sender sp
   574   lea(r13, Address(rsp, wordSize));
   575   // record last_sp
   576   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
   577 }
   580 // Jump to from_interpreted entry of a call unless single stepping is possible
   581 // in this thread in which case we must call the i2i entry
   582 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   583   prepare_to_jump_from_interpreted();
   585   if (JvmtiExport::can_post_interpreter_events()) {
   586     Label run_compiled_code;
   587     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   588     // compiled code in threads for which the event is enabled.  Check here for
   589     // interp_only_mode if these events CAN be enabled.
   590     get_thread(temp);
   591     // interp_only is an int, on little endian it is sufficient to test the byte only
   592     // Is a cmpl faster (ce
   593     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   594     jcc(Assembler::zero, run_compiled_code);
   595     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   596     bind(run_compiled_code);
   597   }
   599   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   601 }
   604 // The following two routines provide a hook so that an implementation
   605 // can schedule the dispatch in two parts.  amd64 does not do this.
   606 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   607   // Nothing amd64 specific to be done here
   608 }
   610 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   611   dispatch_next(state, step);
   612 }
   614 void InterpreterMacroAssembler::dispatch_base(TosState state,
   615                                               address* table,
   616                                               bool verifyoop) {
   617   verify_FPU(1, state);
   618   if (VerifyActivationFrameSize) {
   619     Label L;
   620     mov(rcx, rbp);
   621     subptr(rcx, rsp);
   622     int32_t min_frame_size =
   623       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
   624       wordSize;
   625     cmpptr(rcx, (int32_t)min_frame_size);
   626     jcc(Assembler::greaterEqual, L);
   627     stop("broken stack frame");
   628     bind(L);
   629   }
   630   if (verifyoop) {
   631     verify_oop(rax, state);
   632   }
   633   lea(rscratch1, ExternalAddress((address)table));
   634   jmp(Address(rscratch1, rbx, Address::times_8));
   635 }
   637 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   638   dispatch_base(state, Interpreter::dispatch_table(state));
   639 }
   641 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   642   dispatch_base(state, Interpreter::normal_table(state));
   643 }
   645 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   646   dispatch_base(state, Interpreter::normal_table(state), false);
   647 }
   650 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   651   // load next bytecode (load before advancing r13 to prevent AGI)
   652   load_unsigned_byte(rbx, Address(r13, step));
   653   // advance r13
   654   increment(r13, step);
   655   dispatch_base(state, Interpreter::dispatch_table(state));
   656 }
   658 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   659   // load current bytecode
   660   load_unsigned_byte(rbx, Address(r13, 0));
   661   dispatch_base(state, table);
   662 }
   664 // remove activation
   665 //
   666 // Unlock the receiver if this is a synchronized method.
   667 // Unlock any Java monitors from syncronized blocks.
   668 // Remove the activation from the stack.
   669 //
   670 // If there are locked Java monitors
   671 //    If throw_monitor_exception
   672 //       throws IllegalMonitorStateException
   673 //    Else if install_monitor_exception
   674 //       installs IllegalMonitorStateException
   675 //    Else
   676 //       no error processing
   677 void InterpreterMacroAssembler::remove_activation(
   678         TosState state,
   679         Register ret_addr,
   680         bool throw_monitor_exception,
   681         bool install_monitor_exception,
   682         bool notify_jvmdi) {
   683   // Note: Registers rdx xmm0 may be in use for the
   684   // result check if synchronized method
   685   Label unlocked, unlock, no_unlock;
   687   // get the value of _do_not_unlock_if_synchronized into rdx
   688   const Address do_not_unlock_if_synchronized(r15_thread,
   689     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   690   movbool(rdx, do_not_unlock_if_synchronized);
   691   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   693  // get method access flags
   694   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
   695   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   696   testl(rcx, JVM_ACC_SYNCHRONIZED);
   697   jcc(Assembler::zero, unlocked);
   699   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   700   // is set.
