src/share/vm/gc_implementation/shared/mutableNUMASpace.hpp

Mon, 28 Jul 2008 15:30:23 -0700

author
jmasa
date
Mon, 28 Jul 2008 15:30:23 -0700
changeset 704
850fdf70db2b
parent 631
d1605aabd0a1
parent 703
d6340ab4105b
child 808
06df86c2ec37
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2006-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 /*
    26  *    The NUMA-aware allocator (MutableNUMASpace) is basically a modification
    27  * of MutableSpace which preserves interfaces but implements different
    28  * functionality. The space is split into chunks for each locality group
    29  * (resizing for adaptive size policy is also supported). For each thread
    30  * allocations are performed in the chunk corresponding to the home locality
    31  * group of the thread. Whenever any chunk fills-in the young generation
    32  * collection occurs.
    33  *   The chunks can be also be adaptively resized. The idea behind the adaptive
    34  * sizing is to reduce the loss of the space in the eden due to fragmentation.
    35  * The main cause of fragmentation is uneven allocation rates of threads.
    36  * The allocation rate difference between locality groups may be caused either by
    37  * application specifics or by uneven LWP distribution by the OS. Besides,
    38  * application can have less threads then the number of locality groups.
    39  * In order to resize the chunk we measure the allocation rate of the
    40  * application between collections. After that we reshape the chunks to reflect
    41  * the allocation rate pattern. The AdaptiveWeightedAverage exponentially
    42  * decaying average is used to smooth the measurements. The NUMASpaceResizeRate
    43  * parameter is used to control the adaptation speed by restricting the number of
    44  * bytes that can be moved during the adaptation phase.
    45  *   Chunks may contain pages from a wrong locality group. The page-scanner has
    46  * been introduced to address the problem. Remote pages typically appear due to
    47  * the memory shortage in the target locality group. Besides Solaris would
    48  * allocate a large page from the remote locality group even if there are small
    49  * local pages available. The page-scanner scans the pages right after the
    50  * collection and frees remote pages in hope that subsequent reallocation would
    51  * be more successful. This approach proved to be useful on systems with high
    52  * load where multiple processes are competing for the memory.
    53  */
    55 class MutableNUMASpace : public MutableSpace {
    56   friend class VMStructs;
    58   class LGRPSpace : public CHeapObj {
    59     int _lgrp_id;
    60     MutableSpace* _space;
    61     MemRegion _invalid_region;
    62     AdaptiveWeightedAverage *_alloc_rate;
    64     struct SpaceStats {
    65       size_t _local_space, _remote_space, _unbiased_space, _uncommited_space;
    66       size_t _large_pages, _small_pages;
    68       SpaceStats() {
    69         _local_space = 0;
    70         _remote_space = 0;
    71         _unbiased_space = 0;
    72         _uncommited_space = 0;
    73         _large_pages = 0;
    74         _small_pages = 0;
    75       }
    76     };
    78     SpaceStats _space_stats;
    80     char* _last_page_scanned;
    81     char* last_page_scanned()            { return _last_page_scanned; }
    82     void set_last_page_scanned(char* p)  { _last_page_scanned = p;    }
    83    public:
    84     LGRPSpace(int l) : _lgrp_id(l), _last_page_scanned(NULL) {
    85       _space = new MutableSpace();
    86       _alloc_rate = new AdaptiveWeightedAverage(NUMAChunkResizeWeight);
    87     }
    88     ~LGRPSpace() {
    89       delete _space;
    90       delete _alloc_rate;
    91     }
    93     void add_invalid_region(MemRegion r) {
    94       if (!_invalid_region.is_empty()) {
    95       _invalid_region.set_start(MIN2(_invalid_region.start(), r.start()));
    96       _invalid_region.set_end(MAX2(_invalid_region.end(), r.end()));
    97       } else {
    98       _invalid_region = r;
    99       }
   100     }
   102     static bool equals(void* lgrp_id_value, LGRPSpace* p) {
   103       return *(int*)lgrp_id_value == p->lgrp_id();
   104     }
   106     void sample() {
   107       alloc_rate()->sample(space()->used_in_bytes());
   108     }
   110     MemRegion invalid_region() const                { return _invalid_region;      }
   111     void set_invalid_region(MemRegion r)            { _invalid_region = r;         }
   112     int lgrp_id() const                             { return _lgrp_id;             }
   113     MutableSpace* space() const                     { return _space;               }
   114     AdaptiveWeightedAverage* alloc_rate() const     { return _alloc_rate;          }