   701   testbool(rdx);
   702   jcc(Assembler::notZero, no_unlock);
   704   // unlock monitor
   705   push(state); // save result
   707   // BasicObjectLock will be first in list, since this is a
   708   // synchronized method. However, need to check that the object has
   709   // not been unlocked by an explicit monitorexit bytecode.
   710   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
   711                         wordSize - (int) sizeof(BasicObjectLock));
   712   // We use c_rarg1 so that if we go slow path it will be the correct
   713   // register for unlock_object to pass to VM directly
   714   lea(c_rarg1, monitor); // address of first monitor
   716   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
   717   testptr(rax, rax);
   718   jcc(Assembler::notZero, unlock);
   720   pop(state);
   721   if (throw_monitor_exception) {
   722     // Entry already unlocked, need to throw exception
   723     call_VM(noreg, CAST_FROM_FN_PTR(address,
   724                    InterpreterRuntime::throw_illegal_monitor_state_exception));
   725     should_not_reach_here();
   726   } else {
   727     // Monitor already unlocked during a stack unroll. If requested,
   728     // install an illegal_monitor_state_exception.  Continue with
   729     // stack unrolling.
   730     if (install_monitor_exception) {
   731       call_VM(noreg, CAST_FROM_FN_PTR(address,
   732                      InterpreterRuntime::new_illegal_monitor_state_exception));
   733     }
   734     jmp(unlocked);
   735   }
   737   bind(unlock);
   738   unlock_object(c_rarg1);
   739   pop(state);
   741   // Check that for block-structured locking (i.e., that all locked
   742   // objects has been unlocked)
   743   bind(unlocked);
   745   // rax: Might contain return value
   747   // Check that all monitors are unlocked
   748   {
   749     Label loop, exception, entry, restart;
   750     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   751     const Address monitor_block_top(
   752         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   753     const Address monitor_block_bot(
   754         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
   756     bind(restart);
   757     // We use c_rarg1 so that if we go slow path it will be the correct
   758     // register for unlock_object to pass to VM directly
   759     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
   760                                   // with top-most entry
   761     lea(rbx, monitor_block_bot);  // points to word before bottom of
   762                                   // monitor block
   763     jmp(entry);
   765     // Entry already locked, need to throw exception
   766     bind(exception);
   768     if (throw_monitor_exception) {
   769       // Throw exception
   770       MacroAssembler::call_VM(noreg,
   771                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
   772                                    throw_illegal_monitor_state_exception));
   773       should_not_reach_here();
   774     } else {
   775       // Stack unrolling. Unlock object and install illegal_monitor_exception.
   776       // Unlock does not block, so don't have to worry about the frame.
   777       // We don't have to preserve c_rarg1 since we are going to throw an exception.
   779       push(state);
   780       unlock_object(c_rarg1);
   781       pop(state);
   783       if (install_monitor_exception) {
   784         call_VM(noreg, CAST_FROM_FN_PTR(address,
   785                                         InterpreterRuntime::
   786                                         new_illegal_monitor_state_exception));
   787       }
   789       jmp(restart);
   790     }
   792     bind(loop);
   793     // check if current entry is used
   794     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
   795     jcc(Assembler::notEqual, exception);
   797     addptr(c_rarg1, entry_size); // otherwise advance to next entry
   798     bind(entry);
   799     cmpptr(c_rarg1, rbx); // check if bottom reached
   800     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
   801   }
   803   bind(no_unlock);
   805   // jvmti support
   806   if (notify_jvmdi) {
   807     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
   808   } else {
   809     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   810   }
   812   // remove activation
   813   // get sender sp
   814   movptr(rbx,
   815          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
   816   leave();                           // remove frame anchor
   817   pop(ret_addr);                     // get return address
   818   mov(rsp, rbx);                     // set sp to sender sp
   819 }
   821 #endif // C_INTERP
   823 // Lock object
   824 //
   825 // Args:
   826 //      c_rarg1: BasicObjectLock to be used for locking
   827 //
   828 // Kills:
   829 //      rax
   830 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
   831 //      rscratch1, rscratch2 (scratch regs)
   832 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   833   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
   835   if (UseHeavyMonitors) {
   836     call_VM(noreg,
   837             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   838             lock_reg);
   839   } else {
   840     Label done;
   842     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
   843     const Register obj_reg = c_rarg3; // Will contain the oop
   845     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   846     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   847     const int mark_offset = lock_offset +
   848                             BasicLock::displaced_header_offset_in_bytes();
   850     Label slow_case;
   852     // Load object pointer into obj_reg %c_rarg3
   853     movptr(obj_reg, Address(lock_reg, obj_offset));
   855     if (UseBiasedLocking) {
   856       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
   857     }
   859     // Load immediate 1 into swap_reg %rax
   860     movl(swap_reg, 1);
   862     // Load (object->mark() | 1) into swap_reg %rax
   863     orptr(swap_reg, Address(obj_reg, 0));
   865     // Save (object->mark() | 1) into BasicLock's displaced header
   866     movptr(Address(lock_reg, mark_offset), swap_reg);
   868     assert(lock_offset == 0,
   869            "displached header must be first word in BasicObjectLock");
   871     if (os::is_MP()) lock();
   872     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   873     if (PrintBiasedLockingStatistics) {
   874       cond_inc32(Assembler::zero,
   875                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   876     }
   877     jcc(Assembler::zero, done);
   879     // Test if the oopMark is an obvious stack pointer, i.e.,
   880     //  1) (mark & 7) == 0, and
   881     //  2) rsp <= mark < mark + os::pagesize()
   882     //
   883     // These 3 tests can be done by evaluating the following
   884     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
   885     // assuming both stack pointer and pagesize have their
   886     // least significant 3 bits clear.
   887     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
   888     subptr(swap_reg, rsp);
   889     andptr(swap_reg, 7 - os::vm_page_size());
   891     // Save the test result, for recursive case, the result is zero
   892     movptr(Address(lock_reg, mark_offset), swap_reg);
   894     if (PrintBiasedLockingStatistics) {
   895       cond_inc32(Assembler::zero,
   896                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   897     }
   898     jcc(Assembler::zero, done);
   900     bind(slow_case);
   902     // Call the runtime routine for slow case
   903     call_VM(noreg,
   904             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   905             lock_reg);
   907     bind(done);
   908   }
   909 }
   912 // Unlocks an object. Used in monitorexit bytecode and
   913 // remove_activation.  Throws an IllegalMonitorException if object is
   914 // not locked by current thread.
   915 //
   916 // Args:
   917 //      c_rarg1: BasicObjectLock for lock
   918 //
   919 // Kills:
   920 //      rax
   921 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
   922 //      rscratch1, rscratch2 (scratch regs)
   923 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   924   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
   926   if (UseHeavyMonitors) {
   927     call_VM(noreg,
   928             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   929             lock_reg);
   930   } else {
   931     Label done;
   933     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
   934     const Register header_reg = c_rarg2;  // Will contain the old oopMark
   935     const Register obj_reg    = c_rarg3;  // Will contain the oop
   937     save_bcp(); // Save in case of exception
   939     // Convert from BasicObjectLock structure to object and BasicLock
   940     // structure Store the BasicLock address into %rax
   941     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   943     // Load oop into obj_reg(%c_rarg3)
   944     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
   946     // Free entry
   947     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   949     if (UseBiasedLocking) {
   950       biased_locking_exit(obj_reg, header_reg, done);
   951     }
   953     // Load the old header from BasicLock structure
   954     movptr(header_reg, Address(swap_reg,
   955                                BasicLock::displaced_header_offset_in_bytes()));
   957     // Test for recursion
   958     testptr(header_reg, header_reg);
   960     // zero for recursive case
   961     jcc(Assembler::zero, done);
   963     // Atomic swap back the old header
   964     if (os::is_MP()) lock();
   965     cmpxchgptr(header_reg, Address(obj_reg, 0));
   967     // zero for recursive case
   968     jcc(Assembler::zero, done);
   970     // Call the runtime routine for slow case.