   115     void clear_alloc_rate()                         { _alloc_rate->clear();        }
   116     SpaceStats* space_stats()                       { return &_space_stats;        }
   117     void clear_space_stats()                        { _space_stats = SpaceStats(); }
   119     void accumulate_statistics(size_t page_size);
   120     void scan_pages(size_t page_size, size_t page_count);
   121   };
   123   GrowableArray<LGRPSpace*>* _lgrp_spaces;
   124   size_t _page_size;
   125   unsigned _adaptation_cycles, _samples_count;
   127   void set_page_size(size_t psz)                     { _page_size = psz;          }
   128   size_t page_size() const                           { return _page_size;         }
   130   unsigned adaptation_cycles()                       { return _adaptation_cycles; }
   131   void set_adaptation_cycles(int v)                  { _adaptation_cycles = v;    }
   133   unsigned samples_count()                           { return _samples_count;     }
   134   void increment_samples_count()                     { ++_samples_count;          }
   136   size_t _base_space_size;
   137   void set_base_space_size(size_t v)                 { _base_space_size = v;      }
   138   size_t base_space_size() const                     { return _base_space_size;   }
   140   // Check if the NUMA topology has changed. Add and remove spaces if needed.
   141   // The update can be forced by setting the force parameter equal to true.
   142   bool update_layout(bool force);
   143   // Bias region towards the lgrp.
   144   void bias_region(MemRegion mr, int lgrp_id);
   145   // Free pages in a given region.
   146   void free_region(MemRegion mr);
   147   // Get current chunk size.
   148   size_t current_chunk_size(int i);
   149   // Get default chunk size (equally divide the space).
   150   size_t default_chunk_size();
   151   // Adapt the chunk size to follow the allocation rate.
   152   size_t adaptive_chunk_size(int i, size_t limit);
   153   // Scan and free invalid pages.
   154   void scan_pages(size_t page_count);
   155   // Return the bottom_region and the top_region. Align them to page_size() boundary.
   156   // |------------------new_region---------------------------------|
   157   // |----bottom_region--|---intersection---|------top_region------|
   158   void select_tails(MemRegion new_region, MemRegion intersection,
   159                     MemRegion* bottom_region, MemRegion *top_region);
   160   // Try to merge the invalid region with the bottom or top region by decreasing
   161   // the intersection area. Return the invalid_region aligned to the page_size()
   162   // boundary if it's inside the intersection. Return non-empty invalid_region
   163   // if it lies inside the intersection (also page-aligned).
   164   // |------------------new_region---------------------------------|
   165   // |----------------|-------invalid---|--------------------------|
   166   // |----bottom_region--|---intersection---|------top_region------|
   167   void merge_regions(MemRegion new_region, MemRegion* intersection,
   168                      MemRegion *invalid_region);
   170  public:
   171   GrowableArray<LGRPSpace*>* lgrp_spaces() const     { return _lgrp_spaces;       }
   172   MutableNUMASpace();
   173   virtual ~MutableNUMASpace();
   174   // Space initialization.
   175   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   176   // Update space layout if necessary. Do all adaptive resizing job.
   177   virtual void update();
   178   // Update allocation rate averages.
   179   virtual void accumulate_statistics();
   181   virtual void clear(bool mangle_space);
   182   virtual void mangle_unused_area() PRODUCT_RETURN;
   183   virtual void mangle_unused_area_complete() PRODUCT_RETURN;
   184   virtual void mangle_region(MemRegion mr) PRODUCT_RETURN;
   185   virtual void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
   186   virtual void check_mangled_unused_area_complete() PRODUCT_RETURN;
   187   virtual void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
   188   virtual void set_top_for_allocations() PRODUCT_RETURN;
   190   virtual void ensure_parsability();
   191   virtual size_t used_in_words() const;
   192   virtual size_t free_in_words() const;
   193   virtual size_t tlab_capacity(Thread* thr) const;
   194   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   196   // Allocation (return NULL if full)
   197   virtual HeapWord* allocate(size_t word_size);
   198   virtual HeapWord* cas_allocate(size_t word_size);
   200   // Debugging
   201   virtual void print_on(outputStream* st) const;
   202   virtual void print_short_on(outputStream* st) const;
   203   virtual void verify(bool allow_dirty);
   205   virtual void set_top(HeapWord* value);
   206 };

mercurial