   971     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
   972          obj_reg); // restore obj
   973     call_VM(noreg,
   974             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   975             lock_reg);
   977     bind(done);
   979     restore_bcp();
   980   }
   981 }
   983 #ifndef CC_INTERP
   985 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
   986                                                          Label& zero_continue) {
   987   assert(ProfileInterpreter, "must be profiling interpreter");
   988   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   989   testptr(mdp, mdp);
   990   jcc(Assembler::zero, zero_continue);
   991 }
   994 // Set the method data pointer for the current bcp.
   995 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   996   assert(ProfileInterpreter, "must be profiling interpreter");
   997   Label zero_continue;
   998   push(rax);
   999   push(rbx);
  1001   get_method(rbx);
  1002   // Test MDO to avoid the call if it is NULL.
  1003   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1004   testptr(rax, rax);
  1005   jcc(Assembler::zero, zero_continue);
  1007   // rbx: method
  1008   // r13: bcp
  1009   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
  1010   // rax: mdi
  1012   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1013   testptr(rbx, rbx);
  1014   jcc(Assembler::zero, zero_continue);
  1015   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
  1016   addptr(rbx, rax);
  1017   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
  1019   bind(zero_continue);
  1020   pop(rbx);
  1021   pop(rax);
  1024 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1025   assert(ProfileInterpreter, "must be profiling interpreter");
  1026 #ifdef ASSERT
  1027   Label verify_continue;
  1028   push(rax);
  1029   push(rbx);
  1030   push(c_rarg3);
  1031   push(c_rarg2);
  1032   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
  1033   get_method(rbx);
  1035   // If the mdp is valid, it will point to a DataLayout header which is
  1036   // consistent with the bcp.  The converse is highly probable also.
  1037   load_unsigned_short(c_rarg2,
  1038                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
  1039   addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
  1040   lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
  1041   cmpptr(c_rarg2, r13);
  1042   jcc(Assembler::equal, verify_continue);
  1043   // rbx: method
  1044   // r13: bcp
  1045   // c_rarg3: mdp
  1046   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
  1047                rbx, r13, c_rarg3);
  1048   bind(verify_continue);
  1049   pop(c_rarg2);
  1050   pop(c_rarg3);
  1051   pop(rbx);
  1052   pop(rax);
  1053 #endif // ASSERT
  1057 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
  1058                                                 int constant,
  1059                                                 Register value) {
  1060   assert(ProfileInterpreter, "must be profiling interpreter");
  1061   Address data(mdp_in, constant);
  1062   movptr(data, value);
  1066 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1067                                                       int constant,
  1068                                                       bool decrement) {
  1069   // Counter address
  1070   Address data(mdp_in, constant);
  1072   increment_mdp_data_at(data, decrement);
  1075 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
  1076                                                       bool decrement) {
  1077   assert(ProfileInterpreter, "must be profiling interpreter");
  1078   // %%% this does 64bit counters at best it is wasting space
  1079   // at worst it is a rare bug when counters overflow
  1081   if (decrement) {
  1082     // Decrement the register.  Set condition codes.
  1083     addptr(data, (int32_t) -DataLayout::counter_increment);
  1084     // If the decrement causes the counter to overflow, stay negative
  1085     Label L;
  1086     jcc(Assembler::negative, L);
  1087     addptr(data, (int32_t) DataLayout::counter_increment);
  1088     bind(L);
  1089   } else {
  1090     assert(DataLayout::counter_increment == 1,
  1091            "flow-free idiom only works with 1");
  1092     // Increment the register.  Set carry flag.
  1093     addptr(data, DataLayout::counter_increment);
  1094     // If the increment causes the counter to overflow, pull back by 1.
  1095     sbbptr(data, (int32_t)0);
  1100 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1101                                                       Register reg,
  1102                                                       int constant,
  1103                                                       bool decrement) {
  1104   Address data(mdp_in, reg, Address::times_1, constant);
  1106   increment_mdp_data_at(data, decrement);
  1109 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
  1110                                                 int flag_byte_constant) {
  1111   assert(ProfileInterpreter, "must be profiling interpreter");
  1112   int header_offset = in_bytes(DataLayout::header_offset());
  1113   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  1114   // Set the flag
  1115   orl(Address(mdp_in, header_offset), header_bits);
  1120 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
  1121                                                  int offset,
  1122                                                  Register value,
  1123                                                  Register test_value_out,
  1124                                                  Label& not_equal_continue) {
  1125   assert(ProfileInterpreter, "must be profiling interpreter");
  1126   if (test_value_out == noreg) {
  1127     cmpptr(value, Address(mdp_in, offset));
  1128   } else {
  1129     // Put the test value into a register, so caller can use it:
  1130     movptr(test_value_out, Address(mdp_in, offset));
  1131     cmpptr(test_value_out, value);
  1133   jcc(Assembler::notEqual, not_equal_continue);
  1137 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1138                                                      int offset_of_disp) {
  1139   assert(ProfileInterpreter, "must be profiling interpreter");
  1140   Address disp_address(mdp_in, offset_of_disp);
  1141   addptr(mdp_in, disp_address);
  1142   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1146 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1147                                                      Register reg,
  1148                                                      int offset_of_disp) {
  1149   assert(ProfileInterpreter, "must be profiling interpreter");
  1150   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1151   addptr(mdp_in, disp_address);
  1152   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1156 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
  1157                                                        int constant) {
  1158   assert(ProfileInterpreter, "must be profiling interpreter");
  1159   addptr(mdp_in, constant);
  1160   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1164 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1165   assert(ProfileInterpreter, "must be profiling interpreter");
  1166   push(return_bci); // save/restore across call_VM
  1167   call_VM(noreg,
  1168           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
  1169           return_bci);
  1170   pop(return_bci);
  1174 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
  1175                                                      Register bumped_count) {
  1176   if (ProfileInterpreter) {
  1177     Label profile_continue;
  1179     // If no method data exists, go to profile_continue.
  1180     // Otherwise, assign to mdp
  1181     test_method_data_pointer(mdp, profile_continue);
  1183     // We are taking a branch.  Increment the taken count.
  1184     // We inline increment_mdp_data_at to return bumped_count in a register
  1185     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1186     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1187     movptr(bumped_count, data);
  1188     assert(DataLayout::counter_increment == 1,
  1189             "flow-free idiom only works with 1");
  1190     addptr(bumped_count, DataLayout::counter_increment);
  1191     sbbptr(bumped_count, 0);
  1192     movptr(data, bumped_count); // Store back out
  1194     // The method data pointer needs to be updated to reflect the new target.
  1195     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1196     bind(profile_continue);
  1201 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1202   if (ProfileInterpreter) {
  1203     Label profile_continue;
  1205     // If no method data exists, go to profile_continue.
  1206     test_method_data_pointer(mdp, profile_continue);
  1208     // We are taking a branch.  Increment the not taken count.
  1209     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1211     // The method data pointer needs to be updated to correspond to
  1212     // the next bytecode
  1213     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1214     bind(profile_continue);
  1219 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1220   if (ProfileInterpreter) {
  1221     Label profile_continue;
  1223     // If no method data exists, go to profile_continue.
  1224     test_method_data_pointer(mdp, profile_continue);
  1226     // We are making a call.  Increment the count.
  1227     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1229     // The method data pointer needs to be updated to reflect the new target.
  1230     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1231     bind(profile_continue);
  1236 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1237   if (ProfileInterpreter) {
  1238     Label profile_continue;
  1240     // If no method data exists, go to profile_continue.
  1241     test_method_data_pointer(mdp, profile_continue);
  1243     // We are making a call.  Increment the count.
  1244     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1246     // The method data pointer needs to be updated to reflect the new target.
  1247     update_mdp_by_constant(mdp,
  1248                            in_bytes(VirtualCallData::
  1249                                     virtual_call_data_size()));
  1250     bind(profile_continue);
  1255 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1256                                                      Register mdp,
  1257                                                      Register reg2,
  1258                                                      bool receiver_can_be_null) {
  1259   if (ProfileInterpreter) {
  1260     Label profile_continue;
  1262     // If no method data exists, go to profile_continue.
  1263     test_method_data_pointer(mdp, profile_continue);
  1265     Label skip_receiver_profile;
  1266     if (receiver_can_be_null) {
  1267       Label not_null;
  1268       testptr(receiver, receiver);
  1269       jccb(Assembler::notZero, not_null);
  1270       // We are making a call.  Increment the count for null receiver.
  1271       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1272       jmp(skip_receiver_profile);
  1273       bind(not_null);
  1276     // Record the receiver type.
  1277     record_klass_in_profile(receiver, mdp, reg2, true);
  1278     bind(skip_receiver_profile);
  1280     // The method data pointer needs to be updated to reflect the new target.
  1281     update_mdp_by_constant(mdp,
  1282                            in_bytes(VirtualCallData::
  1283                                     virtual_call_data_size()));
  1284     bind(profile_continue);
  1288 // This routine creates a state machine for updating the multi-row
  1289 // type profile at a virtual call site (or other type-sensitive bytecode).
  1290 // The machine visits each row (of receiver/count) until the receiver type
  1291 // is found, or until it runs out of rows.  At the same time, it remembers
  1292 // the location of the first empty row.  (An empty row records null for its
  1293 // receiver, and can be allocated for a newly-observed receiver type.)
  1294 // Because there are two degrees of freedom in the state, a simple linear
  1295 // search will not work; it must be a decision tree.  Hence this helper
  1296 // function is recursive, to generate the required tree structured code.
  1297 // It's the interpreter, so we are trading off code space for speed.
  1298 // See below for example code.
  1299 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1300                                         Register receiver, Register mdp,
  1301                                         Register reg2, int start_row,
  1302                                         Label& done, bool is_virtual_call) {
  1303   if (TypeProfileWidth == 0) {
  1304     if (is_virtual_call) {
  1305       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1307     return;
  1310   int last_row = VirtualCallData::row_limit() - 1;
  1311   assert(start_row <= last_row, "must be work left to do");
  1312   // Test this row for both the receiver and for null.
  1313   // Take any of three different outcomes:
  1314   //   1. found receiver => increment count and goto done
  1315   //   2. found null => keep looking for case 1, maybe allocate this cell
  1316   //   3. found something else => keep looking for cases 1 and 2
  1317   // Case 3 is handled by a recursive call.
  1318   for (int row = start_row; row <= last_row; row++) {
  1319     Label next_test;
  1320     bool test_for_null_also = (row == start_row);
  1322     // See if the receiver is receiver[n].
  1323     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1324     test_mdp_data_at(mdp, recvr_offset, receiver,
  1325                      (test_for_null_also ? reg2 : noreg),
  1326                      next_test);
  1327     // (Reg2 now contains the receiver from the CallData.)
  1329     // The receiver is receiver[n].  Increment count[n].
  1330     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1331     increment_mdp_data_at(mdp, count_offset);
  1332     jmp(done);
  1333     bind(next_test);
  1335     if (test_for_null_also) {
  1336       Label found_null;
  1337       // Failed the equality check on receiver[n]...  Test for null.
  1338       testptr(reg2, reg2);
  1339       if (start_row == last_row) {
  1340         // The only thing left to do is handle the null case.
  1341         if (is_virtual_call) {
  1342           jccb(Assembler::zero, found_null);
  1343           // Receiver did not match any saved receiver and there is no empty row for it.
  1344           // Increment total counter to indicate polymorphic case.
  1345           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1346           jmp(done);
  1347           bind(found_null);
  1348         } else {
  1349           jcc(Assembler::notZero, done);
  1351         break;
  1353       // Since null is rare, make it be the branch-taken case.
  1354       jcc(Assembler::zero, found_null);
  1356       // Put all the "Case 3" tests here.
  1357       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1359       // Found a null.  Keep searching for a matching receiver,
  1360       // but remember that this is an empty (unused) slot.
  1361       bind(found_null);
  1365   // In the fall-through case, we found no matching receiver, but we
  1366   // observed the receiver[start_row] is NULL.
  1368   // Fill in the receiver field and increment the count.
  1369   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1370   set_mdp_data_at(mdp, recvr_offset, receiver);
  1371   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1372   movl(reg2, DataLayout::counter_increment);
  1373   set_mdp_data_at(mdp, count_offset, reg2);
  1374   if (start_row > 0) {
  1375     jmp(done);
  1379 // Example state machine code for three profile rows:
  1380 //   // main copy of decision tree, rooted at row[1]
  1381 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
  1382 //   if (row[0].rec != NULL) {
  1383 //     // inner copy of decision tree, rooted at row[1]
  1384 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1385 //     if (row[1].rec != NULL) {
  1386 //       // degenerate decision tree, rooted at row[2]
  1387 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1388 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
  1389 //       row[2].init(rec); goto done;
  1390 //     } else {
  1391 //       // remember row[1] is empty
  1392 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1393 //       row[1].init(rec); goto done;
  1394 //     }
  1395 //   } else {
  1396 //     // remember row[0] is empty
  1397 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1398 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
  1399 //     row[0].init(rec); goto done;
  1400 //   }
  1401 //   done:
  1403 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1404                                                         Register mdp, Register reg2,
  1405                                                         bool is_virtual_call) {
  1406   assert(ProfileInterpreter, "must be profiling");
  1407   Label done;
  1409   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1411   bind (done);
  1414 void InterpreterMacroAssembler::profile_ret(Register return_bci,
  1415                                             Register mdp) {
  1416   if (ProfileInterpreter) {
  1417     Label profile_continue;
  1418     uint row;
  1420     // If no method data exists, go to profile_continue.
  1421     test_method_data_pointer(mdp, profile_continue);
  1423     // Update the total ret count.
  1424     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1426     for (row = 0; row < RetData::row_limit(); row++) {
  1427       Label next_test;
  1429       // See if return_bci is equal to bci[n]:
  1430       test_mdp_data_at(mdp,
  1431                        in_bytes(RetData::bci_offset(row)),
  1432                        return_bci, noreg,
  1433                        next_test);
  1435       // return_bci is equal to bci[n].  Increment the count.
  1436       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1438       // The method data pointer needs to be updated to reflect the new target.
  1439       update_mdp_by_offset(mdp,
  1440                            in_bytes(RetData::bci_displacement_offset(row)));
  1441       jmp(profile_continue);
  1442       bind(next_test);
  1445     update_mdp_for_ret(return_bci);
  1447     bind(profile_continue);
  1452 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1453   if (ProfileInterpreter) {
  1454     Label profile_continue;
  1456     // If no method data exists, go to profile_continue.
  1457     test_method_data_pointer(mdp, profile_continue);
  1459     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1461     // The method data pointer needs to be updated.
  1462     int mdp_delta = in_bytes(BitData::bit_data_size());
  1463     if (TypeProfileCasts) {
  1464       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1466     update_mdp_by_constant(mdp, mdp_delta);
  1468     bind(profile_continue);
  1473 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1474   if (ProfileInterpreter && TypeProfileCasts) {
  1475     Label profile_continue;
  1477     // If no method data exists, go to profile_continue.
  1478     test_method_data_pointer(mdp, profile_continue);
  1480     int count_offset = in_bytes(CounterData::count_offset());
  1481     // Back up the address, since we have already bumped the mdp.
  1482     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1484     // *Decrement* the counter.  We expect to see zero or small negatives.
  1485     increment_mdp_data_at(mdp, count_offset, true);
  1487     bind (profile_continue);
  1492 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
  1493   if (ProfileInterpreter) {
  1494     Label profile_continue;
  1496     // If no method data exists, go to profile_continue.
  1497     test_method_data_pointer(mdp, profile_continue);
  1499     // The method data pointer needs to be updated.
  1500     int mdp_delta = in_bytes(BitData::bit_data_size());
  1501     if (TypeProfileCasts) {
  1502       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1504       // Record the object type.
  1505       record_klass_in_profile(klass, mdp, reg2, false);
  1507     update_mdp_by_constant(mdp, mdp_delta);
  1509     bind(profile_continue);
  1514 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1515   if (ProfileInterpreter) {
  1516     Label profile_continue;
  1518     // If no method data exists, go to profile_continue.
  1519     test_method_data_pointer(mdp, profile_continue);
  1521     // Update the default case count
  1522     increment_mdp_data_at(mdp,
  1523                           in_bytes(MultiBranchData::default_count_offset()));
  1525     // The method data pointer needs to be updated.
  1526     update_mdp_by_offset(mdp,
  1527                          in_bytes(MultiBranchData::
  1528                                   default_displacement_offset()));
  1530     bind(profile_continue);
  1535 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1536                                                     Register mdp,
  1537                                                     Register reg2) {
  1538   if (ProfileInterpreter) {
  1539     Label profile_continue;
  1541     // If no method data exists, go to profile_continue.
  1542     test_method_data_pointer(mdp, profile_continue);
  1544     // Build the base (index * per_case_size_in_bytes()) +
  1545     // case_array_offset_in_bytes()
  1546     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
  1547     imulptr(index, reg2); // XXX l ?
  1548     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
  1550     // Update the case count
  1551     increment_mdp_data_at(mdp,
  1552                           index,
  1553                           in_bytes(MultiBranchData::relative_count_offset()));
  1555     // The method data pointer needs to be updated.
  1556     update_mdp_by_offset(mdp,
  1557                          index,
  1558                          in_bytes(MultiBranchData::
  1559                                   relative_displacement_offset()));
  1561     bind(profile_continue);
  1567 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1568   if (state == atos) {
  1569     MacroAssembler::verify_oop(reg);
  1573 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1575 #endif // !CC_INTERP
  1578 void InterpreterMacroAssembler::notify_method_entry() {
  1579   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1580   // track stack depth.  If it is possible to enter interp_only_mode we add
  1581   // the code to check if the event should be sent.
  1582   if (JvmtiExport::can_post_interpreter_events()) {
  1583     Label L;
  1584     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1585     testl(rdx, rdx);
  1586     jcc(Assembler::zero, L);
  1587     call_VM(noreg, CAST_FROM_FN_PTR(address,
  1588                                     InterpreterRuntime::post_method_entry));
  1589     bind(L);
  1593     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1594     get_method(c_rarg1);
  1595     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1596                  r15_thread, c_rarg1);
  1599   // RedefineClasses() tracing support for obsolete method entry
  1600   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1601     get_method(c_rarg1);
  1602     call_VM_leaf(
  1603       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1604       r15_thread, c_rarg1);
  1609 void InterpreterMacroAssembler::notify_method_exit(
  1610     TosState state, NotifyMethodExitMode mode) {
  1611   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1612   // track stack depth.  If it is possible to enter interp_only_mode we add
  1613   // the code to check if the event should be sent.
  1614   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1615     Label L;
  1616     // Note: frame::interpreter_frame_result has a dependency on how the
  1617     // method result is saved across the call to post_method_exit. If this
  1618     // is changed then the interpreter_frame_result implementation will
  1619     // need to be updated too.
  1621     // For c++ interpreter the result is always stored at a known location in the frame
  1622     // template interpreter will leave it on the top of the stack.
  1623     NOT_CC_INTERP(push(state);)
  1624     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1625     testl(rdx, rdx);
  1626     jcc(Assembler::zero, L);
  1627     call_VM(noreg,
  1628             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1629     bind(L);
  1630     NOT_CC_INTERP(pop(state));
  1634     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1635     NOT_CC_INTERP(push(state));
  1636     get_method(c_rarg1);
  1637     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1638                  r15_thread, c_rarg1);
  1639     NOT_CC_INTERP(pop(state));

mercurial